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Abstract 

The usefulness of modern digital communication comes from ensuring the data from a 

source arrives to its destination quickly and correctly. To meet these demands, communication 

protocols employ data compression and error detection/correction to ensure compactness and 

accuracy of the data, especially for critical scientific data which requires the use of lossless 

compression. For example, in deep space communication, information received from satellites to 

ground stations on Earth come in huge volumes captured with high precision and resolution by 

space mission instruments, such as Hubble Space Telescope (HST). On-board implementation of 

communication protocols poses numerous constraints and demands on the high performance 

given the criticality of data and a high cost of a space mission, including data values. The 

objectives of this study are to determine which data compression techniques yields the a) 

minimum data volumes, b) most error resilience, and c) utilize the least amount and power of 

hardware resources. For this study, a Field Programmable Gate Array (FPGA) will serve as the 

main component for building the circuitry for each source coding technique. Furthermore, errors 

are induced based on studies of reported errors rates in deep space communication channels to 

test for error resilience. Finally, the calculation of resource utilization of the source encoder 

determines the power and computational usage. Based on the analysis of the error resilience and 

the characteristics of errors, the requirements to the channel coding are formulated.  

Keywords— 

Source Coding 

Error Resilience 

Channel Coding 

Deep Space Communication 
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I. INTRODUCTION 

One of the most important feature of today’s digital devices is their ability to 

communicate to and from other devices with the correct data. Digital communication enables 

two or more devices, such as computers and phones, to exchange information in the form of bits 

(1’s and 0’s) over a medium, such as wires, fiber optic cables, and air. A device that sends data is 

the source or the transmitter, and the destination or the receiver obtains that data. To exchange 

data between these two devices, the channel connects these devices and deliver information from 

one device to another [1]. Since digital communication relates to data transfer, its efficiency also 

comes from ensuring data from a source arrives to its destination quickly and correctly. In other 

words, the receiver must obtain the data in a reasonable amount of time, and when processed, the 

received data is an exact copy of the transmitted data [1]. This growing need for rapid and 

accurate communication relies upon efficient and reliable data transmission. To ensure the 

efficient use of channel bandwidth and send data at the maximum rates, the data acquired for 

scientific instruments/sensors are encoded to ensure their compression to the smallest possible 

volume. Data transmission usually takes place over several relays or interconnection circuits as 

well as through many heterogeneous physical channels which can cause corruption or loss of 

data due to the limitation of storing or buffering all the data or due to the noise in the physical 

channel. Therefore, in data and communication networks, protocols prescribe verification of data 

and acknowledgment from the receiving end which, if needed, can request for retransmission. 

Depending on the application and the criticality of the data, certain algorithms can 

tolerate a partial loss of information or transmission errors in varying degrees. For example, 

when a user watches a video on a website, this online video is only a fraction of the size of the 

original raw video due to algorithm used to compress it, but it still resembles the original video 
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after losing a significant amount of information. The human visual system and intelligence can 

“interpolate” data and extract information even from a low-quality video [2]. For the everyday 

communication, such as in the previous example, this partial data loss is acceptable for streaming 

data over multiplexed channel, used for several simultaneous transmissions. Therefore, so called 

lossy compression methods are widely employed, such as JPEG and MPEG compression 

standards [1]. However, this tolerance for transmission error is especially narrow for critical and 

costly scientific experiments, a slight alteration of the transmitted information can result in either 

a loss of precision or in the complete loss of the original data. One prominent example of this is 

deep space communication. 

In deep space communication, information received from satellites to ground stations on 

Earth come in huge volumes, such as hyperspectral and multispectral data of planets and images 

of deep sky, captured with a high precision and resolution equipment, such as telescope cameras 

or spectrometers. Analog-to-digital converters (ADC) turn the raw inputs from these components 

into digital information which the satellites will transmit back to Earth [3]. Often, these deep 

space satellites “never return to Earth,” so the preparation for these missions is paramount which 

is costly to space agencies, such as NASA [4]. At a high cost for each mission, every received 

data from these satellites are of an utter importance. Although, in modern digital communication, 

the probability of error, as, for example, alteration of bits (0 to 1 and vv, or an erasure) is rather 

low, the deep space communication may experience noise from photons and cosmic rays, 

electromagnetic interference which can compromise the accuracy of representation of valuable 

scientific or control data [5]. Although the communication protocols include means for checking 

the accuracy of data by providing a control checksum, a.k.a. Cyclic Redundancy Codes (CRC), it 

does not completely cover all possible errors that can occur [6]. Furthermore, retransmission due 
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to inaccurate receipt of data is accompanied with a retransmission of data. Given a length of the 

satellite link and buffer limitations which could be a payload constraint, these retransmissions 

lead to inefficient bandwidth and on-board storage usage [5]. To avoid retransmission and to 

secure fast delivery of volumes of critical data accurately, on-board of satellites communication 

protocols employ lossless data compression called source coding and add mathematically 

formulated and accordingly derived redundancy for error detection or/and correction that is 

called channel coding. Various algorithms have been proposed for lossless and near-lossless data 

compression.  In this work, we implement and analyze a standard method developed by 

Consultative Committee for Space Data Systems (CCSDS), specifically CCSDS 121.0-B-1 

method for lossless generic data compression and test it for channel error resilience [7].  

Furthermore, we will evaluate it further in terms of complexity, power usage and compare to 

other lossless compression methods.  

 

II. BACKGROUND 

A. Data Compression and Source Coding 

Data compression distill information into its most compact representation which means it 

reduces the number of bits to represent the original digital data. There are two types of data 

compression—lossy and lossless—which corresponds to the information content preserved in 

data [2]. Lossy compression algorithms reduce the original information past the point at which 

the compressed data cannot be reconstructed back to its original after decoding such data. Under 

certain applications, these compression codes do not result in the complete loss of the original 

data especially when they become slightly altered or they do not contain critical information [8]. 

The earlier example of the compressed video at the viewing end uses a lossy compression 



EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 6 

algorithm to reduce the video size, specifically its resolution, for quick data transmission. Some 

of the most prevalent application of lossy compression is with storage of multimedia data, such 

as images, videos, and music [2]. However, this is not suitable for scientific data as the incurred 

loss would affect their precision. Lossless compression algorithms, however, keeps the original 

information intact after they reduce the data down to entropy, or its most fundamental bits. This 

type of compression allows the decoder of a receiver to reconstruct losslessly compressed data 

back to its original state [9]. Because of this property, this type of compression is appropriate for 

NASA space science missions exploring deep space. 

Using data compression, the goal of source coding is to produce data from the source 

with the minimum number of bits. In this study, the focus is on lossless source coding, also 

called entropy coding, with the aim of delivering “the digital sequence... with the shortest 

sequence of symbols... [that] guarantee the perfect reconstruction of initial sequence” [1]. The 

“initial sequence” in this context denotes the original digital information with “symbols” 

represented by a single bit or by a sequence of bits, called codewords. In deep space 

communication, the use of entropy coding not only maintains the precision of their data but also 

reduces their memory storage needs before transmission. 

 

B. Error Resilience and Deep Space Communication Issues 

Before discussing the source coding algorithms in this study, the next sections will lay 

out the criteria for comparing these algorithms in the context of deep space communication. One 

of them is the error resilience of the produced code. Error resilience describes how compressed 

data keeps its original content when an error occurs in the communication channel. One of the 

models for error-prone channel is the Binary Symmetric Channel (BSC) which assumes that the 
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bits can be flipped from 1 to 0 or vice versa with a small probability [10]. There could occur also 

a burst of errors, that is the destination receives several contiguous bits in error due to multiple 

bit-flips errors or changing the information randomly [10]. When the compression or coding 

algorithm assigns an equal number of bits to every symbol generated by the source, the 

“damage” caused by such “noisy” communication is confined within a single codeword or just a 

few of them [11]. However, high efficiency compression is attained mostly by a variable length 

coding, and thus any error in decoding can propagate far causing a long sequence to be decoded 

incorrectly. 

Because this study focuses on deep space communication, there are certain errors 

encountered in the data storage and during data transmission between deep space satellites and 

ground stations on Earth. Despite reinforcements to protect circuits, some of the components on 

these satellites can lack certain protections from energetic electromagnetic waves, such as 

gamma rays, or single events like photon hits which alter the information through physically 

changing the bits [12]. Because of this effect, the affected data become subject to bit-flip and 

burst errors which is unavoidable before transmission to ground stations. Also, like most 

communication channels, transmission from deep space satellites are also susceptible to 

environmental noise because of their physical location [5]. Noises include interference and 

electromagnetic effects on the transmitted signal, causing even more errors before the data 

arrives at the ground station. In satellite communication, radio frequencies have a typical bit 

error rate between 5×10–3 to 1×10–7 [13].  Because of these issues, the information may become 

irrecoverable which will affect its decoding at ground stations on Earth invoking retransmission 

assuming the error occurred in transmission. Additionally, retransmission assumes the 

preservation of data in the buffer assuming the receiver which confirms the delivery of unaltered 
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data packets demands on the memory resource. Testing for the error resilience of some source 

coding algorithms will offer insight on how much data is recoverable after transmission and how 

much these algorithms demand on correction and what is the need for data retransmission. 

 

C. Hardware Limitations 

Finding some efficient, error-resilient source coding algorithms is a great start, but if it 

uses onboard resources intensively, its implementation is unlikely on the actual hardware with 

limited resources. This section will discuss some of the hardware specifications and limitations 

of some deep space satellites with imaging capabilities. Some of the most important hardware on 

these satellites are the hyperspectral imaging instruments or the cameras which capture pictures 

of the deep sky [14]. The imagers use high precision analog-to-digital converters (ADCs) to 

convert the raw analog data from the imagers into digital information, known as pixels. Along 

with these instruments, there are other onboard sensors on these satellites which measure a 

variety of data, such as position and temperature [8]. To process all these data, the onboard 

processors, which all processes and devices must share, handle this task and stores the processed 

data into a fixed size for the buffers before transmission. Also, some satellites have redundant 

circuits of the same type, meaning engineers create one or more copies of the same circuit. For 

example, in deep space which is a “high-radiation environment,” Triple modular redundancy, or 

TMR, attempts to alleviate the issue of one circuit breaking down with the implementing two 

more of the same circuit and verifying results from at least two circuits [12]. Because of these 

limitations and redundancies, satellites cannot afford to use a resource intensive algorithm which 

can hog the satellite’s computational resources and should be reproducible in the same system.  
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D. Huffman Coding 

Huffman devised an optimum source coding algorithm that gives a “minimum average 

number of bit per symbol” based on the use of probabilities of occurrences of those symbols 

[15]. With applications to images, the symbols in this context are the levels of gray intensity or 

color. The algorithm assigns shorter codewords (length in bits) for symbols that occur more 

frequently and longer ones for less probable symbols. In this fashion, the average length of the 

code is closest to the entropy value where entropy is the lower bound for average length, and 

entropy plus one is its upper bound [2]. Hence, this algorithm produces variable length codes 

which are instantaneous parseable prefix code. This code means that as soon as the destination 

receives the last bit of a codeword, the decoder can map the code into its corresponding value. 

This fast decoding is possible since none of the codewords are prefix to another. Nevertheless, 

the codeword lengths have a minimum standard deviation that is an important property from a 

practical point of view which allows for a manageable buffer [2]. However, the major drawback 

of Huffman coding in practical application is the need to obtain the statistic of the source first, 

and the algorithm devises an optimum code for the data afterwards. Then, the receiver gets the 

coding table, so it knows how to decode the received sequence. Therefore, with known pros and 

cons of these algorithms, many others sprang up using the property of Huffman’s algorithm. 

These algorithms include Adaptive Huffman and Reversible Variable Length Codes which 

extends the Huffman algorithm to increase its performance [2], [16].  Non-uniformity of lengths 

exacerbates the application difficulties: first, data packing introduces an additional effort, and 

due to the nature of decoding of such codes, errors can propagate through the course, that is 

decoding would lead to altered data. According to Lelewer and Hirschberg’s paper on the 

analysis of various data compression algorithm, they observed the “self-correcting” nature of 
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Huffman codes, meaning propagation of transmission does not extend for too long [17]. This 

observation assumes the use of static version of Huffman’s algorithm and quick 

resynchronization between transmitter and receiver, so the algorithm itself is not immune to 

transmission error, but it can self-synchronize to a certain extent. However, many applications 

use the adaptive Huffman code since it does not need the entire data and probabilities in 

designing the code. This paper also remarked on the effect of error in adaptive codes because 

they saw no evidence to suggest “adaptive methods are self-synchronizing” and the lack of 

attention in this research area [17].  

 

E. Rice Coding 

Robert F. Rice published an extension to the Huffman algorithm in his 1979 report to 

further improve upon the source coding algorithm [18]. The Rice algorithm coder uses two 

discrete parts: “pre-processor [with a] symbol mapper” and “adaptive symbol coding” [19]. After 

converting analog signals to their digital form, they enter the pre-processor block which find the 

“difference between adjacent data” and to then “map all difference values” into a new “sequence 

of... symbols” called blocks which becomes the input to the next functional block. The adaptive 

symbol coding or “variable length coder” uses different options of coding for specific level of 

“source entropy” [19]. Most of the coding options in this algorithm uses the principle of Golomb 

code of “the larger an integer, the lower its probability of occurrence,” but these options are 

characterized as special types of “adaptive Golomb code” [1]. The output of this coder becomes 

transmitted to the receiver which has similar functional blocks to decode the incoming 

compressed data. Pen-Shu Yeh from Goddard Space Center lays out the algorithm for each of 

these options in two of her reports along with rest of Rice coding algorithm [19], [20].  This 
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algorithm has become then a standard by Consultative Committee for Space Data Systems 

(CCSDS), specifically CCSDS 121.0-B-1 for lossless generic data compression [7]. What makes 

the Rice coding algorithm a type of Huffman coding is the equivalence of its “variable length 

codes” to Huffman codes [20]. According to the method data are packed such that the description 

of the coding mode is incorporated into the header field, and thus any error affecting those bits 

would lead to the complete loss of the fixed length sequence. However, it suggests a fixed 

maximum error propagation by design. 

In their 2008 paper, James Meany and Christopher Martens studied the error resilience of 

split-field source coding algorithm which includes Rice coding [21]. For their experimental 

study, they included a “wavelet transform” module to convert an image to a series of coefficients 

that corresponds to the transform before performing the compression algorithm. They observed 

that the “utility of split field coding... depends... on the proportion of suffix bits in the 

compressed” data [21]. The suffix, generated through the variable length encoder, may therefore 

be less susceptible to transmission error, especially those that have fixed length, which resembles 

the Rice coding property. 

 

F. Exponential-Golomb (Exp-Golomb) Coding 

Another type of Golomb codes was proposed by Jukka Teuhola in his 1978 journal called 

Exponential-Golomb coding [22]. As the algorithm’s name points out, the generated codeword 

of this type of coding grows exponentially based on the value of the original datum which 

characterizes this algorithm as a type of Golomb code because larger values produce longer 

codewords [1]. Each codeword has three parts: padded zeroes, a separator ‘1’ bit, and the 

remaining information [23]. The number of ‘0’ bits for the first part of the codeword is 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0ahUKEwixz8HAlYjaAhWnsFQKHWYkCdwQFgh6MAg&url=https%3A%2F%2Fsolarsystem.nasa.gov%2Fdocs%2Fpr358.pdf&usg=AOvVaw1HRpVumZB-lcZwTZ0GZbuQ
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calculated based on the minimum number of bits to represent the original data plus one. The 

number of bits of the remaining information (original data plus one) is also the same number of 

the ‘0’ bits in the first part. With these codeword generation steps, the hardware implementation 

is simpler to design than that of Huffman or Rice coding. There is no need to accumulate 

statistical data on an image as in Huffman or to run multiple options to find the best codeword as 

in Rice coding. This ease of hardware implementation makes this a good candidate for study.  

 

G. Channel Coding and Tradeoff with Source Coding 

Channel coding algorithms add data redundancy to the data, either compressed or not, to 

detect or correct transmission errors [1]. This redundancy allows for error detection at the 

receiver which helps the receiver decide if there is corruption of the received data before 

processing them further. For example, a simple parity check code appends an extra bit at the end 

of the digital data to indicate whether the number of 1’s in the data are even or odd [24]. When 

the destination receives data with a parity check bit, the receiver will first count the number of 

1’s in the data excluding the parity bit, generates the appropriate bit based on the parity check, 

and checks it against that last bit. When the bits do not match that indicates an error in the 

received data. More sophisticated and efficient codes have been developed from Hamming codes 

to cyclic, convolutional, Raptor, trellis, low density parity check, etc. [1], [25] With a higher 

redundancy the codes are able also to correct errors, however the trade-off between compressing 

source coding and redundant channel coding limits the usage of correcting codes.  Many 

networking protocols use so called Cyclic Redundancy Check (CRC) bits which are calculated 

using special polynomials and append them to the bare data (compressed or uncompressed) [6]. 

At the receiver, the same algorithm is used to re-calculate the CRC and compare to one sent 
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along with the data. The mismatch indicates that there could be an error in either data or CRC. 

The network protocols can either send a negative acknowledgement, as in X.25, or remain silent, 

i.e. no acknowledge is sent which after some timeout period (ARQ protocol) is an indication that 

data were either not received or received in error (TCP/IP) [26].  In either protocols the 

transmitter would retransmit data.  

Evidently, the correcting codes are preferable. A simplest example is a repetition code. 

Each bit of the codeword is duplicated k times. [13]. This property uses the idea of Hamming 

distance, or how many bits are different between any “good” code and the received code to 

determine what bit did the transmitter intended to send over in the presence of error [27]. If the 

parameter k = 3, then a single bit error can be corrected (a minimum number).  The receiver will 

look for the minimum Hamming distance to correct for a one-bit error. Thus, whenever the 

received code is ‘000’ or ‘111’, the receiver can easily determine that no error was present in the 

packet. Otherwise, for example if ‘010’ was received, then the error corrected bit is ‘0’.  This 

code is highly redundant, but explain the main idea of introducing a distance between codewords 

for attaining the error correcting capability. For detecting e number of errors, the distance is at 

least e+1, and for correcting c errors, the distance is 2c+1 [13]. 

In deep space communication, adding redundancy using channel coding algorithms will 

increase the data transmission time. However, channel coding may eliminate the need for 

retransmissions because they can correct for transmission error at the receiver. Because of the 

given tradeoffs, self-synchronization of source codes and their error-resilience is of a paramount 

importance.   
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H. Field Programmable Gate Array 

Field Programmable Gate Array, or FPGA, is an integrated circuit which enables the end 

user to configure its logic blocks through various means, such as block diagrams and hardware 

description languages (HDL) [28]. Without the need to reconfigure logic circuits physically 

using this device, FPGAs are flexible circuits for most hardware implementation needs as they 

allow hardware designers to test out their circuit design before the actual implementation in its 

own dedicated circuit. Therefore, there is no need to find Application-Specific Integrated 

Circuits (ASICs) to test for different applications [29]. Rather, the user can configure a single 

FPGA for multiple applications and debug them in the board as well. Furthermore, in recent 

years, the consideration of using FPGAs for space applications garnered “great interest” 

especially because FPGAs allow for testing issues, including “harsh environments,” in a 

relatively safe manner [29]. In this study, an FPGA will mimic the hardware of satellites in deep 

space, along with its computational and power limitations because there is no access to the actual 

hardware. Without the need to test these source coding algorithms in an actual high radiation 

environment, data manipulation on the FPGA’s memory that hold data will emulate transmission 

errors. Circuits made for outer space are fabricated using “radiation hardening” technology. That 

is based on electronic components and systems that are resistant to ionizing radiation which can 

cause malfunctioning or even damage.  
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III. METHODS 

A. Images and Buffer 

First, the data by source is two-dimensional optical image data obtained by CCD camera. 

Due to its flexibility and programmability features, the hardware implementation of each source 

coding algorithms is done on the FPGA. To test the compression algorithms, the storage of the 

images was a necessary component for testing and circuit operating. Also, to operate on a single 

clock, the buffer memory is likely to be on FPGA representing a static memory (SRAM). For 

storing these images, a buffer was created in the FPGA enough to store a single picture. The 

images used in this study are in grayscale for ease of the algorithms’ calculation in the FPGA 

and are characterized as either public domain or astronomical images.  

Typical public domain images are 8-bit which means there are only 28 or 256 

representation levels for grayscale values. There are standard images that was primarily used for 

testing 8-bit grayscale images [30]. To test these benchmark images in 16-bit mode, their image 

histograms are stretched from 256 possible grayscale values to 65,536 grayscale using 

MATLAB. This modification is necessary for a fair comparison among all the 16-bit images. For 

this study, five of the benchmark images were used which all have dimensions of 256 by 256.  

On the other hand, astronomical images that comes from deep space satellites have more 

precision and often have larger representation levels than public domain images. They are often 

stored in a special format called FITS (Flexible Image Transport System), which supports 8-bit, 

16-bit, 32-bit, and 64-bit integer and floating-point values [31]. The astronomical image used for 

this study is 16-bit, which have dimensions of 1024 by 1024. For most of the error resilience 

study, the original 16-bit image was used, but for Huffman study, the 8-bit version of the image 
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was used instead due to the software limitations of that algorithm. Each 16-bit value was mapped 

to an 8-bit value using the following formula: 

16-bit value
8-bit value 256

65,536
   

 

B. Huffman Encoder Implementation 

The hardware implementation of the Huffman encoder circuit consists of four major sub-

modules. Because the statistics of the image are needed before generating the codeword, a 

histogram circuit is needed to collect the frequency or counts of each pixel value that signifies 

the probability of these values needed for the codeword generation. There are different circuits 

for the histogram, but a two-port memory circuit was used to store these frequency counts. The 

number of entries in this memory circuit is equal to the number of grayscale levels, where each 

entry can hold up to the maximum count for the image size. Therefore, each pixel data is the 

input to this circuit and addresses an entry in this memory circuit. Figure 1 shows the logical 

view of this histogram circuit with a sample 8-bit image and a portion of the memory. 

 

Figure 1. Logical View of the Histogram Circuit 
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After collecting the frequency of each pixel value, another circuit sorts these counts in 

descending order where the least probable count is placed in the last entry of the sorted 

histogram. The hardware implementation, introduced in the paper by Shengan Dong et al., was 

used for this part of the encoder due to its quick parallel sorting algorithm [32]. Their circuit 

consists of multiple sub-modules of comparators and D flip-flops, which shares the same datum 

input as well as enable and load signals. The idea of this algorithm is to store the current value 

from the datum input to a specific D flip-flop if the flip-flop’s content is less than or equal to the 

value, which gets cascaded to the next sub-module. Therefore, the values are fed to the circuit 

serially or one-by-one until all the values have been sorted. While the data (or, in this 

application, frequencies) are being sorted, the addresses (or pixel values) are also sorted using 

the same signals from the data sorting scheme. Figure 2 illustrates the components of the sorting 

circuit for both data and addresses, which comes from their paper [32]. 

 

Figure 2. Sorting Circuit for Data and Addresses [32] 

When the frequencies and their corresponding pixel values are finally sorted in 

descending order, the length of each codeword is generated based on how probable a specific 

pixel value is in the image histogram. The Huffman algorithm assigns a shorter codeword for 

those values with the larger probability or, for this implementation, count. With this principle in 

mind, the next module for this Huffman circuit is a finite state machine (FSM) which generates 
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the length of each codeword for each pixel value. This FSM consists of 5 states. The first one 

(START) loads the sorted counts into a buffer within this sub-module along with registers to 

keep track of their lengths, and their corresponding pixel values are maintained using a one-hot 

state registers. The sizes of these registers equal to the number of different pixel values in an 

image, and only one bit in each register is set to ‘1’ initially before the next state. Figure 3 

demonstrates the implementation of these registers.  

 

Figure 3. Memory View of One-Hot State Implementation 

 The COMBINE state combines the last two non-zero entries (least probable counts) of 

this buffer. This operation consists of performing OR operation between the one-hot registers 

and placing the result into the most probable entry among these two. The corresponding entry for 

the least probable pixel is cleared out. For example, after the first iteration, the last entry of the 

buffer is empty, and the one-hot register above it now has two ‘1’s in its register. Afterwards, the 

UPDATE state increments the lengths of the pixel values that were combined in the previous 

state. The RE-SORT state then sorts the buffer using a nonstable sort which overrides the order 

of the pixel values, which means the combined pixel values’ register is placed higher in the 

sorted buffer whenever two counts are equal. These three previous states are repeated until all 

symbols (or pixel values) are processed. Afterwards, the DONE state sorts the final lengths 

Pixel 

One-Hot State Registers 

0 1 2 3 ... 253 254 255 

0 1 0 0 0 ... 0 0 0 

1 0 1 0 0 ... 0 0 0 

2 0 0 1 0 ... 0 0 0 

... 

... 

... 

... 

254 0 0 0 0 ... 0 1 0 

255 0 0 0 0 ... 0 0 1 
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buffer using bubble sort to maintain the order of the pixel values before the final codeword 

generation circuit. Figure 4 provides a summary of these states for this state machine. 

 

Figure 4. FSM of Length Calculation circuit  

The last sub-module of this hardware implementation of the Huffman algorithm 

generates the final codeword for each pixel value using the calculated lengths from the previous 

circuit. These codewords are constructed using a canonical tree which ensures that each 

codeword is easily decodable. With this canonical tree, its maximum depth is equal to the largest 

calculated length. For the purposes of this study, this maximum depth is assigned to a constant 

which is appropriate for the benchmark images used in this study. Initially, a full binary tree is 

loaded into registers where each register contains one level of the tree. As the lengths are read, 

each register of the tree shifts out a codeword of different sizes, but the appropriate one comes 
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from the level number equal to that length. These codewords are then stored into a separate 

buffer for the actual encoding. Figure 5 illustrates the high-level picture of the Huffman encoder 

circuit. Afterwards, the image is then encoded using this buffer as the look-up table (LUT) 

before transmission to the receiver. 

 

Figure 5. High-Level Schematic of the Huffman Encoder 

 

C. Rice Encoder Implementation 

For implementing the Rice encoder, the standard from CCSDS 121.0-B-1: Lossless Data 

Compression provided the explanation of the all the necessary pieces of circuitry to build the 

encoder [7]. This standard works on the data in groups called blocks (parameter J in the 

standard), which its size can be set to 8, 16, 32, or 64. For the hardware implementation, only 

block sizes of 8 and 16 were considered for this study. Along with the size of each pixel datum 

(parameter n in the standard), block size is an important parameter in building the Rice encoder, 

which dictated the need for parameterized modules when constructing the different 

configurations of the circuit. These parameterized modules allow for the implementation of any 

permissible configuration of the Rice parameters. To implement the other configurations, this 

same circuit is used, but the parameter variables can be changed which exhibits reusability of the 

code. As mentioned previously, the Rice encoder has two major functional parts: Pre-processor 

and Adaptive Entropy Coder—as illustrated in Figure 6.  
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Figure 6. Main Functional Parts of Rice Encoder [7] 

The Pre-processor module decorrelates the pixel data and maps only the difference 

between pixel data within a given block of them. The first pixel on any given block is transmitted 

in its entirety and not compressed because all other bits in the packet will rely on this reference. 

Because the pre-processor takes the “difference between adjacent data” (denoted as i i ix x   ), 

a small buffer was necessary to store the current and previous pixel values [7]. This pre-

processor buffer takes in the pixel from the image buffer and pushes the pixel datum into internal 

shift registers, shifting out the stored previous value. Both differences between the current and 

previous pixels are calculated using subtractors, and the most significant bit of the difference 

determines the sign. After obtaining the magnitude and the sign of the difference, it is then 

mapped using the function below, so the result becomes associated with a positive value.  

2 0

2 1 0

i i

i i i

i otherwise



 



    


      
  

 

where  min maxmin ,i ix x x x     

The mapping function is implemented using comparators and shift multiplier circuits 

because the calculation involves multiplication by two. Afterwards, this mapped difference 

(denoted as δi) is sent to the Adaptive Entropy Coder. 
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The Adaptive Entropy Coder consists of multiple sub-modules that all generate 

codewords for transmission, which all run in parallel. These sub-modules are a “set of code 

options” where each have their own way of compressing the mapped differences and packing 

them along with the reference value and an identification for the option used [7]. The selection 

among these options is based on whether the given block is all zeroes (Zero Block). If this is not 

the situation, then one of the remaining options with the lowest codeword is selected. Otherwise, 

the reference and mapped differences are sent without any compression. This code selection 

signals are implemented using comparators on the packet size generated by each option and a 

flag register for the Zero Block option. These signals control a final multiplexer that selects the 

codeword from the chosen option. Figure 7 summarizes the inner circuitry of the Adaptive 

Encoder with the code selection. 

 

Figure 7. Main Functional Blocks of Rice Adaptive Encoder [7] 

Most of these options base their coding scheme on the Fundamental Sequence (FS), 

including the Split-Sample options. A FS codeword composes of ‘0’ bits, which is equal to the 

value to be encoded, followed by a ‘1’ bit. For example, the value of 3 has a codeword of 

“0001.” The main component responsible for creating a FS codeword is a variable left shifter, 
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which shifts in a ‘1’ bit into the appropriate place in the final packet based on the calculated shift 

amount. This shift amount is related to the mapped difference, which is the same value for FS 

and the most significant bits of the difference for the Split-Sample options. Therefore, for all 

split-sample options, one parameterized module was designed with the variable left shifter and 

was reused with changes to the parameter in the overall Adaptive Entropy Coder circuit.  

Two of the options are of low entropy: Zero Block and Second Extension, which takes 

advantage of the smallest differences among pixel values in a block. These options also use the 

FS coding scheme and thus have the variable left shifter in their circuits. The Zero Block option 

also employs two comparators: one to check if all the mapped differences in a block are all 

zeroes and another to check if the current reference value is the same as the previous reference 

value. In addition to the variable left shifter, another shifter and multiplier was implemented for 

the Second-Extension option to calculate a new symbol between two adjacent mapped 

differences (δi and δi+1) using the Second-Extension formula: 

  1 1 11 / 2i i i i i             

This algorithm was then extended to contain a simple error correction capability. Because 

the decoding of a given block starts with the header, damages to this portion of the packet causes 

a significantly set of different pixels to be decoded than the original. Therefore, protecting this 

header field was explored in this study. The header field is typically the smallest field in any 

given packet, so it can be protected using a simple redundancy code. This coding scheme simply 

repeats each bit of the header field two more times for a total of three bits per one bit of the 

original header field.  

 



EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 24 

D. Exp-Golomb Encoder Implementation 

Unlike the Rice encoder, the Exp-Golomb does not have a predetermined way of 

implementation as long as it generates the correct codeword as the algorithm dictates. For better 

compression, the hardware implementation of Exp-Golomb algorithm for this study uses the Pre-

processor module from Rice circuit to decorrelate the pixel values within a row of pixels. Of 

course, this dimension must be known in both the source encoder and the transmitter’s decoder. 

Therefore, one reference value is preserved while encoding all the differences using Exp-

Golomb coding. Before generating a codeword, three values are determined in the circuit: (1) 

whether the current pixel is the reference, (2) the value for M, and (3) the value for INFO. The 

formula for M and INFO is as follows [23]: 

 2log 1

1 2M

M NUM

INFO NUM

   

  

 

The variable M is the number of bits for the padded zero in the beginning of the 

codeword and for the bits to represent INFO. The variable NUM represents the value from the 

preprocessor circuit. The calculation for M in hardware is not trivial and can be resource 

intensive, so all values for M are generated based on the all positive values up to maximum 

permissible value for NUM and loaded into a look-up table (LUT). To access a specific entry on 

the LUT, the NUM variable becomes the address for the pre-calculated value of M. This method 

sacrifices some memory resources for the sake of using up more of the computational resources. 

An adder calculates the INFO value where one of the addends is the NUM value and the other is 

fixed to one. The output from the adder connects to a variable left shifter circuit which pushes 

the most significant bit of INFO to the most significant bit of a fixed size register, and the 

number of shifts comes from the value from the LUT. With the M and INFO values calculated, a 

final sub-module takes these values and generates the final codeword using another variable left 
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shifter. Because the circuit sends the reference value intact, a flag register from the Pre-processor 

module signals the final multiplexer whether to send either the generated codeword or original 

data intact (reference value).  

 

E. Software Implementation and Introduction of Errors 

In addition to the hardware implementation of source coding techniques, these algorithms 

are also programmed in software using C++ and MATLAB for functionality testing and 

simulation of error resilience. After the generation of codewords for each image, evaluating their 

compression power was the next step. Using a pseudorandom number generator, the errors are 

introduced based on the probability of error in deep space satellite communication channels 

mentioned in Chapter II Section B of this paper. Afterwards, the statistics are collected on the 

compressed, then corrupted by errors, data that will be used for the analysis of the performance 

of algorithms. Specifically, the compression ratio, that is the ratio of volumes of the original to 

the compressed data, the sum of absolute difference in pixel values, and lengths and magnitudes 

of damaged data are calculated as the total Hamming distance between the original and the 

damaged image. These equations for these values are summarized below: 

CompressedSize
Compression Ratio

OriginalSize
  

1 1

Sum of Absolute Difference
heightwidth

ij ij

i j

x x
 

    

 
1 1

Total Hamming Distance _
heightwidth

ij ij

i j

diff bits x x
 

    

Total Hamming Distance
Damaged Pixels (%) 100

OriginalSize
   



EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 26 

where xij is the original pixel and x'ij is the decoded pixel. The function diff_bits counts the 

number of 1’s in the result of the XOR operation () between xij and x'ij. 

 

F. Design Components and Power Usage 

 The Computer-Aided Design (CAD) software, such as Quartus II, provides tools to 

analyze the number of components and the power usage after the compilation and synthesis of 

the circuit for each algorithm on the FPGA. For this study, the FPGA used is Cyclone IV. The 

component usage information is generated immediately after compilation, but to obtain the 

power usage information, a tool called PowerPlay Power Analyzer is invoked to generate this 

information. For this study, the default settings for this tool are used for fair comparison among 

all the encoder circuits. For the input and output signals, a default toggle rate of 12.5% is set with 

vectorless estimation for all remaining signals which estimates the “signal activity on nodes with 

no simulation” [33]. Based on these data, the determination of which algorithm uses either the 

fewer number of components or less amount of power is made. 
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IV. RESULTS AND DISCUSSION 

A. Compression Ratio 

Based on the dimensions and the range of pixel values per image, the uncompressed, i.e., 

original size is calculated as follows: 

Actual Size Width Length Data Width    

Table I provides the compression ratios of 8-bit images encoded using the Huffman 

algorithm, and that includes an 8-bit remapped astronomical image.  

TABLE I. 
COMPRESSION RATIOS BY HUFFMAN CODING WITH 8-BIT IMAGES. 

Image Actual Size Compressed Data Size Compression Ratio 

boat 524288 471098 1.113 

cameraman 524288 427859 1.225 

fingerprint 524288 500501 1.048 

house 524288 459210 1.142 

lena 524288 488650 1.073 

fits1 8388608 2408658 3.483 

 

Because the Rice encoder circuit allows for different parameters—data width (n) and 

block size (J)—all configurations of these parameters are tested for all the images. Tables II and 

III corresponds to the Rice coding’s compression ratio without header redundancy for both 8-bit 

(II) and 16-bit (III) images in various configurations of the n and J parameters that are 

compressed using the Rice coding circuit. Furthermore, Tables IV and V list the compression 

ratio by Rice coding that includes the header redundancy. 
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TABLE II. 
COMPRESSION RATIOS BY RICE CODING WITH 8-BIT IMAGES. 

Image n J Actual Size Compressed Data Size Compression Ratio 

boat 8 8 524288 376675 1.392 

 8 16 524288 362639 1.446 

cameraman 8 8 524288 348834 1.503 

 8 16 524288 333008 1.574 

fingerprint 8 8 524288 496769 1.055 

 8 16 524288 482604 1.086 

house 8 8 524288 344424 1.522 

 8 16 524288 325064 1.613 

lena 8 8 524288 330110 1.588 

 8 16 524288 311285 1.684 

fits1 8 8 8388608 3341386 2.511 

 8 16 8388608 2813535 2.982 

 

TABLE III. 
COMPRESSION RATIOS BY RICE CODING WITH 16-BIT IMAGES. 

Image n J Actual Size Compressed Data Size Compression Ratio 

boat 16 8 1048576 909050 1.153 

 16 16 1048576 891020 1.177 

cameraman 16 8 1048576 880403 1.191 

 16 16 1048576 861229 1.218 

fingerprint 16 8 1048576 1029249 1.019 

 16 16 1048576 1010988 1.037 

house 16 8 1048576 876463 1.196 

 16 16 1048576 853372 1.229 

lena 16 8 1048576 862448 1.216 

 16 16 1048576 839666 1.249 

fits1 16 8 16777216 11518935 1.456 

 16 16 16777216 10944396 1.533 
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TABLE IV. 
COMPRESSION RATIOS BY RICE CODING WITH HEADER REDUNDANCY (8-BIT). 

Image n J Actual Size Compressed Data Size Compression Ratio 

boat 8 8 524288 425853 1.231 

 8 16 524288 387215 1.354 

cameraman 8 8 524288 398102 1.317 

 8 16 524288 357598 1.466 

fingerprint 8 8 524288 545921 0.960 

 8 16 524288 507180 1.034 

house 8 8 524288 393644 1.332 

 8 16 524288 349648 1.499 

lena 8 8 524288 379296 1.382 

 8 16 524288 335861 1.561 

fits1 8 8 8388608 4134090 2.029 

 8 16 8388608 3206607 2.616 

 

TABLE V. 
COMPRESSION RATIOS BY RICE CODING WITH HEADER REDUNDANCY (16-BIT). 

Image n J Actual Size Compressed Data Size Compression Ratio 

boat 8 8 1048576 974586 1.076 

 8 16 1048576 923788 1.135 

cameraman 8 8 1048576 945951 1.108 

 8 16 1048576 893997 1.173 

fingerprint 8 8 1048576 1094785 0.958 

 8 16 1048576 1043756 1.005 

house 8 8 1048576 942003 1.113 

 8 16 1048576 886140 1.183 

lena 8 8 1048576 927984 1.130 

 8 16 1048576 872434 1.202 

fits1 8 8 16777216 12554583 1.336 

 8 16 16777216 11464052 1.463 

 

Tables VI and VII correspond to the compression ratio of images encoded using the Exp-

Golomb algorithm for both 8-bit (VI) and 16-bit (VII) images. 

TABLE VI. 
COMPRESSION RATIOS BY EXP-GOLOMB CODING WITH 8-BIT IMAGES. 

Image Actual Size Compressed Data Size Compression Ratio 

boat 524288 424934 1.234 

cameraman 524288 376250 1.393 

fingerprint 524288 679046 0.772 

house 524288 376002 1.394 

lena 524288 348908 1.503 

fits1 8388608 2560088 3.277 
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TABLE VII. 
COMPRESSION RATIOS BY EXP-GOLOMB CODING WITH 16-BIT IMAGES. 

Image Actual Size Compressed Data Size Compression Ratio 

boat 1048576 1370524 0.765 

cameraman 1048576 1269498 0.826 

fingerprint 1048576 1711408 0.613 

house 1048576 1282444 0.818 

lena 1048576 1248634 0.840 

fits1 16777216 16023610 1.047 

 

B. Error Resilience 

In this part of the study, the error resilience is evaluated based on the average absolute 

difference and average Hamming distance. Based on the error probability between 5×10–3 to 

1×10–7, the length of data (bitstream), and the number and the length of headers (as in the case 

for Rice coding), the number of bits in error are calculated accordingly [13]. With the Huffman 

algorithm, only the damage to 8-bit images were observed due to the software limitations of 

MATLAB in terms of encoding 16-bit images with Huffman encoding. With the given error 

probability mentioned, the best-case scenario happens when only one bit out of the entire 

compressed data was damaged and 12,056 bits in the worst-case. These values come from 

multiplying the compressed size of the astronomical image with the given probabilities, which is 

applied to all experiments for each source coding algorithm. Table VIII provides the error 

resilience analysis of the Huffman algorithm on 8-bit version of the astronomical image. The 

trial runs for the Huffman error resilience analysis is in the table XVII of the Appendix. 

TABLE VIII. 
ANALYSIS OF HUFFMAN DECODING ERRORS WITH 8-BIT FITS IMAGE. 

Number of Bits in 

error 

Avg Absolute 

Difference 

Avg Hamming 

Distance 

Avg Corrupted Pixels 

(%) 

1 1319270 310480 3.70% 

12056 3880841 876081 10.44% 
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With the Rice coding algorithm, there are 64,817 total blocks in the compressed data with 

the 8-bit image and 64,487 blocks with the 16-bit image which is lower than the expected 65,536 

blocks because there are blocks that are encoded using the low entropy options. In the best-case 

scenario, at most one bit of the header or data fields could be damaged in the compressed image, 

while only 324 (or 323 for 16-bit image) bits could be damaged in the worst case. The bit 

flipping according to BSC channel model is imposed both to the header and the data are 

investigated separately in these two cases to assess the fault tolerance of Rice coding. Similarly, 

the number of bits in error are calculated for selecting any bits in the compressed data at random. 

Tables IX to XII show the effect of errors that are an incorrect decoding by Rice coding 

algorithm with (XI-XII) or without (IX-X) header redundancy. For data gathered for the 8-bit 

Rice coding error resilience experiment, refer to tables XVIII to XXII and XXV to XXVI of the 

Appendix. 

TABLE IX. 
ANALYSIS OF RICE DECODING ERRORS WITH 8-BIT FITS IMAGE. 

Location of 

Damage 

Number of Bits 

in error 

Avg Absolute 

Difference 

Avg Hamming 

Distance 

Avg Corrupted 

Pixels (%) 

Header 1 1332835 298599 3.56% 

Header 324 7251211 1027525 12.25% 

Data 1 1529699 344606 4.11% 

Data 324 6567444 997905 11.90% 

Random 1 1431267 321603 3.83% 

Random 14082 14707923 1353914 16.14% 

 

 

TABLE X. 
ANALYSIS OF RICE DECODING ERRORS WITH 16-BIT FITS IMAGE. 

Location of 

Damage 

Number of Bits 

in error 

Avg Absolute 

Difference 

Avg Hamming 

Distance 

Avg Corrupted 

Pixels (%) 

Header 1 190854336 1548298 9.23% 

Header 323 698809977 3631052 21.64% 

Data 1 2073 24 0.00% 

Data 323 448789782 3447538 20.55% 

Random 1 95428205 774161 4.61% 

Random 54722 1070180613 3887672 23.17% 
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TABLE XI. 
ANALYSIS OF RICE DECODING ERRORS WITH HEADER REDUNDANCY (8-BIT). 

Location of 

Damage 

Number of Bits 

in error 

Avg Absolute 

Difference 

Avg Hamming 

Distance 

Avg Corrupted 

Pixels (%) 

Header 1 0 0 0.00% 

Header 324 0 0 0.00% 

Data 1 685928 155224 4.84% 

Data 324 5410111 958569 11.43% 

Random 1 342964 77612 0.93% 

Random 14082 15861233 1509445 17.99% 

 

TABLE XII. 
ANALYSIS OF RICE DECODING ERRORS WITH HEADER REDUNDANCY (16-BIT). 

Location of 

Damage 

Number of Bits 

in error 

Avg Absolute 

Difference 

Avg Hamming 

Distance 

Avg Corrupted 

Pixels (%) 

Header 1 0 0 0.00% 

Header 324 0 0 0.00% 

Data 1 1714 13 0.00% 

Data 324 362385432 3323093 19.81% 

Random 1 857 7 0.00% 

Random 14082 988003116 3831081 22.84% 

 

Similar calculations were made for the number of bits in error for the Exp-Golomb 

algorithm based on the size of the compressed images as with Huffman coding. Tables XIII and 

XIV display the effect of errors due to incorrect decoding by the Exp-Golomb coding algorithm. 

The individual trial runs for the Exp-Golomb study are in tables XXIII and XXIX. 

 

TABLE XIII. 
ANALYSIS OF EXP-GOLOMB DECODING ERRORS WITH 8-BIT FITS IMAGE. 

Number of Bits in 

error 

Avg Absolute 

Difference 

Avg Hamming 

Distance 

Avg Corrupted Pixels 

(%) 

1 2677964 256592 3.06% 

12814 23588754 2194615 26.16% 

 

TABLE XIV. 
ANALYSIS OF EXP-GOLOMB DECODING ERRORS WITH 16-BIT FITS IMAGE. 

Number of Bits in 

error 

Avg Absolute 

Difference 

Avg Hamming 

Distance 

Avg Corrupted Pixels 

(%) 
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1 92868236 928164 5.53% 

80119 641204648 4052670 24.16% 

C. Resource Utilization 

Table XI presents the breakdown of the resource utilization of each source coding 

algorithms. Because the Rice encoder circuit is constructed using parameterized modules, the 

parameter variables for data width and block size are changed accordingly before compilation to 

observe that Rice configuration’s components usage. Similarly, different configurations of the 

Exp-Golomb circuit, specifically the data width, were observed. With the Huffman encoder 

circuit, the 8-bit version could not fit into the FPGA used in this study, so it has been modified. 

In this case, the 4-bit version was recorded below for comparison where its components usage 

extrapolated for comparing among the 8-bit versions of each source coding algorithm.  

 

TABLE XV. 
COMPONENTS USAGE OF EACH SOURCE CODING ALGORITHM. 

Components total logic elements total combinational functions total registers 

Huffman (4-bit)* 308 300 177 

Rice (n = 8, J = 8) 338 330 56 

(header_red) 336 335 56 

Rice (n = 8, J = 16) 426 426 58 

(header_red) 434 434 58 

Rice (n = 16, J = 8) 517 517 74 

(header_red) 557 541 74 

Rice (n = 16, J = 16) 1130 1130 75 

(header_red) 1152 1136 75 

Exp-Golomb (8-bit) 354 346 72 

Exp-Golomb (16-bit) 759 758 89 
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D. Power Consumption 

Using the PowerPlay Analyzer tool with the default settings in the Quartus software, the 

power consumption estimates for each lossless compression circuit is obtained. Table XII shows 

the breakdown of the power consumption per source coding algorithm.  

 

TABLE XVI. 
ESTIMATED POWER CONSUMPTION IN MILLIWATTS. 

Circuit Estimated Power Dissipation (mW) 

Huffman (4-bit)* 215.25 

Rice (n = 8, J = 8) 172.77 

(header_red) 176.87 

Rice (n = 8, J = 16) 181.20 

(header_red) 177.28 

Rice (n = 16, J = 8) 193.31 

(header_red) 189.76 

Rice (n = 16, J = 16) 214.94 

(header_red) 214.98 

Exp-Golomb (8-bit) 175.56 

Exp-Golomb (16-bit) 190.11 

 

 

Discussion 

From Tables I, II, and VI, it can be concluded that the Rice coding method employed for 

development of CCSDS 121.0-B-1 standard scheme exhibits the highest performance in terms of 

compression ratio among the 8-bit images [7]. This result is mainly achieved by the low entropy 

options, i.e., Zero Block and Second Extension. The Zero Block is especially beneficial to the 

Rice’s high compression ratio. For example, with n = 8 and J = 8, one zero block encoded using 

Rice compresses 64 bits of pixel data into a 13-bit codeword, including the option ID and 

reference pixel value. With two zero blocks, 128 bits of pixel data turns into a 14-bit codeword 

and so on. Likewise, the Exp-Golomb coding has a lower compression ratio than Rice coding.  
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However, there is one notable exception to this observation which is the 8-bit remapped 

version of the astronomical image. Its compression ratio was the highest when encoded using the 

Huffman algorithm followed by Rice and then Exp-Golomb. This anomaly comes from the 

remapping of a small subset of all possible 16-bit values onto an even smaller subset of the 8-bit 

values. Because the histogram of this remapped image is much smaller than the original, fewer 

pixel values are needed to build the Huffman coding dictionary. Therefore, this set of pixel 

values are encoded with fewer bits than if it was encoded using the mapped difference in either 

Rice or Exp-Golomb algorithms.   

From Tables III and VII, the Rice coding algorithm performs with a highest compression 

ratio between itself and Exp-Golomb for 16-bit images. In fact, the compression ratios by Exp-

Golomb of the benchmark images are below one as indicated with the higher compressed size 

than the actual size. However, it still performs compression on the astronomical image because 

the differences among its pixel values are much smaller than that for the benchmark images. 

Therefore, in the case of the benchmark images, it is better to send the pixel values as is rather 

than encode them using the Exp-Golomb algorithm.  

Focusing on just the Rice coding compression ratios shows the variation in compression 

ratios for different configurations n and J. In Table II, the size of each compressed image when 

the block size is 16 is smaller than that for J = 8. Consequently, the compression ratio for the 

images that are decorrelated using larger block sizes are greater. Similarly, both the 16-bit FITS 

and the histogram-stretched benchmark images (Table III) also followed this trend, i.e., display a 

greater compression ratio when the block size of 16 was selected than that for the block size of 8. 

The larger block size option has a greater compression ratio because it captures more of the 

differences in one packet than that smaller block size. Furthermore, the compression ratio of the 
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images encoded with the header redundancy codes (Tables IV and V) are lesser than those from 

the original encoding scheme as expected because of those extra bits in the header. Most of the 

compressed benchmark images have compression ratios that are greater than one except for the 

fingerprint benchmark image. This anomaly was due to its compression ratio without header 

redundancy being very close to one, so the addition of the redundant bits made the effect of the 

compression insignificant.  

As mentioned in previous sections, the Huffman software implementation is limited to 

encoding only 8-bit images, so just the 8-bit remapped version of the astronomical image rather 

than the original 16-bit image was used for the error resilience study. From tables VIII, IX, and 

XIII, in the best-case scenario where only one bit is flipped Exp-Golomb coding performs the 

best in terms of error resilience but only slightly better than Huffman or Rice coding. However, 

the worst-case scenario produces a different outcome where Huffman coding performs well over 

Rice or Exp-Golomb algorithm due to its ability to self-correct in a very short time (shorter 

erroneous sequence) which is beneficial in the presence of many bits in error [17]. This 

observation, therefore, disproves the hypothesis that Rice coding performs better than Huffman 

coding as shown in both extremes of error probabilities without the introduction of simple error-

correcting codes. By introducing the redundancy codes (Table XI) in the header in Rice codes, 

the average percentage of corrupted pixels drops from 3.83% to 0.93% in the best-case scenario 

which is significantly better when compared to Huffman or Exp-Golomb coding. The header 

redundancy codes can easily correct a single bit error in the header for the best-case. However, it 

does not improve on the worst-case scenario where Huffman coding still dominates. 

From tables X and XIV, the error resilience of Rice coding is higher than that of Exp-

Golomb for the original 16-bit astronomical image, i.e., the case for deep space communication. 
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This observation is seen in both the best and the worst-case scenarios. Because the Rice 

algorithm allows for parallel calculation of all its options and selecting from the code of least 

length, the Exp-Golomb algorithm does not achieve the same performance as Rice coding. With 

the header redundancy for the Rice algorithm (Table XII), the error resilience in the best case 

becomes diminished while the performance in the worst case slightly improves. Therefore, the 

addition of redundancy codes in the header field in Rice coding provides a slight performance 

improvement which could be omitted as a mean to protect the header field.  

In terms of decoding errors with the header errors encoded using Rice coding shown in 

Table X, the comparison suggests that the header errors introduce a significant issue. The first 

two rows of the table also show a variation in the length of error propagation of a single bit error 

in the header where a single bit flip event produces a more favorable outcome than multiple bit 

flip events. The difference in percentage of incorrectly decoded bits for the data field however 

tells a completely different story. With an average Hamming distance of 24 for the best-case, the 

error is contained within a block or two of pixel data because the minimum packet size in this 

configuration is 22, and the maximum is 261. Therefore, the percentage of incorrect bits in the 

data field of the packet is close to zero for the best-case scenario. 

During the compilation and programming of the Huffman algorithm using the FPGA 

software, the implementation laid out in this study cannot fit within the hardware limitations of 

the FPGA used in this study, which was the same for all coding algorithms, for a fair 

comparison. Consequently, the Verilog code for the Huffman circuit was modified by changing 

the parameters in the code until it suited the hardware requirements, so the circuit can only 

handle 4-bit data given this implementation. Comparing this limited Huffman circuit with the 

lowest configuration of Rice and Exp-Golomb, the Rice encoder circuit uses the fewest 
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components, even with header redundancy incorporated into the encoder. When the data width is 

set to 16-bit, the Rice encoder circuit still has the least components usage only when the block 

size is set to 8. Conversely, the Exp-Golomb circuit uses fewer components the 16-bit Rice 

encoder when the block size is set to 16.  

With the same issue as for the Huffman encoder circuit, only its limited 4-bit version was 

observed for the power consumption analysis. Looking at just the most limited version of each 

source encoder circuit, the Rice encoder consumes the least amount of power among the three 

implemented source coding algorithms even when comparing against the limited version of the 

Huffman encoder. In fact, this 4-bit Huffman circuit uses the most amount of power among all 

the hardware implementations in this study, so it performs the worst in terms of power 

dissipation. Comparing the 16-bit versions of Rice and Exp-Golomb circuits, the latter encoder 

outperforms the former one even against the two configurations of the block size in the Rice 

coding circuit. Given the compression ratio of 16-bit Exp-Golomb against the 16-bit Rice 

encoder in both block size configurations, the Rice encoder provides the best tradeoff between 

the compression ratio, component usage, and the power consumption over the Exp-Golomb 

encoder. 

In terms of compressing the 8-bit benchmark images given in the results section, the Rice 

encoder circuit, specifically with J = 8, outperforms the Exp-Golomb method. The addition of 

the repetition code to the header in the Rice method does give a significant advantage in error 

resilience, components usage, and power consumption for the compression of the benchmark 

images, or more generally, public domain images. In fact, it only improves the error resilience in 

the best-case scenario while increasing the power consumption of the circuit. The summary of 

the analysis for 8-bit encoder circuits is shown in Table XVII. Therefore, among the source 
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coding methods in this study, the Rice encoder circuit with the block size of 8 gives a best 

configuration based on all the measurements performed in this study. 

 

TABLE XVII. 
SUMMARY OF COMPARISON OF METHODS FOR 8-BIT IMAGES. 

 Huffman Rice 

Compression Ratio  X 

Error Resilience X  

Components Usage  X 

Power Consumption  X 

 

For astronomical images transmitted with 16-bit representation per pixel the Huffman 

encoder is not practical due to the huge number of components needed for implementation. 

Therefore, only the Rice and Exp-Golomb methods are the suitable candidates for comparison in 

terms of their feasibility for the application. Even though the Rice encoder with the block size of 

16 provides a greater compression ratio than the one of smaller block size, the Rice circuit with J 

= 8 outperforms the Exp-Golomb encoder in all categories except in power consumption. This 

type of Rice encoder uses significantly fewer components than the larger Rice counterpart and 

Exp-Golomb, and it performs well in the presence of errors in both the best and worst-case 

scenarios. Furthermore, augmenting the Rice code with the repetition code of the header field, 

although it adds more components and reduces the compression ratio, it performs better than the 

Exp-Golomb coder with the added benefit of improving the error resilience, especially in the 

best-case scenario. The summary of the analysis among 16-bit encoder circuits is shown in Table 

XVIII. The Rice circuit with the block size of 8, augmented for error resilience with the 

repetition code represents a most favorable tradeoff by three categories: compression ratio, error 

resilience and the hardware complexity. Although the power usage is not of a lesser significance 

given the on-board operation, with the employment of efficient technologies and power 
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optimization methods for the circuit design, further improvements can be achieved. However, 

that is outside the scope of the current work and its goals in this pilot research of the author.   

The conclusions drawn in this study prove not only that this early CCSDS standard is a valid 

candidate for the use on board by NASA deep space exploration missions, but it also can be used 

for losslessly encoding the public domain 8-bit images. It would be interesting and useful to 

perform in the future the analysis of the recent CCSDS, such as 122.0-B-2 and include 

hyperspectral and multispectral datasets for the performance analysis. Also, the study in general 

is to be performed in association with the communication protocol and adopted channel coding 

methods, that is in an integral framework of operation. 

 

TABLE XVIII. 
SUMMARY OF COMPARISON FOR 16-BIT IMAGES. 

 Rice Exp-Golomb 

Compression Ratio X  

Error Resilience X  

Components Usage X  

Power Consumption  X 
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APPENDIX 

TABLE XIX. 
TRIAL RUNS FOR 8-BIT HUFFMAN ERROR RESILIENCE EXPERIMENT. 

Random Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 17 3 0.000% 

2 817007 197597 8.204% 

3 869312 209227 8.686% 

4 2204295 513175 21.305% 

5 2390769 558091 23.170% 

6 1182951 279053 11.585% 

7 1534106 359985 14.945% 

8 1947049 453343 18.821% 

9 614971 152563 6.334% 

10 1826107 425851 17.680% 

11 165837 51103 2.122% 

12 27648 10319 0.428% 

13 1086207 257505 10.691% 

14 2307406 537837 22.329% 

15 2261427 526837 21.873% 

16 8 1 0.000% 

17 2415310 564075 23.419% 

18 2457929 574703 23.860% 

19 1123971 265935 11.041% 

20 1153066 272397 11.309% 

Random Damage (12056 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 3882603 876160 36.375% 

2 3869506 874269 36.297% 

3 3846757 870546 36.142% 

4 3901790 879977 36.534% 

5 3872549 873986 36.285% 

6 3902863 880488 36.555% 

7 3890216 877906 36.448% 

8 3890830 877117 36.415% 

9 3851440 870923 36.158% 

10 3916372 882493 36.638% 

11 3884815 877983 36.451% 

12 3881590 875514 36.349% 

13 3859873 872636 36.229% 

14 3912323 881254 36.587% 

15 3861227 872749 36.234% 

16 3891275 877759 36.442% 

17 3886598 876842 36.404% 

18 3923289 883617 36.685% 

19 3840873 869020 36.079% 

20 3850032 870386 36.136% 
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TABLE XX. 
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT (HEADER). 

Header Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 1819526 406951 4.851% 

2 3755814 837277 9.981% 

3 1731583 384321 4.581% 

4 3924602 881518 10.509% 

5 3492099 774619 9.234% 

6 96 33 0.000% 

7 1479338 331026 3.946% 

8 1714670 390377 4.654% 

9 111 38 0.000% 

10 2631875 584548 6.968% 

11 130 22 0.000% 

12 29 8 0.000% 

13 1979228 443881 5.291% 

14 150 45 0.001% 

15 527823 130307 1.553% 

16 136 25 0.000% 

17 38501 8914 0.106% 

18 252 27 0.000% 

19 2780040 609683 7.268% 

20 780697 188358 2.245% 

Header Damage (324 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 7182570 1028815 12.264% 

2 7658829 1041075 12.411% 

3 7392607 1034217 12.329% 

4 6837700 1007315 12.008% 

5 6846669 1008449 12.022% 

6 7338415 1033589 12.321% 

7 7257717 1028934 12.266% 

8 7328980 1023189 12.197% 

9 7401249 1036219 12.353% 

10 7287985 1031122 12.292% 

11 7095202 1026352 12.235% 

12 7200146 1030722 12.287% 

13 7214374 1024777 12.216% 

14 7368017 1025569 12.226% 

15 7197162 1025029 12.219% 

16 7373443 1031683 12.299% 

17 7465274 1039146 12.388% 

18 7190939 1025438 12.224% 

19 7306086 1022090 12.184% 

20 7080860 1026770 12.240% 
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TABLE XXI. 
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT (DATA). 

Data Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 55 26 0.000% 

2 3902900 874543 10.425% 

3 3815215 854802 10.190% 

4 1996942 450401 5.369% 

5 1109788 257059 3.064% 

6 3753552 835301 9.958% 

7 959198 220327 2.627% 

8 3335573 741524 8.840% 

9 87 31 0.000% 

10 2643642 585032 6.974% 

11 84 19 0.000% 

12 7814 676 0.008% 

13 114 37 0.000% 

14 701908 164669 1.963% 

15 750947 178407 2.127% 

16 1990467 447609 5.336% 

17 532718 131675 1.570% 

18 1716981 384994 4.589% 

19 742356 177257 2.113% 

20 2633647 587733 7.006% 

Data Damage (324 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 6458775 988053 11.779% 

2 6867325 1003783 11.966% 

3 6640115 1006094 11.994% 

4 6806181 1014552 12.094% 

5 6701865 1009206 12.031% 

6 6307349 974685 11.619% 

7 6604492 995458 11.867% 

8 6614416 1001797 11.942% 

9 6681765 1008326 12.020% 

10 6455344 997199 11.888% 

11 6237473 986707 11.762% 

12 6520065 996534 11.880% 

13 6534512 999981 11.921% 

14 6766183 1005211 11.983% 

15 6696204 1004802 11.978% 

16 6325043 990038 11.802% 

17 6459167 984776 11.739% 

18 6468418 992630 11.833% 

19 6425249 994878 11.860% 

20 6778931 1003390 11.961% 
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TABLE XXII. 
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT (RANDOM). 

Random Damage (14082 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 14637376 1345148 16.035% 

2 14738036 1356845 16.175% 

3 14848087 1357713 16.185% 

4 14872157 1362057 16.237% 

5 14596271 1350780 16.103% 

6 14565187 1346154 16.047% 

7 14639161 1352921 16.128% 

8 14825113 1356047 16.165% 

9 14626433 1351496 16.111% 

10 14605141 1346561 16.052% 

11 14887306 1355723 16.161% 

12 14720539 1356311 16.168% 

13 14586056 1348726 16.078% 

14 14626263 1355970 16.164% 

15 14718860 1355422 16.158% 

16 14822796 1358815 16.198% 

17 14524473 1344188 16.024% 

18 14646250 1353241 16.132% 

19 14711982 1354303 16.145% 

20 14960972 1369864 16.330% 
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TABLE XXIII. 
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY 

(DATA). 

Data Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 1075755 252179 7.864% 

2 140 28 0.001% 

3 784 26 0.001% 

4 2980650 664822 20.733% 

5 107 26 0.001% 

6 149 44 0.001% 

7 10866 1178 0.037% 

8 3003685 669762 20.887% 

9 252 27 0.001% 

10 1279 114 0.004% 

11 208 61 0.002% 

12 2203245 498096 15.533% 

13 3985 244 0.008% 

14 1005666 230421 7.186% 

15 1354 76 0.002% 

16 60668 24564 0.766% 

17 8 1 0.000% 

18 2425407 540437 16.854% 

19 944278 222355 6.934% 

20 71 14 0.000% 

Data Damage (324 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 5377307 952132 11.350% 

2 5416287 964883 11.502% 

3 5280640 954784 11.382% 

4 5300028 953878 11.371% 

5 5478421 969348 11.556% 

6 5295709 950032 11.325% 

7 5484504 964798 11.501% 

8 5396984 949182 11.315% 

9 5249051 951525 11.343% 

10 5412640 952313 11.352% 

11 5453159 967689 11.536% 

12 5476798 965184 11.506% 

13 5413777 956190 11.399% 

14 5524393 958372 11.425% 

15 5489761 967237 11.530% 

16 5488894 960100 11.445% 

17 5386920 958648 11.428% 

18 5247023 947819 11.299% 

19 5445503 958979 11.432% 

20 5584415 968286 11.543% 
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TABLE XXIV. 
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY 

(RANDOM). 

Random Damage (16050 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 15836345 1508453 17.982% 

2 15760477 1500320 17.885% 

3 15933129 1513087 18.037% 

4 16012892 1516667 18.080% 

5 15798478 1508253 17.980% 

6 15925106 1507758 17.974% 

7 15734249 1502472 17.911% 

8 15918325 1517782 18.093% 

9 15870590 1507130 17.966% 

10 15926694 1511543 18.019% 

11 16003146 1508107 17.978% 

12 15597190 1502704 17.914% 

13 15754823 1510094 18.002% 

14 16005732 1518057 18.097% 

15 16054229 1520822 18.130% 

16 15690786 1498027 17.858% 

17 16030433 1512360 18.029% 

18 15624898 1499480 17.875% 

19 15867938 1517229 18.087% 

20 15879201 1508553 17.983% 
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TABLE XXV. 
TRIAL RUNS FOR 8-BIT EXP-GOLOMB ERROR RESILIENCE EXPERIMENT. 

Random Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 337 73 0.001% 

2 9495 2640 0.031% 

3 19768458 1946306 23.202% 

4 77382 5324 0.063% 

5 21663648 2009250 23.952% 

6 0 0 0.000% 

7 1138 643 0.008% 

8 6526 2584 0.031% 

9 1069394 136861 1.632% 

10 2586 1072 0.013% 

11 397270 25838 0.308% 

12 1902 690 0.008% 

13 1875 738 0.009% 

14 2424 901 0.011% 

15 349786 40739 0.486% 

16 97815 8589 0.102% 

17 1991 752 0.009% 

18 1117 242 0.003% 

19 10101761 947338 11.293% 

20 4373 1263 0.015% 

Random Damage (12814 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 23528195 2205192 26.288% 

2 24303568 2234688 26.640% 

3 23859326 2209337 26.337% 

4 23325496 2170150 25.870% 

5 23187270 2185088 26.048% 

6 24665144 2248616 26.806% 

7 23671731 2196789 26.188% 

8 22823063 2147591 25.601% 

9 22725932 2152531 25.660% 

10 23575525 2195797 26.176% 

11 23397314 2185185 26.049% 

12 23344354 2171705 25.889% 

13 24802977 2237365 26.671% 

14 24053457 2217177 26.431% 

15 23065888 2158950 25.737% 

16 23158881 2177966 25.963% 

17 24177871 2234178 26.633% 

18 23762810 2221282 26.480% 

19 22688727 2152243 25.657% 

20 23657557 2190462 26.112% 
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TABLE XXVI. 
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT (HEADER). 

Header Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 303744930 2452810 14.620% 

2 331188125 2678033 15.962% 

3 183268796 1514728 9.028% 

4 319472929 2584609 15.405% 

5 43797302 348101 2.075% 

6 285004911 2311080 13.775% 

7 37707 200 0.001% 

8 128668612 1046713 6.239% 

9 74569971 568385 3.388% 

10 81945077 641781 3.825% 

11 262675869 2148200 12.804% 

12 292245935 2392739 14.262% 

13 248098001 2010837 11.986% 

14 322058382 2608486 15.548% 

15 60169 124 0.001% 

16 209817837 1712486 10.207% 

17 144861427 1189982 7.093% 

18 137828195 1116005 6.652% 

19 267307689 2168707 12.927% 

20 180434857 1471962 8.774% 

Header Damage (323 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 706924182 3623763 21.599% 

2 688613318 3603515 21.479% 

3 671577919 3607249 21.501% 

4 704974727 3650935 21.761% 

5 670804584 3618486 21.568% 

6 702603714 3641269 21.704% 

7 672248342 3600178 21.459% 

8 716332614 3644672 21.724% 

9 723667152 3668140 21.864% 

10 671381510 3611432 21.526% 

11 687264320 3630078 21.637% 

12 717637771 3645357 21.728% 

13 681060935 3624259 21.602% 

14 683864892 3610687 21.521% 

15 682423193 3631810 21.647% 

16 719922524 3638707 21.688% 

17 712758200 3602869 21.475% 

18 728754242 3663934 21.839% 

19 722786079 3636605 21.676% 

20 710599323 3667100 21.858% 
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TABLE XXVII. 
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT (DATA). 

Data Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 63 25 0.000% 

2 3541 31 0.000% 

3 98 6 0.000% 

4 4012 48 0.000% 

5 12686 47 0.000% 

6 248 24 0.000% 

7 4 1 0.000% 

8 0 0 0.000% 

9 3538 38 0.000% 

10 1701 16 0.000% 

11 4464 39 0.000% 

12 320 64 0.000% 

13 1659 25 0.000% 

14 88 13 0.000% 

15 958 7 0.000% 

16 1482 16 0.000% 

17 1113 17 0.000% 

18 793 9 0.000% 

19 2282 15 0.000% 

20 2413 30 0.000% 

Data Damage (323 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 443967673 3460995 20.629% 

2 445641274 3475262 20.714% 

3 436859835 3463491 20.644% 

4 460517540 3485632 20.776% 

5 473660528 3506924 20.903% 

6 443823660 3472236 20.696% 

7 473539867 3502567 20.877% 

8 440788909 3448354 20.554% 

9 428333157 3411949 20.337% 

10 491801340 3512497 20.936% 

11 436780249 3464074 20.647% 

12 435933820 3356790 20.008% 

13 431900236 3447659 20.550% 

14 497686854 3497432 20.846% 

15 413461865 3305859 19.704% 

16 453766148 3470524 20.686% 

17 454995324 3464052 20.647% 

18 462253855 3349866 19.967% 

19 419843120 3425653 20.418% 

20 430240378 3428939 20.438% 
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TABLE XXVIII. 
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT (RANDOM). 

Random Damage (54722 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 1061355563 3883136 23.145% 

2 1061489112 3890170 23.187% 

3 1081689247 3898802 23.239% 

4 1067667640 3881912 23.138% 

5 1067890547 3884411 23.153% 

6 1074392056 3894437 23.213% 

7 1065611836 3884058 23.151% 

8 1072481462 3896976 23.228% 

9 1071142203 3886484 23.165% 

10 1068929954 3888009 23.174% 

11 1073280514 3884300 23.152% 

12 1066707676 3884978 23.156% 

13 1080764427 3894890 23.215% 

14 1066292947 3881540 23.136% 

15 1077648463 3891357 23.194% 

16 1075925812 3884923 23.156% 

17 1070087494 3886198 23.164% 

18 1065048964 3885811 23.161% 

19 1075138999 3892368 23.200% 

20 1060067340 3878682 23.119% 

  



EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 56 

TABLE XXIX. 
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY 

(DATA). 

Data Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 0 0 0.0000% 

2 937 7 0.0000% 

3 3372 27 0.0002% 

4 917 8 0.0000% 

5 917 7 0.0000% 

6 122 6 0.0000% 

7 887 8 0.0000% 

8 19888 114 0.0007% 

9 0 0 0.0000% 

10 117 8 0.0000% 

11 0 0 0.0000% 

12 1777 11 0.0001% 

13 0 0 0.0000% 

14 4 4 0.0000% 

15 999 18 0.0001% 

16 839 14 0.0001% 

17 1868 17 0.0001% 

18 1640 11 0.0001% 

19 1 1 0.0000% 

20 0 0 0.0000% 

Data Damage (324 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 351548062 3212510 19.148% 

2 341369517 3038032 18.108% 

3 355131605 3316822 19.770% 

4 356444620 3325764 19.823% 

5 355374872 3299467 19.666% 

6 348883344 3216564 19.172% 

7 381288746 3391493 20.215% 

8 375338105 3384181 20.171% 

9 374048766 3422972 20.403% 

10 348835954 3273820 19.513% 

11 363966179 3354732 19.996% 

12 359375436 3350904 19.973% 

13 364391375 3384432 20.173% 

14 371497177 3385920 20.182% 

15 378058231 3435189 20.475% 

16 362930633 3376494 20.125% 

17 368861905 3296500 19.649% 

18 354867424 3268665 19.483% 

19 371759467 3358156 20.016% 

20 363737222 3369250 20.082% 
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TABLE XXX. 
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY 

(RANDOM). 

Random Damage (57321 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 988722825 3822795 22.786% 

2 985580745 3835798 22.863% 

3 974104914 3820003 22.769% 

4 976766792 3815359 22.741% 

5 995751087 3846657 22.928% 

6 992056436 3832683 22.845% 

7 983740546 3828682 22.821% 

8 980498668 3822570 22.784% 

9 978145332 3828440 22.819% 

10 992660822 3835301 22.860% 

11 999630120 3840467 22.891% 

12 989083296 3830931 22.834% 

13 995596350 3835668 22.862% 

14 999332483 3834867 22.858% 

15 989490256 3833132 22.847% 

16 994010068 3839841 22.887% 

17 981717612 3828803 22.821% 

18 980102324 3826708 22.809% 

19 996558599 3839468 22.885% 

20 986513036 3823444 22.790% 
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TABLE XXXI. 
TRIAL RUNS FOR 8-BIT EXP-GOLOMB ERROR RESILIENCE EXPERIMENT. 

Random Damage (1 bit) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 326102501 3183852 18.977% 

2 11539 416 0.002% 

3 141517 1384 0.008% 

4 713896 3122 0.019% 

5 199409848 2032568 12.115% 

6 51949 607 0.004% 

7 44931 1090 0.006% 

8 706271 5089 0.030% 

9 154420184 1599970 9.537% 

10 17366 759 0.005% 

11 226472220 2309115 13.763% 

12 199283 2251 0.013% 

13 313838681 3271388 19.499% 

14 48043 1536 0.009% 

15 269458679 2513362 14.981% 

16 61317741 530512 3.162% 

17 213419 1718 0.010% 

18 303658716 3100496 18.480% 

19 521443 3591 0.021% 

20 16484 463 0.003% 

Random Damage (80119 bits) 

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%) 

1 649173770 4056517 24.179% 

2 614663999 4057349 24.184% 

3 643417814 4060392 24.202% 

4 624855380 4050042 24.140% 

5 607307598 4029324 24.017% 

6 630442915 4060636 24.203% 

7 621145589 4056240 24.177% 

8 613870012 4029944 24.020% 

9 638248445 4039606 24.078% 

10 640834283 4086853 24.360% 

11 638279469 4060004 24.200% 

12 609364735 4049210 24.135% 

13 634689863 4068798 24.252% 

14 616044168 4047317 24.124% 

15 621817176 4065864 24.234% 

16 643287223 4045014 24.110% 

17 928597285 4063117 24.218% 

18 611443553 4050636 24.144% 

19 621526336 4044267 24.106% 

20 615083354 4032278 24.034% 
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