
Honors College Theses Honors College

4-2018

Efficient Image Coding and Transmission in Deep Space Efficient Image Coding and Transmission in Deep Space

Communication Communication

Reiner Dizon
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/honors_theses

 Part of the Electrical and Computer Engineering Commons

Repository Citation Repository Citation
Dizon, Reiner, "Efficient Image Coding and Transmission in Deep Space Communication" (2018). Honors
College Theses. 31.
https://digitalscholarship.unlv.edu/honors_theses/31

This Honors Thesis is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Honors Thesis in any way
that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons
license in the record and/or on the work itself.

This Honors Thesis has been accepted for inclusion in Honors College Theses by an authorized administrator of
Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/honors_theses
https://digitalscholarship.unlv.edu/honors
https://digitalscholarship.unlv.edu/honors_theses?utm_source=digitalscholarship.unlv.edu%2Fhonors_theses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fhonors_theses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/honors_theses/31?utm_source=digitalscholarship.unlv.edu%2Fhonors_theses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

EFFICIENT IMAGE CODING AND TRANSMISSION

IN DEEP SPACE COMMUNICATION

By

Reiner Dizon

Honors Thesis submitted in partial fulfillment

for the designation of Research and Creative Honors

Department of Electrical and Computer Engineering

Advisor: Dr. Emma Regentova

Committee Members: Dr. Andrew Hanson, Dr. Venkatesan Muthukumar

College of Engineering

University of Nevada, Las Vegas

April, 2018

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 1

Table of Contents

Abstract ... 2

I. INTRODUCTION ... 3

II. BACKGROUND ... 5

A. Data Compression and Source Coding .. 5

B. Error Resilience and Deep Space Communication Issues ... 6

C. Hardware Limitations ... 8

D. Huffman Coding ... 9

E. Rice Coding .. 10

F. Exponential-Golomb (Exp-Golomb) Coding ... 11

G. Channel Coding and Tradeoff with Source Coding ... 12

H. Field Programmable Gate Array .. 14

III. METHODS .. 15

A. Images and Buffer .. 15

B. Huffman Encoder Implementation ... 16

C. Rice Encoder Implementation .. 20

D. Exp-Golomb Encoder Implementation .. 24

E. Software Implementation and Introduction of Errors .. 25

F. Design Components and Power Usage ... 26

IV. RESULTS AND DISCUSSION .. 27

A. Compression Ratio ... 27

B. Error Resilience .. 30

C. Resource Utilization ... 33

D. Power Consumption ... 34

Discussion ... 34

Acknowledgement .. 40

REFERENCES ... 41

APPENDIX ... 46

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 2

Abstract

The usefulness of modern digital communication comes from ensuring the data from a

source arrives to its destination quickly and correctly. To meet these demands, communication

protocols employ data compression and error detection/correction to ensure compactness and

accuracy of the data, especially for critical scientific data which requires the use of lossless

compression. For example, in deep space communication, information received from satellites to

ground stations on Earth come in huge volumes captured with high precision and resolution by

space mission instruments, such as Hubble Space Telescope (HST). On-board implementation of

communication protocols poses numerous constraints and demands on the high performance

given the criticality of data and a high cost of a space mission, including data values. The

objectives of this study are to determine which data compression techniques yields the a)

minimum data volumes, b) most error resilience, and c) utilize the least amount and power of

hardware resources. For this study, a Field Programmable Gate Array (FPGA) will serve as the

main component for building the circuitry for each source coding technique. Furthermore, errors

are induced based on studies of reported errors rates in deep space communication channels to

test for error resilience. Finally, the calculation of resource utilization of the source encoder

determines the power and computational usage. Based on the analysis of the error resilience and

the characteristics of errors, the requirements to the channel coding are formulated.

Keywords—

Source Coding

Error Resilience

Channel Coding

Deep Space Communication

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 3

I. INTRODUCTION

One of the most important feature of today’s digital devices is their ability to

communicate to and from other devices with the correct data. Digital communication enables

two or more devices, such as computers and phones, to exchange information in the form of bits

(1’s and 0’s) over a medium, such as wires, fiber optic cables, and air. A device that sends data is

the source or the transmitter, and the destination or the receiver obtains that data. To exchange

data between these two devices, the channel connects these devices and deliver information from

one device to another [1]. Since digital communication relates to data transfer, its efficiency also

comes from ensuring data from a source arrives to its destination quickly and correctly. In other

words, the receiver must obtain the data in a reasonable amount of time, and when processed, the

received data is an exact copy of the transmitted data [1]. This growing need for rapid and

accurate communication relies upon efficient and reliable data transmission. To ensure the

efficient use of channel bandwidth and send data at the maximum rates, the data acquired for

scientific instruments/sensors are encoded to ensure their compression to the smallest possible

volume. Data transmission usually takes place over several relays or interconnection circuits as

well as through many heterogeneous physical channels which can cause corruption or loss of

data due to the limitation of storing or buffering all the data or due to the noise in the physical

channel. Therefore, in data and communication networks, protocols prescribe verification of data

and acknowledgment from the receiving end which, if needed, can request for retransmission.

Depending on the application and the criticality of the data, certain algorithms can

tolerate a partial loss of information or transmission errors in varying degrees. For example,

when a user watches a video on a website, this online video is only a fraction of the size of the

original raw video due to algorithm used to compress it, but it still resembles the original video

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 4

after losing a significant amount of information. The human visual system and intelligence can

“interpolate” data and extract information even from a low-quality video [2]. For the everyday

communication, such as in the previous example, this partial data loss is acceptable for streaming

data over multiplexed channel, used for several simultaneous transmissions. Therefore, so called

lossy compression methods are widely employed, such as JPEG and MPEG compression

standards [1]. However, this tolerance for transmission error is especially narrow for critical and

costly scientific experiments, a slight alteration of the transmitted information can result in either

a loss of precision or in the complete loss of the original data. One prominent example of this is

deep space communication.

In deep space communication, information received from satellites to ground stations on

Earth come in huge volumes, such as hyperspectral and multispectral data of planets and images

of deep sky, captured with a high precision and resolution equipment, such as telescope cameras

or spectrometers. Analog-to-digital converters (ADC) turn the raw inputs from these components

into digital information which the satellites will transmit back to Earth [3]. Often, these deep

space satellites “never return to Earth,” so the preparation for these missions is paramount which

is costly to space agencies, such as NASA [4]. At a high cost for each mission, every received

data from these satellites are of an utter importance. Although, in modern digital communication,

the probability of error, as, for example, alteration of bits (0 to 1 and vv, or an erasure) is rather

low, the deep space communication may experience noise from photons and cosmic rays,

electromagnetic interference which can compromise the accuracy of representation of valuable

scientific or control data [5]. Although the communication protocols include means for checking

the accuracy of data by providing a control checksum, a.k.a. Cyclic Redundancy Codes (CRC), it

does not completely cover all possible errors that can occur [6]. Furthermore, retransmission due

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 5

to inaccurate receipt of data is accompanied with a retransmission of data. Given a length of the

satellite link and buffer limitations which could be a payload constraint, these retransmissions

lead to inefficient bandwidth and on-board storage usage [5]. To avoid retransmission and to

secure fast delivery of volumes of critical data accurately, on-board of satellites communication

protocols employ lossless data compression called source coding and add mathematically

formulated and accordingly derived redundancy for error detection or/and correction that is

called channel coding. Various algorithms have been proposed for lossless and near-lossless data

compression. In this work, we implement and analyze a standard method developed by

Consultative Committee for Space Data Systems (CCSDS), specifically CCSDS 121.0-B-1

method for lossless generic data compression and test it for channel error resilience [7].

Furthermore, we will evaluate it further in terms of complexity, power usage and compare to

other lossless compression methods.

II. BACKGROUND

A. Data Compression and Source Coding

Data compression distill information into its most compact representation which means it

reduces the number of bits to represent the original digital data. There are two types of data

compression—lossy and lossless—which corresponds to the information content preserved in

data [2]. Lossy compression algorithms reduce the original information past the point at which

the compressed data cannot be reconstructed back to its original after decoding such data. Under

certain applications, these compression codes do not result in the complete loss of the original

data especially when they become slightly altered or they do not contain critical information [8].

The earlier example of the compressed video at the viewing end uses a lossy compression

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 6

algorithm to reduce the video size, specifically its resolution, for quick data transmission. Some

of the most prevalent application of lossy compression is with storage of multimedia data, such

as images, videos, and music [2]. However, this is not suitable for scientific data as the incurred

loss would affect their precision. Lossless compression algorithms, however, keeps the original

information intact after they reduce the data down to entropy, or its most fundamental bits. This

type of compression allows the decoder of a receiver to reconstruct losslessly compressed data

back to its original state [9]. Because of this property, this type of compression is appropriate for

NASA space science missions exploring deep space.

Using data compression, the goal of source coding is to produce data from the source

with the minimum number of bits. In this study, the focus is on lossless source coding, also

called entropy coding, with the aim of delivering “the digital sequence... with the shortest

sequence of symbols... [that] guarantee the perfect reconstruction of initial sequence” [1]. The

“initial sequence” in this context denotes the original digital information with “symbols”

represented by a single bit or by a sequence of bits, called codewords. In deep space

communication, the use of entropy coding not only maintains the precision of their data but also

reduces their memory storage needs before transmission.

B. Error Resilience and Deep Space Communication Issues

Before discussing the source coding algorithms in this study, the next sections will lay

out the criteria for comparing these algorithms in the context of deep space communication. One

of them is the error resilience of the produced code. Error resilience describes how compressed

data keeps its original content when an error occurs in the communication channel. One of the

models for error-prone channel is the Binary Symmetric Channel (BSC) which assumes that the

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 7

bits can be flipped from 1 to 0 or vice versa with a small probability [10]. There could occur also

a burst of errors, that is the destination receives several contiguous bits in error due to multiple

bit-flips errors or changing the information randomly [10]. When the compression or coding

algorithm assigns an equal number of bits to every symbol generated by the source, the

“damage” caused by such “noisy” communication is confined within a single codeword or just a

few of them [11]. However, high efficiency compression is attained mostly by a variable length

coding, and thus any error in decoding can propagate far causing a long sequence to be decoded

incorrectly.

Because this study focuses on deep space communication, there are certain errors

encountered in the data storage and during data transmission between deep space satellites and

ground stations on Earth. Despite reinforcements to protect circuits, some of the components on

these satellites can lack certain protections from energetic electromagnetic waves, such as

gamma rays, or single events like photon hits which alter the information through physically

changing the bits [12]. Because of this effect, the affected data become subject to bit-flip and

burst errors which is unavoidable before transmission to ground stations. Also, like most

communication channels, transmission from deep space satellites are also susceptible to

environmental noise because of their physical location [5]. Noises include interference and

electromagnetic effects on the transmitted signal, causing even more errors before the data

arrives at the ground station. In satellite communication, radio frequencies have a typical bit

error rate between 5×10–3 to 1×10–7 [13]. Because of these issues, the information may become

irrecoverable which will affect its decoding at ground stations on Earth invoking retransmission

assuming the error occurred in transmission. Additionally, retransmission assumes the

preservation of data in the buffer assuming the receiver which confirms the delivery of unaltered

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 8

data packets demands on the memory resource. Testing for the error resilience of some source

coding algorithms will offer insight on how much data is recoverable after transmission and how

much these algorithms demand on correction and what is the need for data retransmission.

C. Hardware Limitations

Finding some efficient, error-resilient source coding algorithms is a great start, but if it

uses onboard resources intensively, its implementation is unlikely on the actual hardware with

limited resources. This section will discuss some of the hardware specifications and limitations

of some deep space satellites with imaging capabilities. Some of the most important hardware on

these satellites are the hyperspectral imaging instruments or the cameras which capture pictures

of the deep sky [14]. The imagers use high precision analog-to-digital converters (ADCs) to

convert the raw analog data from the imagers into digital information, known as pixels. Along

with these instruments, there are other onboard sensors on these satellites which measure a

variety of data, such as position and temperature [8]. To process all these data, the onboard

processors, which all processes and devices must share, handle this task and stores the processed

data into a fixed size for the buffers before transmission. Also, some satellites have redundant

circuits of the same type, meaning engineers create one or more copies of the same circuit. For

example, in deep space which is a “high-radiation environment,” Triple modular redundancy, or

TMR, attempts to alleviate the issue of one circuit breaking down with the implementing two

more of the same circuit and verifying results from at least two circuits [12]. Because of these

limitations and redundancies, satellites cannot afford to use a resource intensive algorithm which

can hog the satellite’s computational resources and should be reproducible in the same system.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 9

D. Huffman Coding

Huffman devised an optimum source coding algorithm that gives a “minimum average

number of bit per symbol” based on the use of probabilities of occurrences of those symbols

[15]. With applications to images, the symbols in this context are the levels of gray intensity or

color. The algorithm assigns shorter codewords (length in bits) for symbols that occur more

frequently and longer ones for less probable symbols. In this fashion, the average length of the

code is closest to the entropy value where entropy is the lower bound for average length, and

entropy plus one is its upper bound [2]. Hence, this algorithm produces variable length codes

which are instantaneous parseable prefix code. This code means that as soon as the destination

receives the last bit of a codeword, the decoder can map the code into its corresponding value.

This fast decoding is possible since none of the codewords are prefix to another. Nevertheless,

the codeword lengths have a minimum standard deviation that is an important property from a

practical point of view which allows for a manageable buffer [2]. However, the major drawback

of Huffman coding in practical application is the need to obtain the statistic of the source first,

and the algorithm devises an optimum code for the data afterwards. Then, the receiver gets the

coding table, so it knows how to decode the received sequence. Therefore, with known pros and

cons of these algorithms, many others sprang up using the property of Huffman’s algorithm.

These algorithms include Adaptive Huffman and Reversible Variable Length Codes which

extends the Huffman algorithm to increase its performance [2], [16]. Non-uniformity of lengths

exacerbates the application difficulties: first, data packing introduces an additional effort, and

due to the nature of decoding of such codes, errors can propagate through the course, that is

decoding would lead to altered data. According to Lelewer and Hirschberg’s paper on the

analysis of various data compression algorithm, they observed the “self-correcting” nature of

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 10

Huffman codes, meaning propagation of transmission does not extend for too long [17]. This

observation assumes the use of static version of Huffman’s algorithm and quick

resynchronization between transmitter and receiver, so the algorithm itself is not immune to

transmission error, but it can self-synchronize to a certain extent. However, many applications

use the adaptive Huffman code since it does not need the entire data and probabilities in

designing the code. This paper also remarked on the effect of error in adaptive codes because

they saw no evidence to suggest “adaptive methods are self-synchronizing” and the lack of

attention in this research area [17].

E. Rice Coding

Robert F. Rice published an extension to the Huffman algorithm in his 1979 report to

further improve upon the source coding algorithm [18]. The Rice algorithm coder uses two

discrete parts: “pre-processor [with a] symbol mapper” and “adaptive symbol coding” [19]. After

converting analog signals to their digital form, they enter the pre-processor block which find the

“difference between adjacent data” and to then “map all difference values” into a new “sequence

of... symbols” called blocks which becomes the input to the next functional block. The adaptive

symbol coding or “variable length coder” uses different options of coding for specific level of

“source entropy” [19]. Most of the coding options in this algorithm uses the principle of Golomb

code of “the larger an integer, the lower its probability of occurrence,” but these options are

characterized as special types of “adaptive Golomb code” [1]. The output of this coder becomes

transmitted to the receiver which has similar functional blocks to decode the incoming

compressed data. Pen-Shu Yeh from Goddard Space Center lays out the algorithm for each of

these options in two of her reports along with rest of Rice coding algorithm [19], [20]. This

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 11

algorithm has become then a standard by Consultative Committee for Space Data Systems

(CCSDS), specifically CCSDS 121.0-B-1 for lossless generic data compression [7]. What makes

the Rice coding algorithm a type of Huffman coding is the equivalence of its “variable length

codes” to Huffman codes [20]. According to the method data are packed such that the description

of the coding mode is incorporated into the header field, and thus any error affecting those bits

would lead to the complete loss of the fixed length sequence. However, it suggests a fixed

maximum error propagation by design.

In their 2008 paper, James Meany and Christopher Martens studied the error resilience of

split-field source coding algorithm which includes Rice coding [21]. For their experimental

study, they included a “wavelet transform” module to convert an image to a series of coefficients

that corresponds to the transform before performing the compression algorithm. They observed

that the “utility of split field coding... depends... on the proportion of suffix bits in the

compressed” data [21]. The suffix, generated through the variable length encoder, may therefore

be less susceptible to transmission error, especially those that have fixed length, which resembles

the Rice coding property.

F. Exponential-Golomb (Exp-Golomb) Coding

Another type of Golomb codes was proposed by Jukka Teuhola in his 1978 journal called

Exponential-Golomb coding [22]. As the algorithm’s name points out, the generated codeword

of this type of coding grows exponentially based on the value of the original datum which

characterizes this algorithm as a type of Golomb code because larger values produce longer

codewords [1]. Each codeword has three parts: padded zeroes, a separator ‘1’ bit, and the

remaining information [23]. The number of ‘0’ bits for the first part of the codeword is

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0ahUKEwixz8HAlYjaAhWnsFQKHWYkCdwQFgh6MAg&url=https%3A%2F%2Fsolarsystem.nasa.gov%2Fdocs%2Fpr358.pdf&usg=AOvVaw1HRpVumZB-lcZwTZ0GZbuQ

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 12

calculated based on the minimum number of bits to represent the original data plus one. The

number of bits of the remaining information (original data plus one) is also the same number of

the ‘0’ bits in the first part. With these codeword generation steps, the hardware implementation

is simpler to design than that of Huffman or Rice coding. There is no need to accumulate

statistical data on an image as in Huffman or to run multiple options to find the best codeword as

in Rice coding. This ease of hardware implementation makes this a good candidate for study.

G. Channel Coding and Tradeoff with Source Coding

Channel coding algorithms add data redundancy to the data, either compressed or not, to

detect or correct transmission errors [1]. This redundancy allows for error detection at the

receiver which helps the receiver decide if there is corruption of the received data before

processing them further. For example, a simple parity check code appends an extra bit at the end

of the digital data to indicate whether the number of 1’s in the data are even or odd [24]. When

the destination receives data with a parity check bit, the receiver will first count the number of

1’s in the data excluding the parity bit, generates the appropriate bit based on the parity check,

and checks it against that last bit. When the bits do not match that indicates an error in the

received data. More sophisticated and efficient codes have been developed from Hamming codes

to cyclic, convolutional, Raptor, trellis, low density parity check, etc. [1], [25] With a higher

redundancy the codes are able also to correct errors, however the trade-off between compressing

source coding and redundant channel coding limits the usage of correcting codes. Many

networking protocols use so called Cyclic Redundancy Check (CRC) bits which are calculated

using special polynomials and append them to the bare data (compressed or uncompressed) [6].

At the receiver, the same algorithm is used to re-calculate the CRC and compare to one sent

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 13

along with the data. The mismatch indicates that there could be an error in either data or CRC.

The network protocols can either send a negative acknowledgement, as in X.25, or remain silent,

i.e. no acknowledge is sent which after some timeout period (ARQ protocol) is an indication that

data were either not received or received in error (TCP/IP) [26]. In either protocols the

transmitter would retransmit data.

Evidently, the correcting codes are preferable. A simplest example is a repetition code.

Each bit of the codeword is duplicated k times. [13]. This property uses the idea of Hamming

distance, or how many bits are different between any “good” code and the received code to

determine what bit did the transmitter intended to send over in the presence of error [27]. If the

parameter k = 3, then a single bit error can be corrected (a minimum number). The receiver will

look for the minimum Hamming distance to correct for a one-bit error. Thus, whenever the

received code is ‘000’ or ‘111’, the receiver can easily determine that no error was present in the

packet. Otherwise, for example if ‘010’ was received, then the error corrected bit is ‘0’. This

code is highly redundant, but explain the main idea of introducing a distance between codewords

for attaining the error correcting capability. For detecting e number of errors, the distance is at

least e+1, and for correcting c errors, the distance is 2c+1 [13].

In deep space communication, adding redundancy using channel coding algorithms will

increase the data transmission time. However, channel coding may eliminate the need for

retransmissions because they can correct for transmission error at the receiver. Because of the

given tradeoffs, self-synchronization of source codes and their error-resilience is of a paramount

importance.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 14

H. Field Programmable Gate Array

Field Programmable Gate Array, or FPGA, is an integrated circuit which enables the end

user to configure its logic blocks through various means, such as block diagrams and hardware

description languages (HDL) [28]. Without the need to reconfigure logic circuits physically

using this device, FPGAs are flexible circuits for most hardware implementation needs as they

allow hardware designers to test out their circuit design before the actual implementation in its

own dedicated circuit. Therefore, there is no need to find Application-Specific Integrated

Circuits (ASICs) to test for different applications [29]. Rather, the user can configure a single

FPGA for multiple applications and debug them in the board as well. Furthermore, in recent

years, the consideration of using FPGAs for space applications garnered “great interest”

especially because FPGAs allow for testing issues, including “harsh environments,” in a

relatively safe manner [29]. In this study, an FPGA will mimic the hardware of satellites in deep

space, along with its computational and power limitations because there is no access to the actual

hardware. Without the need to test these source coding algorithms in an actual high radiation

environment, data manipulation on the FPGA’s memory that hold data will emulate transmission

errors. Circuits made for outer space are fabricated using “radiation hardening” technology. That

is based on electronic components and systems that are resistant to ionizing radiation which can

cause malfunctioning or even damage.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 15

III. METHODS

A. Images and Buffer

First, the data by source is two-dimensional optical image data obtained by CCD camera.

Due to its flexibility and programmability features, the hardware implementation of each source

coding algorithms is done on the FPGA. To test the compression algorithms, the storage of the

images was a necessary component for testing and circuit operating. Also, to operate on a single

clock, the buffer memory is likely to be on FPGA representing a static memory (SRAM). For

storing these images, a buffer was created in the FPGA enough to store a single picture. The

images used in this study are in grayscale for ease of the algorithms’ calculation in the FPGA

and are characterized as either public domain or astronomical images.

Typical public domain images are 8-bit which means there are only 28 or 256

representation levels for grayscale values. There are standard images that was primarily used for

testing 8-bit grayscale images [30]. To test these benchmark images in 16-bit mode, their image

histograms are stretched from 256 possible grayscale values to 65,536 grayscale using

MATLAB. This modification is necessary for a fair comparison among all the 16-bit images. For

this study, five of the benchmark images were used which all have dimensions of 256 by 256.

On the other hand, astronomical images that comes from deep space satellites have more

precision and often have larger representation levels than public domain images. They are often

stored in a special format called FITS (Flexible Image Transport System), which supports 8-bit,

16-bit, 32-bit, and 64-bit integer and floating-point values [31]. The astronomical image used for

this study is 16-bit, which have dimensions of 1024 by 1024. For most of the error resilience

study, the original 16-bit image was used, but for Huffman study, the 8-bit version of the image

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 16

was used instead due to the software limitations of that algorithm. Each 16-bit value was mapped

to an 8-bit value using the following formula:

16-bit value
8-bit value 256

65,536
 

B. Huffman Encoder Implementation

The hardware implementation of the Huffman encoder circuit consists of four major sub-

modules. Because the statistics of the image are needed before generating the codeword, a

histogram circuit is needed to collect the frequency or counts of each pixel value that signifies

the probability of these values needed for the codeword generation. There are different circuits

for the histogram, but a two-port memory circuit was used to store these frequency counts. The

number of entries in this memory circuit is equal to the number of grayscale levels, where each

entry can hold up to the maximum count for the image size. Therefore, each pixel data is the

input to this circuit and addresses an entry in this memory circuit. Figure 1 shows the logical

view of this histogram circuit with a sample 8-bit image and a portion of the memory.

Figure 1. Logical View of the Histogram Circuit

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 17

After collecting the frequency of each pixel value, another circuit sorts these counts in

descending order where the least probable count is placed in the last entry of the sorted

histogram. The hardware implementation, introduced in the paper by Shengan Dong et al., was

used for this part of the encoder due to its quick parallel sorting algorithm [32]. Their circuit

consists of multiple sub-modules of comparators and D flip-flops, which shares the same datum

input as well as enable and load signals. The idea of this algorithm is to store the current value

from the datum input to a specific D flip-flop if the flip-flop’s content is less than or equal to the

value, which gets cascaded to the next sub-module. Therefore, the values are fed to the circuit

serially or one-by-one until all the values have been sorted. While the data (or, in this

application, frequencies) are being sorted, the addresses (or pixel values) are also sorted using

the same signals from the data sorting scheme. Figure 2 illustrates the components of the sorting

circuit for both data and addresses, which comes from their paper [32].

Figure 2. Sorting Circuit for Data and Addresses [32]

When the frequencies and their corresponding pixel values are finally sorted in

descending order, the length of each codeword is generated based on how probable a specific

pixel value is in the image histogram. The Huffman algorithm assigns a shorter codeword for

those values with the larger probability or, for this implementation, count. With this principle in

mind, the next module for this Huffman circuit is a finite state machine (FSM) which generates

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 18

the length of each codeword for each pixel value. This FSM consists of 5 states. The first one

(START) loads the sorted counts into a buffer within this sub-module along with registers to

keep track of their lengths, and their corresponding pixel values are maintained using a one-hot

state registers. The sizes of these registers equal to the number of different pixel values in an

image, and only one bit in each register is set to ‘1’ initially before the next state. Figure 3

demonstrates the implementation of these registers.

Figure 3. Memory View of One-Hot State Implementation

 The COMBINE state combines the last two non-zero entries (least probable counts) of

this buffer. This operation consists of performing OR operation between the one-hot registers

and placing the result into the most probable entry among these two. The corresponding entry for

the least probable pixel is cleared out. For example, after the first iteration, the last entry of the

buffer is empty, and the one-hot register above it now has two ‘1’s in its register. Afterwards, the

UPDATE state increments the lengths of the pixel values that were combined in the previous

state. The RE-SORT state then sorts the buffer using a nonstable sort which overrides the order

of the pixel values, which means the combined pixel values’ register is placed higher in the

sorted buffer whenever two counts are equal. These three previous states are repeated until all

symbols (or pixel values) are processed. Afterwards, the DONE state sorts the final lengths

Pixel

One-Hot State Registers

0 1 2 3 ... 253 254 255

0 1 0 0 0 ... 0 0 0

1 0 1 0 0 ... 0 0 0

2 0 0 1 0 ... 0 0 0

...

...

...

...

254 0 0 0 0 ... 0 1 0

255 0 0 0 0 ... 0 0 1

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 19

buffer using bubble sort to maintain the order of the pixel values before the final codeword

generation circuit. Figure 4 provides a summary of these states for this state machine.

Figure 4. FSM of Length Calculation circuit

The last sub-module of this hardware implementation of the Huffman algorithm

generates the final codeword for each pixel value using the calculated lengths from the previous

circuit. These codewords are constructed using a canonical tree which ensures that each

codeword is easily decodable. With this canonical tree, its maximum depth is equal to the largest

calculated length. For the purposes of this study, this maximum depth is assigned to a constant

which is appropriate for the benchmark images used in this study. Initially, a full binary tree is

loaded into registers where each register contains one level of the tree. As the lengths are read,

each register of the tree shifts out a codeword of different sizes, but the appropriate one comes

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 20

from the level number equal to that length. These codewords are then stored into a separate

buffer for the actual encoding. Figure 5 illustrates the high-level picture of the Huffman encoder

circuit. Afterwards, the image is then encoded using this buffer as the look-up table (LUT)

before transmission to the receiver.

Figure 5. High-Level Schematic of the Huffman Encoder

C. Rice Encoder Implementation

For implementing the Rice encoder, the standard from CCSDS 121.0-B-1: Lossless Data

Compression provided the explanation of the all the necessary pieces of circuitry to build the

encoder [7]. This standard works on the data in groups called blocks (parameter J in the

standard), which its size can be set to 8, 16, 32, or 64. For the hardware implementation, only

block sizes of 8 and 16 were considered for this study. Along with the size of each pixel datum

(parameter n in the standard), block size is an important parameter in building the Rice encoder,

which dictated the need for parameterized modules when constructing the different

configurations of the circuit. These parameterized modules allow for the implementation of any

permissible configuration of the Rice parameters. To implement the other configurations, this

same circuit is used, but the parameter variables can be changed which exhibits reusability of the

code. As mentioned previously, the Rice encoder has two major functional parts: Pre-processor

and Adaptive Entropy Coder—as illustrated in Figure 6.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 21

Figure 6. Main Functional Parts of Rice Encoder [7]

The Pre-processor module decorrelates the pixel data and maps only the difference

between pixel data within a given block of them. The first pixel on any given block is transmitted

in its entirety and not compressed because all other bits in the packet will rely on this reference.

Because the pre-processor takes the “difference between adjacent data” (denoted as i i ix x  ),

a small buffer was necessary to store the current and previous pixel values [7]. This pre-

processor buffer takes in the pixel from the image buffer and pushes the pixel datum into internal

shift registers, shifting out the stored previous value. Both differences between the current and

previous pixels are calculated using subtractors, and the most significant bit of the difference

determines the sign. After obtaining the magnitude and the sign of the difference, it is then

mapped using the function below, so the result becomes associated with a positive value.

2 0

2 1 0

i i

i i i

i otherwise



 



    


      
  

where  min maxmin ,i ix x x x   

The mapping function is implemented using comparators and shift multiplier circuits

because the calculation involves multiplication by two. Afterwards, this mapped difference

(denoted as δi) is sent to the Adaptive Entropy Coder.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 22

The Adaptive Entropy Coder consists of multiple sub-modules that all generate

codewords for transmission, which all run in parallel. These sub-modules are a “set of code

options” where each have their own way of compressing the mapped differences and packing

them along with the reference value and an identification for the option used [7]. The selection

among these options is based on whether the given block is all zeroes (Zero Block). If this is not

the situation, then one of the remaining options with the lowest codeword is selected. Otherwise,

the reference and mapped differences are sent without any compression. This code selection

signals are implemented using comparators on the packet size generated by each option and a

flag register for the Zero Block option. These signals control a final multiplexer that selects the

codeword from the chosen option. Figure 7 summarizes the inner circuitry of the Adaptive

Encoder with the code selection.

Figure 7. Main Functional Blocks of Rice Adaptive Encoder [7]

Most of these options base their coding scheme on the Fundamental Sequence (FS),

including the Split-Sample options. A FS codeword composes of ‘0’ bits, which is equal to the

value to be encoded, followed by a ‘1’ bit. For example, the value of 3 has a codeword of

“0001.” The main component responsible for creating a FS codeword is a variable left shifter,

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 23

which shifts in a ‘1’ bit into the appropriate place in the final packet based on the calculated shift

amount. This shift amount is related to the mapped difference, which is the same value for FS

and the most significant bits of the difference for the Split-Sample options. Therefore, for all

split-sample options, one parameterized module was designed with the variable left shifter and

was reused with changes to the parameter in the overall Adaptive Entropy Coder circuit.

Two of the options are of low entropy: Zero Block and Second Extension, which takes

advantage of the smallest differences among pixel values in a block. These options also use the

FS coding scheme and thus have the variable left shifter in their circuits. The Zero Block option

also employs two comparators: one to check if all the mapped differences in a block are all

zeroes and another to check if the current reference value is the same as the previous reference

value. In addition to the variable left shifter, another shifter and multiplier was implemented for

the Second-Extension option to calculate a new symbol between two adjacent mapped

differences (δi and δi+1) using the Second-Extension formula:

  1 1 11 / 2i i i i i           

This algorithm was then extended to contain a simple error correction capability. Because

the decoding of a given block starts with the header, damages to this portion of the packet causes

a significantly set of different pixels to be decoded than the original. Therefore, protecting this

header field was explored in this study. The header field is typically the smallest field in any

given packet, so it can be protected using a simple redundancy code. This coding scheme simply

repeats each bit of the header field two more times for a total of three bits per one bit of the

original header field.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 24

D. Exp-Golomb Encoder Implementation

Unlike the Rice encoder, the Exp-Golomb does not have a predetermined way of

implementation as long as it generates the correct codeword as the algorithm dictates. For better

compression, the hardware implementation of Exp-Golomb algorithm for this study uses the Pre-

processor module from Rice circuit to decorrelate the pixel values within a row of pixels. Of

course, this dimension must be known in both the source encoder and the transmitter’s decoder.

Therefore, one reference value is preserved while encoding all the differences using Exp-

Golomb coding. Before generating a codeword, three values are determined in the circuit: (1)

whether the current pixel is the reference, (2) the value for M, and (3) the value for INFO. The

formula for M and INFO is as follows [23]:

 2log 1

1 2M

M NUM

INFO NUM

   

  

The variable M is the number of bits for the padded zero in the beginning of the

codeword and for the bits to represent INFO. The variable NUM represents the value from the

preprocessor circuit. The calculation for M in hardware is not trivial and can be resource

intensive, so all values for M are generated based on the all positive values up to maximum

permissible value for NUM and loaded into a look-up table (LUT). To access a specific entry on

the LUT, the NUM variable becomes the address for the pre-calculated value of M. This method

sacrifices some memory resources for the sake of using up more of the computational resources.

An adder calculates the INFO value where one of the addends is the NUM value and the other is

fixed to one. The output from the adder connects to a variable left shifter circuit which pushes

the most significant bit of INFO to the most significant bit of a fixed size register, and the

number of shifts comes from the value from the LUT. With the M and INFO values calculated, a

final sub-module takes these values and generates the final codeword using another variable left

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 25

shifter. Because the circuit sends the reference value intact, a flag register from the Pre-processor

module signals the final multiplexer whether to send either the generated codeword or original

data intact (reference value).

E. Software Implementation and Introduction of Errors

In addition to the hardware implementation of source coding techniques, these algorithms

are also programmed in software using C++ and MATLAB for functionality testing and

simulation of error resilience. After the generation of codewords for each image, evaluating their

compression power was the next step. Using a pseudorandom number generator, the errors are

introduced based on the probability of error in deep space satellite communication channels

mentioned in Chapter II Section B of this paper. Afterwards, the statistics are collected on the

compressed, then corrupted by errors, data that will be used for the analysis of the performance

of algorithms. Specifically, the compression ratio, that is the ratio of volumes of the original to

the compressed data, the sum of absolute difference in pixel values, and lengths and magnitudes

of damaged data are calculated as the total Hamming distance between the original and the

damaged image. These equations for these values are summarized below:

CompressedSize
Compression Ratio

OriginalSize


1 1

Sum of Absolute Difference
heightwidth

ij ij

i j

x x
 

  

 
1 1

Total Hamming Distance _
heightwidth

ij ij

i j

diff bits x x
 

  

Total Hamming Distance
Damaged Pixels (%) 100

OriginalSize
 

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 26

where xij is the original pixel and x'ij is the decoded pixel. The function diff_bits counts the

number of 1’s in the result of the XOR operation () between xij and x'ij.

F. Design Components and Power Usage

 The Computer-Aided Design (CAD) software, such as Quartus II, provides tools to

analyze the number of components and the power usage after the compilation and synthesis of

the circuit for each algorithm on the FPGA. For this study, the FPGA used is Cyclone IV. The

component usage information is generated immediately after compilation, but to obtain the

power usage information, a tool called PowerPlay Power Analyzer is invoked to generate this

information. For this study, the default settings for this tool are used for fair comparison among

all the encoder circuits. For the input and output signals, a default toggle rate of 12.5% is set with

vectorless estimation for all remaining signals which estimates the “signal activity on nodes with

no simulation” [33]. Based on these data, the determination of which algorithm uses either the

fewer number of components or less amount of power is made.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 27

IV. RESULTS AND DISCUSSION

A. Compression Ratio

Based on the dimensions and the range of pixel values per image, the uncompressed, i.e.,

original size is calculated as follows:

Actual Size Width Length Data Width  

Table I provides the compression ratios of 8-bit images encoded using the Huffman

algorithm, and that includes an 8-bit remapped astronomical image.

TABLE I.
COMPRESSION RATIOS BY HUFFMAN CODING WITH 8-BIT IMAGES.

Image Actual Size Compressed Data Size Compression Ratio

boat 524288 471098 1.113

cameraman 524288 427859 1.225

fingerprint 524288 500501 1.048

house 524288 459210 1.142

lena 524288 488650 1.073

fits1 8388608 2408658 3.483

Because the Rice encoder circuit allows for different parameters—data width (n) and

block size (J)—all configurations of these parameters are tested for all the images. Tables II and

III corresponds to the Rice coding’s compression ratio without header redundancy for both 8-bit

(II) and 16-bit (III) images in various configurations of the n and J parameters that are

compressed using the Rice coding circuit. Furthermore, Tables IV and V list the compression

ratio by Rice coding that includes the header redundancy.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 28

TABLE II.
COMPRESSION RATIOS BY RICE CODING WITH 8-BIT IMAGES.

Image n J Actual Size Compressed Data Size Compression Ratio

boat 8 8 524288 376675 1.392

 8 16 524288 362639 1.446

cameraman 8 8 524288 348834 1.503

 8 16 524288 333008 1.574

fingerprint 8 8 524288 496769 1.055

 8 16 524288 482604 1.086

house 8 8 524288 344424 1.522

 8 16 524288 325064 1.613

lena 8 8 524288 330110 1.588

 8 16 524288 311285 1.684

fits1 8 8 8388608 3341386 2.511

 8 16 8388608 2813535 2.982

TABLE III.
COMPRESSION RATIOS BY RICE CODING WITH 16-BIT IMAGES.

Image n J Actual Size Compressed Data Size Compression Ratio

boat 16 8 1048576 909050 1.153

 16 16 1048576 891020 1.177

cameraman 16 8 1048576 880403 1.191

 16 16 1048576 861229 1.218

fingerprint 16 8 1048576 1029249 1.019

 16 16 1048576 1010988 1.037

house 16 8 1048576 876463 1.196

 16 16 1048576 853372 1.229

lena 16 8 1048576 862448 1.216

 16 16 1048576 839666 1.249

fits1 16 8 16777216 11518935 1.456

 16 16 16777216 10944396 1.533

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 29

TABLE IV.
COMPRESSION RATIOS BY RICE CODING WITH HEADER REDUNDANCY (8-BIT).

Image n J Actual Size Compressed Data Size Compression Ratio

boat 8 8 524288 425853 1.231

 8 16 524288 387215 1.354

cameraman 8 8 524288 398102 1.317

 8 16 524288 357598 1.466

fingerprint 8 8 524288 545921 0.960

 8 16 524288 507180 1.034

house 8 8 524288 393644 1.332

 8 16 524288 349648 1.499

lena 8 8 524288 379296 1.382

 8 16 524288 335861 1.561

fits1 8 8 8388608 4134090 2.029

 8 16 8388608 3206607 2.616

TABLE V.
COMPRESSION RATIOS BY RICE CODING WITH HEADER REDUNDANCY (16-BIT).

Image n J Actual Size Compressed Data Size Compression Ratio

boat 8 8 1048576 974586 1.076

 8 16 1048576 923788 1.135

cameraman 8 8 1048576 945951 1.108

 8 16 1048576 893997 1.173

fingerprint 8 8 1048576 1094785 0.958

 8 16 1048576 1043756 1.005

house 8 8 1048576 942003 1.113

 8 16 1048576 886140 1.183

lena 8 8 1048576 927984 1.130

 8 16 1048576 872434 1.202

fits1 8 8 16777216 12554583 1.336

 8 16 16777216 11464052 1.463

Tables VI and VII correspond to the compression ratio of images encoded using the Exp-

Golomb algorithm for both 8-bit (VI) and 16-bit (VII) images.

TABLE VI.
COMPRESSION RATIOS BY EXP-GOLOMB CODING WITH 8-BIT IMAGES.

Image Actual Size Compressed Data Size Compression Ratio

boat 524288 424934 1.234

cameraman 524288 376250 1.393

fingerprint 524288 679046 0.772

house 524288 376002 1.394

lena 524288 348908 1.503

fits1 8388608 2560088 3.277

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 30

TABLE VII.
COMPRESSION RATIOS BY EXP-GOLOMB CODING WITH 16-BIT IMAGES.

Image Actual Size Compressed Data Size Compression Ratio

boat 1048576 1370524 0.765

cameraman 1048576 1269498 0.826

fingerprint 1048576 1711408 0.613

house 1048576 1282444 0.818

lena 1048576 1248634 0.840

fits1 16777216 16023610 1.047

B. Error Resilience

In this part of the study, the error resilience is evaluated based on the average absolute

difference and average Hamming distance. Based on the error probability between 5×10–3 to

1×10–7, the length of data (bitstream), and the number and the length of headers (as in the case

for Rice coding), the number of bits in error are calculated accordingly [13]. With the Huffman

algorithm, only the damage to 8-bit images were observed due to the software limitations of

MATLAB in terms of encoding 16-bit images with Huffman encoding. With the given error

probability mentioned, the best-case scenario happens when only one bit out of the entire

compressed data was damaged and 12,056 bits in the worst-case. These values come from

multiplying the compressed size of the astronomical image with the given probabilities, which is

applied to all experiments for each source coding algorithm. Table VIII provides the error

resilience analysis of the Huffman algorithm on 8-bit version of the astronomical image. The

trial runs for the Huffman error resilience analysis is in the table XVII of the Appendix.

TABLE VIII.
ANALYSIS OF HUFFMAN DECODING ERRORS WITH 8-BIT FITS IMAGE.

Number of Bits in

error

Avg Absolute

Difference

Avg Hamming

Distance

Avg Corrupted Pixels

(%)

1 1319270 310480 3.70%

12056 3880841 876081 10.44%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 31

With the Rice coding algorithm, there are 64,817 total blocks in the compressed data with

the 8-bit image and 64,487 blocks with the 16-bit image which is lower than the expected 65,536

blocks because there are blocks that are encoded using the low entropy options. In the best-case

scenario, at most one bit of the header or data fields could be damaged in the compressed image,

while only 324 (or 323 for 16-bit image) bits could be damaged in the worst case. The bit

flipping according to BSC channel model is imposed both to the header and the data are

investigated separately in these two cases to assess the fault tolerance of Rice coding. Similarly,

the number of bits in error are calculated for selecting any bits in the compressed data at random.

Tables IX to XII show the effect of errors that are an incorrect decoding by Rice coding

algorithm with (XI-XII) or without (IX-X) header redundancy. For data gathered for the 8-bit

Rice coding error resilience experiment, refer to tables XVIII to XXII and XXV to XXVI of the

Appendix.

TABLE IX.
ANALYSIS OF RICE DECODING ERRORS WITH 8-BIT FITS IMAGE.

Location of

Damage

Number of Bits

in error

Avg Absolute

Difference

Avg Hamming

Distance

Avg Corrupted

Pixels (%)

Header 1 1332835 298599 3.56%

Header 324 7251211 1027525 12.25%

Data 1 1529699 344606 4.11%

Data 324 6567444 997905 11.90%

Random 1 1431267 321603 3.83%

Random 14082 14707923 1353914 16.14%

TABLE X.
ANALYSIS OF RICE DECODING ERRORS WITH 16-BIT FITS IMAGE.

Location of

Damage

Number of Bits

in error

Avg Absolute

Difference

Avg Hamming

Distance

Avg Corrupted

Pixels (%)

Header 1 190854336 1548298 9.23%

Header 323 698809977 3631052 21.64%

Data 1 2073 24 0.00%

Data 323 448789782 3447538 20.55%

Random 1 95428205 774161 4.61%

Random 54722 1070180613 3887672 23.17%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 32

TABLE XI.
ANALYSIS OF RICE DECODING ERRORS WITH HEADER REDUNDANCY (8-BIT).

Location of

Damage

Number of Bits

in error

Avg Absolute

Difference

Avg Hamming

Distance

Avg Corrupted

Pixels (%)

Header 1 0 0 0.00%

Header 324 0 0 0.00%

Data 1 685928 155224 4.84%

Data 324 5410111 958569 11.43%

Random 1 342964 77612 0.93%

Random 14082 15861233 1509445 17.99%

TABLE XII.
ANALYSIS OF RICE DECODING ERRORS WITH HEADER REDUNDANCY (16-BIT).

Location of

Damage

Number of Bits

in error

Avg Absolute

Difference

Avg Hamming

Distance

Avg Corrupted

Pixels (%)

Header 1 0 0 0.00%

Header 324 0 0 0.00%

Data 1 1714 13 0.00%

Data 324 362385432 3323093 19.81%

Random 1 857 7 0.00%

Random 14082 988003116 3831081 22.84%

Similar calculations were made for the number of bits in error for the Exp-Golomb

algorithm based on the size of the compressed images as with Huffman coding. Tables XIII and

XIV display the effect of errors due to incorrect decoding by the Exp-Golomb coding algorithm.

The individual trial runs for the Exp-Golomb study are in tables XXIII and XXIX.

TABLE XIII.
ANALYSIS OF EXP-GOLOMB DECODING ERRORS WITH 8-BIT FITS IMAGE.

Number of Bits in

error

Avg Absolute

Difference

Avg Hamming

Distance

Avg Corrupted Pixels

(%)

1 2677964 256592 3.06%

12814 23588754 2194615 26.16%

TABLE XIV.
ANALYSIS OF EXP-GOLOMB DECODING ERRORS WITH 16-BIT FITS IMAGE.

Number of Bits in

error

Avg Absolute

Difference

Avg Hamming

Distance

Avg Corrupted Pixels

(%)

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 33

1 92868236 928164 5.53%

80119 641204648 4052670 24.16%

C. Resource Utilization

Table XI presents the breakdown of the resource utilization of each source coding

algorithms. Because the Rice encoder circuit is constructed using parameterized modules, the

parameter variables for data width and block size are changed accordingly before compilation to

observe that Rice configuration’s components usage. Similarly, different configurations of the

Exp-Golomb circuit, specifically the data width, were observed. With the Huffman encoder

circuit, the 8-bit version could not fit into the FPGA used in this study, so it has been modified.

In this case, the 4-bit version was recorded below for comparison where its components usage

extrapolated for comparing among the 8-bit versions of each source coding algorithm.

TABLE XV.
COMPONENTS USAGE OF EACH SOURCE CODING ALGORITHM.

Components total logic elements total combinational functions total registers

Huffman (4-bit)* 308 300 177

Rice (n = 8, J = 8) 338 330 56

(header_red) 336 335 56

Rice (n = 8, J = 16) 426 426 58

(header_red) 434 434 58

Rice (n = 16, J = 8) 517 517 74

(header_red) 557 541 74

Rice (n = 16, J = 16) 1130 1130 75

(header_red) 1152 1136 75

Exp-Golomb (8-bit) 354 346 72

Exp-Golomb (16-bit) 759 758 89

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 34

D. Power Consumption

Using the PowerPlay Analyzer tool with the default settings in the Quartus software, the

power consumption estimates for each lossless compression circuit is obtained. Table XII shows

the breakdown of the power consumption per source coding algorithm.

TABLE XVI.
ESTIMATED POWER CONSUMPTION IN MILLIWATTS.

Circuit Estimated Power Dissipation (mW)

Huffman (4-bit)* 215.25

Rice (n = 8, J = 8) 172.77

(header_red) 176.87

Rice (n = 8, J = 16) 181.20

(header_red) 177.28

Rice (n = 16, J = 8) 193.31

(header_red) 189.76

Rice (n = 16, J = 16) 214.94

(header_red) 214.98

Exp-Golomb (8-bit) 175.56

Exp-Golomb (16-bit) 190.11

Discussion

From Tables I, II, and VI, it can be concluded that the Rice coding method employed for

development of CCSDS 121.0-B-1 standard scheme exhibits the highest performance in terms of

compression ratio among the 8-bit images [7]. This result is mainly achieved by the low entropy

options, i.e., Zero Block and Second Extension. The Zero Block is especially beneficial to the

Rice’s high compression ratio. For example, with n = 8 and J = 8, one zero block encoded using

Rice compresses 64 bits of pixel data into a 13-bit codeword, including the option ID and

reference pixel value. With two zero blocks, 128 bits of pixel data turns into a 14-bit codeword

and so on. Likewise, the Exp-Golomb coding has a lower compression ratio than Rice coding.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 35

However, there is one notable exception to this observation which is the 8-bit remapped

version of the astronomical image. Its compression ratio was the highest when encoded using the

Huffman algorithm followed by Rice and then Exp-Golomb. This anomaly comes from the

remapping of a small subset of all possible 16-bit values onto an even smaller subset of the 8-bit

values. Because the histogram of this remapped image is much smaller than the original, fewer

pixel values are needed to build the Huffman coding dictionary. Therefore, this set of pixel

values are encoded with fewer bits than if it was encoded using the mapped difference in either

Rice or Exp-Golomb algorithms.

From Tables III and VII, the Rice coding algorithm performs with a highest compression

ratio between itself and Exp-Golomb for 16-bit images. In fact, the compression ratios by Exp-

Golomb of the benchmark images are below one as indicated with the higher compressed size

than the actual size. However, it still performs compression on the astronomical image because

the differences among its pixel values are much smaller than that for the benchmark images.

Therefore, in the case of the benchmark images, it is better to send the pixel values as is rather

than encode them using the Exp-Golomb algorithm.

Focusing on just the Rice coding compression ratios shows the variation in compression

ratios for different configurations n and J. In Table II, the size of each compressed image when

the block size is 16 is smaller than that for J = 8. Consequently, the compression ratio for the

images that are decorrelated using larger block sizes are greater. Similarly, both the 16-bit FITS

and the histogram-stretched benchmark images (Table III) also followed this trend, i.e., display a

greater compression ratio when the block size of 16 was selected than that for the block size of 8.

The larger block size option has a greater compression ratio because it captures more of the

differences in one packet than that smaller block size. Furthermore, the compression ratio of the

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 36

images encoded with the header redundancy codes (Tables IV and V) are lesser than those from

the original encoding scheme as expected because of those extra bits in the header. Most of the

compressed benchmark images have compression ratios that are greater than one except for the

fingerprint benchmark image. This anomaly was due to its compression ratio without header

redundancy being very close to one, so the addition of the redundant bits made the effect of the

compression insignificant.

As mentioned in previous sections, the Huffman software implementation is limited to

encoding only 8-bit images, so just the 8-bit remapped version of the astronomical image rather

than the original 16-bit image was used for the error resilience study. From tables VIII, IX, and

XIII, in the best-case scenario where only one bit is flipped Exp-Golomb coding performs the

best in terms of error resilience but only slightly better than Huffman or Rice coding. However,

the worst-case scenario produces a different outcome where Huffman coding performs well over

Rice or Exp-Golomb algorithm due to its ability to self-correct in a very short time (shorter

erroneous sequence) which is beneficial in the presence of many bits in error [17]. This

observation, therefore, disproves the hypothesis that Rice coding performs better than Huffman

coding as shown in both extremes of error probabilities without the introduction of simple error-

correcting codes. By introducing the redundancy codes (Table XI) in the header in Rice codes,

the average percentage of corrupted pixels drops from 3.83% to 0.93% in the best-case scenario

which is significantly better when compared to Huffman or Exp-Golomb coding. The header

redundancy codes can easily correct a single bit error in the header for the best-case. However, it

does not improve on the worst-case scenario where Huffman coding still dominates.

From tables X and XIV, the error resilience of Rice coding is higher than that of Exp-

Golomb for the original 16-bit astronomical image, i.e., the case for deep space communication.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 37

This observation is seen in both the best and the worst-case scenarios. Because the Rice

algorithm allows for parallel calculation of all its options and selecting from the code of least

length, the Exp-Golomb algorithm does not achieve the same performance as Rice coding. With

the header redundancy for the Rice algorithm (Table XII), the error resilience in the best case

becomes diminished while the performance in the worst case slightly improves. Therefore, the

addition of redundancy codes in the header field in Rice coding provides a slight performance

improvement which could be omitted as a mean to protect the header field.

In terms of decoding errors with the header errors encoded using Rice coding shown in

Table X, the comparison suggests that the header errors introduce a significant issue. The first

two rows of the table also show a variation in the length of error propagation of a single bit error

in the header where a single bit flip event produces a more favorable outcome than multiple bit

flip events. The difference in percentage of incorrectly decoded bits for the data field however

tells a completely different story. With an average Hamming distance of 24 for the best-case, the

error is contained within a block or two of pixel data because the minimum packet size in this

configuration is 22, and the maximum is 261. Therefore, the percentage of incorrect bits in the

data field of the packet is close to zero for the best-case scenario.

During the compilation and programming of the Huffman algorithm using the FPGA

software, the implementation laid out in this study cannot fit within the hardware limitations of

the FPGA used in this study, which was the same for all coding algorithms, for a fair

comparison. Consequently, the Verilog code for the Huffman circuit was modified by changing

the parameters in the code until it suited the hardware requirements, so the circuit can only

handle 4-bit data given this implementation. Comparing this limited Huffman circuit with the

lowest configuration of Rice and Exp-Golomb, the Rice encoder circuit uses the fewest

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 38

components, even with header redundancy incorporated into the encoder. When the data width is

set to 16-bit, the Rice encoder circuit still has the least components usage only when the block

size is set to 8. Conversely, the Exp-Golomb circuit uses fewer components the 16-bit Rice

encoder when the block size is set to 16.

With the same issue as for the Huffman encoder circuit, only its limited 4-bit version was

observed for the power consumption analysis. Looking at just the most limited version of each

source encoder circuit, the Rice encoder consumes the least amount of power among the three

implemented source coding algorithms even when comparing against the limited version of the

Huffman encoder. In fact, this 4-bit Huffman circuit uses the most amount of power among all

the hardware implementations in this study, so it performs the worst in terms of power

dissipation. Comparing the 16-bit versions of Rice and Exp-Golomb circuits, the latter encoder

outperforms the former one even against the two configurations of the block size in the Rice

coding circuit. Given the compression ratio of 16-bit Exp-Golomb against the 16-bit Rice

encoder in both block size configurations, the Rice encoder provides the best tradeoff between

the compression ratio, component usage, and the power consumption over the Exp-Golomb

encoder.

In terms of compressing the 8-bit benchmark images given in the results section, the Rice

encoder circuit, specifically with J = 8, outperforms the Exp-Golomb method. The addition of

the repetition code to the header in the Rice method does give a significant advantage in error

resilience, components usage, and power consumption for the compression of the benchmark

images, or more generally, public domain images. In fact, it only improves the error resilience in

the best-case scenario while increasing the power consumption of the circuit. The summary of

the analysis for 8-bit encoder circuits is shown in Table XVII. Therefore, among the source

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 39

coding methods in this study, the Rice encoder circuit with the block size of 8 gives a best

configuration based on all the measurements performed in this study.

TABLE XVII.
SUMMARY OF COMPARISON OF METHODS FOR 8-BIT IMAGES.

 Huffman Rice

Compression Ratio X

Error Resilience X

Components Usage X

Power Consumption X

For astronomical images transmitted with 16-bit representation per pixel the Huffman

encoder is not practical due to the huge number of components needed for implementation.

Therefore, only the Rice and Exp-Golomb methods are the suitable candidates for comparison in

terms of their feasibility for the application. Even though the Rice encoder with the block size of

16 provides a greater compression ratio than the one of smaller block size, the Rice circuit with J

= 8 outperforms the Exp-Golomb encoder in all categories except in power consumption. This

type of Rice encoder uses significantly fewer components than the larger Rice counterpart and

Exp-Golomb, and it performs well in the presence of errors in both the best and worst-case

scenarios. Furthermore, augmenting the Rice code with the repetition code of the header field,

although it adds more components and reduces the compression ratio, it performs better than the

Exp-Golomb coder with the added benefit of improving the error resilience, especially in the

best-case scenario. The summary of the analysis among 16-bit encoder circuits is shown in Table

XVIII. The Rice circuit with the block size of 8, augmented for error resilience with the

repetition code represents a most favorable tradeoff by three categories: compression ratio, error

resilience and the hardware complexity. Although the power usage is not of a lesser significance

given the on-board operation, with the employment of efficient technologies and power

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 40

optimization methods for the circuit design, further improvements can be achieved. However,

that is outside the scope of the current work and its goals in this pilot research of the author.

The conclusions drawn in this study prove not only that this early CCSDS standard is a valid

candidate for the use on board by NASA deep space exploration missions, but it also can be used

for losslessly encoding the public domain 8-bit images. It would be interesting and useful to

perform in the future the analysis of the recent CCSDS, such as 122.0-B-2 and include

hyperspectral and multispectral datasets for the performance analysis. Also, the study in general

is to be performed in association with the communication protocol and adopted channel coding

methods, that is in an integral framework of operation.

TABLE XVIII.
SUMMARY OF COMPARISON FOR 16-BIT IMAGES.

 Rice Exp-Golomb

Compression Ratio X

Error Resilience X

Components Usage X

Power Consumption X

Acknowledgement

This work is partially supported by NASA through Nevada Space Grant #NNX15AI02H.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 41

REFERENCES

[1] D. Le Ruyet and M. Pischella, Digital Communications 1: Source and Channel Coding, 1st

ed. London: John Wiley & Sons, Inc., 2015. pp. 1, 71

[2] K. Sayood, Introduction to Data Compression, 4th ed. San Francisco, CA: Morgan

Kaufmann, 2006. pp. 1, 3-5, 58

[3] H. Hihara, K. Moritani, M. Inoue, Y. Hoshi, A. Iwasaki, J. Takada, H. Inada, M. Suzuki, T.

Seki, S. Ichikawa, and J. Tanii, “Onboard Image Processing System for Hyperspectral

Sensor,” Sensors, vol. 15, no. 10, pp. 24926–24944, Sep. 2015.

[4] J. Zumberge, L. Deutsch, and S. Townes (n.d.). “Deep Space Communications.” [Website].

Available: https://scienceandtechnology.jpl.nasa.gov/research/research-topics-

list/communications-computing-software/deep-space-communications. Accessed Mar. 17,

2018.

[5] J. Heller and I. Jacobs, “Viterbi Decoding for Satellite and Space Communication,” in IEEE

Transactions on Communication Technology, vol. 19, no. 5, pp. 835-848, October 1971.

doi: 10.1109/TCOM.1971.1090711

[6] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection for

embedded networks,” International Conference on Dependable Systems and Networks,

2004, 2004, pp. 145-154. doi: 10.1109/DSN.2004.1311885

[7] CCSDS. (2012, Apr. 2). Lossless Data Compression [Online]. Available FTP:

public.ccsds.org Directory: Pubs/ File: 121x0b2ec1.pdf

[8] Y. Erdem, A. M. N. Uyar, M. C. Soydan, M. S. Harmankaya, F. Alan and B. Akbulut,

“Developing and modelling of satellite docking algorithm,” 2017 8th International

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 42

Conference on Recent Advances in Space Technologies (RAST), Istanbul, 2017, pp. 465-

471. doi: 10.1109/RAST.2017.8002987

[9] A. García, L. Santos, S. López, G. Marrero, J. F. López and R. Sarmiento, “High level

modular implementation of a lossy hyperspectral image compression algorithm on a

FPGA,” 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in

Remote Sensing (WHISPERS), Gainesville, FL, USA, 2013, pp. 1-4. doi:

10.1109/WHISPERS.2013.8080624

[10] M. Biskup. “Error Resilience in Compressed Data—Selected Topics”. Ph.D. dissertation,

Dept. of Math., Inform., and Mech., Univ. of Warsaw, Warsaw, Poland, 2008.

[11] S. T. Klein and D. Shapira, “Practical fixed length Lempel–Ziv coding,” Discrete Applied

Mathematics, vol. 163, no. 3, pp. 326-333, 2014.

[12] B. Pratt, M. Fuller, M. Rice and M. Wirthlin, “Reduced-Precision Redundancy for Reliable

FPGA Communications Systems in High-Radiation Environments,” in IEEE Transactions

on Aerospace and Electronic Systems, vol. 49, no. 1, pp. 369-380, Jan. 2013. doi:

10.1109/TAES.2013.6404109

[13] W. Cary Huffman and V. Pless, Fundamentals of Error-Correcting Codes, 1st ed.

Cambridge: Cambridge University Press, 2015. pp. 4, 578

[14] F. Lansing, L. Lemmerman, A. Walton, G. Bothwell, K. Bhasin and G. Prescott, “Needs for

communications and onboard processing in the vision era,” IEEE International Geoscience

and Remote Sensing Symposium, 2002, pp. 375-377 vol.1. doi:

10.1109/IGARSS.2002.1025044

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 43

[15] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,”

in Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, Sept. 1952.

doi: 10.1109/JRPROC.1952.273898

[16] Wook-Hyun Jeong, Young-Suk Yoon and Yo-Sung Ho, “Design of reversible variable-

length codes using properties of the Huffman code and average length function,” Image

Processing, 2004. ICIP '04. 2004 International Conference on, 2004, pp. 817-820 Vol.2.

doi: 10.1109/ICIP.2004.1419423

[17] D. Lelewer and D. Hirschberg, “Data Compression,” ACM Computing Surveys

(CSUR), vol. 19, no. 3, pp. 261-296, 1987. doi: 10.1145/77556.77566

[18] R. F. Rice, “Some Practical Universal Noiseless Coding Techniques,” Jet Propulsion Lab.,

California Inst. of Tech., Pasadena, CA, Rep. NASA-CR-158515, Mar. 1979

[19] Pen-Shu Yeh, R. F. Rice, and W. Miller, “On the Optimality of Code Options for a

Universal Noiseless Coder,” Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA,

Rep. NASA-CR-187973, Feb. 1991

[20] R. F. Rice and Pen-Shu Yeh, “Algorithms for a very high speed universal noiseless coding

module,” Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA, Rep. NASA-CR-

187974, Feb. 1991

[21] J. J. Meany and C. J. Martens, “Split field coding: Low complexity error-resilient entropy

coding for image compression,” in Proc. of SPIE - The International Society for Optical

Engineering, San Diego, CA, 2008. doi: 10.1117/12.797357.

[22] J. Teuhola, “A compression method for clustered bit-vectors,” Inform. Process. Lett., vol. 7,

pp. 308–311, Oct. 1978.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 44

[23] J. Chen, Y. Chen, H. Zhu, C. Sui, P. Wu and X. Cao, “The hardware design and

implementation for CAVLC and Exp-Golomb in H.264/AVC,” 2010 The 12th

International Conference on Advanced Communication Technology (ICACT), Phoenix

Park, 2010, pp. 1610-1613.

[24] J. Zhang (1994, May 23). “Parity Check Codes.” [Website]. Available:

http://www.rpi.edu/locker/75/000475/main/subsection3_7_1.html. Accessed Oct. 7, 2017.

[25] B. M.J. Leiner. (2005). LDPC Codes – a brief Tutorial [Online]. Available FTP: bernh.net

Directory: media/download/papers File: ldpc.pdf

[26] M. Sarkar, K. K. Shukla, and K. S. Dasgupta, “A Survey of Transport Protocols for Deep

Space Communication Networks,” International Journal of Computer Applications, vol.

31, no. 8, pp. 25-32, Oct. 2011.

[27] Numberphile (2013, Sept. 10). “Error Correction.” [YouTube Video]. Available:

https://www.youtube.com/watch?v=5sskbSvha9M. Accessed Dec. 7, 2017.

[28] A. Pang and P. Membrey, Beginning FPGA: Programming Metal: Your Brain on

Hardware, 1st ed. Springer, 2017.

[29] M. J. Wirthlin, “FPGAs operating in a radiation environment: Lessons learned from FPGAs

in space,” Journal of Instrumentation, vol. 8, no. 2, 2013.

[30] G. Mayer. (2009). “Image Repository.” [Website]. Available:

http://links.uwaterloo.ca/Repository.html. Accessed Dec. 10, 2017.

[31] NASA & GSFC. (2017, Dec. 4). “The FITS Support Office.” [Website]. Available:

https://fits.gsfc.nasa.gov. Accessed Jan. 10, 2018.

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 45

[32] S. Dong, X. Wang and X. Wang, “A Novel High-Speed Parallel Scheme for Data Sorting

Algorithm Based on FPGA,” 2009 2nd International Congress on Image and Signal

Processing, Tianjin, 2009, pp. 1-4. doi: 10.1109/CISP.2009.5302455

[33] Altera. (2013, Nov. 4). PowerPlay Power Analysis [Online]. Available FTP: altera.com.cn

Directory: zh_CN/pdfs/literature/hb/qts File: qts_qii53013.pdf

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 46

APPENDIX

TABLE XIX.
TRIAL RUNS FOR 8-BIT HUFFMAN ERROR RESILIENCE EXPERIMENT.

Random Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 17 3 0.000%

2 817007 197597 8.204%

3 869312 209227 8.686%

4 2204295 513175 21.305%

5 2390769 558091 23.170%

6 1182951 279053 11.585%

7 1534106 359985 14.945%

8 1947049 453343 18.821%

9 614971 152563 6.334%

10 1826107 425851 17.680%

11 165837 51103 2.122%

12 27648 10319 0.428%

13 1086207 257505 10.691%

14 2307406 537837 22.329%

15 2261427 526837 21.873%

16 8 1 0.000%

17 2415310 564075 23.419%

18 2457929 574703 23.860%

19 1123971 265935 11.041%

20 1153066 272397 11.309%

Random Damage (12056 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 3882603 876160 36.375%

2 3869506 874269 36.297%

3 3846757 870546 36.142%

4 3901790 879977 36.534%

5 3872549 873986 36.285%

6 3902863 880488 36.555%

7 3890216 877906 36.448%

8 3890830 877117 36.415%

9 3851440 870923 36.158%

10 3916372 882493 36.638%

11 3884815 877983 36.451%

12 3881590 875514 36.349%

13 3859873 872636 36.229%

14 3912323 881254 36.587%

15 3861227 872749 36.234%

16 3891275 877759 36.442%

17 3886598 876842 36.404%

18 3923289 883617 36.685%

19 3840873 869020 36.079%

20 3850032 870386 36.136%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 47

TABLE XX.
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT (HEADER).

Header Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 1819526 406951 4.851%

2 3755814 837277 9.981%

3 1731583 384321 4.581%

4 3924602 881518 10.509%

5 3492099 774619 9.234%

6 96 33 0.000%

7 1479338 331026 3.946%

8 1714670 390377 4.654%

9 111 38 0.000%

10 2631875 584548 6.968%

11 130 22 0.000%

12 29 8 0.000%

13 1979228 443881 5.291%

14 150 45 0.001%

15 527823 130307 1.553%

16 136 25 0.000%

17 38501 8914 0.106%

18 252 27 0.000%

19 2780040 609683 7.268%

20 780697 188358 2.245%

Header Damage (324 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 7182570 1028815 12.264%

2 7658829 1041075 12.411%

3 7392607 1034217 12.329%

4 6837700 1007315 12.008%

5 6846669 1008449 12.022%

6 7338415 1033589 12.321%

7 7257717 1028934 12.266%

8 7328980 1023189 12.197%

9 7401249 1036219 12.353%

10 7287985 1031122 12.292%

11 7095202 1026352 12.235%

12 7200146 1030722 12.287%

13 7214374 1024777 12.216%

14 7368017 1025569 12.226%

15 7197162 1025029 12.219%

16 7373443 1031683 12.299%

17 7465274 1039146 12.388%

18 7190939 1025438 12.224%

19 7306086 1022090 12.184%

20 7080860 1026770 12.240%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 48

TABLE XXI.
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT (DATA).

Data Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 55 26 0.000%

2 3902900 874543 10.425%

3 3815215 854802 10.190%

4 1996942 450401 5.369%

5 1109788 257059 3.064%

6 3753552 835301 9.958%

7 959198 220327 2.627%

8 3335573 741524 8.840%

9 87 31 0.000%

10 2643642 585032 6.974%

11 84 19 0.000%

12 7814 676 0.008%

13 114 37 0.000%

14 701908 164669 1.963%

15 750947 178407 2.127%

16 1990467 447609 5.336%

17 532718 131675 1.570%

18 1716981 384994 4.589%

19 742356 177257 2.113%

20 2633647 587733 7.006%

Data Damage (324 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 6458775 988053 11.779%

2 6867325 1003783 11.966%

3 6640115 1006094 11.994%

4 6806181 1014552 12.094%

5 6701865 1009206 12.031%

6 6307349 974685 11.619%

7 6604492 995458 11.867%

8 6614416 1001797 11.942%

9 6681765 1008326 12.020%

10 6455344 997199 11.888%

11 6237473 986707 11.762%

12 6520065 996534 11.880%

13 6534512 999981 11.921%

14 6766183 1005211 11.983%

15 6696204 1004802 11.978%

16 6325043 990038 11.802%

17 6459167 984776 11.739%

18 6468418 992630 11.833%

19 6425249 994878 11.860%

20 6778931 1003390 11.961%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 49

TABLE XXII.
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT (RANDOM).

Random Damage (14082 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 14637376 1345148 16.035%

2 14738036 1356845 16.175%

3 14848087 1357713 16.185%

4 14872157 1362057 16.237%

5 14596271 1350780 16.103%

6 14565187 1346154 16.047%

7 14639161 1352921 16.128%

8 14825113 1356047 16.165%

9 14626433 1351496 16.111%

10 14605141 1346561 16.052%

11 14887306 1355723 16.161%

12 14720539 1356311 16.168%

13 14586056 1348726 16.078%

14 14626263 1355970 16.164%

15 14718860 1355422 16.158%

16 14822796 1358815 16.198%

17 14524473 1344188 16.024%

18 14646250 1353241 16.132%

19 14711982 1354303 16.145%

20 14960972 1369864 16.330%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 50

TABLE XXIII.
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY

(DATA).

Data Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 1075755 252179 7.864%

2 140 28 0.001%

3 784 26 0.001%

4 2980650 664822 20.733%

5 107 26 0.001%

6 149 44 0.001%

7 10866 1178 0.037%

8 3003685 669762 20.887%

9 252 27 0.001%

10 1279 114 0.004%

11 208 61 0.002%

12 2203245 498096 15.533%

13 3985 244 0.008%

14 1005666 230421 7.186%

15 1354 76 0.002%

16 60668 24564 0.766%

17 8 1 0.000%

18 2425407 540437 16.854%

19 944278 222355 6.934%

20 71 14 0.000%

Data Damage (324 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 5377307 952132 11.350%

2 5416287 964883 11.502%

3 5280640 954784 11.382%

4 5300028 953878 11.371%

5 5478421 969348 11.556%

6 5295709 950032 11.325%

7 5484504 964798 11.501%

8 5396984 949182 11.315%

9 5249051 951525 11.343%

10 5412640 952313 11.352%

11 5453159 967689 11.536%

12 5476798 965184 11.506%

13 5413777 956190 11.399%

14 5524393 958372 11.425%

15 5489761 967237 11.530%

16 5488894 960100 11.445%

17 5386920 958648 11.428%

18 5247023 947819 11.299%

19 5445503 958979 11.432%

20 5584415 968286 11.543%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 51

TABLE XXIV.
TRIAL RUNS FOR 8-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY

(RANDOM).

Random Damage (16050 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 15836345 1508453 17.982%

2 15760477 1500320 17.885%

3 15933129 1513087 18.037%

4 16012892 1516667 18.080%

5 15798478 1508253 17.980%

6 15925106 1507758 17.974%

7 15734249 1502472 17.911%

8 15918325 1517782 18.093%

9 15870590 1507130 17.966%

10 15926694 1511543 18.019%

11 16003146 1508107 17.978%

12 15597190 1502704 17.914%

13 15754823 1510094 18.002%

14 16005732 1518057 18.097%

15 16054229 1520822 18.130%

16 15690786 1498027 17.858%

17 16030433 1512360 18.029%

18 15624898 1499480 17.875%

19 15867938 1517229 18.087%

20 15879201 1508553 17.983%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 52

TABLE XXV.
TRIAL RUNS FOR 8-BIT EXP-GOLOMB ERROR RESILIENCE EXPERIMENT.

Random Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 337 73 0.001%

2 9495 2640 0.031%

3 19768458 1946306 23.202%

4 77382 5324 0.063%

5 21663648 2009250 23.952%

6 0 0 0.000%

7 1138 643 0.008%

8 6526 2584 0.031%

9 1069394 136861 1.632%

10 2586 1072 0.013%

11 397270 25838 0.308%

12 1902 690 0.008%

13 1875 738 0.009%

14 2424 901 0.011%

15 349786 40739 0.486%

16 97815 8589 0.102%

17 1991 752 0.009%

18 1117 242 0.003%

19 10101761 947338 11.293%

20 4373 1263 0.015%

Random Damage (12814 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 23528195 2205192 26.288%

2 24303568 2234688 26.640%

3 23859326 2209337 26.337%

4 23325496 2170150 25.870%

5 23187270 2185088 26.048%

6 24665144 2248616 26.806%

7 23671731 2196789 26.188%

8 22823063 2147591 25.601%

9 22725932 2152531 25.660%

10 23575525 2195797 26.176%

11 23397314 2185185 26.049%

12 23344354 2171705 25.889%

13 24802977 2237365 26.671%

14 24053457 2217177 26.431%

15 23065888 2158950 25.737%

16 23158881 2177966 25.963%

17 24177871 2234178 26.633%

18 23762810 2221282 26.480%

19 22688727 2152243 25.657%

20 23657557 2190462 26.112%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 53

TABLE XXVI.
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT (HEADER).

Header Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 303744930 2452810 14.620%

2 331188125 2678033 15.962%

3 183268796 1514728 9.028%

4 319472929 2584609 15.405%

5 43797302 348101 2.075%

6 285004911 2311080 13.775%

7 37707 200 0.001%

8 128668612 1046713 6.239%

9 74569971 568385 3.388%

10 81945077 641781 3.825%

11 262675869 2148200 12.804%

12 292245935 2392739 14.262%

13 248098001 2010837 11.986%

14 322058382 2608486 15.548%

15 60169 124 0.001%

16 209817837 1712486 10.207%

17 144861427 1189982 7.093%

18 137828195 1116005 6.652%

19 267307689 2168707 12.927%

20 180434857 1471962 8.774%

Header Damage (323 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 706924182 3623763 21.599%

2 688613318 3603515 21.479%

3 671577919 3607249 21.501%

4 704974727 3650935 21.761%

5 670804584 3618486 21.568%

6 702603714 3641269 21.704%

7 672248342 3600178 21.459%

8 716332614 3644672 21.724%

9 723667152 3668140 21.864%

10 671381510 3611432 21.526%

11 687264320 3630078 21.637%

12 717637771 3645357 21.728%

13 681060935 3624259 21.602%

14 683864892 3610687 21.521%

15 682423193 3631810 21.647%

16 719922524 3638707 21.688%

17 712758200 3602869 21.475%

18 728754242 3663934 21.839%

19 722786079 3636605 21.676%

20 710599323 3667100 21.858%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 54

TABLE XXVII.
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT (DATA).

Data Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 63 25 0.000%

2 3541 31 0.000%

3 98 6 0.000%

4 4012 48 0.000%

5 12686 47 0.000%

6 248 24 0.000%

7 4 1 0.000%

8 0 0 0.000%

9 3538 38 0.000%

10 1701 16 0.000%

11 4464 39 0.000%

12 320 64 0.000%

13 1659 25 0.000%

14 88 13 0.000%

15 958 7 0.000%

16 1482 16 0.000%

17 1113 17 0.000%

18 793 9 0.000%

19 2282 15 0.000%

20 2413 30 0.000%

Data Damage (323 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 443967673 3460995 20.629%

2 445641274 3475262 20.714%

3 436859835 3463491 20.644%

4 460517540 3485632 20.776%

5 473660528 3506924 20.903%

6 443823660 3472236 20.696%

7 473539867 3502567 20.877%

8 440788909 3448354 20.554%

9 428333157 3411949 20.337%

10 491801340 3512497 20.936%

11 436780249 3464074 20.647%

12 435933820 3356790 20.008%

13 431900236 3447659 20.550%

14 497686854 3497432 20.846%

15 413461865 3305859 19.704%

16 453766148 3470524 20.686%

17 454995324 3464052 20.647%

18 462253855 3349866 19.967%

19 419843120 3425653 20.418%

20 430240378 3428939 20.438%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 55

TABLE XXVIII.
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT (RANDOM).

Random Damage (54722 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 1061355563 3883136 23.145%

2 1061489112 3890170 23.187%

3 1081689247 3898802 23.239%

4 1067667640 3881912 23.138%

5 1067890547 3884411 23.153%

6 1074392056 3894437 23.213%

7 1065611836 3884058 23.151%

8 1072481462 3896976 23.228%

9 1071142203 3886484 23.165%

10 1068929954 3888009 23.174%

11 1073280514 3884300 23.152%

12 1066707676 3884978 23.156%

13 1080764427 3894890 23.215%

14 1066292947 3881540 23.136%

15 1077648463 3891357 23.194%

16 1075925812 3884923 23.156%

17 1070087494 3886198 23.164%

18 1065048964 3885811 23.161%

19 1075138999 3892368 23.200%

20 1060067340 3878682 23.119%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 56

TABLE XXIX.
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY

(DATA).

Data Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 0 0 0.0000%

2 937 7 0.0000%

3 3372 27 0.0002%

4 917 8 0.0000%

5 917 7 0.0000%

6 122 6 0.0000%

7 887 8 0.0000%

8 19888 114 0.0007%

9 0 0 0.0000%

10 117 8 0.0000%

11 0 0 0.0000%

12 1777 11 0.0001%

13 0 0 0.0000%

14 4 4 0.0000%

15 999 18 0.0001%

16 839 14 0.0001%

17 1868 17 0.0001%

18 1640 11 0.0001%

19 1 1 0.0000%

20 0 0 0.0000%

Data Damage (324 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 351548062 3212510 19.148%

2 341369517 3038032 18.108%

3 355131605 3316822 19.770%

4 356444620 3325764 19.823%

5 355374872 3299467 19.666%

6 348883344 3216564 19.172%

7 381288746 3391493 20.215%

8 375338105 3384181 20.171%

9 374048766 3422972 20.403%

10 348835954 3273820 19.513%

11 363966179 3354732 19.996%

12 359375436 3350904 19.973%

13 364391375 3384432 20.173%

14 371497177 3385920 20.182%

15 378058231 3435189 20.475%

16 362930633 3376494 20.125%

17 368861905 3296500 19.649%

18 354867424 3268665 19.483%

19 371759467 3358156 20.016%

20 363737222 3369250 20.082%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 57

TABLE XXX.
TRIAL RUNS FOR 16-BIT RICE ERROR RESILIENCE EXPERIMENT WITH REDUNDANCY

(RANDOM).

Random Damage (57321 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 988722825 3822795 22.786%

2 985580745 3835798 22.863%

3 974104914 3820003 22.769%

4 976766792 3815359 22.741%

5 995751087 3846657 22.928%

6 992056436 3832683 22.845%

7 983740546 3828682 22.821%

8 980498668 3822570 22.784%

9 978145332 3828440 22.819%

10 992660822 3835301 22.860%

11 999630120 3840467 22.891%

12 989083296 3830931 22.834%

13 995596350 3835668 22.862%

14 999332483 3834867 22.858%

15 989490256 3833132 22.847%

16 994010068 3839841 22.887%

17 981717612 3828803 22.821%

18 980102324 3826708 22.809%

19 996558599 3839468 22.885%

20 986513036 3823444 22.790%

EFFICIENT TRANSMISSION IN DEEP SPACE COMMUNICATION 58

TABLE XXXI.
TRIAL RUNS FOR 8-BIT EXP-GOLOMB ERROR RESILIENCE EXPERIMENT.

Random Damage (1 bit)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 326102501 3183852 18.977%

2 11539 416 0.002%

3 141517 1384 0.008%

4 713896 3122 0.019%

5 199409848 2032568 12.115%

6 51949 607 0.004%

7 44931 1090 0.006%

8 706271 5089 0.030%

9 154420184 1599970 9.537%

10 17366 759 0.005%

11 226472220 2309115 13.763%

12 199283 2251 0.013%

13 313838681 3271388 19.499%

14 48043 1536 0.009%

15 269458679 2513362 14.981%

16 61317741 530512 3.162%

17 213419 1718 0.010%

18 303658716 3100496 18.480%

19 521443 3591 0.021%

20 16484 463 0.003%

Random Damage (80119 bits)

Trial # Avg Absolute Difference Avg Hamming Distance Avg Corrupted Pixels (%)

1 649173770 4056517 24.179%

2 614663999 4057349 24.184%

3 643417814 4060392 24.202%

4 624855380 4050042 24.140%

5 607307598 4029324 24.017%

6 630442915 4060636 24.203%

7 621145589 4056240 24.177%

8 613870012 4029944 24.020%

9 638248445 4039606 24.078%

10 640834283 4086853 24.360%

11 638279469 4060004 24.200%

12 609364735 4049210 24.135%

13 634689863 4068798 24.252%

14 616044168 4047317 24.124%

15 621817176 4065864 24.234%

16 643287223 4045014 24.110%

17 928597285 4063117 24.218%

18 611443553 4050636 24.144%

19 621526336 4044267 24.106%

20 615083354 4032278 24.034%

	Efficient Image Coding and Transmission in Deep Space Communication
	Repository Citation

	Abstract
	I. INTRODUCTION
	II. BACKGROUND
	A. Data Compression and Source Coding
	B. Error Resilience and Deep Space Communication Issues
	C. Hardware Limitations
	D. Huffman Coding
	E. Rice Coding
	F. Exponential-Golomb (Exp-Golomb) Coding
	G. Channel Coding and Tradeoff with Source Coding
	H. Field Programmable Gate Array

	III. METHODS
	A. Images and Buffer
	B. Huffman Encoder Implementation
	C. Rice Encoder Implementation
	D. Exp-Golomb Encoder Implementation
	E. Software Implementation and Introduction of Errors
	F. Design Components and Power Usage

	IV. RESULTS AND DISCUSSION
	A. Compression Ratio
	B. Error Resilience
	C. Resource Utilization
	D. Power Consumption
	Discussion

	Acknowledgement
	REFERENCES
	APPENDIX

