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Abstract

Frequent criticism in dynamic decision making research pertains to the overly complex
nature of the decision tasks used in experimentation. To address such concerns we
study dynamic decision making with respect to the simple race game Hog, which has
a computable optimal decision strategy. In the two-player game of Hog, individuals
compete to be the first to reach a designated threshold of points. Players alternate
rolling a desired quantity of dice. If the number one appears on any of the dice the
player receives no points for his turn; otherwise the sum of the numbers appearing on the
dice is added to the player’s score. Results indicate that although players are influenced
by the game state when making their decisions, they tend to play too conservatively in
comparison to the optimal policy and are influenced by the behavior of their opponents.
Improvement in performance was negligible with repeated play. Survey data suggests
that this outcome could be due to inadequate time for learning, lack of player knowledge
of key probabilistic concepts, or insufficient player motivation. Regardless, some players
approached optimal heuristic strategies, which perform remarkably well. Results in Hog
share similarities and differences with results in a predecessor dice game called Pig.

Keywords: behavioral economics; dynamic decision making; the game of Hog
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1 Background

Any standard text will define economics as some variation of “the study of how society manages

its scarce resources” [24]. Although sociologists and political scientists too may be interested in

such phenomena, what sets apart the economist from his fellow social scientists is the systematic

framework under which he does his analysis [38]. He is not interested in ad hoc claims which

correspond to a particular set of data, but rather general and refutable theories with explanatory

power with respect to varying circumstances.

What exactly is a “theory” in an empirical science such as economics? According to Silber-

berg, a theory is composed of three separate elements. The first of these is the set of assertions

or postulates “concerning the behavior of various theoretical constructs, i.e., idealized (perhaps

mathematical) concepts, which are ultimately related to real-world objects” [38]. An example of

such a postulate is the statement that firms maximize profits or that demand is downward sloping

[38]. We denote this set as A and must bear in mind that since the statements in A cannot be

observed, it is fruitless to question their exact conformance with reality [38]. As Milton Friedman

mentioned in his famous text on positive economics, it is a theory’s predictive power by which it

should be judged [14]. Since there is often an inverse relationship between realism and manage-

ability, economists may very well give up some of the former to acquire the latter, provided that

doing so does not compromise the predictive ability of the theory. On the other hand, the second

component of a theory must be observable and realistic; it is a set denoted C as it consists of the

assumptions or test conditions with which we will test our given collection of postulates [38]. This

leaves the final part of a theory, the set of events, E, which the theory attempts to predict [38].

Returning to the example of the nature of demand, if we desired to test whether a rise in

the price of a particular good, say x, reduces the quantity demanded of good x, our theory would

stand as follows: given that demand is downward sloping (A), if there exist data indicating that

the price of good x has increased while real income and other prices have remained constant (C),

then it will be observable from the same data that the quantity demanded of good x has decreased

(E). Using propositional logic we symbolize this construct as (A → (C → E)), or the logical

equivalent, ((A&C) → E), where “→” is read as “implies” [38]. Since it logically follows that
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(¬E → ¬(A&C))1, we can test a theory and either refute or confirm its postulates by the truth or

falsity of the event E. Explicitly, since ¬(A&C) means ¬A or ¬C, if our event is false and we can

verify that our test conditions are true, we may conclude that one or more of the assertions must

be false2. Note that we can only confirm a theory, not prove it, since the converse of an implication

is not necessarily true. However, the more frequently a theory is confirmed by empirical data, the

more confidence we may have in its postulates [38].

One postulate of economics that has recently met with resistance is the assertion that individ-

uals and firms behave rationally. What is meant by the the word “rational” has itself been mired

in controversy, but most economists have reached the consensus that “rational behavior simply

implies consistent maximization of a well-ordered function, such as a utility or profit function” [4].

Critics of this theory and empirical evidence suggest that economic agents do not behave rationally;

a classic refutation of this postulate has been found in the ultimatum game, an experiment which

has been repeated with various stakes and conditions.

The ultimatum game is played by two individuals, one of whom is randomly designated as the

proposer while the other is known as the responder. The proposer is asked to determine the division

of a specified sum of money between himself and his opponent. If the responder does not agree to

the terms of the proposer, both players walk away without any earnings. The theory of a rational

individual would suggest that the responder should agree to receive any nonzero amount since even

a penny would leave him better off than accepting nothing [18]. Yet time and again, experimental

research has found that responders often turn down offers unless they are at least twenty percent

of the original sum [18]. These results have held whether the stakes are $10, $100, or even over a

week’s pay for participants in a poor nation [18]. Responders are clearly willing to penalize their

opponents for inequitable distributions even though that amounts to penalizing themselves in the

process, thereby refuting the theory of rational behavior.

The ultimatum game is not the only experiment that has highlighted inconsistencies between

economic theory and empirical evidence. Numerous other anomalies such as framing3 and endow-
1“¬”, meaning “not”
2On the other hand if the assumptions are also false, the postulates may be either true or false.
3Situation “where extensionally equivalent descriptions lead to different choices by altering the relative salience of

different aspects of the problem” [20].
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ment4 effects have also questioned the idea of a rationally behaving agent. These deviations from

what conventionally has been considered the norm has led to the development of a special subfield

of economics known as behavioral economics.

1.1 Behavioral Economics

Behavioral economics is a relatively new branch of economics, the relevance of which has only

recently been widely-accepted. To define it explicitly, it is the branch of economics that attempts

to develop models that more accurately depict real world phenomena through the integration of

psychological principles.5 Specific areas of study include heuristics and cognitive errors (prospect

theory, money illusion, etc.), framing effects, and other anomalies (endowment effects, inequity

aversion, etc.).

Mulainathan describes how traditional economics “conceptualizes a world populated by cal-

culating, unemotional maximizers that have been dubbed Homo [e]conomicus” [26]. This rational

agent model presumes that individuals have a strong grasp of their own preferences and will work

towards maximizing them. Rabin explains that given his utility function, a rational individual

will try to maximize his expected utility, or happiness [35]. This model has been defended with

the argument that market forces such as competition and arbitrage should ensure an environment

in which only rational agents can survive. However, as Mulainathan, Rabin, and many others

have demonstrated, this is not necessarily true. Many individuals lack the ability to identify and

articulate their own preferences, and some of the basic assumptions of utility theory are violated

by cognitive biases such as framing effects [35]. In such cases the market is incapable of rooting

out what Thaler terms the “quasi-rational” individual, or he who “[tries] hard but [is] subject to

systematic error” [40]. Thus, as Figure 1.1 humorously depicts, behavioral economics requires that

we scale back our faith in “rational man’s” propensity for maximizing his utility.

There are several ways in which individuals may stray from traditional economic theory. Be-
4Violation of consumer theory in which “the selling price for consumption goods is much higher than the buying

price” [20].
5Behavioral economics, or the application of psychology to enhance economic models, should not be confused

with experimental economics which uses laboratory experimentation to study that which is difficult to examine in
naturally occurring economic phenomena.
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Figure 1.1: The Evolution of Homo economicus [34]

havioral economists have identified three specific “bounds” on human behavior encapsulating how

“‘real people’ differ from [H]omo economicus” [18]. First there is bounded willpower, which refers

to the concept that people do make choices that will not maximize their utility in the long run

[26]. Often there is inherent conflict between short run and long run goals. For example, while a

particular level of saving will maximize consumption over a lifetime, individuals may fall well short

of this optimum in order to increase immediate gratification. Second, bounded self-interest exists in

that some people will risk their own happiness to benefit or spite others. We have already become

acquainted with this bound through the ultimatum game, which highlights how people want to be

treated fairly. Finally, we have bounded rationality, which is the underlying topic of this study. It

is the idea that people are limited in their cognitive abilities, which hinders their capacity to solve

problems [20, 26]. That is not to say that individuals cannot respond in a rational manner given

modest computational skills and less than perfect memories [18]. For instance, a person who uses

a heuristic, a cognitive simplification mechanism, may certainly minimize the opportunity cost of

thinking [18]. Nevertheless, such “mental shortcuts and rules of thumb” lead to (often predictable)

outcomes which differ from standard models [18]. These divergences fall into the categories of

judgment and decision making.

It is important to recognize that there are certainly cases where “market forces are strong

enough to make the three ‘bounds’ irrelevant for predictive purposes” suggesting that despite

irrationality, “markets can sometimes lead to behavior consistent with conventional economic as-

sumptions” [18]. For example, Becker has shown that even if we assume that individuals and

firms behave completely erratically, as if their decisions are determined by the roll of a die, the
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demand curve would still be negatively inclined [4]. However, the theory that the demand curve is

downward sloping is hardly under dispute. Alternatively, behavioral economics is appreciated for

its importance in law and other applications where one is involved in prescriptive analysis, or that

which relates to the development of policies directed to elicit particular behaviors [18]. To illus-

trate, we consider the issue of retirement savings. The standard models for lifecycle consumption

depict rational, far-sighted individuals who in retirement will consume their savings from youth and

middle-age [22]. To the contrary, empirical evidence reveals that a great number of individuals do

not in fact save much when they are younger. Studies have uncovered, though, that there is a type

of inertia when it comes to 401(k) participation. That is, participation is appreciably greater under

automatic enrollment and largely dependent upon default investment allocations [22]. Inexplicable

by traditional methods, behavioralists can resolve such activity using psychological models.

Perhaps the greatest criticism of behavioral economics is that there is no clear definition of

what it is. Posner stresses how it seems to be negatively defined, i.e. “economics minus the

assumption that people are rational maximizers of their satisfactions” [33]. There is no clear

forecast of what “behavioral man” will do in any given situation [33]. Thus, while behavioral

economists have pointed out the flaws of the rational agent model, they have yet to present a fully

developed alternative. Yet, human actions are not so random as the roll of a die. Experiments

have shown that departures tend to be systematic [18]. In the ultimatum game we can understand

that individuals do not always maximize in accordance to absolute levels, but in relative ones: the

greater the inequity in the division of the sum, the more relative wealth the responder gains by

rejecting the offer. Therefore with more experimentation and understanding of human psychology,

this fledgling field may soon develop a more comprehensive behavioral model. Such a model will

surely be harder to manage than the traditional one, but given that the rational agent model cannot

always predict behavior that is observed, it is important that we attempt to establish one that can.

1.2 Prospect Theory

One of the most sophisticated theories rivaling that of rational choice economics, at least in the

realm of decisions subject to risk, is that of prospect theory. First developed in the late seventies

by Tversky and Kahneman, it rejects expected utility theory in favor of a model that attempts to
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reconcile behavior contradictory to fundamental aspects of utility theory. Tversky and Kahneman

highlight two results that are inconsistent with the predictions of expected utility theory.

The first of these they call the certainty effect. It is the tendency that people have to

“overweight outcomes that are considered certain, relative to outcomes which are merely prob-

able” [41]. For instance, Tversky and Kahneman find that in an experiment in which subjects

are faced with the decision of A: $2,500 with probability .33, $2,400 with probability .66, and

$0 with probability .01, or B: $2,400 with certainty, most respondents choose B, indicating that

u(2, 400) > .33u(2, 500) + .66u(2, 400), or simplified, .34u(2, 400) > .33u(2, 500) [41]. On the other

hand, when given the choice between C: $2,500 with probability .33 and $0 with probability .67, or

D: $2,400 with probability .34 and $0 with probability .66, the majority of respondents choose C

[41]. This yields the exact opposite inequality and hence defies one of the basic rules of expected

utility theory. Interestingly, when the signs are reversed on all of the payoffs, the exact opposite

choices are preferred, a phenomenon that Tversky and Kahneman term the reflection effect [41].

It is thus apparent that “certainty increases the aversiveness of losses as well as the desirability of

gains” [41].

The second violation is the isolation effect, i.e. the notion that, for simplification’s sake, “people

often disregard components [that] alternatives share, and focus on the components that distinguish

them” [41]. The authors explain that often in two stage games, where the first involves a probability

p of continuing to stage two and (1-p) of not progressing, people will only look at the possible

outcomes in stage two. Ignoring shared aspects can lead to the same type of contradiction seen with

the certainty effect. Therefore, this type of fickleness arising from a strong dependency between

events has serious implications since “it violates the basic supposition of a decision-theoretical

analysis, that choices between prospects are determined solely by the probabilities of final states”

[41].

To contend with these discrepancies, Tversky and Kahneman devised prospect theory, which

outlines two stages of decision making, namely editing and evaluation. Editing is further broken

into four parts: (1) coding, in which decision makers organize their choices as gains or losses relative

to a particular frame of reference; (2) combination, the simple combining of probabilities referring
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to the same outcome; (3) segregation, where a riskless component may be isolated from the other

choices for the sake of simplification; and (4) cancelation, a manifestation of the isolation effect

[41]. During the evaluation process decision makers will assign a decision weight to each of the

probabilities from the editing stage and a subjective value to each of the possible outcomes—in

essence, the deviation from his or her point of reference [41]. With this information at hand,

decision makers will make the choice leading to the highest attainable value. In this way utility

is measured not by the final outcomes themselves but by the relative gains and losses associated

with them. Accordingly, this formulation expects the anomalies mentioned before and leads to an

S-shaped value function distinguished by three important characteristics: “(1) it is concave in the

domain of gains, favoring risk aversion; (2) it is convex in the domain of losses, favoring risk seeking;

(3) most important, the function is sharply kinked at the reference point, and loss-averse—steeper

for losses than for gains by a factor of about 2-2.5” [20].

Prospect theory emphasizes the reference-dependent nature of perception [20]. It also gives

rise to the importance of framing effects. If value is measured by change, and if a loss hurts by a

quantity more than than twice the amount of happiness felt from a gain of the same magnitude, then

how questions are framed—whether they are presented as gains are losses—will have a significant

impact on decision making. In fact, research has shown that sets of identical choices in which

one set portrays an option as a gain while the other describes the same option as a loss leads to

opposing decisions [20]. Unfortunately, while prospect theory “tells us that choices depend on the

framing of a problem, [it] does not tell us how people will spontaneously create their own frames”

[40]. As a consequence, even though prospect theory has made excellent progress in developing a

model that more accurately predicts real-world behavior, the theory is still not complete.

2 Introduction

Within behavioral economics, one area of special importance is decision theory. The state of the

economy is dependent upon the distinct decisions of millions of individuals, firms, and industries. In

making these choices, economic entities are often required to process vast and/or complex amounts

of data. However, due to limited cognitive powers, people often adopt heuristics or other simplifi-
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cation techniques, the consequence of which may lead to deviations from optimal behavior. Various

psychological studies have indicated that there are in fact “numerous cognitive and other bounds

on human rationality, often producing systematic errors and biases” [39]. Therefore, experiments

in decision making are necessary for identifying and predicting how economic agents make choices

in real-world situations.

To date, many studies have focused on identifying detrimental effects of using judgment heuris-

tics. Decision makers are known for ignoring base rate information, failing to revise opinions, having

unwarranted confidence, and harboring hindsight biases6, to name a few [16]. This seems to imply

that humans are fairly incompetent beings [21]. Yet while this appears to be true in controlled set-

tings, it is not so in real life. Toda points out that “man drives a car, plays complicated games, and

organizes society” [16]. So why is there such a disconnect between experimentation and real-world

phenomena?

One of the major complaints against decision-making experiments is that they largely concen-

trate on discrete instances. In doing so they ignore the continuous and adaptive nature of decision

making [16]. In actuality, individuals are constantly receiving feedback not only in the form of

outcomes but also in regard to shifts in the environment and the conditions of the decision which

are affected by his or her past actions [39]. As a result, these types of experiments are not neces-

sarily an accurate representation of decision making outside of an artificial realm [21]. Kleinmuntz

emphasizes that “costs and benefits of cognitive heuristics ought to be evaluated in tasks having a

dynamic, continuous character” [21]. The claim, as made by Jungermann, is that decision makers

who “appear biased or error-prone in the short run may be quite effective in continuous or natural

environments that allow for feedback and periodic adjustment in decision making” [36, 19].

To correct for this lack of continuous processing, some recent studies have begun to focus on

dynamic decision making. In order for a task to be considered dynamic it must be characterized by

multiple decisions [2]. These decisions must be interdependent, and the environment must change

as a result of the decision-maker’s own earlier actions and additional external forces [2]. As an

example, consider an individual who invests his money in the stock market. He will choose various
6“[T]he tendency of decisionmakers to attach an excessively high probability to an event simply because it ended

up occurring” [18].
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stocks to achieve his goal of maximizing profits, and may opt to buy, sell, or hold those shares

at different points in time. His choices as well as those of millions of other individuals will affect

stock prices which will in turn affect his and others’ future decisions. Such a complex system

dependent upon so many individuals is hardly ideal for studying individual decision making and

the cognitive reasoning behind it. As such, we instead establish suitable laboratory experiments

typically involving computer simulations called microworlds7 that are manageable but still represent

real-world situations.

2.1 Literature Review

Initial interest in dynamic decision making was generated during the early 1960s through the

independent efforts of Toda and Edwards, the latter of whom is considered the father of behavioral

decision theory, a subject concerned with how people actually make decisions as opposed to how

they should make them. In his seminal 1962 paper, Edwards introduces dynamic decision theory

by first reviewing static decision theory, which presents a decision maker faced with a well-defined

set of choices [12]. Edwards describes the subjective expected utility model in which each of these

choices, as well as the possible states of the world (which may or may not be associated with

specific probabilities), is coupled with a value [12]. Together, these values form a payoff matrix,

and in the static case, the decision maker takes one of the available courses of action and “receives

the value or payoff associated with the intersection of that course of action and the state of the

world which actually obtained—and then the world ends” [12]. In contrast, the dynamic world

continues as the decision maker makes a series of choices, each dependent on the last, and attempts

to maximize payoffs in the long run. With each decision, the decision maker gains new information

and must now deal with the possibility of a changing environment, since the states may change due

to his past decisions, autonomously, or both [12]. It is this collection of information and a changing

environment which makes dynamic decision theory “so difficult and so much fun” [12].

Due to its complicated nature, dynamic decision making has not received the same attention

as static decision making [3]. Brehmer summarizes how research that has been completed in the
7Microworlds sometimes are also known as synthetic task environments, high fidelity simulations, interactive

learning environments, virtual environments, or scaled worlds [15].
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field has been tackled using two distinct approaches. The first, the individual differences technique,

attempts to either predict behavior or “identify the demands” of the tasks performed [7]. To this

end, the approach first involves separating subjects into those who succeed and those who do not

and then calls for comparing these groups in terms of behavior and psychological test scores that

could potentially account for the disparity in performance [7]. Unfortunately, results have failed

to produce any significant correlation between the two [7]. Efforts to train subjects to adequately

handle complex systems have also proven unsuccessful, suggesting that heuristic competence cannot

be engineered or taught in a general sense [7]. The second approach, the standard method, involves

analyzing the specific attributes of the system that could affect subject performance with the

objective of understanding how people “develop mental models and formulate goals” [7]. Achieving

such a comprehensive picture of decision making requires developing a classification system by

which we can characterize different dynamic decision experiments and allow for more comparability

between them. Then, by altering one trait at a time, we might systematically determine which has

the greatest effect on performance, a process which carries with it the possibility of developing a

general theory.

Gonzales, et al., have recently revived the taxonomical approach to reviewing dynamic decision-

making problems. They feature four characteristics by which we may classify them:

(i) Dynamics

The dynamic character of a task speaks of the degree and speed at which the system changes.

Since dynamic decisions are made in a specific context and time, this includes whether the

system changes endogenously and/or exogenously, as mentioned by Edwards, and whether

decisions are made in real time8, a criterion added by Brehmer [4, 12, 15].

(ii) Complexity

Complexity refers to the situation in which decision makers are obliged to keep track of many

factors and possibly conflicting goals [7]. It is difficult to gauge, as it is relative to a specific

decision maker with particular cognitive abilities [15]. Regardless, it is characterized by three

attributes that work in conjunction: “(1) the number of components in the system, (2) the
8“[D]ecision makers are not free to make decisions when they feel ready to do so...they have to make the decisions

when the environment demands decisions from them” [7].
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number of relationships among the components (i.e., the degree of coupling), and (3) the

types of relationships among the components” [15].

(iii) Opaqueness

Opaqueness measures how visible different aspects of the task are to the decision maker [15].

A microworld is considered opaque if it does not deliberately make its characteristics known

but rather requires the decision maker to “form and test hypotheses about [its] state” [7]. As

with complexity, it is relative to a specific decision maker because even if certain information

about the state of the system may be determined, the decision maker must know how to

obtain it [15].

(iv) Dynamic Complexity

Dynamic complexity focuses on the nature of feedback provided by the system [15]. This

can be further bisected into the issues of feedback quality and feedback delays. If a system

is prone to nonlinearities or side effects, where a deliberate change in one variable leads to

unintended consequences in other variables, decision makers may face difficulty in prioritizing

goals [15]. Also if there are significant time gaps between decisions and their outcomes, this

can complicate the decision maker’s ability to assess the system [7].

An example of a typical dynamic decision making experiment is the Beer Distribution Game

[39]. In this role-playing experiment, Sterman arranged several teams of four players including a

producer, distributor, wholesaler, and retailer. Each participant attempted to “manage a simulated

inventory distribution system” [39]. Dynamics in this game were low since state changes occurred

only with players’ decisions and players had ample time to make them; likewise, with only three

variables (backlog, inventory, and current demand), complexity was also low [15]. On the other

hand, because consumers’ demand remained unknown to most players, opaqueness was high, as

was dynamic complexity since feedback delays were frequent and large [15]. Performance in the

Beer Distribution Game was pretty poor; on average, team costs were ten times greater than the

optimal benchmark cost [39]. The study concluded that this was due to misperception of feedback

[39]. Specifically, players seemed to attribute the fluctuations in the system to external factors such

as customer demand (which was actually constant), instead of the endogenous interaction among
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the other players [39].

This and other experimental results have led feedback to be a popular topic for decision making

research. Diehl and Sterman in a similar study also had subjects oversee an inventory while having

to contend with fluctuating sales [10]. However, they varied feedback strength and delays to monitor

its bearing in the decision making process. If misperception were truly the root cause of poor

performance, adjusting these variables should have had little effect on deviations from optimality

[10]. Yet results indicated considerably suboptimal performance all around, with “performance

[deteriorating] dramatically with [increased] time delays and feedback effects” [10]. Feedback,

therefore, appears to have a appreciable impact on performance. To explore this further, Atkins,

Wood and Rutgers have experimented with feedback methods, i.e. tabular vs. graphical data,

finding that graphical feedback leads to better performance, although tabular data suggests greater

learning [2].

Researchers in these studies have admitted that an alternative explanation for poor performance

could just be that subjects did not understand the full complexity of the game or had insufficient

experience despite multiple trials [10]. Given that other scientific investigations have led to the

conclusion that “decision-making expertise typically requires more than 10 years experience in

environments where tasks are exacting and feedback unambiguous,” it may very well be unrealistic

to expect subjects to achieve optimal performance in six hours time even with simplified and

repeated scenarios [3]. Decision makers only have two methods of processing to make decisions,

namely an analytic process or an intuitive process [3]. So given that ambiguous and infrequent

feedback further complicates matters, it is hardly surprising that studies such as that by Diehl and

Sterman have found that even if participants begin with analytical reasoning, they almost always

move to the intuitive processing method, forsaking calculations in favor of heuristics [3, 10].

Thus, the performance of heuristics, too, is an important topic in decision making. Kleinmuntz

tested the performance of various heuristic strategies in a simulation of medical decision making [21].

He concluded that the success of a heuristic strategy is dependent upon the dynamic characteristics

of the task itself, such as feedback quality [21]. This is reasonable since optimal performance

depends on “the availability of feedback” and “opportunities for taking corrective actions based
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upon that feedback” [21]. Kleinmuntz showed that if these criteria were met, it is possible to enjoy

successful performance by using less complicated decision strategies [21]. All of this research in

feedback and heuristics appears to underscore the cognitive limitations of decision makers and to

call for less complicated experiments with more opportunities for learning. Thaler predicts that

future studies will “[make] their agents less sophisticated and [give] greater weight to the role of

environmental factors, such as the difficulty of the task and the frequency of feedback” [40].

Criticisms directed at recent dynamic decision making experiments include that they are

“overly complex, with (often) ambiguous feedback, lacking clearly delineated subject goals, and

not amenable to analytical solution” [36]. For this reason, Seale, Rapoport and Stein study dy-

namic decision making “in a new paradigm—the jeopardy race game” [37]. By “jeopardy” we

mean that at every turn a player puts his or her point total at risk, and by “race” we refer to the

fact that the players compete to become the first to achieve a designated threshold of points [29].

Such a game has low dynamics, complexity, opaqueness, and dynamic complexity as states change

only as a consequence of the player decisions, variables are few, and feedback clear and immediate.

A highly noteworthy difference between studies in jeopardy race games and previous research in

dynamic decision making is the change in the overarching goal from maximizing revenue and/or

minimizing costs to that of winning—a key objective in business, sports, politics, and a host of

other arenas [37].

Seale, Rapoport and Stein studied the game of Pig. In Pig, each player strives to be the first

to achieve 100 points. At each turn the player makes a series of decisions to roll a die (again) or

hold. If the player rolls a one at any stage in the roll sequence, he immediately loses his point total

for that turn and play shifts to his opponent. If he rolls anything other than a one, he adds that

number to his point total for the turn. When he holds, his turn total is added to his overall score

and play is transferred to his opponent [27]. For instance, suppose it is the start of a game and it

is Player 1’s turn. He rolls a five and decides to roll again. On the second roll he receives a one and

hence no points for his turn. It is now Player 2’s opportunity to score. He rolls a six, followed by a

three, and then decides to hold. Player 2’s score is now nine points and play resumes with Player

1. They will continue in this way until one of them reaches 100 points. The two-player game of

Pig was solved by Neller and Presser using a computationally intensive method [27]. This is highly
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important because dynamic decision theory focuses on evaluating human decision making against

a “series of temporally related decisions with optimal solutions yielded by mathematical models”

[16]. Its simplicity, in addition to its ability to satisfy the requirements of a dynamic task, makes

Pig a rather attractive dynamic decision making experiment.

Despite the simplicity of the game, Seale, Rapoport and Stein discovered that participants still

did not roll often enough and failed to correct their actions (over the course of multiple games) [37].

They found that the vast majority of players were highly insensitive to the number of points by

which they were ahead of or behind their opponents, and the only indication of learning stemmed

from the discovery that there was a significant positive correlation between players’ and their

opponents’ mean stopping threshold (average turn total at which a player decides to bank his

points), suggesting that players tended to copy their opponents’ strategies [37]. Overall, their

results did not support the view of an adaptive decision maker who approaches optimal behavior

with repeated play [37].

3 The Game of Hog

To further understand dynamic decision making in the realm of jeopardy race games, we study one

of the many variants of Pig called “Fast Pig” [30]. More commonly known as Hog, it is a race game

in which each player has only one roll per turn. However, he or she may choose to simultaneously

roll as many dice as he or she pleases9. If a one appears on any of the dice, no points are earned

for that turn. Otherwise the sum of the numbers appearing on the dice is added to the player’s

total score. The first player to some designated point threshold wins the game.

The beginnings of a sample game may be found in Table 3.1. Player 1 begins play and decides

to roll four dice. Since he does not roll any ones, his score is the sum of the numbers which do

appear on the dice, in this case 16. It is then Player 2’s turn, and he also chooses four dice. Not

as lucky as his opponent, Player 2 receives zero points for his turn for having rolled a one. Play

returns to Player 1 who chooses fewer dice; he again obtains a positive turn total which is added to
9For practical purposes we typically impose a maximum number of dice, dmax.
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Table 3.1: Hog Sample Game, First Six Turns

Turn Quantity of Dice Numbers Appearing on Dice Turn Total P1’s Score P2’s Score

P1 4 5, 6, 3, 2 16 16 0

P2 4 2, 1, 1, 4 0 16 0

P1 3 4, 2, 3 9 25 0

P2 5 5, 2, 2, 4, 6 19 25 19

P1 8 6, 4, 1, 1, 4, 4, 1, 3 0 25 19

P2 2 5, 3 8 25 27

his overall score, now 25. In his next turn Player 2 finally makes the scoreboard and after another

round of play even takes a slight lead at 27 to 25.

Technically, Hog is not a jeopardy dice game since the turn total is never actually in jeopardy.

However, we can understand it as the conceptual equal of playing Pig, since it is essentially the

same game with the slight twist of “commit[ting] to the number of rolls in a turn before the

turn begins” [28]. An additional important benefit of Hog over its porcine ancestor is that it

also allows us to measure aggressive or conservative behavior [36]. Although the study by Seale,

Rapoport, and Stein observed that players were five times more likely to choose a conservative hold

(stopping before achieving the optimal point threshold) over an an aggressive roll (rolling past the

optimal point threshold), the conclusion that players are more likely to play conservatively might

be premature [37]. Their study could only analyze a subset of the data, i.e., only those decisions

in which a player decides to hold. In cases where the subject was thwarted from continuing play

due to the appearance of a one, it is not certain what the subject would have chosen to do had

he approached the optimal level of points during that turn. Therefore, a player may not have had

the opportunity to actually display aggressive tendencies because probability got in the way. In

contrast, since players in Hog must state at the outset of each roll the number of dice they will play,

this number can be compared to the optimal number at every turn to determine if the decision

is optimal, conservative (fewer than the optimal number of dice) or aggressive (greater than the

optimal number of dice).
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3.1 Origins and Strategy

The roots of the dice game Hog may be traced back to a 1993 publication by the Mathematical

Sciences Education Board. With the addition of an investigative worksheet into possible outcomes

and strategies for ideal play, it served as a prototype of a fun and challenging way to educate

grade school children about both basic numerical ideas and more advanced probabilistic concepts

[25]. Since then it has been used as an instructional tool for teaching not only elementary and

secondary school students but even undergraduate statistics majors, graduate mathematics majors,

and Masters of Business Administration (MBA) students [13]. The nature of the game allows players

to observe patterns and subsequently form and test hypotheses [5].

The same qualities that make Hog wonderful for classroom instruction also make it ideal as

a dynamic decision-making task. Specifically, the “rules of the game are straightforward” yet

“optimal strategies are not at all obvious,” and participants “will not come to the Hog Game task

with an a priori idea of what is ‘supposed’ to happen” [25]. Interested and curious to determine the

best strategy to win, students and subjects alike are motivated to think critically with the ultimate

desire of performing optimally.

Literature related to Hog tends to focus on optimal performance in regard to maximizing the

expected value of points. These average values can and have been approximated through testing in

the classroom [13]. More accurate numbers can be determined through computer simulation, while

the most exact answers are easily calculated mathematically, as seen from Table 3.2. Since each

die is independent of the others, to determine the probability of a nonzero score with d dice we

calculate (5/6)d. The average nonzero score is 4d so that the product of columns 2 and 3 yield the

expected value of rolling d dice. We graph column 4 in Figure 3.1. It is apparent that players face

an inherent tradeoff when choosing the number of dice to roll: while increasing the quantity of dice

raises the average nonzero score, it necessarily decreases the probability of achieving it. Therefore,

even though both five and six dice provide the largest expected value, the choice of five dice still

commands the greater chance of a positive score while the option of six dice covers a larger range

of scores.
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Table 3.2: Maximizing Expected Points in Hog

d (5/6)d 4d (5/6)d ∗ 4d d (5/6)d 4d (5/6)d ∗ 4d

1 0.833333 4 3.333333 14 0.077887 56 4.361648

2 0.694444 8 5.555556 15 0.064905 60 3.894328

3 0.578704 12 6.944444 16 0.054088 64 3.461625

4 0.482253 16 7.716049 17 0.045073 68 3.064981

5 0.401878 20 8.037551 18 0.037561 72 2.704395

6 0.334898 24 8.037551 19 0.031301 76 2.378866

7 0.279082 28 7.814286 20 0.026084 80 2.086724

8 0.232568 32 7.442177 21 0.021737 84 1.825884

9 0.193807 36 6.977041 22 0.018114 88 1.594025

10 0.161506 40 6.460223 23 0.015095 92 1.388734

11 0.134588 44 5.921871 24 0.012579 96 1.207595

12 0.112157 48 5.383519 25 0.010483 100 1.048260

13 0.093464 52 4.860122

Note: The expected value of a nonzero score per die is 4.

Figure 3.1: Expected Scores for Rolling d Fair, Six-Sided Dice, 1 ≤ d ≤ 25
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3.2 Optimal Policy

Perhaps not immediately obvious is the realization that in Hog, maximizing points and maximizing

the probability of winning are not the same thing. To illustrate, we consider an extreme situation.

Say it is Player 1’s turn and both he and his opponent are tied at 99 points each. In this situation

Player 1 should clearly roll only 1 die since any quantity larger than that would merely decrease

the probability that he will obtain a nonzero score. From this example it is clear that determining

the optimal number of dice with respect to maximizing the probability of winning depends on a

player’s score and his or her opponent’s score, as well as how close either is to the goal threshold.

Feldman and Morgan recognize that these difficulties, coupled with the complexities mentioned

earlier, make Hog an “interesting activity for students with respect to decision making in the face

of uncertainty” [13].

Provided that the goal threshold is 100 points, the optimal solution for Hog is determined in

the following manner. We adopt the notation used by Neller and Presser, who originally solved

the game of Hog. Let π(d, k) be the probability of rolling a score of k points with d dice and allow

Pi,j to denote the probability that a player with i points (Player 1, who plays optimally) will win

given that his opponent (Player 2, who is also playing optimally) has j points [28]. If i ≥ 100, then

Pi,j = 1 since Player 1 has achieved enough points to win. Similarly, if j ≥ 100, then Pi,j = 0 since

Player 2 has won. However, in general, when 0 ≤ i < 100 and 0 ≤ j < 100, we know that Player

1’s optimal choice will be the quantity of dice d, 0 < d ≤ d∗, which will maximize the expected

probability of winning.10 For each d, this is determined by the summation of the probability of

rolling each possible score times the probability that Player 2 will not win by rolling optimally in

his following turn, i.e.

Pi,j = max
0<d≤d∗

6d∑
k=0

π(d, k)(1− Pj,i+k). (3.1)

Interested readers may turn to Appendix A for an in-depth analysis of this solution, detailing

how we computationally determine π(d, k) and solve Equation 3.1 for each game state. The optimal

roll decisions for the two-player game of Hog is presented in graphical form in Figure 3.2. Player 1’s
10Here d∗ = min{dmax, d 100−i

2
e}, where dmax is an artificial limit on the quantity of dice to be rolled. No rational

player would wish to roll more than d 100−i
2

e dice since any nonzero score with this quantity would ensure a win and
a greater number of dice would merely decrease the probability of obtaining a nonzero score.
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score runs along the i-axis while Player 2’s score is on the j-axis. The d-axis indicates the number

of dice that Player 1 should roll given that the game state is (i, j). The solution is particular to

dmax = 25, and Neller and Presser inform us that the optimal solution remains the same for all

dmax ≥ 26 [28].

Figure 3.2: Optimal Solution for the Two-Player Game of Hog and 25 Dice Maximum
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It is noteworthy that at state (0, 0), Player 1 should roll 6 dice, not 5, which we previously

determined to have the same expected value. This suggests that when scores are tied, even if the

expected value is equal, it is ultimately preferable to choose the quantity of dice which leads to a

greater variance of scores than a safer opportunity to score. In the horizontal plane, the line j = i

consists of all game states in which the scores are tied. As we move to the right from (i, j) (i.e.

we increase i while keeping j fixed) we enter game states in which Player 1 is in the lead. We find

that d starts to fall since it is important for Player 1 to try and maintain the lead by choosing

quantities of dice with a greater probability of obtaining a nonzero score. On the other hand if we

move up from (i, j) (i.e. we increase j while keeping i fixed) Player 1 falls increasingly behind and
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Figure 3.3: Optimal Strategies with Opponent’s Score Fixed at 0, 50, 80, and 99 Points

must increment his choice in number of dice because he needs the added variance to catch up. The

former situation is easier to observe by looking at cross sections of the optimal solution; such is

provided in Figure 3.3.

It is initially a bit curious to find that in three of the graphs there is a sudden jump in the

optimal number of dice. As it so happens, though, a player will always reach a game state in which

from that point onward it is in the player’s best interest to play as if the next turn will be his

last chance to win (i.e. choose 100−i
4 dice). When that change occurs depends on his opponent’s

score since his opponent is trying to make the exact same decision. For instance, when Player 2

has zero points and Player 1 has 80, Player 2 will soon need to roll all twenty five dice or he will

almost certainly lose. Once Player 2 makes that decision, Player 1 must try to win as quickly as

possible (by rolling the minimum number of dice which will on average provide a win) since the

more opportunities he allows Player 2 to roll all 25 dice, the more likely Player 2 might actually
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win in one shot. So we would expect a kind of symmetry in these decisions; that is to say that if

there is a jump at (0,80), there should be a similar jump in the neighborhood of (80,0). This is

observable in the two-dimensional view of the optimal solution provided in Figure 3.4. Because of

the interaction between the players’ score and the fact the choice in dice must be discrete, it is not

unreasonable for the change in d along the curve seen in Figure 3.4 to be quite large.

Figure 3.4: Optimal Solution for the Two-Player Game of Hog and 25 Dice Maximum, 2D View
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Neller and Presser point out that the solution for Hog is very similar to the solution for Pig. In

fact, we can actually approximate the optimal number of dice to roll in Hog by taking the optimal

roll/hold boundary in Pig and dividing it by the average nonzero score per die (i.e. 4) [28]. The

similar nature of the games and their solutions will provide for an interesting comparison of results

because in absence of framing effects, one would expect behavior to be relatively the same. We,

however, predict significant differences in performance. In Pig, every time a player is faced with

a roll/hold decision, he is given the choice between H: Current turn total, x points, with certainty

or R: Another decision at x∗ points, x∗ ∈ {x + 2, x + 3, ..., x + 6}, with probability .83 and 0 with

probability .17. Then given the insights of prospect theory, it is not surprising that players in Pig

often prematurely choose H since they tend to overweight sure outcomes. In contrast, a player

21



in Hog faces a single choice between numerous uncertain outcomes. Thus, in support of prospect

theory, we expect players to be more risk-seeking in the game of Hog.

The nature of the games may also make Hog a more conducive environment for learning over

multiple games. Although players in Pig did not approach the optimal strategy after repeated play,

results from Feldman and Morgan indicate that even though their Hog players tended to “exaggerate

the effect of getting a zero for any single turn”—on average they predicted that optimal number

of dice would be three—after rolling various fixed numbers of dice ten times each, players’ revised

predictions for the optimal number of dice verged on five [13]. Therefore if players in Hog spend

some time in earlier games varying roll decisions to collect data, they may easily come closer to the

optimal solution in later games.

4 The Experiment

To secure the ease and accuracy of data collection and to avoid the cumber of real dice, we opted

to devise software to allow two subjects to anonymously play the game via computer network. Two

different screenshots of this computer-simulated version of the game can be viewed in Figures 4.1

and 4.211. A player can at all times see the number of games either he or his opponent have already

won. When it is his turn, each player chooses the number of dice he would like to roll by moving the

slider to the desired quantity, and both he and his opponent can view the numbers rolled. Players

should consider all simulated dice to be fair and six-sided. Data collected from over thirty two

thousand rolls corroborate this claim (please see Table 4.1).

Table 4.1: Frequency of Numbers Appearing on Electronic Dice

1 2 3 4 5 6

Frequency 5424 5301 5346 5386 5262 5376

Percent 0.168998 0.165166 0.166568 0.167814 0.163951 0.167503

Note: Total number of rolls was 32095.

11At game state (0,0) a player’s optimal strategy is 6 dice, which yields a probability of winning of 0.530023849.
In Figure 4.2, the player chose to roll 16 dice which still yields a probability of winning of 0.511307475 since it is so
early in the game. However, rolling a nonzero score with 16 dice only has probability 0.054088. So this player was
pretty lucky!
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Figure 4.1: Screenshot of Hog Dice Game Software at Initial Turn

 
 

Seale, Rapoport, and Stein used two different treatments in their study involving the dice game

Pig. We followed their example and used the same conditions. In the first, both players begin the

game with zero points and one of them is randomly chosen to go first. The game ends when one

player reaches 100 points, and in each subsequent game, the winner of the previous game allows his

opponent to go first. In the second treatment one of the players is randomly chosen to start out with

fifty points and his opponent goes first; they alternate who gets the 50-point advantage in each

game thereafter. The optimal decision does not depend upon how players come to a particular

situation, so by artificially placing players in a particular game state we hope to eliminate any

biases which may develop from the initial stages of the game. From the cross-sectional data found

in Figure 3.3 it is clear that a person starting with a 50 point deficit should roll a greater number
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Figure 4.2: Screenshot of Hog Dice Game Software Following Successful Roll

 
 

of dice to try and make up for the point disparity. In Pig, however, Seale, Rapoport and Stein,

found that players tend to be insensitive to the number of points they lead or trail their opponents

[37].

4.1 Procedures

Subjects were recruited from two sections of a Principles of Management and Organizational Behav-

ior course at the University of Nevada Las Vegas and were provided with both a monetary and an

academic incentive to participate. Students in the class received a flier advertising the opportunity

and were asked to sign up for a particular session via email correspondence with the experimenter
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(please see Appendix C).

We collected data over the course of five experimental sessions, two of treatment 1, collectively

consisting of 60 subjects, and three of treatment 2, providing another 62. Subjects ranged from age

19 to 62 (on average, 25) with slightly more males than females. They were paid the maximum of

either $10, or $4 per game won plus a $5 participation bonus; hence, earnings spanned $10 to $25

with the vast majority earning $13 or $17 (2 or 3 games).

Sessions lasted approximately an hour, with some subjects finishing far earlier and several

staying much later. Participants were invited into the computer lab to be seated at any open

computer and were told that they would be randomly paired to play a series of five of the same

dice game against someone else in the room. They were provided with ample time to read over an

informed consent form and to read the instructions provided in Appendix D. Experiment proctors

were available to answer questions both before and throughout the duration of the games. Upon

completion, players were asked to fill out the survey found in Appendix E, after which they received

payment for their participation before exiting the lab.

During the length of the session, keyboards were removed from each computer station so that

players could not be distracted or have access to any calculator, spreadsheet, or internet resource.

However, each subject was afforded a piece of paper on which he could record any information he

thought might be important or advantageous for successful performance. Subjects could request

more paper if necessary. This paper was collected with each player’s survey with the hope that it

may shed insight into how or why certain decisions were made. Although such qualitative analysis

is limited in the extent that writing down a strategy does not guarantee that it is carried out,

experimenters have found “notebook analysis” to be a “valuable addition to the researcher’s tool

kit of process methods” [10].

5 Results

In this experiment there are three main issues we wish to address: (1) How do players generally

perform? (2) Does player performance change over time? (3) Is the performance of players in the
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game of Hog superior to performance of players in the game of Pig? These in turn lead to further

questions, all of which require us to first define a measure of performance, some metric for capturing

departures from optimality.

One such metric is δ, defined as δ := A − O, where A is the actual number of dice chosen

by a player at a particular game state, and O is the optimal number of dice the player should

have chosen at that game state to maximize the probability of winning. In this way we might

calculate an average δ per player to capture his overall performance, or calculate an average δ per

player, per game, to observe his performance over time. The smaller the |δ|, the more optimal the

player. A problem with using this metric, however, is that taking the average causes us to lose

information. A player who makes both conservative (A < O) and aggressive (A > O) roll decisions

may average a δ close to zero, indicating an optimal player, when in fact δ per decision could have

been quite large. Furthermore, consider a player who in game 1 has an average δ determined from

the set {2, 4, 3, 4, 2, 4} and in game 2 from the set {11,−6, 7,−8, 9}. Then δ1 = 3.17 is greater than

δ2 = 2.16, which could lead to an erroneous conclusion that player 1’s performance has improved.

We might try to rectify this concern by taking the magnitude of delta. Then we must consider

x and −x to be equally suboptimal for we cannot discriminate between the two. While this does

correct the difficulty at hand, |δ| still fails as a perfect measure. There are inherent problems

with |δ| which cannot be fixed. Being two dice away from optimal is not twice as “bad” as being

one die away from optimal, and a difference of x dice from the optimal solution could have vastly

different consequences depending on the state of the game. To illustrate, if Player 1 rolls 6 dice

at state (0, 0), he maximizes his probability of winning, which is 0.5300. If he instead chose 5 dice

his probability of winning would be 0.5299 (a difference of 0.0001) and 4 dice would be 0.5281

(a difference of 0.0019). Now consider the game state (92, 88). At the optimal choice of 3 dice,

Player 1’s probability of winning is 0.7371. If he instead chose 1 die, only two fewer, it reduces

the probability of winning to 0.4435 (a difference of 0.2936). Therefore, |δ| does not provide a

consistent picture of how well a player is performing.

The remaining option for a metric is α, defined as α := PO − PA, where PA is the probability

of winning assigned to the actual number of dice chosen by a player at a particular game state, and
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PO is the probability of winning with the optimal number of dice. Then α is a positive number

which provides a clearer view of how suboptimal a particular decision is. Despite this attribute,

even α is not a faultless measure. When we scrutinize a particular α we have no idea how many

choices of dice were available between it and that which would lead to an optimal α score of zero.

While none of our metric choices are perfect, each has a particular advantage. From δ we can

capture direction of the deviation from optimal, from |δ| we can observe the incremental degree of

the deviation (especially from the perspective of the player), and from α we can obtain the actual

consequence of the deviation at a particular game state. We will thus require the use of δ, |δ|, and

α at various stages of our analyses depending upon the nature of the question we are attempting

to answer.

5.1 Performance

In Treatment 1, players made a total of 3,608 roll decisions, 565 of which were optimal. Figure 5.1

shows the aggregate distribution of all roll decisions for all players from Treatment 1. The horizontal

axis indicates δ while the vertical axis describes the percentage of the total rolls marked by δ.

Similarly, players in Treatment 2 made 411 optimal decisions out of a total of 2,346. The distribution

for Treatment 2 may be found in Figure 5.2.

Figure 5.1: Treatment 1: Percentage of Rolls Characterized by Delta
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Figure 5.2: Treatment 2: Percentage of Rolls Characterized by Delta
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A Q-Q plot of both distributions indicates that delta for both treatments is approximately

normally distributed. We thus calculate a t-statistic for each individual player’s average delta to

test for statistically significant departures from optimality. If significantly less than zero at the 5%

level, we classify the player as conservative. If significantly greater than zero at the 5% level, we

classify the player as aggressive. Remaining players are considered neutral. Given the problems

with the δ metric discussed earlier, we use it only to determine a direction and make no assessments

regarding the degree of the conservativeness or aggressiveness displayed by players. In Treatment

1, 33 players (55.0%) were conservative, 19 (31.7%) were neutral, and 8 (13.3%) were aggressive.

Likewise, in Treatment 2, 38 players (61.3%) were conservative, 22 (35.5%) were neutral, and

only 2 (3.2%) were aggressive. Thus, both treatments indicate that the majority of players were

conservative in their observed decisions.

Another interesting indicator of overall performance arises from an analysis of player awareness

of the discrepancy between his own and his opponent’s point total. From our prior study of the

optimal solution, we understand that a player must continually raise his choice in number of dice

if he falls increasingly behind his opponent. Therefore, we take the aggregate data from each

treatment and partition it at 20 point intervals in terms of how far behind or ahead of his opponent

a player is at a particular game state. For example, (-60, -40] includes the decisions from all games
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states in which any player is at least 40 points behind his opponent but at most 59 points behind.

Likewise, (20,40] captures all game states in which a player leads his opponent by at least 21 points

but no more than 40 points. For each interval we calculate the average optimal number of dice for

the given game states and also determine the actual average number of dice rolled for those same

game states.

A graph of this data for Treatment 1 is available in Figure 5.3 while a graph for Treatment 2

can be found in Figure 5.4. The blue markers represent the optimal averages while the red markers

designate the observed averages. We use a one-way analysis of variance (ANOVA) to confirm the

downward trend in average number of dice as a player catches up to and exceeds his opponent’s

score. All assumptions for a one-way ANOVA are met or corrected for, i.e. the dependent vari-

able, the average number of dice, is continuous and approximately normally distributed in each

category as confirmed by a series of Q-Q plots; cases are independent; and although Levene’s test

indicates that equality of variances between independent groups is violated, we use Welch’s test

for significance which is robust to this failure. The ANOVA results indicate significant differences

among the optimal means in both conditions at the 0.05 level. Further pairwise comparisons using

Bonferroni’s test indicate an adequate number of statistically significant differences in means to

conclude that there is a downward trend through the first six intervals. The same can be said of

the actual means in both conditions.

In Treatment 1, average observed number of dice was less than or equal to average optimal

number of dice in all 10 intervals. Treatment 2 showed similar results save two intervals in which

average observed number of dice exceeded average optimal number of dice. The results are promis-

ing; they suggest that players in aggregate were aware of the scoreboard and took the game state

into account when making their decisions. Although choices may not have been optimal, they fol-

low the optimal trend. Responses from survey data confirm this phenomenon. When asked about

their strategies, the majority of participants indicated that they consciously increased their choice

in number of dice when they found themselves falling behind.

Lastly, we are interested in gauging how far from optimal players were on average. It is more

logical to focus on players’ average |δ| than average α because differences in alpha are small and
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Figure 5.3: Treatment 1: Average Observed and Optimal Numbers of Dice By Score Discrepancy

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20

Amount Ahead or Behind Opponent

A
ve

ra
ge

 N
um

be
r o

f D
ic

e

 

 
Optimal
Actual

(-100,-80]
(-80,-60]

 (-60,-40]
 (-40,-20]

 (-20,0]   (0,20]
  (20,40]

   (40,60]
   (60,80]

   (80,100)

Figure 5.4: Treatment 2: Average Observed and Optimal Numbers of Dice By Score Discrepancy
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players themselves are unaware of this measure. We therefore calculate |δ| for each player across

all five games and report the results for both treatments in Figure 5.5. To obtain discrete numbers,

we round down to the nearest integer so that |δ| = 1 is an abbreviation for |δ| ∈ [1, 2), |δ| = 2 is

an abbreviation for |δ| ∈ [2, 3), etc. In both treatments the majority of players were on average

only two dice away from optimal. Note that we cannot comment on how “bad” two dice away from

optimal really is (in terms of the difference in the probability of winning) because that depends on

the game state in which it occurred.

Figure 5.5: Per Player Frequency of the Average Magnitude of Differences Between Optimal and
Observed Numbers of Dice
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Thus, overall we find that that players are far more likely to be conservative than aggressive

in play, that they do adjust their decisions based upon the state of the game, and on average tend

to be no greater than 5 to 7 dice away from the optimal solution. While these discoveries offer

important behavioral insights, they do not allow us to make any sort of general conclusions such as

“player performance was poor” or “player performance was good.” Any such determination would

ultimately be based on an arbitrary classification, i.e. |δ| > x is “poor” while |δ| ≤ x is “good” for

some discretionary x. To remain systematic, we will rate player performance depending on whether

players approach the optimal solution after repeated play.
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5.2 Improvement

Given the complex nature of the optimal solution to the game of Hog, we would not expect players

to know and use it. However, since the optimal strategy maximizes a player’s chance of winning

the game, if a player’s decisions get closer to the optimal decision strategy after repeated play,

we call this improvement since the player is “improving” his chances of winning. Detection of

improvement over the course of the five games would signify that feedback and experience were

adequate for learning from prior suboptimal decisions.

Since each subject played all five games, a one-way repeated measures ANOVA is appropri-

ate for discerning differences in subject behavior over time, provided we meet a few additional

assumptions. The repeated measures ANOVA allows us to reduce error variance due to individ-

ual differences, thereby allowing for greater power in distinguishing the main effect. Our choice

in dependent variable, average α, is continuous. A Q-Q plot of the variable indicates that it is

approximately normal, and in any case, the statistical tests we employ are considered robust to

departures from normality. We employ Mauchly’s test to check for the homogeneity of covariances;

if the sphericity assumption is violated, we apply a Greenhouse-Geisser correction. For post hoc

comparisons, we use a Bonferroni test to determine the pairwise interactions.

Average α serves as the best measure for observing differences in performance since it quantifies

the consequence of each decision. The repeated measures ANOVA results for Treatment 1 do

indicate a statistically significant difference in performance. From the pairwise comparisons we

discover two relationships to which this difference is attributed. Average α in game 1 is statistically

significantly different from both game 4 and game 5 at the 0.05 level. We graph average alpha per

game in Figure 5.6; the game number lies on the horizontal axis and average α per game spans the

vertical axis.

For Treatment 2, we obtain statistically insignificant repeated measures ANOVA results. The

graph of average α for Treatment 2 (see Figure 5.7) supports the lack of distinguishable change

in performance. However, it is possible that since different players have the 50 point advantage in

games 1, 3, and 5 than in games 2 and 4, we lose power by testing all five games in conjunction. If
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Figure 5.6: Treatment 1: Subject Performance Across Games
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there is a psychological reaction to the point disparity which affects performance, it would be more

appropriate to separate the games by parity and further segregate by whether the player went first

or second. This generates four subsets of data: players who went first in games 1, 3, 5; players who

went second in games 1, 3, and 5; players who went first in games 2 and 4; and players who went

second in games 2 and 4. Each of these subsets also yield statistically insignificant ANOVA results

for average α.

Treatment 2 additionally obliges us to check a final measure. One could argue that since there

are 10,000 possible game states, the chances that the same state is revisited over multiple games

is fairly low. This may result in poor learning since prior experience may not directly apply to a

given situation. However, in Treatment 2 we can guarantee that there is one game state that each

individual will reach either two or three times—the original game state of (0, 50). Therefore, in

lieu of the average α metric, we might instead use the opening α metric for game state (0, 50). In

doing so we still find statistically insignificant results with the two subsets of data to which this

metric applies. Thus, although we find slight evidence of learning in Treatment 1, we conclude that

performance was stagnant over time in Treatment 2.
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Figure 5.7: Treatment 2: Subject Performance Across Games
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5.3 Survey Data

The quantitative data studied thus far paints only a partial picture of decision making in the game

of Hog. Although it reveals the actual decisions that subjects made, alone it explains little about

why or how these decisions were made. To better understand why we observed the behavioral

patterns mentioned in prior sections, we turn to qualitative data gathered from a survey (please

see Appendix E) administered to all subjects regardless of treatment type.

Table 5.1 summarizes demographic information reported by participants in the study. Response

rates are provided in parentheses following each category. According to the most recent student

profile made available by the Office of Institutional Analysis & Planning at UNLV, our sample is

highly representative of the UNLV undergraduate population in all categories excepting gender (for

which the numbers should have been reversed) [32].

In addition to collecting personal data, we used the survey to determine each player’s knowledge

of probability theory, since a lack of such understanding might help explain suboptimal behavior.

Although we asked players the number of classes in which they have learned some probability
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Table 5.1: Aggregate Survey Data: Demographic Information

Response rates are provided in parentheses.

• Age (0.94):

19-22 23-26 27-30 31-34 >34
0.52 0.20 0.16 0.04 0.08

• Gender (0.88):

Female Male
0.44 0.56

• Ethnicity (0.91):

Hispanic/
Latino

Not Hispanic/
Latino

Unknown

0.23 0.76 0.01

• Race (0.97):

American
Indian

East Asian South Asian White Hawaiian/Pacific
Islander

0.01 0.13 0.03 0.47 0.09

Black/African
American

Multiple Race Other Unknown

0.04 0.09 0.12 0.01

theory/statistics, we specifically test knowledge by asking three straightforward multiple choice

questions pertinent to the game. Including both treatments, 122 subjects participated in the

survey; 119 answered all of the questions found in Table 5.2, a response rate of 97%.

The vast majority of respondents correctly identified 5/6 as the the probability of not rolling

a 1 using one die. However, less than half of the participants knew that this number must be

squared to obtain the probability of not rolling any 1s with two dice. Although the correct answer

was the most popular choice, a third of participants appear unaware of the fact that increasing

the number of dice rolled will increase the probability of rolling a 1. Slightly more than 3/4 of

all subjects seem to understand the concept of independent events. To assess if additional classes

taken in probability theory led to increased knowledge of probability theory, we test the correlation

between the number of classes taken and the number of questions answered correctly in the survey.

The correlation coefficient obtained was 0.067 was and not significant at the 0.05 level, connoting
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Table 5.2: Aggregate Survey Data: Knowledge Base Questions

Response rate: 0.97; correct answers are starred

• How many classes (post high school) have you taken in which you have learned some
statistics and/or probability theory?

None One Two Three Four or More
0.04 0.15 0.41 0.29 0.11

• What is the probability of not rolling a 1 using one die?

1/2 2/3 3/4 4/5 5/6*
0.02 0.02 0.00 0.01 0.95

• What is the probability of not rolling any 1’s using two dice?

1/2 7/12 2/3 25/36* 5/6
0.05 0.10 0.13 0.39 0.33

• If you rolled a 1 during your last turn, how would that affect the probability that you will
roll a one during your current turn?

More likely to
roll a ‘1’

Has no effect
on the cur-
rent turn*

Less likely to
roll a ‘1’

0.19 0.78 .03

negligible correlation between the two.

Another important component of performance in Hog is a person’s risk tolerance. An extremely

risk-averse or risk-seeking player may fail to achieve the optimal policy due to these personality

constraints. Therefore, in order to isolate the various effects contributing to performance we must

control for a person’s risk tolerance. We develop a risk score per player using a publicly accessible

risk scale provided by the International Personality Item Pool (IPIP), an agency specializing in the

development of personality differences. We adopt their risk-taking scale which is determined by a

set of 10 likert-style questions; these questions are similar to those used by the Jackson Personality

Inventory which is considered a psychometrically sound measure of personality. The questions were

purported to have an alpha of 0.78, indicating a high level of internal consistency. Our analysis of

data obtained from all 122 subjects yielded less reliability, that is, an alpha of 0.7071 after removing

one question. Although such an alpha is not ideal, a value ≥ 0.70 is considered acceptable [31].

Subjects’ risk scores are reported in Table 5.3. These numbers do not allow us to make a
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Table 5.3: Aggregate Survey Data: Individual Characteristics

Response rates are provided in parentheses.

• Risk-taking Score [Scale: 1-5, the lower the score, the more risk averse.] (1.00)

[1,2) [2,3) [3,4) [4,5]
0.03 0.30 0.56 0.11

• Do you gamble? (0.99)

Never Sometimes Often
0.36 0.59 0.05

—

Yes No

• In general, do you feel lucky? (0.99)
0.53 0.47

• Did your strategy change from game to game? (0.98)
0.59 0.41

• Did your strategy ever change based upon the behavior of your opponent? (0.99)
0.44 0.56

• Do you feel your performance improved from game to game? (0.93)
0.36 0.64

• After playing the game once did you want to play again? (0.92)
0.81 0.19

• Did you enjoy playing the game? (0.93)
0.81 0.19

judgment such as “a player with a risk score between 1 and 2 is risk averse whereas a player with

risk score between 4 and 5 is risk-seeking.” The risk score is merely a relative measure; a player

with risk score 1.5 is more risk averse than a player with risk score 4.8. The remainder of Table 5.3

notes players’ responses to a number of additional characteristics which have the potential to affect

performance.

Finally, participants were asked to hand in their scratch paper with their surveys. Two thirds of

participants returned blank sheets of paper. Of those which were not blank, many consisted mainly

of doodles. Of interest is the observation that if we separate the use of scratch paper by treatment,

38% of participants in Treatment 1 “used” their scratch paper while only 27% of participants in
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Treatment 2 “used” theirs.

To determine if any of the aforementioned characteristics had a perceivable effect on perfor-

mance, we ran a multivariate regression with players’ average α as the dependent variable and 10

independent variables: opponent’s alpha, treatment type, age, gender, risk score, probability knowl-

edge, and whether the player gambles, feels lucky, enjoyed the game, or used his scratch paper12.

The data are approximately normal and were examined for large outliers. A plot of predicted values

against the residuals supports linearity and homoskedasticity, so that a multivariate regression is

not unwarranted. Results are presented in Table 5.4. Since not every participant answered every

survey question, the regression is based upon 88 observations. Each coefficient is reported to the

right of its regressor, with the standard error directly beneath it in parentheses. We star those

coefficients which are significant at the 0.05 level.

Although the regression coefficients are jointly significant, only Opponent Alpha and Gamble

have statistically significant coefficients at the 0.05 level. This implies that on average, an increase

in 0.01 of a player’s opponent’s α will increases a player’s α by 0.00522, or the more suboptimal

the performance of an opponent, the more suboptimal the performance of a player, a positive

relationship. Several written responses support this finding; a dozen participants either admitted

to copying their opponents or noted that their opponents copied them. Furthermore, a player who

gambles will on average have an average α that is 0.00338 greater than a player who does not

gamble, i.e. a player who gambles on average performs worse than a player who does not. All

other variables have no statistically significant effect on performance. The adjusted R2 value was

R̄2 = 0.2527, meaning that the two statistically significant predictors of player performance in Hog

account for 25.27% of the variation found in average α.

5.4 In Comparison to Pig

Our results indicate that the performance of subjects in Hog is marked by both similarities and

differences with the behavior exhibited by players of Pig. In particular, the vast majority of decisions

made in both games were conservative and players seemed positively influenced by the decisions of
12Treatment, gender, gamble, lucky, enjoy, and scratch are all indicator variables, 1 when the answer of the question

is yes and 1 for Treatment 2.
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Table 5.4: Regression Results

Dependent Variable: Alpha
Regressor

Opponent Alpha 0.522*
(0.120)

Treatment 0.000618
(0.00137)

Age -0.0000612
(0.000119)

Gender 0.00108
(0.00137)

Risk -0.00151
(0.00118)

Probability -0.0000378
(0.000696)

Gamble 0.00338*
(0.00149)

Lucky -0.00117
(0.00137)

Enjoy -0.00228
(0.00220)

Scratch -0.000106
(0.00158)

Constant 0.0110
(0.00631)

Summary Statistics
Observations: 88
R̄2: 0.2527
SER: 0.0000349

* indicates significance at the 5% level

their opponents. However, unlike Pig players who appeared incognizant of how much they trailed or

led their opponents, Hog players seemed to account for the game state when making their decisions

[37]. Furthermore, both treatments in Pig reveal that players on average failed to get closer to

the optimal decision strategy, whereas at least in Treatment 1, Hog players demonstrated modest
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improvement from repeated play [37].

What remains to be determined is which set of players, on average, made the more optimal

decisions overall. In Pig, the optimal decision strategy is found by determining which is greater

at every decision state: the probability of winning with a hold, or the probability of winning with

a roll. In this way we can determine an α of |Phold − Proll| which will capture the consequence

of a particular hold decision. We thus compute an average α per player in Pig based upon each

player’s hold decisions and compare it to the average α levels found in Hog. Since average α is

approximately normal, as indicated by Q-Q plots of both sets of data, we use an independent t-test

to check for significance. In both Treatment 1 and Treatment 2 we find statistically significant

differences in performance. Figure 5.8 indicates that Hog players outperform their Pig-playing

counterparts in both treatments. In Treatment 1, all Hog players had average α scores less than

or equal to 0.026 while only 27% of players in Pig were at or below the 0.026 α level. Similarly,

in Treatment 2, all Hog players had average α scores less than or equal to 0.037 while 56% of Pig

players were at or below the same α level.

Figure 5.8: Cumulative Distributions, Hog vs Pig
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5.5 Heuristic Solutions

Across five games, players in Treatment 1 averaged 60 decisions and players in Treatment 2 averaged

38 decisions. Therefore, although the optimal solution to the game of Hog is not obvious, players

clearly have an opportunity to test different strategies to win. Out of 122 subjects, only one reported
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having deliberately rolled various quantities of dice in order to test the probability of rolling a one.

Nevertheless, the majority of respondents indicated that they typically chose a quantity of dice

within a specific range and revised this decision set as their experience grew.

In order to determine the effectiveness of various heuristic strategies, we ran multiple simula-

tions using the most common and obvious ones. Each statistic reported has been determined from

the simulation of 1 million games against an opponent using the optimal strategy. We first test the

optimal solution itself. Since P0,0 = 0.5300, theoretically, a subject who plays optimally and goes

first will win 53% of the time. Simulation results of an optimally performing player are in line with

predicted results; the optimally playing individual won 52.89% of the games played.

Recall from our previous analysis that 5 and 6 dice both maximize the expected value of points.

A player aware of this fact might adopt the following strategy: roll 6 dice if behind or tied with

the opponent and five dice if ahead of the opponent. As we touched upon before, the insight for

this decision strategy stems from the idea that a player who is behind or tied with his opponent

would want to narrow the gap or take the lead by taking advantage of the larger variance of scores

provided by six dice. On the other hand, a player who is ahead of his opponent would wish to

play the more conservative choice of five dice in order to maintain that lead. Simulated results

implementing this strategy yield a win percentage of 47.16%, indicating that the heuristic performs

remarkably well.

Without any kind of knowledge about the probabilities involved, a player might adopt a very

simple heuristic which we name the trial and adjustment strategy. In this strategy a player will

randomly choose a number of dice for his opening roll. On each subsequent roll he will increase

the number of dice by one if he received a nonzero score during his immediately previous turn or

decrease his choice of dice by one if he obtained zero points during that turn. Of course this choice

is bounded by a minimum of 1 die and maximum of 25 dice. Simulation results for each possible

starting roll are provided in Figure 5.9. The horizontal axis denotes the choice of the starting

roll while the vertical axis reports the percentage of games won using the heuristic. We draw a

dashed horizontal line at 0.53 for easy comparison with the optimal strategy. It is clear that the

effectiveness of the strategy is dependent upon the starting quantity of dice. However, even the
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worst initial choice provides a win 17.53% of the time, and the appropriate starting choice can lead

to a win 43.69% of the time. The steady decline in the percentage of wins beyond eight initial dice

is to be expected. Each additional die increases the probability of rolling a one and will likely be

a waste of a trial.

Figure 5.9: Trial and Adjustment Heuristic Performance in 1M Games
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The other straightforward heuristic that a player might employ, and which was indeed the

most common strategy reported, is what we call the consistent roll strategy. When a player uses

this strategy he chooses some quantity of dice and repeatedly uses that quantity, turn after turn,

regardless of past outcomes. However, we assume that he is forward thinking and does not use the

heuristic blindly. That is to say that as he approaches the goal threshold, his decision becomes

d = min{heuristic choice, d100−s
2 e}, where s is the player’s score. So a person using the “always

roll 10” strategy will choose 2 dice, not 10, when he finds himself at 96 points.

Simulation results for the consistent roll strategy are provided in Figure 5.10 where the hori-

zontal axis marks the possible choices of dice and the vertical axis relates the percentage of wins

yielded by each choice. We again indicate the optimal strategy by a dashed horizontal line at 0.53.

This graph is not as smooth as the graph for the trial and adjustment heuristic. However, the
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jaggedness at 7, 9, and 13 dice may be attributed to the fact that these are the transitions to an

average fewer number of required successful rolls. For example, 6 dice on average yield 24 points

and would require 5 successful rolls, whereas 7 dice on average yield 28 points and would require

4 successful rolls. The local minimum at 17 dice is expected since it requires the greatest number

of successful dice over the course of the entire game. Another aspect of this data which may seem

surprising is that rolling 25 dice can lead to a win 11.88% of the time. This is not as unrealistic as

it may initially seem. Given that the expected nonzero score of one die is 4 points, if a player rolls

25 dice, on average he will win the game in one turn. Since an optimally playing opponent would

on average need 5 successful rolls, the total number of turns in 1 million games will likely exceed

10 million. If we multiply this by the probability of rolling a nonzero score with twenty five dice,

i.e. 0.0104 (see Table 3.2), the simulated result is not unreasonable.

Figure 5.10: Consistent Roll Heuristic Performance in 1M Games
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Although the trial and adjustment heuristic is the better strategy overall, the consistent roll

heuristic outperforms the trial and adjustment heuristic by as much as 7% between 4 and 8 dice

inclusive. Consistently rolling 6 dice provides a win 49.24% of the time, making it the best heuristic

strategy available of those analyzed here. Thus, overall we see that the use of an appropriate

heuristic can be very effective.
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6 Discussion

Our investigation of dynamic decision making with respect to the dice game Hog has led to many

interesting results. One of the most important of these is that player performance is largely stagnant

despite repeated play, and even when improvement is detected, it is minimal and somewhat delayed.

In this section we provide potential explanations for this occurrence. Of equal importance is

understanding and accounting for the similarities and differences in performance between players

in the game of Pig and players in the game of Hog. These discussions will reveal aspects of the

experiment open for potential improvements and further exploration.

In Treatment 1, we found slight movement towards the optimal strategy over the course of

several games. Performance was actually static during the first three, after which there was a

sudden improvement that lasted through the fifth. This phenomenon is in agreement with existing

literature and research. According to the Praeger Handbook of Learning and the Brain, “learning

requires repetition” [11]. Howe elaborates that practice is a large contributor of success in both

physical and intellectual skills [17]. Without “adequate time to integrate, experiment, and reflect,”

learning may not flourish [11]. Therefore, considering that subjects played only five games, one

immediately after another, it is possible that there was not sufficient time to allow for substantial

learning. This sentiment was explicitly expressed by a survey respondent who wrote, “I don’t think

there were enough # of games for me to practice and learn and improve upon.” This is considerably

disheartening; as Thaler points out, some of “the most important of life’s decisions, such as choosing

a career or spouse, offer only a few chances for learning!” [40].

Determining why we only found learning in one treatment requires careful examination of the

metric used to measure improvement. Notice that average α in Treatment 1, game 1, was a mere

0.0132. This means that on average, the difference in the probability of winning between the

optimal strategy and players’ actual decisions was only 0.0132. This exposes how even a large

difference in the number of dice between the optimal and actual quantity chosen at a particular

decision may have a minute difference in terms of the change in the probability of winning. It is

possible that such a small difference is not perceivable to the subjects playing the game. If this is

the case, the game of Hog suffers from a “flat maximum problem” which refers to a situation in
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which “even wide discrepancies from the optimal strategy have very little effect on the outcomes of

the decisions” [7]. Then feedback is far too poor for decision makers to learn from experience. It is

not clear that this is true of Hog, however, because it is not consistent with a sizeable amount of

the survey data. Several participants who reported an original strategy of “rolling a lot” or “risking

a lot” mentioned that they changed their strategies to “roll fewer.” One specific respondent who

had an original strategy of “2-3 dice” came to the conclusion that “5 is a lucky number.” As seen

from the heuristic simulations, five is indeed an excellent heuristic. Therefore, even if the change in

number of dice rolled does not largely affect the probability of winning, the fact that some players

were at least improving in terms of heuristic strategies implies that feedback was meaningful after

all.

Another reason for why performance might fail to improve is player attitude toward the nature

of the game and/or a lack of knowledge about the probability concepts relevant to Hog. Particularly,

survey results identified a fair number of participants who felt they had no influence over the

direction of the game; over 12% of respondents referred to luck, randomness, and chance as the

main culprit for their lack of strategy or improvement. This is a type of hindsight bias. Given

biased memories, players “will find it very difficult to distinguish between a bad decision and a bad

outcome” [40]. Specific responses such as “I have no control over the outcome” and “as games went

on I realized it was more about luck and stopped taking notes” support this idea and suggest that

players may not have made any conscious effort to increase their probability of winning. This could

have been due to a lack of understanding of probability theory. Admittedly, the regression results

suggest that knowledge of probability does not have an effect on player performance. However,

recalling that there was no correlation between the number of classes taken and the number of

probability questions answered correctly, this might have been a poor proxy for players’ knowledge

of mathematical concepts applicable to the game. Another reason for lack of effort, particularly for

Treatment 2, could have been that players felt the outcome of the game was predetermined due to

the large initial disparity in points. Far fewer individuals used their scratch paper in the second

treatment, supporting a more prevalent atmosphere of helplessness in changing the outcome of the

game.

Finally, the survey data reveal that another cause for poor performance could be lack of mo-
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tivation. Even if the game of Hog is suitable for learning, improvement will not take place if

participants do not make any attempt to be systematic in their choices. Reaction to the experi-

ment was mixed. One individual believed that Hog “could become addictive if available as a game

where you play the computer (like some of the solitaire versions).” However, not everyone shared

the same enthusiasm. Many participants admitted to being bored with the game (e.g. “the pro-

gram was boringly[sic] slow so didn’t care much”) or that they were not at all serious about their

performance (e.g. “randomly rolling for laughs”). It is unclear what fraction of players belong to

this latter group. If substantial, we must be cautious of our conclusions since they may be based

on decisions of players who were not properly motivated.

The most frequent complaint about the game was the pace. The Hog game software was

programmed to reveal the outcome of a roll decision one die at a time. Thus, if a player chose a

large number of dice, he and his opponent would have to wait for each one to appear in a sequential

manner. Although some players enjoyed the suspense (e.g. “watching those dice populate was

nerve racking”) many felt it was too slow. Unfortunately, this might have had a negative effect on

performance. Notice from Table 5.1 and Table 5.2 that there were players who sometimes rolled

24 dice fewer than the optimal strategy. On first glance we might assume they were poor decision

makers, but actually they could have been reacting to the time cost of the game. If the optimal

solution calls for all 25 dice, the player must be severely behind his opponent; knowing the chances

of winning are low, the player might have chosen one die just to end the game sooner. One player

suggested “if you hit a 1 the game shouldn’t kepted[sic] track of dice just gone to the next turn.”

While this option is not appropriate since it restricts the quantity of feedback received by the

players, if replicating the study, we might choose to display all dice simultaneously to speed up the

game.

Another appropriate change, if the study were repeated, may be to have subjects play against

the computer (which we can guarantee will always make the optimal decision) instead of another

individual. When determining the solution to the game of Hog it does not matter how a particular

game state is reached; however, we do assume that the opponent will be playing optimally from

any given game state onwards. Since players were not in fact playing optimally, it is not clear how

poorly players really performed. That is, if a player knows his opponent is playing suboptimally, his
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optimal decision strategy may not be the same as when he knows his opponent is playing optimally.

As an extreme situation, consider a version of the game without a maximum number of dice in

which a player is certain that his opponent will roll 1000 dice at each turn. In this situation since

we do not care how long it takes to win but merely want to guarantee a win, it is possible that

rolling a small number of dice might actually be the optimal choice. However, if instead he knows

that his opponent will always roll a more reasonable number of dice, like 15, the answer is not very

clear. To assess this problem we would have to calculate the probability of winning for a player

and his opponent separately, unlike our current solution which applies to either player. Further

investigation in this area is warranted since applying our decision data to an opponent-dependant

optimal strategy might alter our conclusions regarding player performance. Players may perform

either better or worse than what is revealed when violating the optimal opponent assumption.

While there are many viable reasons for why player performance in Hog had negligible improve-

ment, explaining the differences in behavior between players in Pig and players in Hog is a more

complicated task. Our hypothesis of more aggressive play in Hog did hold, in general. The overall

ratio of conservative to aggressive rolls was smaller in Hog than in Pig (3 versus 5). Nevertheless,

players on average were still far more likely to play conservatively than aggressively. Therefore,

framing differences between the two games were not as salient as we initially believed. Even in

Hog, rolling fewer dice increases the likelihood of a nonzero score, so the certainty effect is still very

strong.

Perhaps a surprising result is that Hog players outperform Pig players despite the fact that Pig

players have the advantage of greater feedback. A Pig player who might decide to roll x number

of dice is able to see each die one at a time; he has the opportunity to revise his decision at each

stage until he rolls a 1 or holds. A Hog player does not have the luxury of stopping before it is too

late; he must make his choice and deal with the consequences. Actually, this result is not peculiar

after careful consideration. We liken the situation to playing the stock market. Malkiel emphasizes

how a simple buy-and-hold approach usually outperforms more technical strategies [23]. Similarly,

standing by a decision quantity outperforms assessing the situation at the individual dice stage.

Pig players are thus presented with too much information and have too many opportunities to

react. By taking that option away from the player in the game of Hog, the player performs more
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optimally. Because they do not have to focus on individual dice, Hog players are more aware of

other important pieces of information such as the actual game state. We conclude that feedback

needs to be not only meaningful and timely, but should not exceed a critical level. Otherwise

players have more information than they can process, and performance declines.

In this study we addressed criticism directed at the complicated and often haphazard nature

of most dynamic decision making experimental tasks. We introduce the game of Hog as an ideal

study for decision making under uncertainty for its simplicity, timely feedback, and clear objectives.

The game of Hog has a straightforward, analytical solution, allowing it to overcome one of the

biggest challenges in developing an experimental task—having an ideal decision maker to which

we can compare an observed decision maker [7]. Yet despite the simplistic nature of the game and

immediate feedback, player performance was largely stagnant even with repeated play. Likely causes

include insufficient time for learning, lack of meaningful feedback, and deficient player motivation.

Addressing these concerns will require further research in experimental design.
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A Solving the Game Hog

Obtaining the optimal solution for the game of Hog requires a highly computationally intensive

procedure. In order to solve

Pi,j = max
0<d≤d∗

6d∑
k=0

π(d, k)(1− Pj,i+k)

for each game state, we must first calculate π(d, k), which may be determined using dynamic

programming. We then partition the game states, solving each successive subset using an iterative

method.

Although Neller and Presser have already solved the game of Hog, we provide a more thorough

solution here. We offer a slightly different but equivalent calculation of π(d, k) and present a proof

of its correctness, an exercise that Neller and Presser omit. Furthermore, our use of d∗ in the

calculation of Pi,j is an improvement over the Neller and Presser solution that uses dmax since this

saves a considerable amount of computation. Finally, while Neller and Presser simply present the

solution, we specify two different methods for its determination.

A.1 A Select Review of Probability Theory

The following is a list of various definitions and theorems in probability theory that are essential

to the understanding and proof of the optimal solution to the game of Hog. For further reading,

we recommend [42], from which these theorems have been reproduced, as they are.

Definition A.1. The probability of an event A is the sum of the weights of all sample points in A.

Therefore,

0 ≤ P (A) ≤ 1, P (∅) = 0, and P (S) = 1.

Furthermore, if A1, A2, A3, . . . is a sequence of mutually exclusive events, then

P (A1 ∪A2 ∪A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · · .

Theorem A.2. If an experiment can result in any of N different equally likely outcomes, and if

exactly n of these outcomes correspond to event A, then the probability of event A is

P (A) =
n

N
.
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Definition A.3. The probability of an event B occurring when it is known that some event A has

occurred is called a conditional probability and is denoted by P (B|A).

Theorem A.4. If the events B1, B2, ..., Bk constitute a partition of the sample space S such that

P (Bi) 6= 0 for i = 1, 2, ..., k, then for any event A of S,

P (A) =
k∑
i=1

P (Bi)P (A|Bi).

A.2 Obtaining a Score k, with d Dice

Theorem A.5. Let 0 < d ≤ d∗ and 0 ≤ k ≤ 6d∗. Then π(d, k), the probability of rolling a score of

k with d fair, six-sided dice is given by the following:

π(d, k) =



1
6 , d = 1 and k ∈ {0, 2, 3, 4, 5, 6};

0, 0 < k < 2d or k > 6d;
5π(d−1,0)+1

6 , d > 1 and k = 0;

1
6

∑min(6,k−2)
r=2 π(d− 1, k − r), otherwise.

Proof. Let π(d, k) denote the probability of rolling a score of k points with d fair, six-sided dice,

where 0 < d ≤ d∗ and 0 ≤ k ≤ 6d∗. We determine π(d, k) by considering the following four cases:

Case 1. d = 1 and k ∈ {0, 2, 3, 4, 5, 6}

Since rolling the number 1 corresponds to a score of 0, our sample space of scores for one die is

S = {0, 2, 3, 4, 5, 6}. Thus, by Theorem A.2,

π(1, k) =
1
6
, ∀k such that k ∈ S. (A.1)

Case 2. 0 < k < 2d or k > 6d

The least number that can possibly be rolled on any one die that will result in a non-zero score

is two. Therefore, the smallest number that could possibly be rolled with d dice and result in a

non-zero score would be 2d, so that π(d, k) = 0, ∀k such that k < 2d. Similarly, the greatest

number that can possibly be rolled on any one die is six. Thus, the greatest number that could

possibly be rolled with d dice would be 6d so that π(d, k) = 0, ∀k such that k > 6d.
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Case 3. d > 1 and k = 0

Given a finite number of d identical dice, without loss of generality we may number the dice

n1, n2, ..., nd, so that when we refer to d − 1 dice, we refer to the same n1, n2, ..., nd−1 dice. Since

the events of rolling at least one 1 and not rolling any 1’s are mutually exclusive, we may partition

the set of all scores possible with d dice by the events which lead to a score of zero with d− 1 dice

and those which lead to a nonzero score with d− 1 dice. By Definition A.1 this gives us,

π(d− 1, 0) + π(d− 1, τ) = 1 (A.2)

where π(d − 1, τ) is the probability of obtaining a nonzero score with d − 1 dice and is equal to∑6(d−1)
i=2 π(d− 1, i). Then by Theorem A.4,

π(d, 0) = π(d− 1, 0)π(d, 0|d− 1, 0) + π(d− 1, τ)π(d, 0|d− 1, τ). (A.3)

Since π(d, 0|d− 1, 0) = 1 (the value of nd is irrelevant if a one has already appeared on one of dice

ni, i ∈ {1, 2, ..., d− 1}), and π(d, 0|d− 1, τ) = π(1, 0) (the probability of rolling a 1 on dice nd, or

1
6), using equation A.2 and substitution in A.3 we obtain

π(d, 0) = π(d− 1, 0) +
1
6

(1− π(d− 1, 0)) =
5π(d− 1, 0) + 1

6
. (A.4)

Case 4. All other k, d

We use similar logic to that of Case 4. The number appearing on nd must belong to {1, 2, 3, 4, 5, 6}.

Therefore, we may partition the set of all scores possible by the events that lead to a score of k−2,

k− 3,...,k− r, r ∈ {2, 3, 4, 5, 6} and k− r ≥ 2, on d− 1 dice (k− 1 would result in a score of zero).

Thus, by Theorem A.4,

π(d, k) =
min(6,k−2)∑

r=2

π(d− 1, k − r)π(d, k|d− 1, k − r). (A.5)

Since π(d, k|d− 1, k − r) = π(1, r) = 1
6 ∀r, we have

π(d, k) =
1
6

min(6,k−2)∑
r=2

π(d− 1, k − r). (A.6)
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A.3 A Brief Introduction to Dynamic Programming

Dynamic programming13 is a type of algorithm, i.e. a well-defined list of steps used to transform

some given input into a desired output [9]. It is a method for solving complex problems by exploiting

the solutions of simpler subproblems. Each of these subproblems is only solved once; the value is

stored for later reference, thereby preventing repetitive computations [9]. This technique is mostly

applied to problems involving optimization [6].

Cormen, et. al., provide the following procedure for developing a dynamic-decision making

algorithm: “(1) Characterize the structure of an optimal solution. (2) Recursively define the value

of an optimal solution. (3) Compute the value of an optimal solution. (4) Construct an optimal

solution from computed information” [9]. A problem whose optimal solution consists of the optimal

solutions to its subproblems is said to have an optimal substructure [9].

When introducing dynamic programming, it is helpful to review a simple application such as

the computation of the fibonacci numbers. Although not an optimization problem, we can introduce

a dummy decision, d, which allows it to serve as a nice illustration of how the method works [1].

The fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,..., is defined as

fn = fn−1 + fn−2, for n ≥ 3 and f1 = f2 = 1.

So we have the dynamic programming functional equation,

f(i) = optd∈D{f(i− 1) + f(i− 2)}

with base case f(1) = f(2) = 1 [1]. Since the initial cases are given, we may move forward

calculating one state at a time, a process known as forward induction [6]. The solution of each

state is stored so that we have a memoized function, i.e. a procedure that remembers the results

that have already been computed [9].

Often in dynamic programming we also make use of backward induction where the first stage

calculated is actually the last stage in the problem, and we move backward solving one state at a

time [6]. An example would be a shortest path question. In such a problem we move through a
13In this case by programming we mean a “tabular method” and not the act of writing computer code [9].
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network, starting at some node 0 and ending at a final destination node N . Each edge connecting

intermediate nodes, which we will consider as states, may have different weights or lengths. We

determine the shortest path by finding which edge has the minimum value between state n-1 and

the final state (node N), and work our way backwards one state at a time until we reach the initial

state (node 0). It is extremely important to note that this process only works if our network is

acyclic, which is to say that we cannot begin from any node in any direction and be able to return

to it [6].

We can now see how dynamic programming may be used to determine the solution to π(d, k).

Following the steps from Cormen, et. al., we first conclude that the answer to any specific π(x, y)

may be constructed from π(x′, y′) where x′ ≤ x and y′ ≤ y. Second, we have already defined this

structure recursively in subsection A.2. Third, we may easily compute the solution starting with

the base case until we have solved and stored each π(d, k) for 0 < d ≤ d∗ and 0 ≤ k ≤ 6d∗ in some

matrix dice1:d∗×0:6d∗ . Fourth, we may may determine any π(x, y) with 0 < x ≤ d∗ and 0 ≤ y ≤ 6d∗

by looking up element (x, y) in the dice matrix. An algorithm (presented in a pseudocode format)

to do just this is available in subsection A.5, while actual C++ code may be found in Appendix B.

A.4 Solving Pi,j, 0 ≤ i, j < 100

With the solution to π(d, k) under our belt we are now ready to turn to Equation 3.1, reproduced

below.

Pi,j = max
0<d≤d∗

6d∑
k=0

π(d, k)(1− Pj,i+k). (A.7)

With a goal threshold of 100 points we know that i, j ∈ {0, 2, 3, 4, · · · , 98, 99} are the only game

states me must calculate, since as mentioned in the text, Pi,j = 1 for i ≥ 100 and Pi,j = 0 for

j ≥ 100. This yields a total of 9801 games states to be computed.

Note that at any game state the probability of winning at that state is only dependent upon

states where the sum of the two players’ scores is greater than or equal to the sum of the two

players’ scores in the current state [27]. This is due to the fact that players cannot lose points. In

other words the sum of the players’ scores at any future state cannot be less than the current sum

of scores. Therefore, the efficient way to proceed is to partition the games states into independent
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groups and work backwards. That is, we calculate the probability of winning for all states with

i+ j = 198 then i+ j = 197, i+ j = 196, ... ,i+ j = 2, i+ j = 0. Without loss of generality, we may

replace 0 with 1 in each of the games states. This now corresponds to figure A.1, in which every

ordered pair in each diagonal from left to right sums to the same number as the other ordered pairs

on the diagonal. If we let i be the x-axis and j the y-axis, the ordered pairs (game states) of each

diagonal belong to the lines i+ j = s, s ∈ {2, 3, 4, ..., 197, 198}.

Figure A.1: Visual Partitioning of Game States by the Sum of Players’ Scores
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We start with the right most diagonal (99, 99) and move to the left, solving each game state

on the diagonal before continuing to the the next diagonal partition. Since Equation A.7 is also

defined recursively, we might initially be tempted to say that the problem can be solved with

dynamic programming. Unfortunately, this would be a false conclusion; the network representing

this problem is not acyclic. Let us call the player with i points Player 1 and the Player with j

points Player 2. If Player 1 receives zero points after which Player 2 also receives zero points in the

proximate turn, we will have traversed from game state (i, j) to (j, i) and back to (i, j), a cycle.

Therefore every game state (i, j), i 6= j is dependent on one other game state within its same

partition, namely (j, i).
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Then let us rewrite Equation A.7 as the following:

Pi,j = max
0<d≤d∗

{[
6d∑
k=2

π(d, k)(1− Pj,i+k)

]
+ π(d, 0)(1− Pj,i)

}
. (A.8)

Recall that we are solving each partition in reverse order. So naturally, by the time we attempt to

solve for Pi,j and Pj,i, all game states Pj,i+k and Pi,j+k will have already been solved for k ≥ 2. The

section in square brackets, therefore, is a known value and will henceforth be denoted by f(i, j, d).

That is

Pi,j = max
0<d≤d∗

{f(i, j, d) + π(d, 0)− π(d, 0)Pj,i} . (A.9)

Let us consider the case when i = j and fix d at d̄. Then Pi,i = f(i, i, d̄) + π(d̄, 0)− π(d̄, 0)Pi,i,

or Pi,i = [f(i, i, d) +π(d, 0)]/[1 +π(d, 0)]. If we again let d vary, Pi,i may easily be solved by finding

the d̄ which will maximize the probability of winning at state (i, i). This is given by Equation A.10

below.

Pi,i = max
0<d≤d∗

f(i, i, d) + π(d, 0)
1 + π(d, 0)

. (A.10)

In this way all that remains is to solve the following system of equations for each pair of game

states (i, j) and (j, i) for i 6= j:

Pi,j = max
0<d≤d∗

{f(i, j, d) + π(d, 0)− π(d, 0)Pj,i} (A.11)

Pj,i = max
0<δ≤δ∗

{f(j, i, δ) + π(δ, 0)− π(δ, 0)Pi,j} . (A.12)

As with the case when i = j, let us fix d and δ at d̄ and δ̄. We solve for Pi,j and Pj,i to obtain,

Pi,j =
f(i, j, d̄) + π(d̄, 0)− π(d̄, 0)[f(j, i, δ̄) + π(δ̄, 0)]

1− π(d̄, 0)π(δ̄, 0)
(A.13)

Pj,i =
f(j, i, δ̄) + π(δ̄, 0)− π(δ̄, 0)[f(i, j, d̄) + π(d̄, 0)]

1− π(δ̄, 0)π(d̄, 0)
. (A.14)

With 0 < d ≤ d∗ and 0 < δ ≤ δ∗ this will lead to d∗ · δ∗ different d̄ − δ̄ combinations. To

determine which of these leads to the optimal solution, we use a game theoretic approach. Let us

call the player with i points Player 1 and the player with j points Player 2. Given Player 2’s choice

of δ dice, Player 1 will choose d such that he maximizes Pi,j , i.e.

Pi,j = max
0<d≤d∗

f(i, j, d) + π(d, 0)− π(d, 0)[f(j, i, δ̄) + π(δ̄, 0)]
1− π(d, 0)π(δ̄, 0)

. (A.15)
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As we vary vary δ̄ from 1 to δ∗, we will find all of Player 1’s optimal choices given every possible

choice from Player 2. Likewise, we do the same for Player 2, and given Player 1’s possible decisions

we determine

Pj,i = max
0<δ≤δ∗

f(j, i, δ) + π(δ, 0)− π(δ, 0)[f(i, j, d̄) + π(d̄, 0)]
1− π(δ, 0)π(d̄, 0)

(A.16)

for each possible d̄, 0 < d̄ ≤ d∗. This will lead us to find all combinations of d̄− δ̄ for which neither

player would choose to alter his choice of dice quantity, a Nash equilibrium14. Careful inspection

of all game states and dice combinations leads to the conclusion that there is in fact one and only

one Nash equilibrium for each set of (i,j) and (j,i) game states so that our problem is well defined.

Let us consider a specific example and turn to the states (90,77) and (77,90). Table A.1 depicts

Player 1’s possible dice choices on the horizontal axis and Player 2’s choices on the vertical axis.

Each ordered pair is the calculation of (Pi,j , Pj,i) for the combination of dice to which it corresponds

based on its placement in the table. Each player’s optimal decision, given the choice of his opponent,

is bolded and underlined. We find the Nash Equilibrium at d = 3 and δ = 7.

Table A.1: Finding the Nash Equilibrium for P90,77 and P77,90

δ \ d 1 2 3 4 5

1 (0.6535,0.2567) (0.7572,0.2394) (0.8794,0.219) (0.8860,0.2179) (0.8678,0.2210)

2 (0.6460,0.3012) (0.7478,0.2701) (0.8742,0.2315) (0.8799,0.2297) (0.8587,0.2362)

3 (0.6398,0.3386) (0.7397,0.2965) (0.8699,0.2417) (0.8748,0.2396) (0.8506,0.2498)

4 (0.6343,0.3715) (0.7323,0.3207) (0.8656,0.2517) (0.8696,0.2497) (0.8422,0.2638)

5 (0.6222,0.4439) (0.7109,0.3909) (0.8394,0.3141) (0.8348,0.3168) (0.7970,0.3394)

6 (0.6075,0.5324) (0.6830,0.4822) (0.8018,0.4032) (0.7839,0.4151) (0.7304,0.4507)

7 (0.6040,0.5535) (0.6773,0.5006) (0.7971,0.4143) (0.7767,0.4290) (0.7181,0.4712)

8 (0.6074,0.5329) (0.6859,0.4727) (0.8139,0.3744) (0.7991,0.3858) (0.7439,0.4281)

9 (0.6118,0.5068) (0.6963,0.4386) (0.8335,0.3280) (0.8258,0.3342) (0.7762,0.3742)

10 (0.6156,0.4838) (0.7055,0.4084) (0.8510,0.2864) (0.8502,0.2871) (0.8062,0.3240)

11 (0.6188,0.4645) (0.7134,0.3826) (0.8662,0.2504) (0.8717,0.2456) (0.8331,0.2790)

12 (0.6215,0.4482) (0.7201,0.3606) (0.8793,0.2193) (0.8904,0.2095) (0.8570,0.2392)

14A Nash Equilibrium is a situation in which given all other agent’s strategies, no agent can improve his condition
by changing his own strategy.
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Since we let dmax = 25, for all games states in which i, j ≤ 50, d∗ and δ∗ will be 25. Therefore,

for approximately 1/4 of our game states, solving for Pi,j and Pj,i game theoretically will lead to

625 calculations of each probability. Traversing these solutions to find the unique Nash equilibrium

is also costly. We hence provide an alternative numerical approach which converges to this solution.

For linear systems of equations, there are numerous iterative techniques for solving Ax = b.

A common approach is Jacobi iteration where we calculate “a sequence of approximate solution

vectors x(0), x(0), x(2), . . .,” which will converge to the actual solution provided that our system

satisfies certain conditions15 [8]. We continue generating these x(i)’s until a predetermined level of

precision is achieved. This means that we repeatedly solve

x
(k)
i =

− n∑
j=1,j 6=i

(ai,j/ai,i)x
(k−1)
j + (bi/ai,i)

 (1 ≤ i ≤ n) (A.17)

(assuming nonzero diagonal elements) until ||x(k) − x(k−1)|| < ε, where ε is our error tolerance [8].

A Slightly modified version of Jacobi iteration which typically allows for faster convergence is

Gauss-Seidel iteration. Since the elements of x are determined serially and not in parallel, we solve

x
(k)
i =

− n∑
j=1,j<i

(ai,j/ai,i)x
(k)
j −

n∑
j=1,j>i

(ai,j/ai,i)x
(k−1)
j + (bi/ai,i)

 (A.18)

since newly calculated values may be used immediately [8].

Returning to our problem, we have a nonlinear system x = maxd{Adx + bd} for which there

is no general solution method [27]. Thus, such a system could not usually be solved iteratively

using either of the two methods mentioned above. Be that as it may, our particular system does

in fact converge to the true solution (obtained game-theoretically) if we use Gauss-Seidel iteration

using an initial vector x(0) where xi = 1.0 ∀i. We therefore recommend its use since it saves a

considerable amount of computation time. Algorithms for both the game-theoretical solution and

the iterative solution may be found in subsection A.5 below; C++ code is available in Appendix B.
15Since this is merely a cursory glance at iterative solutions, we refer interested readers to [8] for appropriate

convergence criteria.
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A.5 Solution Algorithms

The following algorithms are presented in a pseudocode that should be interpretable to anyone with

basic programming knowledge. It is presented as a broad overview. That is to say that summations,

maximums, and other computations may need to be further broken down into other loops; we avoid

this for simplicity and ease of readability. However, an example of C++ code adhering to these

algorithms (using the iterative approach) may be found in Appendix B. Comments are preceded

by the % symbol, as in MATLAB code, and boxed off sections within the algorithms pertain to

alternative choices of implementation. These algorithms, though correct, are not necessarily the

most efficient.

An Algorithm for solving π(d, k)

procedure Score(dmax)

integer dmax, d, k, r

real array dice1:dmax×0:6dmax (initialized to 0.0)

for k = 0 to 6 do

dice1,k ← 1/6

end for

d1,1 ← 0.0

for d = 2 to dmax do

diced,0 ← (5 ∗ diced−1,0 + 1)/6

for k = 2d to 6d do

diced,k ← 1
6

∑min(6,k−2)
r=2 diced−1,k−r

end for

end for

return dice

end Score
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An Algorithm for solving Pi,j, 0 ≤ i < 100 and 0 ≤ j < 100

procedure Pwin(g, dmax, dice, ε, m)

integer g, dmax, m, c, i, j, k, d∗x, d∗y, d̄, d′

real ε, x′, y′

integer array roll1:g−1×1:g−1 (initialized to 0)

real array dice1:dmax×0:6dmax (initialized to 0.0), opt1:g−1×1:g−1 (initialized to 1.0),

matrix1:d∗y×1:d∗x×1:2 (initialized to 0.0)

for k = g − 1 to 1 do

i← k

j ← g − 1

while j − i > 0

d∗x ← min{dmax, d100−i
2 e}

d∗y ← min{dmax, d100−j
2 e}

% Game Theoretical Solution

for d′ = 1 to d∗y do

for d̄ = 1 to d∗x do

matrixd′,d̄,1 ←
f(i,j,d̄)+diced̄,0−diced̄,0[f(j,i,d′)+diced′,0]

1−diced̄,0diced′,0

matrixd′,d̄,2 ←
f(j,i,d′)+diced′,0−diced′,0[f(i,j,d̄)+diced̄,0]

1−diced′,0diced̄,0

end for

end for

call Equilibrium(matrix, opt, roll, i, j, d∗x,d∗y)

%—or—
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% Iterative Solution

c, x′, y′ ← 0

while ||opti,j − x′, optj,i − y′|| > ε and c < m

x′ ← opti,j

y′ ← optj,i

opti,j ← max0<d≤d∗x

{∑6d
k=2 diced,k(1− optj,i+k) + diced,0(1− optj,i)

}
rolli,j ← d (corresponding to opti,j in previous line)

optj,i ← max0<d≤d∗y

{∑6d
k=2 diced,k(1− opti,j+k) + diced,0(1− opti,j)

}
rollj,i ← d (corresponding to optj,i in previous line)

c← c+ 1

end while

i← i+ 1

j ← j − 1

end while

if

d∗x ← min{dmax, d100−i
2 e}

opti,i = max0<d≤d∗x

{
[
∑6d

k=2 diced,k(1−opti,i+k)]+diced,0

1+diced,0

}
rolli,i ← d (corresponding to opti,i in previous line)

end if

end for

for k = g − 2 to 1 do

j ← k

i← 1

while j − i > 0

% Insert code from outermost while loop in previous for loop

end while

end for
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if

% Insert code from previous if statement

end if

return roll, opt

end Pwin

procedure Equilibrium(matrix, opt, roll, i, j, d∗x, d∗y)

integer i, j, d∗x, d∗y, d̄, d′, x, y

real xmax, ymax

integer array roll1:g−1×1:g−1 (initialized to 0), nash1:d∗y×1:d∗x×1:2 (initialized to 0.0)

real array opt1:g−1×1:g−1 (initialized to 1.0), matrix1:d∗y×1:d∗x×1:2 (initialized to 0.0)

for d′ = 1 to d∗y do

xmax ← max0<d̄≤d∗x matrixd′,d̄,1

x← d̄ (corresponding to xmax in previous line)

nashd′,x,1 ← 1

end for

for d̄ = 1 to d∗x do

ymax ← max0<d′≤d∗y matrixd′,d̄,2

y ← d̄ (corresponding to ymax in previous line)

nashd′,x,2 ← 1

end for

for d′ = 1 to d∗y do

for d̄ = 1 to d∗x do

if nashd′,d̄,1 + nashd′,d̄,2 = 2

rolli,j ← d̄

opti,j ← matrixd′,d̄,1

rollj,i ← d′

optj,i ← matrixd′,d̄,2

return opt, roll
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end if

end for

end for

end Equilibrium
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B Hog Solution Code, C++

The following code, written in C++16, first determines π(d, k) for 0 < d ≤ 25 (and hence, 0 ≤ k ≤

150), and then iteratively calculates the optimal solution for the two-player game of hog with goal

threshold of 100 points. The output is a MATLAB script file (.m) which will produce Figure 3.2.

#include<iostream>
#include<fstream>
#include<iomanip>
#include<vector>
#include<cmath>

using namespace std;

// GLOBAL CONSTANTS
const int DMAX = 25; // Maximum number of dice
const int GOAL = 100; // Point total to be reached
const int EQUATIONS = (GOAL-1)*(GOAL-1); // Number of states to be determined
const int SIDE = 6; // Number of sides on the dice
const int ITMAX = 100; // Maximum number of iterations
const double EPSILON = 0.000000001; // Error tolerance

// FUNCTION PROTOTYPES
double mag(double,double,double,double);
double known(const vector< vector<double> >&, const vector< vector<double> >&,int,int,int);
int maximum(const vector< vector<double> >&,int,int);

int main ()
{
// VARIABLES
int count = 0; // To store number of iterations
int m = 0; // To store summation limit in calcuation of \pi(d,k)
int dstar_x = 0; // maximum number of dice for P_{i,j}
int dstar_y = 0; // maximum number of dice for P_{j,i}
double x_old = 0; // To store iteration t-1 for P_{i,j}
double y_old = 0; // To store iteration t-1 for P_{j,i}
int i = 0; // Index
int j = 0; // Index
ofstream out; // Output variable
// \pi(d,k) matrix
vector< vector<double> > dice(DMAX+1, vector<double>(DMAX*SIDE+1, 0.0));
// Optimal Solution: P(Win)
vector< vector<double> > optimal(GOAL, vector<double>(GOAL, 1.0));
// Optimal Solution: Number of dice
vector< vector<int> > optroll(GOAL, vector<int>(GOAL, 0));
// P_{i,j,d} matrix
vector< vector<double> > grid(EQUATIONS+1, vector<double>(DMAX+1, 0.0));

16Because C++ indexes its arrays and vectors starting from 0, we declare our array sizes to be one greater than
necessary and ignore the first entry; this allows us to nicely match the array indices to the logic of the problem itself.
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// DETERMINE \pi(d,k)
// d = 1; k \in {0, 2, 3, 4, 5, 6}
for(int k = 0; k <= SIDE; k++)
dice[1][k] = 1./SIDE;

dice[1][1]=0.0;
for(int d = 2; d <= DMAX; d++)
{
// d > 1 and k = 0;
dice[d][0] = ((SIDE-1.)*dice[d-1][0] + 1.)/(double)(SIDE);

// k < 2d or // k > 6d
// already initialized to zero

// otherwise
for(int k = 2*d; k <= SIDE*d; k++)
{
m = min(SIDE, k-2);
for(int r = 2; r <= m; r++)
dice[d][k]=dice[d][k] + dice[d-1][k-r]/(double)(SIDE);

}
}

// FIND OPTIMAL SOLUTION
for(int k = GOAL-1; k > 0; k--) // i + j = 198 to i + j = 100
{
i = k;
for(j = 99; (j-i)>0; j--)
{
count = 0;
x_old = 0;
y_old = 0;
dstar_x = min((int)ceil((GOAL-i)/2.), DMAX);
dstar_y = min((int)ceil((GOAL-j)/2.), DMAX);
while(mag(optimal[i][j], x_old, optimal[j][i], y_old)>EPSILON && count < ITMAX)
{
x_old = optimal[i][j];
y_old = optimal[j][i];
for(int d = 1; d <= dstar_x; d++)
grid[(i-1)*(GOAL-1)+j][d] = known(dice,optimal, i, j, d) + dice[d][0]
- dice[d][0]*optimal[j][i];

optroll[i][j] = maximum(grid, (i-1)*(GOAL-1)+j, dstar_x);
optimal[i][j] = grid[(i-1)*(GOAL-1)+j][optroll[i][j]];
for(int d = 1; d <= dstar_y; d++)
grid[(j-1)*99+i][d] = known(dice, optimal, j, i, d) + dice[d][0]
- dice[d][0]*optimal[i][j];

optroll[j][i] = maximum(grid, (j-1)*(GOAL-1)+i, dstar_y);
optimal[j][i] = grid[(j-1)*(GOAL-1)+i][optroll[j][i]];
count++;

}
i++;

}
if (i == j)
{
dstar_x = min((int)ceil((GOAL-i)/2.), DMAX);
for(int d = 1; d <= dstar_x; d++)
grid[(i-1)*(GOAL-1)+j][d] = ((known(dice, optimal, i, j, d)
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+ dice[d][0])/(1 + dice[d][0]));
optroll[i][j] = maximum(grid, (i-1)*(GOAL-1)+j, dstar_x);
optimal[i][j] = grid[(i-1)*(GOAL-1)+j][optroll[i][j]];

}
}

for(int k = GOAL-2; k > 0; k--) // i + j = 99 to i + j = 2
{
j = k;
for(i = 1; (j-i)>0; i++)
{
count = 0;
x_old = 0;
y_old = 0;
dstar_x = min((int)ceil((GOAL-i)/2.), DMAX);
dstar_y = min((int)ceil((GOAL-j)/2.), DMAX);
while(mag(optimal[i][j], x_old, optimal[j][i], y_old)>EPSILON && count < ITMAX)
{
x_old = optimal[i][j];
y_old = optimal[j][i];
for(int d = 1; d <= dstar_x; d++)
grid[(i-1)*(GOAL-1)+j][d] = known(dice, optimal, i, j, d) + dice[d][0]
- dice[d][0]*optimal[j][i];

optroll[i][j] = maximum(grid, (i-1)*(GOAL-1)+j, dstar_x);
optimal[i][j] = grid[(i-1)*(GOAL-1)+j][optroll[i][j]];
for(int d = 1; d <= dstar_y; d++)
grid[(j-1)*(GOAL-1)+i][d] = known(dice, optimal, j, i, d) + dice[d][0]
- dice[d][0]*optimal[i][j];

optroll[j][i] = maximum(grid, (j-1)*(GOAL-1)+i, dstar_y);
optimal[j][i] = grid[(j-1)*(GOAL-1)+i][optroll[j][i]];
count++;

}
j--;

}
if(i == j)
{
dstar_x = min((int)ceil((GOAL-i)/2.), DMAX);
for(int d = 1; d <= dstar_x; d++)
grid[(i-1)*(GOAL-1)+j][d] = ((known(dice, optimal, i, j, d)
+ dice[d][0])/(1 + dice[d][0]));

optroll[i][j] = maximum(grid, (i-1)*(GOAL-1)+j, dstar_x);
optimal[i][j] = grid[(i-1)*(GOAL-1)+j][optroll[i][j]];

}
}

// PRINT OPTIMAL NUMBER OF DICE TO BE GRAPHED IN MATLAB
out.open("optimum_dice.m");
out << "x=[1:99]; \ny = x; \nz = [ \n";
for(int j = 1; j < GOAL; j++)
{
for(int i = 1; i < GOAL; i++)
out << optroll[i][j] << " ";

out << ’\n’;
}
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out << "]; \nsurf(x,y,z);\n";
out.close();

return 0;
}

// FUNCTION DECLARATIONS
double mag(double x1, double x2, double y1, double y2)
// Returns the vector norm of the difference of two 2x1 vectors
{
return pow(pow(x2 - x1, 2.0) + pow(y2-y1, 2.0), 0.5);

}

double known(const vector< vector<double> >& dice, const vector< vector<double> >& optimal,
int i, int j, int d)
// Calculates f(i,j,d)
{
double num = 0.0;
for(int k = 2; k <= SIDE*d; k++) // for each score total
if(i+k < GOAL)
num = num + dice[d][k]*(1-optimal[j][i+k]);

else
num = num + dice[d][k];

return num;
}

int maximum(const vector< vector<double> >& matrix, int row, int dstar)
// Returns the largest value in the vector
{
int max;
max = 1;
for(int n = 2; n <= dstar; n++)
if(matrix[row][n] > matrix[row][max])
max = n;

return max;
}
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C Subject Recruitment Flier

You can sign up for one of the following sessions by sending an email to Shipra De at

des2@unlv.nevada.edu. Please indicate your session preference(s) in the email.

Session # Date and Time Location

1 W Oct 20 7-8:15pm BEH-240

2 T Oct 26 2:30- 3:45pm BEH-240

3 M Nov 1 4:00-5:15 pm BEH-240

4 M Nov 1 7:00-8:15pm BEH-240
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D Instructions

University of Nevada Las Vegas
Honors College

Instructions for Race Game

Welcome to the experiment on Race Games! This experiment is open to any students enrolled in
MGT-301. The instructions for the experiment are simple. If you follow them carefully and make
good decisions, you could earn up to $20 by playing five rounds of the game. In addition, you will
earn a $5 ”show-up” fee and possible extra credit (please confirm with your instructor).

Description of the Task

In this Race Game, you will play five rounds (games) against a randomly determined opponent.
The identity of your opponent will be anonymous. Each game is identical. The object of the game
is to be the first person to reach 100 points. You earn points by rolling a number of electronic dice
on the computer screen. It is your choice at the beginning of each turn to determine how many
dice you would like to roll (maximum 25). Note that this decision is independent of previous turns,
i.e. if you choose to roll 4 dice during a given turn, you may choose to roll fewer dice, say 2, or a
greater number of dice, perhaps 5, during your next turn. If the number 1 appears on any of the
dice, you earn zero points. Otherwise the sum of the numbers appearing on all dice will be added
to your game total. In either case it then becomes your opponent’s turn to play. Your opponent
plays by the same rules.17

In summary:18

• Each player determines the number of dice he or she would like to roll at the start of each
turn.

• If a 1 appears on any of the dice rolled, the player earns zero points for that turn.

• If a 1 does not appear on any dice, the sum of all numbers rolled is added to the player’s
game total.

• The first player to accumulate 100 points wins the round.
17Instructions for Treatment 2 included the following paragraph appearing before the itemized summary: The

player who rolls first will be determined by chance at the beginning of the first game. In subsequent games, the player
who begins play will be alternated. In each game the player who rolls first will start with 0 points, while the player’s
opponent, who is second to play, starts the game with 50 points.

18Treatment 2 instructions had the following additional bullet appearing between bullets 3 and 4: At the beginning
of each game the first player to roll begins with 0 points, while the player’s opponent begins with 50 points.
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The player who rolls first will be determined by chance at the beginning of the first game. In
subsequent games, the player who begins play will be alternated.19

At the end of the fifth round, you will be asked to answer a brief survey. Note that payment for
participation cannot be collected until the survey is complete.

Finally, at the start of play you will be supplied with a sheet of blank paper and a pen which may
be used to record any information that you feel may help you play the game. Do not write your
name or any other personal information on this paper as it will be collected with your exit survey
and should contain no information that could identify you.

Receiving Extra Credit and Payment

Your earnings will be paid to you in cash at the end of the experiment upon completing the
exit survey. Remember that you will earn extra credit towards your MGT-301 grade and $5 for
participating in the study, regardless of how many rounds you play. In addition, you will earn $4
for each game you win.

Notification of extra credit will be forwarded to your MGT-301 participating professor on a weekly
basis. If you have any questions regarding this experiment, please contact Professor Seale at 702-
895-3365 or dseale@unlv.nevada.edu, or email Shipra De at des2@unlv.nevada.edu.

Thank you for your participation and good luck!

19This paragraph was omitted from the Treatment 2 instructions. Also, the second sentence was a misprint in the
Treatment 1 instructions; in actuality the winner of each game had to allow his opponent to go first in the following
game.
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E Survey

RACE GAMES EXIT SURVEY 
 
Player Number: ____________________  Age:  ______________________ Gender:    Female     Male 
 
Ethnicity (please check ):  
 

 Hispanic or Latino  Not Hispanic or Latino Unknown
    
Race (please check ):  
 

 American Indian  East Asian  South Asian 
 White  Hawaiian or Pacific Islander  Black or African American 
 More than One Race  Other  Unknown 

 
Directions: In the following section, there are phrases describing people's behaviors. Please indicate how accurately each 
statement describes you. Describe yourself as you generally are now, not as you wish to be in the future. Describe yourself 
as you honestly see yourself, in relation to other people you know of the same sex as you are, and roughly your same age. 
So that you can describe yourself in an honest manner, your responses will be kept in absolute confidence. Please read 
each statement carefully, and then check the appropriate box . 
 

Enjoy being reckless. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Would never make a high risk investment. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Stick to the rules. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Seek danger. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Am willing to try anything once. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Know how to get around the rules. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Seek adventure. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Avoid dangerous situations. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Take risks. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 

Would never go hang-gliding or bungee-jumping. 

 Very 
Inaccurate  Moderately 

Inaccurate 
Neither Inaccurate nor 
Accurate 

Moderately 
Accurate 

Very 
Accurate 
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Directions: Please answer the following questions to the best of your knowledge and ability.  All dice referred to in the 
questions should be considered to be fair, six-sided dice (Please check ). 
 
How many classes (post high school) have you taken in which you have learned some statistics and/or 
probability theory? 

 None  1  2  3  4 or more 

What is the probability of not rolling a 1 using one die? 

 1/2  2/3  3/4  4/5  5/6 

What is the probability of not rolling any 1’s using two dice? 

 1/2  7/12  2/3  25/36  5/6 
If you rolled a 1 during your last turn, how would that affect the probability that you will roll a one during your 
current turn? 

 More likely to 
roll a ‘1’  Has no effect on 

the current turn  Less likely to 
roll a ‘1’     

Do you gamble? 

 Never  Sometimes  Often     

In general, do you feel lucky? 

 No  Yes       
 
 
Directions: Please answer the following questions in a legible manner.  Take a moment to consider each question before 
writing down your response.  Answer all parts of the question.   
 
Games Played: __________________ 
 
 If not 5, please state your reason for quitting: _______________________________________________________ 
 
 ___________________________________________________________________________________________ 
 
Games Won: ___________________ 
 
What was your original strategy?  ______________________________________________________________________ 
 
__________________________________________________________________________________________________ 
 
__________________________________________________________________________________________________ 
 
Did your strategy change from game to game?  If yes, how so? _______________________________________________ 
 
__________________________________________________________________________________________________ 
 
__________________________________________________________________________________________________ 
 
Did your strategy ever change based upon the behavior of your opponent? ______________________________________ 
 
__________________________________________________________________________________________________ 
 
__________________________________________________________________________________________________ 
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Do you feel your performance improved from game to game?  If not, why do think this was the case? ________________ 
 
__________________________________________________________________________________________________ 
 
__________________________________________________________________________________________________ 
 
After playing the game once did you want to play again?  Why or Why not?  ____________________________________ 
 
__________________________________________________________________________________________________ 
 
__________________________________________________________________________________________________ 
 
Did you enjoy playing the game?  Why or why not?  _______________________________________________________ 
 
__________________________________________________________________________________________________ 
 
__________________________________________________________________________________________________ 
 

 
Thank you for your participation! 

Don’t forget to pick up your cash award as you exit the computer lab.   
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