University of Nevada, Las Vegas Transmutation Research Program Annual Report Academic Year 2006-2007

Anthony Hechanova
University of Nevada, Las Vegas

Rebecca Arbour
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_reports

Part of the Nuclear Commons, Nuclear Engineering Commons, and the Radiochemistry Commons

Repository Citation
Available at: https://digitalscholarship.unlv.edu/hrc_trp_reports/31

This Annual Report is brought to you for free and open access by the The Nuclear Science and Technology Division: Transmutation Research Program (TRP) at Digital Scholarship@UNLV. It has been accepted for inclusion in Transmutation Research Program Reports (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
University of Nevada, Las Vegas
Transmutation Research Program
Annual Report
Academic Year 2006-2007
Table of Contents

I. 2006-2007 in Perspective

- Letter from the Director 1
- UNLV Transmutation Research Program Overview 2
- Transmutation at a Glance 4

II. Student Research

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>Design and Analysis of a Process for Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides</td>
</tr>
<tr>
<td>Task 2</td>
<td>Modeling, Fabrication, and Optimization of Niobium Cavities</td>
</tr>
<tr>
<td>Task 3</td>
<td>Corrosion of Steel by Lead Bismuth Eutectic</td>
</tr>
<tr>
<td>Task 4</td>
<td>Environment-Induced Degradation and Crack-Growth Studies of Candidate Target Materials</td>
</tr>
<tr>
<td>Task 5</td>
<td>Modeling Corrosion in Oxygen Controlled LBE Systems with Coupling of Chem. Kinetics and Hydrodynamics</td>
</tr>
<tr>
<td>Task 6</td>
<td>Neutron Multiplicity Measurements of Target/Blanket Materials</td>
</tr>
<tr>
<td>Task 7</td>
<td>Development of Dose Conversion Coefficients for Radionuclides Produced in Spallation Targets</td>
</tr>
<tr>
<td>Task 8</td>
<td>Development of a Systems Engineering Model of the Chemical Separations Process</td>
</tr>
<tr>
<td>Task 9</td>
<td>Design and Evaluation of Processes for Fuel Fabrication</td>
</tr>
<tr>
<td>Task 10</td>
<td>Development of a Mechanistic Understanding of High-Temperature Deformation of Alloy EP-823</td>
</tr>
<tr>
<td>Task 11</td>
<td>Nuclear Criticality, Shielding, and Thermal Analyses of Separations Processes for the Transmutation Fuel Cycle</td>
</tr>
<tr>
<td>Task 12</td>
<td>Radiation Transport Modeling using Parallel Computational Techniques</td>
</tr>
<tr>
<td>Task 13</td>
<td>Developing a Sensing System for the Measurement of Oxygen Concentration in Liquid Pb-Bi Eutectic</td>
</tr>
<tr>
<td>Task 14</td>
<td>Use of Positron Annihilation Spectroscopy for Stress-Strain Measurements</td>
</tr>
<tr>
<td>Task 15</td>
<td>Immobilization of Fission Iodine by Reaction with a Fullerene Containing Carbon Compound and Insoluble Natural Matrix</td>
</tr>
<tr>
<td>Task 16</td>
<td>Evaluation of Fluorapatite as a Waste-Form Material</td>
</tr>
<tr>
<td>Task 17</td>
<td>Interaction between Metal Fission Products and TRISO Coating Materials: A Study of Chemical Bonding and Interdiffusion</td>
</tr>
<tr>
<td>Task 18</td>
<td>Fundamental and Applied Experimental Investigations of Corrosion of Steel by LBE under Controlled Conditions: Kinetics, Chemistry, Morphology, and Surface Preparation</td>
</tr>
<tr>
<td>Task 19</td>
<td>Dissolution, Reactor, and Environmental Behavior of ZrO₂-MgO Inert Fuel Matrix</td>
</tr>
<tr>
<td>Task 20</td>
<td>Effect of Silicon Content on the Corrosion Resistance and Radiation-Induced Embrittlement of Materials for Advanced Heavy Liquid Metal Nuclear Systems</td>
</tr>
<tr>
<td>Task 21</td>
<td>Theoretical Modeling of Protective Oxide Layer Growth in Non-isothermal Lead-Alloys Coolant Systems</td>
</tr>
<tr>
<td>Task 22</td>
<td>Design Concepts and Process Analysis for Transmutation Fuel Manufacturing</td>
</tr>
<tr>
<td>Task 23</td>
<td>Development of Nanostructure based Corrosion-Barrier Coatings on Steel for Transmutation Applications</td>
</tr>
<tr>
<td>Task 24</td>
<td>Development of Integrated Process Simulation System Model for Spent Fuel Treatment Facility Design</td>
</tr>
<tr>
<td>Task 25</td>
<td>Electrochemical Separation of Curium and Americium</td>
</tr>
<tr>
<td>Task 26</td>
<td>Fundamental Chemistry of Uranium and Plutonium in the TBP - Dodecane - Nitric Acid System</td>
</tr>
<tr>
<td>Task 27</td>
<td>Reactor Physics Studies for the AFCI Reactor-Accelerator Coupling Experiments Project</td>
</tr>
<tr>
<td>Task 28</td>
<td>Impact of the Synthesis Process on Structure Properties for AFC Fuel Candidates</td>
</tr>
<tr>
<td>Task 29</td>
<td>Investigation of Optical Spectroscopy Techniques for On-Line Materials Accountability in the Solvent Extraction Process</td>
</tr>
<tr>
<td>Task 31</td>
<td>Decoupling and Disturbance Rejection Control for Target Circulation</td>
</tr>
<tr>
<td>Task 32</td>
<td>Modeling and Design Algorithms for Electromagnetic Pumps</td>
</tr>
<tr>
<td>Task 33</td>
<td>Synthesis and Properties of Metallic Tc and Tc-Zr Alloys as a Radioactive Storage Waste Form to Stabilize the Tc Waste Stream of the UREX+1 Process</td>
</tr>
<tr>
<td>Task 34</td>
<td>Solution-Based Synthesis of Nitride Fuels</td>
</tr>
<tr>
<td>Task 35</td>
<td>Criticality Studies for UREX Processes</td>
</tr>
<tr>
<td>Task 36</td>
<td>Evaluation of Cs/Sr Waste Form for Long Term Storage and Disposal</td>
</tr>
</tbody>
</table>

III. Program Information

- UNLV TRP Events 76
- Financial Statement 77
- Photo Gallery 78
- Acronyms 98
- References, Credits, and Contact Information Back Cover
It is my pleasure to present the UNLV Transmutation Research Program’s sixth annual report that highlights the academic year 2006-2007. Supporting this document are the many technical reports and theses that have been generated over the past five years, which can be found on our program’s website at http://aaa.nevada.edu.

In the sixth year of our program, we continued to see growth in the Radiochemistry Ph.D. program with a total of 13 students in the third year of the program (we anticipated eight in the program proposal). Since our inception, the program has sponsored to their conclusion 42 M.S. and 4 Ph.D. degrees. The program supported 39 graduate students, 17 undergraduates, and seven post-doctoral scholars in six academic departments across the UNLV scientific and engineering communities in the academic year 2006-2007.

Our research tasks span the range of technology areas for transmutation, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

We continued our emphasis on molten metal technology and actinide chemistry in our enhancements to UNLV this year to build a foundation in areas that are in line with UNLV’s strategic growth and our ability to address student-appropriate research in the transmutation program.

Finally, I believe that through the Transmutation Research Program, UNLV has established itself as the core university participant in transmutation research with active collaboration with national laboratories, universities, and international institutions.

I congratulate our students and faculty on a job well done and I look forward to the opportunities and challenges of this exciting research endeavor.

Sincerely,

Anthony E. Hechanova, Ph.D.
Director, UNLV Transmutation Research Program
The UNLV Transmutation Research Program was established in March 2001 as part of the national transmutation program (currently called the Global Nuclear Energy Partnership of the U.S. Department of Energy, Office of Nuclear Energy) to develop the technologies necessary for the ecological and economical treatment of spent nuclear fuel.

The goal of the UNLV program is to develop a sustainable and robust research community at UNLV that is able to contribute to and support the national effort through faculty-supervised, student-conducted research. In establishing the UNLV program, four basic principles were followed: peer review, program focus, integration with the national program, and commitment to the long-term goals of the university.

The primary role of the UNLV program in the national effort is the training of post-doctoral fellows and graduate and undergraduate students in nuclear engineering and other related fields to support the augmentation of the human infrastructure for transmutation technologies. However, the research conducted by UNLV faculty and students is also an integral part of the national research effort. This is accomplished through the direct involvement of students in collaborative research supporting the national transmutation research and development program.

Twenty-two independent student research tasks, supporting 39 graduate students and 17 undergraduates, were initiated, ongoing, or concluding this academic year. The UNLV program includes the involvement of 26 faculty in 6 academic departments.

UNLV research tasks span the range of technology areas for transmutation: separations of used fuel materials, fuel fabrication, accelerator design, materials corrosion and performance, neutron multiplicity and transport simulations and experiments, research in lead-bismuth eutectic technology development, and a recently-added priority area on material protection, accounting, and control and waste forms.

Student research and training is the primary focus of the UNLV Transmutation Program. To support this focus, the student research program is augmented by the remaining components of the UNLV Transmutation Research Program: Research Infrastructure Augmentation, International Collaboration, and Program Support.

These components are responsible for all aspects of the program that are not directly related to the student research projects, including the expansion of the research faculty, bringing new research equipment to campus, assisting in the development of new student research projects, coordination with the national and inter-

UNLV Radiochemistry graduate students Amber Wright and Sherry Stock (2nd and 3rd from left) staff a nuclear promotional booth at the Vegas Grand Prix with Newman Wachs Racing driver J.R. Hildebrand (left). Students and faculty helped staff the booth April 6-8, 2007.

UNLV Radiochemistry graduate students Amber Wright and Sherry Stock (2nd and 3rd from left) staff a nuclear promotional booth at the Vegas Grand Prix with Newman Wachs Racing driver J.R. Hildebrand (left). Students and faculty helped staff the booth April 6-8, 2007.

M.S. Nuclear Engineering students Timothy Beller and Ryan Le-Counte set up the High-Power Reactor-Accelerator Coupled Experiment Target experiment at the Idaho Accelerator Center. The beam tube from the 20-MeV electron linear accelerator is on the left.

Radiochemistry Ph.D. candidate Kiel Holliday making glass in his laboratory at UNLV.
Program Overview

UNLV Transmutation Research Program Components

national programs, as well as handling the administrative details required for a program of this size.

The primary goals of these components are to support the current UNLV research efforts in transmutation technologies, to augment faculty and staff, and to increase research infrastructure necessary for the strategic growth of the UNLV research mission.

Through the international collaborations component, the program hosted a two Russian faculty members from the Institute for Nuclear Power Engineering in Obninsk, Russia. In addition, the project entitled “Preparatory Work for the Systematic Measurements and Evaluation of Minor Actinide Nuclear Data” was completed by the Research Coordinative Center on the Problem of Muon Catalyzed Fusion and Exotic Quantum Systems in Moscow, Russia, and a new project entitled “Safeguards Instrumentation Upgrade of Neutron Measurement System” was initiated with the V.G. Khlopin Radium Institute in St. Petersburg, Russia.

The program support component sponsored a number of workshops and meetings this year between UNLV researchers and scientists from our national laboratory partners and the international community for the development of transmutation technologies, as well as sponsoring the participation of UNLV students in the American Nuclear Society Student Conference at Oregon State University in Corvallis, Oregon and the American Chemical Society’s Spring Meeting in Chicago, Illinois.

The 2006-2007 academic year was a busy year that included extracurricular activities organized by the students such as a field trip to Los Alamos National Laboratory August 20 to 23, 2006; a Radiochemistry Recruiting week in February 2007; and, several middle school and high school outreaches.

Radiochemistry pioneer Darlene Hoffman (third from the left) with UNLV Radiochemistry Ph.D. students and post-doctoral researchers at the American Chemical Society meeting in Chicago, IL, March 25-29, 2007.
Transmutation at a Glance

Introduction

Over 20% of the electricity generated in the U.S. is provided by nuclear power reactors. It is estimated that the amount of used nuclear fuel in the U.S. will reach 140,000 tons by the end of the operational period of current reactors.

Many countries take different approaches to the management and recycling of used nuclear reactor fuel. The U.S. is pursuing a strategy of waste management that would place used nuclear fuel in deep geologic repositories for a long time, separating it from the biosphere and allowing the radioactive isotopes of the waste to decay to more stable progeny.

Transmutation is an alternative waste management strategy undergoing research and development in the U.S. The new national program was authorized by Congress to begin in fiscal year 2001, as the Advanced Accelerator Applications program. In fiscal year 2002, the national program was continued and expanded by Congress, and renamed the Advanced Fuel Cycle Initiative (AFCI). In February 2006, the Bush administration announced a broad program named the Global Nuclear Energy Partnership (GNEP) that effectively expanded the AFCI program (which was renamed Advanced Fuel Cycle Research and Development) and accelerated the development of commercial-scale facilities. The goals of the GNEP program are to:

- Provide abundant energy without generating carbon emissions or greenhouse gases.
- Recycle used nuclear fuel to minimize waste and reduce proliferation concerns.
- Safely and securely allow developing nations to deploy nuclear power to meet energy needs.

What is Nuclear Transmutation?

For centuries, alchemists have been trying to transform elements into other elements, primarily lead into gold. With modern nuclear science, we can finally accomplish this. Scientists are using nuclear transmutation to change one isotope into another more favorable isotope by changing its nuclear structure. This process for waste management is aimed at plutonium, other actinides, and long-lived fission products, with the ultimate goal of converting them into short-lived isotopes that can be managed over a reasonable timeframe.

Transmutation can be done with two different processes: neutron-induced fission and neutron capture. Both processes start with the target nucleus absorbing an incident neutron. After the neutron is absorbed by the target nucleus, the nucleus can either fission (splitting of the nucleus) or go through another nuclear transmutation process such as radioactive decay. Both processes lead to the same final result: transmutation of waste. These processes are illustrated in the figure below.

This picture illustrates how neutrons are used to transmute actinides and fission products.

Neutron-Induced Fission (top): a neutron is captured by a fissile actinide (e.g. Plutonium-239) and is induced to split (or fission).

Neutron Capture (bottom): a neutron is captured by a nucleus (e.g. Iodine-129). A new nucleus is produced, Iodine-130, which decays into Xenon-130 which is a stable isotope (i.e., not radioactive). This decay process is complete within a few days.
The above figure shows how used nuclear fuel could be managed under a multi-tiered transmutation strategy. In the first tier, plutonium (and other fissile actinides) would be recycled from used fuel and transmuted in an advanced thermal reactor. In the second tier, remaining long-lived radioactive isotopes would be transmuted using a fast spectrum reactor. The GNEP program is currently focused on sodium-cooled fast burner reactors to transmute the recycled transuranic actinides (such as plutonium and americium).

Benefits from Transmuting Nuclear Waste

Many benefits are obtained from transmutation of nuclear waste. Some of them are:

(1) The initial amount of high-level radioactive waste will be reduced by virtue of separation (only two percent of used nuclear fuel is highly radioactive, the rest, if separated, can be classified as low-level or non-radioactive).

(2) The radiotoxicity of the residual waste will be reduced such that it could be less radiotoxic after 300 years than direct disposal of used nuclear fuel after 100,000 years.

(3) Usable energy is produced by destroying hazardous components of used nuclear fuel. Plutonium and other isotopes can be continuously recycled.

(4) Someday other used nuclear fuel materials, such as uranium, may be reused. It is possible that other isotopes separated from nuclear waste could have a useful purpose in medicine and industry.

Incentives for recycling used nuclear fuel and “closing” the nuclear fuel cycle include lowering the radiotoxicity of the residual waste, shortening the time frame of concern, smaller amounts of radioactive waste, the elimination of plutonium, and the ability to make optimized waste forms.
The incorporation of non-fertile actinides into a fuel matrix for a transmuter blanket is of interest to the Advanced Fuel Cycle Initiative. One of three proposed candidate matrices for the transmuter is a metallic alloy fuel matrix. Metallic fuels are an outstanding candidate for a transmutation fuel due to excellent irradiation performance and ease of fabrication. However, incorporating a volatile constituent during fabrication of these or other fuel pins presents a challenge.

Volatile actinides, particularly americium, are susceptible to rapid vaporization during the traditional metal fuel casting processes. The actinide vapors boil off, and flow out of the system into the off-gas recovery system, resulting in only a fraction of the volatile actinide charge being incorporated into the fuel pins. The loss of these actinides from the fuel greatly complicates the task of preparing them for transmutation, requiring additional recovery and fuel fabrication steps to try to incorporate the volatile actinides into the transmuter fuel.

RESEARCH OBJECTIVES AND METHODS

The goal of this project was to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel. The research effort centered on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at UNLV and Argonne National Laboratory (ANL). Assessing critical equipment and process variables is required to build a successful system that will operate efficiently.

RESEARCH ACCOMPLISHMENTS

Development of the induction-heating model: Modeling efforts centered on the development of the governing equations, incorporating these equations into computer codes, setting up a test problem, and making preliminary calculations for the geometry of interest. Detailed analyses were conducted for an induction skull melter previously built and tested by ANL.

Modeling of casting process: Efforts continued to improve a model for the casting of fuel pins. Work considered the flow of the melt into the mold and heat transfer into the mold during solidification (after flow has stopped). Results from an energy balance model indicate that the thermal mass would typically be greater than needed to solidify the melt within the mold. The results of this simple model have aided in designing a mold to hold and solidify the fuel pins. Detailed flow and heat transfer models show how the melt flows into the mold and ultimately solidifies.

In order to test the impact of process parameters (temperature, pressure, alloying elements, etc.) on the casting process, parametric studies were carried on different processing parameters. These studies centered around model development and analysis of the impact of mold preheating on heat transfer into the model. Results will assist with determining which process parameters are critical in manufacturing a suitable metallic fuel pin.

Amercitium Transport Models: A model that analyzes the transport of americium from the melt to the vapor phases above the crucible was also developed. The model considers mass transport in the melt, vaporization at the surface, and transport through the vapor phase. Parametric studies were performed to evaluate the impact of different properties or situations on the transport of americium from the melt.

Develop Prototype Furnace Design: A preliminary furnace design that can be built and tested with surrogate materials is critical in order to assess the viability of metal fuels. A preliminary analysis of potential surrogate materials was completed. Manganese appears to be an acceptable surrogate material. Discussions will be held with Argonne National Laboratory staff members to insure that no health and safety issues prevent manganese from being used.

Axial velocity profile for constant inlet pressure of 20 kPa (Mold temperature = 400°C, initial melt temperature = 1500°C, interfacial heat transfer coefficient = 2,000 W/m²-K).
TASK 1 PROFILE

Start Date: June 2001
Completion Date: June 2004

Theses Generated:

Journal Article:

Conference Proceedings:

Contour plot and surface plot of field variable S in the induction field. Peak occurs near the top edge of the melt region.

Research Staff
Yitung Chen, Principal Investigator, Associate Professor, Mechanical Engineering Department
Darrell W. Pepper, Professor, Mechanical Engineering Department; Director, Nevada Center for Advanced Computational Methods
Randy Clarksean, Adjunct Professor, Mechanical Engineering Department

Students
Taide Tan and Xiaolong Wu, Graduate Students, Mechanical Engineering Department
Yulien Chen and Paul Lawson, Undergraduate Students

Collaborators
Mitchell K. Meyer, Leader of Fabrication Development Group, Nuclear Technology Division, Argonne National Laboratory
Steven L. Hayes, Manager of Fuels & Reactor Materials Section, Nuclear Technology Division, Argonne National Laboratory
One of the key technologies for the deployment of accelerator-driven transmutation systems is the accelerator itself. Elliptical superconducting niobium cavities are used to increase the efficiency of the high-power accelerators needed to support the transmutation mission.

One of the major sources of energy loss from a superconducting accelerator cavity is a process known as multiple impacting (or “multipacting”) of electrons. This phenomenon limits the maximum amount of energy and power that the niobium cavity can store. As a result, the maximum power available for accelerating the desired charge, as well as the overall performance of the accelerator is reduced. Furthermore, the energy absorbed as a result of multipacting eventually turns into heat. This negatively impacts the performance of both the superconducting cavity and the accelerator.

RESEARCH OBJECTIVES AND METHODS

This project was tasked with examining the impacts of the design and fabrication technologies for these elliptical niobium cavities on their performance. Niobium was selected primarily due to its behavior at low temperatures.

One objective of this study was to experimentally model the fluid flow resulting in the chemical etching of niobium cavities with the aid of a baffle. Numerical analyses tend to show that the current etching process with a baffle does not uniformly etch the cavity surface. Multiple cavity cell geometries were investigated. Optimization techniques were applied in search of the chemical etching processes, which would lead to cavity walls with near ideal properties.

A Monte Carlo secondary electron emission (SEE) code was modified to provide a statistical study of electron impact from Los Alamos National Laboratory (LANL) cleaned niobium samples at near cryogenic temperatures in an ultra high vacuum environment. A one-of-a-kind secondary electron emission test stand was developed to study, in part, the dynamics of the emitted particles subjected to an electron beam. Coordinating code studies with experiments offers a wealth of knowledge regarding the surface physics of the material that can enhance modeling codes at LANL.

Modeling codes, optimization techniques, and experimentation provided UNLV researchers with a well-rounded study to examine existing and novel niobium cavity designs and cleaning processes for the superconducting radio frequency high-current accelerator.

RESEARCH ACCOMPLISHMENTS

Monte Carlo SEE Code Development and Modifications: A Monte Carlo secondary electron emission code based on the “Single Scatter” approach was obtained from Dr. David Joy of both Oak Ridge National Laboratory and the University of Tennessee. The “Single Scatter” approach follows the primary electron and each generation of secondary electron through the entire cascade. The code was modified to allow for surface layer contaminants in the hopes to verify experimental studies. The code only offers approximate results since the inherent mechanisms internal to the code are valid at higher primary beam energies. A SEE code was used to study the initial particle trajectory conditions of the secondary electron released by the primary electron impacted niobium sample. Results were compared with experiments.

SEE Studies: Niobium samples were cleaned both at LANL and Cornell University and used for experimentation. Two types of cleaning procedures have been used: electro-polishing and buffered chemical polishing. In situ pictures of the sample surface were taken with a long-range light microscope for future comparisons.

The experimental setup is unique offering further insights to the SEE process not attained elsewhere. Individual electrons are detected and mapped over the detector surface. With the aid of particle tracking codes, knowledge of the final condition of the electron suggests a family of initial particle trajectory conditions of the emitted electron. Using the Monte Carlo SEE code, the family of initial conditions were evaluated. By March 2004, many of the components of the experimental study reached UNLV with some assembly accomplished. The first SEE measurement was made from the surface of a Faraday cup in September 2004. In December of 2004, the software for the particle positioning detector was finally up and running. The integrity of the code and detector were fine-tuned and initial experiments were completed by April 2005. Experiments on the
surface cleaned samples were completed in May of 2005 experimental studies were completed on the samples provided by LANL.

Revised Etching Process: The current etching method, which uses a baffle to direct the etching fluid toward the surface of the cavity, partially succeeded in achieving its task. However, flow was restricted to the right half of the cavity with very limited circulation in the left half. An alternative design was proposed and modeled. The exit flow is now parallel to flow inlet. Results show that flow circulation was eliminated. The flow is now closer to the surface of the cavity. Optimization techniques were used to improve this design.

Developed Flow Visualization System: To confirm the predictions from the fluid flow models used to analyze the etching process, the UNLV team developed and deployed a flow visualization system. A complete experimental setup, including a computer-controlled x-y traverse and digital camera, was assembled. Flow visualization experiments using a plastic prototype of the niobum cavity used dye injection. Dye injection provided quantitative verification that laminar flow exists within the niobium cavities during etching. Additionally, it verified the absence of re-circulation pockets with in the cavities.

TASK 2 PROFILE

Start Date: June 2001
Completion Date: July 2005

Theses Generated:

Conference Proceedings:

Special Commendation:

A. George and R.A. Schill, Jr., “Preparation Studies for Secondary Electron Emission Experiments on Superconducting Niobium,” American Nuclear Society Student Conference, April 1-4, 2004, Madison, WI. (Outstanding Student Paper Award)

Research Staff

Robert A. Schill, Jr., Co-Principal Investigator, Associate Professor, Department of Electrical and Computer Engineering
Mohamed B. Trabia, Co-Principal Investigator, Chair, Mechanical Engineering Department
William Culbreth, Associate Dean for Research, College of Engineering

Students

Anoop George (Electrical and Computer Engineering) and Satish Subramanian and Qin Xue (Mechanical Engineering), Graduate Students; Myong Holl and Greg Loll, Undergraduate Students

Collaborator

Tsuyoshi Tajima, Team Leader, Accelerator Physics & Eng., LANSCE-1, Los Alamos National Laboratory
BACKGROUND

There is an active international interest in lead-bismuth eutectic and similar liquid lead systems because of the relevance to the transmutation of nuclear waste, fast reactors, and spallation neutron sources.

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For lead-bismuth eutectic (LBE) systems, there is an additional challenge because the corrosive behaviors of materials in LBE are not well understood. Most of the available information on LBE systems has come from the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found that the presence of small amounts of oxygen (on the order of parts per million) in the LBE significantly reduced corrosion. However, a fundamental understanding and verification of its role in the corrosion of steels is incomplete.

RESEARCH OBJECTIVES AND METHODS

This research program has analyzed various steel samples that have been exposed to lead-bismuth eutectic as part of the national program to develop LBE and allied technologies. The goal of this research was to understand the basic science of corrosion in the steel/LBE system. This information will be paramount in developing engineering efforts to control, avoid, and/or minimize the effect of corrosion of steels by LBE in transmuter and LBE systems. Additionally, this program provided UNLV researchers with hands-on experience that will be crucial in developing the UNLV molten metal program.

Investigators performed post-experiment testing and analysis on steel samples that have been exposed to lead-bismuth eutectic. Surface analysis techniques were employed that included scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectrometry, and laser Raman spectrometry.

These techniques, applied to the steel surface, have probed the surface morphology, elemental composition, and oxidation states as a function of position. Chemical alterations and resulting chemical species were studied at the steel surface. Additionally, the experimental facilities at the Advanced Light Source (Lawrence Berkeley National Laboratory) and the Advanced Photon Source (Argonne National Laboratory) were used to characterize the systems. This allowed spectroscopic characterization of the stainless steel before and after interaction with LBE to determine its composition.

RESEARCH ACCOMPLISHMENTS

Several samples were compared having the same or similar compositions (standard nuclear grade 316/316L) but different surface preparation, including cold-rolled, annealed and a special low-corrosion treatment, “D-9.” The cold-rolled sample had an order of magnitude less corrosion (i.e., both lower oxidation and less weight change) than the annealed sample.

Sputter depth profiling of the exposed annealed sample and cold-rolled sample showed a marked difference in oxide layer composition between the annealed and cold-rolled sample. The annealed sample showed a complex oxide structure (iron oxide over chromium/iron oxide mixtures) of tens of microns thickness, while the cold-rolled sample was covered with a simple, primarily chromium oxide layer approximately one micron thick. Interestingly, the D-9 material behaved more like the annealed than the more resistant cold-rolled material. In addition to these studies of 316/316L steel, other compositions of steel such as HT9 were also studied. These studies show the importance of surface preparation in resistance to corrosion by LBE.

Another alloy studied in the Institute for Physics and Power Engineering in Obninsk, Russia series was EP823, an alloy similar to HT9 but with added silicon to improve corrosion resistance. A study of silicon in iron was undertaken to investigate the role of silicon in steels for LBE service. A series of silicon-containing iron samples were examined that were exposed to LBE at Idaho National Laboratory. Several unique features were observed: at low silicon concentrations in the starting alloy, the silicon was found as a silicate (SiO3−). As the concentration of silicon increased in the starting alloy, a layer containing silica (SiO2) was found also. Under the oxide layer, the silicon concentration in the metal was found to be decreased by approximately 30%. These were model systems, and the oxide layers that formed were not very protective. In all cases, pockets of LBE were found underneath the oxide layer, potentially corroding the steel.
TASK 3 PROFILE

Start Date: June 2001
Completion Date: May 2004
(This work continued under Task 18, see pages 40-41.)

Thesis Generated:

Journal Article:

“Chemical Species Involved in High Temperature Corrosion Resulting from the Interaction Between Stainless Steel and Lead-Bismuth Eutectic,” 38th Western Regional Meeting of the American Chemical Society, Long Beach, CA, October 15-18, 2003.

Research Staff

John Farley, Principal Investigator, Professor, Department of Physics
Allen Johnson, Assistant Professor, Department of Chemistry
Dale Perry, Lawrence Berkeley National Laboratory; Adjunct Professor, UNLV Department of Physics

Students

Brian Hosterman, Dan Koury, and Umar Younas, Graduate Students, Department of Physics
Thao Trung Ho and Julia Manzerova, Graduate Students, Department of Chemistry
Denise Parsons and Lindsay Wylie, Undergraduate Students, Department of Physics
Stacy Sidle (Rhodes College) and Chris Harland (University of Puget Sound), Visiting Undergraduate Students

Collaborators

Ning Li, LBE Project Leader, Los Alamos National Laboratory
Eric P. Loewen, Idaho National Laboratory
BACKGROUND

The primary objective of this task was to evaluate the effects of environmental and mechanical parameters on environment-induced degradations of candidate target structural materials for applications in spallation-neutron-target systems. The materials selected for evaluation and characterization were martensitic stainless steels including Alloys HT-9, EP-823, and 422.

Accelerator-driven transmutation systems involve bombarding a target material such as molten lead-bismuth eutectic (LBE) by a proton beam, thereby producing neutrons. The molten LBE target will be contained in a subsystem structural container made of a suitable material such as Alloys HT-9, EP-823, and 422. During the transmutation process, the target structural material may become susceptible to different types of environment-induced degradations such as stress corrosion cracking (SCC), hydrogen embrittlement (HE), and localized (pitting and crevice) corrosion. While the performance of these candidate materials in the presence of a molten LBE is yet to be evaluated, substantial work has been performed in this task to evaluate the corrosion behavior of these alloys in aqueous environments of interest. These baseline data can eventually be utilized to compare them to those yet to be generated in the molten LBE environment.

RESEARCH OBJECTIVES AND METHODS

This investigation was focused on the evaluation of the susceptibility of all three martensitic alloys to SCC, HE, and localized corrosion in neutral and acidic aqueous environments at ambient and elevated temperatures. State-of-the-art experimental techniques including constant-load (CL), slow-strain-rate (SSR), and cyclic potentiodynamic polarization were employed to evaluate these corrosion phenomena. The susceptibility of these alloys to HE was evaluated by applying cathodic potential while the test specimens were loaded in tension by the SSR method. Optical microscopy and scanning electron microscopy (SEM) were used to analyze the metallurgical microstructures and fractography, respectively of the tested specimens.

RESEARCH ACCOMPLISHMENTS

The significant results derived from this task are summarized as follows:

- No failures were observed in smooth specimens of Alloys EP-823 and 422 in the neutral solution when tested at CL. However, Alloy HT-9 showed failure in the 90°C neutral solution at an applied stress (σ_a) of 112 ksi.
- All three alloys exhibited failure in the 90°C acidic solution at 95% of their YS values. Alloys HT-9 and 422 also showed failures at σ_a of 90 and 85% of their YS values, but no failure was observed with Alloy EP-823 at stresses below 0.95 YS.
- The magnitudes of the threshold stress (σ_th) for cracking for Alloys EP-823, HT-9 and 422 were 100, 95, and 98 ksi (689, 655, and 676 MPa), respectively based on CL testing in the 90°C acidic solution. The presence of a notch in the test specimen reduced the σ_th values in all three alloys.
- The results of SSR testing in the acidic solution involving smooth specimens showed gradual reduction in ductility parameters (percent elongation - %El and percent reduction in area-%RA), time-to-failure (TTF), and true failure stress (σ_f) with increasing temperature, indicating a synergistic effect of pH and temperature in enhancing the cracking susceptibility. The presence of a notch in the specimen produced enhanced SCC susceptibility due to the stress concentration. However, the σ_f value was increased due to plastic constraint resulting from triaxial stress field at the notch.
- The magnitude of %El, %RA, TTF, and σ_f was reduced under...
an applied potential of -1,000 mV (Ag/AgCl) compared to those obtained without an applied potential.

- The failure mode at the primary fracture face of the specimen tested in the neutral solution, determined by SEM, was characterized by dimpled microstructure, indicating ductile failures. However, intergranular and/or transgranular brittle failures were observed in the acidic environment.
- Secondary cracks with branching were observed by optical microscopy on all three tested materials along the gage section of the specimens tested in the acidic solution.

TASK 4 PROFILE

Start Date: June 2001
Completion Date: December 2004

Theses Generated:

Journal Articles:

Research Staff

Ajit K. Roy, Ph.D., Principal Investigator, Associate Professor, Mechanical Engineering Department

Students

Phani P. Gudipati, Mohammad K. Hossain, Ramprashad Prabhakaran, Sudheer Sama, and Venkataramakrishnan Selvaraj, Graduate Students, Mechanical Engineering Department
Nikita Agarwal, Undergraduate Student, Electrical Engineering Department
Aaron Tippetts, Undergraduate Student, Mechanical Engineering Department

Collaborators

Ning Li, Ph.D., LBE Project Leader, Los Alamos National Laboratory
Stuart A. Maloy, Ph.D., AFCI Materials Team Leader, Los Alamos National Laboratory
Task 5
Modeling Corrosion in Oxygen Controlled LBE Systems with Coupling of Chemical Kinetics and Hydrodynamics
S. Moujaes and Y. Chen

BACKGROUND

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure.

The goal of this project was to develop a corrosion model that combines the chemical kinetics and hydrodynamics in the system to predict corrosion rates. In this effort, these models were developed for the Delta test loop at Los Alamos National Laboratory (LANL) and a theoretical LBE accelerator target system. The resulting models are predictive tools that can be validated with corrosion test data and used to systematically design tests, interpret the results, and provide guidance for optimization in LBE system designs.

RESEARCH OBJECTIVES AND METHODS

There were two subtasks to this research. The first subtask developed the necessary tools to predict the levels of oxygen and corrosion products close to the boundary layer using Computational Fluid Dynamics (CFD) modeling. The second subtask predicted the corrosion process kinetics between the LBE and structural materials by incorporating pertinent information from the first subtask.

STAR-CD software was used to model the corrosion and precipitation rates in the LBE loop. This allowed researchers to compare the theoretical analysis with available experimental results. The surface corrosion analysis is being developed as a user supplied subroutine to STAR-CD. The information obtained from this analysis theoretically predicts likely locations for corrosion and precipitation along the axial lengths of the test loop.

The first subtask involved performing a series of parametric runs. Models prepared from the earlier work were used as guides for the parametric studies. Variables investigated included the average eutectic flow velocity, average mean bulk eutectic flow, inlet temperatures, and average inlet oxygen concentrations in the three geometries: a straight flow section, an elbow bend, and a tee section. The thermal-hydraulics study involved using a 3-D CFD code simulation to obtain averaged values of stream-wise velocity, temperatures, and oxygen and corrosion product concentrations at various axial locations close to the walls of several partial loop sections within the LBE loop. The oxygen and corrosion products inside the test loop were simulated to participate in chemical reactions with the eutectic fluid as it diffused towards the walls. Details of the geometry of these loops were obtained from scientists at LANL. These values acted as a set of starting boundary conditions for the second task.

The second subtask focused on the kinetics of the dissolution/deposition process as a function of temperature, flow velocities, dissolved metal concentrations, oxygen potentials of the system, the kinetics of film formations in the presence of oxygen, and the kinetics of metal transport through the oxidized surface film.

RESEARCH ACCOMPLISHMENTS

Geometries and flow conditions similar to experimental results in the literature were set up and used to benchmark the models assembled using the STAR-CD software. Test case studies indicated that the outcome from STAR-CD was correct and that numerical modeling is applicable to the research in this problem.

Using these models, concentration flux profiles were obtained for both laminar and turbulent profiles in a straight pipe. This information was then used for the chemical kinetics analysis for corrosion on the inside walls of the LBE loop.

Several CFD runs were made to simulate flow in pipe fittings. These include sudden contraction, sudden expansion and a T-joint. Testing of a new turbulent model was also performed using the k-ε Chen model which works better with high Re number flows and predicts some of the peculiar flow features relevant to sudden expansions where eventually vortex generation is expected at the backward step.
The k-ε Chen model which works better with high Re number flows and predicts some of the peculiar flow features relevant to sudden expansions where eventually vortex generation is expected at the backward step.

A user subroutine was developed that simulated the corrosion/precipitation processes and predicted their maximum/minimum location in a typical LBE loop. A chemical reaction subroutine dealt with surface chemistry. The Arrhenius Equation was used to calculate the reactant reaction rate but some constants and coefficients used in calculating chemical reaction rate were updated using some empirical data found in chemical reaction research papers and textbooks.

The location in the loop with the highest concentration occurred in the baffle cell which is adjacent to the iron surface while the area with lowest concentration occurs around the central line of the pipe. It can be inferred that after Fe₃O₄ is formed, it diffuses to the fluid area close to the central line of pipe. But, overall, the concentration value was very low.

Similar to the concentration gradient, the area with the highest temperature occurs in the baffle cell which is adjacent to iron surface while the area with lowest temperature occurs around the central line of the pipe. It is obvious, based on the model, that heat was transferred from inner wall to central area of the pipe due to the setting of constant heat flux boundary conditions in the baffle cells.

The chemical reaction model subroutine worked well and this simple CFD model roughly simulated the chemical reaction, diffusion, and heat transfer condition inside the LBE piping. Since the subroutine works well, it can be used in much more complex modeling.

TASK 5 PROFILE

Start Date: August 2001
Completion Date: August 2004

Theses Generated:

Conference Proceedings:

Research Staff

Samir Moujaes, Principal Investigator, Associate Professor, Mechanical Engineering Department
Yitung Chen, Associate Professor, Mechanical Engineering Department; Associate Director, NCACM

Students

Narain Armbya, Kanthi Dasika, Guanjun Li, and Chao Wu, Graduate Students, Mechanical Engineering Department

Collaborators

Ning Li, LBE Project Leader, Los Alamos National Laboratory
BACKGROUND

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for complete destruction of waste isotopes from used nuclear fuel is accelerator-driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause nuclear reactions in subcritical systems.

To design these systems, complex reactor physics computer codes and highly detailed data libraries are used to compute the reactivity of systems, reaction rates, destruction rates, and nuclear-induced damage rates to materials. In this project, a Russian-built detector system was used to make measurements of neutrons generated in a central target by a variety of accelerators.

RESEARCH OBJECTIVES AND METHODS

A prototype modular Neutron Multiplicity Detector System (NMDS) with 64 ³He gas counting tubes was developed to measure the neutron multiplicity of scaled lead accelerator targets. Its modularity allows it to be configured for a variety of experiments to measure neutron multiplicity from different sources: protons, electrons, high-energy neutrons, or even cosmic particles such as muons.

This system may be used to measure neutron production in a variety of configurations, on a variety of targets, with a variety of source particles, and over a range of energies (10 to 800 MeV) to produce a large database that may be used to validate neutron multiplicity predictions. This should enable the quantification of systematic errors in the latest version of MCNPX and its accompanying data libraries. Time-dependent measurements of neutron production in the NMDS should provide a systematic set of precise data that will enable direct comparison with code calculations.

Comparison of results from the NMDS may decrease uncertainties and allow the derivation of relative measurements in the few percent range at the 95 percent confidence level. In addition, discrepancies that are discovered with this system can contribute to the improvement of the codes and data libraries. Improved models of beam line experiments, accelerator targets, and detector designs will result from these code improvements.

RESEARCH ACCOMPLISHMENTS

Initial work in this project included the development of geometric models of the target-detector assemblies for use with the MCNPX radiation transport code to optimize the design of the NMDS. Radiation transport calculations of neutron detection efficiency were completed and interpreted prior to developing designs of the neutron detection systems needed to perform multiplicity measurements. Following completion of the modeling, a fabrication effort was initiated. A series of MCNPX models were developed at UNLV for a cylindrical target. Another generic model was created to examine response times, collection efficiencies, and escape probabilities. In addition to modeling at UNLV, colleagues at the V.G. Khlopin Radium Institute (KRI) completed preliminary radiation transport modeling using the CONTROL code developed by KRI researchers.

The 64-element ³He-detector-based NMDS was fabricated by KRI and shipped to UNLV. It was assembled at UNLV in the “CUBE” geometry (30 cm x 30 cm x 30 cm of lead inside, and 8 to 12 detectors on each of the 6 sides of the cube). Detection efficiencies in ³He as well as fractional capture in Pb and polyethylene were calculated. A ²⁵²Cf source was used to calibrate the NMDS. Measured efficiencies were comparable to calculations and measurements were completed at KRI.

ISU-IAC Experiments

To evaluate its usefulness for measurement of spallation neutrons, the NMDS was transported to the Idaho Accelerator Center at Idaho State University where it was used in conjunction with a linear accelerator to determine its performance.

An americium-beryllium (AmBe) source with a neutron production rate of 2500 n/s ±10% was placed against the face of the Pb in all 5 configurations to measure the overall efficiency of the system. This weak source exceeded the counting capacity of the NMDS, such that its efficiency was reduced to 3.5% compared to earlier values at UNLV of 20-30% with source strength of ~600 n/s. This was the first indication of a severe count-rate limitation of the NMDS.

To accommodate this limitation, the accelerator was “de-tuned” to reduce the neutron production rate within the boundaries of the
detectors. All results from the ISU-IAC accelerator-driven experiments were influenced by a count-rate limitation that is inherent in the NMDS hardware and software.

Accelerator-based testing commenced with the electron beam and several parameters and results were examined and compared to radiation transport predictions in these studies. These parameters include the neutron absorption time or lifetime, efficiencies of the systems and individual detectors, and multiplicity distributions.

NTS-RSL Experiments
In an effort to determine system contributions to dead-time, a dead-time measurement experiment was conducted at the Remote Sensing Laboratory (RSL) of the Nevada Test Site (NTS). Results indicated that the performance of individual detectors depends upon the number of detectors operating as well as the source strength. The individual detectors were determined to have a dead-time coefficient of a few ms, which would indicate a capability of the total system to count several thousand neutrons per second. However, the system has never counted more than 200 n/s, even with strong neutron sources. Each system component contributes to dead-time. In the final analysis, however, these experiments at ISU-IAC and NTS-RSL demonstrated that the performance of the system is critically limited by the Russian hardware and, as a consequence of these experiments, a modern data acquisition system was acquired that will support the maximum performance of each detector and all the detectors combined.

Graduate student Shruti Patil checks signals on one of the 8-detector control boxes of the NMDS.

TASK 6 PROFILE

Start Date: August 2001
Completion Date: December 2005

Conference Proceedings:

BACKGROUND

Ensuring the safety of workers at accelerator-driven nuclear facilities is paramount before these systems can be deployed for nuclear transmutation or any other mission. Spallation neutron sources produce as many as 660 rare radionuclides in either the target or blanket during the spallation process. No data exists for many of these radionuclides in the current radiation protection guidelines and standards. This research program seeks to address this problem through generating internal and external dose coefficients (DCs) for these “new” isotopes.

Dose coefficients permit simple determination of radiation dose associated with various exposure scenarios, and ultimately permit radiation safety personnel to assess the health risks to workers in a nuclear facility. Specifically, radiation safety personnel use dose coefficients to determine the radiation dose incurred to a tissue or organ system from a given exposure. These parameters are often expressed in terms of Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs).

RESEARCH OBJECTIVES AND METHODS

Results from this study will be used to produce ALIs and DACs for these rare radionuclides created by spallation target systems that are not included in Federal Guidance Report (FGR) No. 11. Additionally, DCs developed will augment the radiological data in Publications 68 and 72 of the International Commission on Radiological Protection (ICRP), contributing to the safe operation of accelerator-driven nuclear systems.

A Dose Coefficient Working Group was established in 2001 (the first year of the project) to direct and oversee consortium activities. Representatives from the Dose Coefficient Working Group developed and verified a methodology to determine internal and external dose for select radionuclides. The first step involved obtaining radiological data from the ENSDF nuclear physics database developed at Brookhaven National Laboratory. Data collected included decay modes, decay energy levels, and radiation energies and intensities.

The DC working group prioritized a list of radionuclides projected to be released via air emissions or in the inventory of a mercury target following a lengthy irradiation period. Only radionuclides with a half-life greater than one minute were considered. These 81 radionuclides were then categorized into three distinct categories, based on half-life, available information, and other technical factors.

All Category 2 radionuclides were investigated to determine which database was most current. However, this task was not straightforward and thus both databases were used to calculate all radionuclides that had complete data. Dose coefficients were then generated for the Category 2 radionuclides using both ENSDF and NUBASE. The results were compared and showed good agreement. Metabolic models and data from ICRP publications

Dose Coefficient Working Group Methodology Flow Sheet. The ENSDF code is used to obtain nuclear physics data. The EDISTR code prepares the data for input into the dose calculation code DCAL.
(30 and 66) were applied in order to use the best technology available and to maintain consistency with current standards. In accordance with FGR No. 11, dose coefficients were evaluated for an adult male with the target tissues of gonads, breast, lung, red marrow, bone surface (endostem), thyroid, remainder, and total committed effective dose equivalent (this considers total dose incurred to specific organs or tissues with respect to radiation type over a period of 50 years). Following determination of these variables, values of ALIs and DACs were then calculated for each radionuclide.

The consortium investigated the competing databases to determine the most appropriate one to use for dose coefficient calculations. However, conflicting data made it unclear which was better suited for this task, therefore the previously calculated coefficients were reported. Additionally, time was devoted to trying to acquire missing nuclear data for radionuclides in category three. The consortium believes large scale accelerator driven experiments are needed to accomplish this goal.

RESEARCH ACCOMPLISHMENTS

The research consortium comprised of representatives from several universities and national laboratories has successfully generated internal and external dose conversion coefficients for twenty radionuclides produced in spallation neutron sources. These dose coefficients fill data gaps exist in Federal Guide Report No. 11 and in Publications 68 and 72 of the International Commission on Radiological Protection, and two articles containing the data have been accepted for publication in the *Journal of Health Physics*. Currently, more nuclear data is needed for the rare radionuclides produced from a mercury target. While attempting to develop a workable plan to acquire this missing data, Q-value discrepancies were investigated and reported. A detailed plan was developed to start a research effort at Idaho State University to produce rare radionuclides. This process will allow for the investigation of the missing nuclear data needed to complete dose coefficients.

TASK PROFILE

Start Date: June 2002
Completion Date: April 2006

Theses Generated:

Publications:

Research Staff

Philip W. Patton, Principal Investigator, Associate Professor, Department of Health Physics

Mark Rudin, Associate Professor, Department of Health Physics

Students

John Shanahan, Yayun Song, Tserenpagma Chaoui, Ashley Gann, Sung Yop Kim, Deanna Tuttle, and Jeffrey Wyler, Graduate Students, Department of Health Physics

Collaborators

Tony Andrade and Brent Boyack, Los Alamos National Laboratory

Keith F. Eckerman, Oak Ridge National Laboratory

Rich Brey, Associate Professor, Idaho State University

Adam Arndt and Chandra Gold, Graduate Students, Idaho State University

Faculty and graduate students from Georgia Institute of Technology, University of Florida, Francis Marion University
The chemical processing of used nuclear fuel is an integral component of any strategy for the transmutation of nuclear waste. Due to the large volume of material that must be handled in this first step of the transmutation process, the efficiency of the separations process is a key factor in the potential economic viability of transmutation strategies. The ability to optimize the chemical separation systems is vital to ensure the feasibility of the transmutation program.

Systems analysis, or total systems modeling, is one of the strongest tools available to researchers for understanding and optimizing complex systems such as chemical separations processes. Systems analyses permit researchers to present decision-makers concise evaluations of system options and their characteristic features. The primary goal of this project was to develop a systems model that can be used to parameterize and optimize chemical separations processes.

RESEARCH OBJECTIVES AND METHODS

This work includes reviewing and analyzing the Argonne Model for Universal Solvent Extraction (AMUSE) code structure, examining other possible implementations, defining software activities, developing a verification plan, and modifying and improving the software. This work also involves redefining the graphical user interface (GUI) to increase the utility of the AMUSE code suite as a stand-alone analytical package.

Developing a systems engineering model required discussions with Argonne National Laboratory personnel to identify pertinent components of the chemical separations process. Each step required model development to establish its significance with regards to the overall process. Comprehensive model development involved defining the inputs and outputs from individual models and establishing how each connected to the other within the chemical separations process.

RESEARCH ACCOMPLISHMENTS

This project developed software for a general-purpose systems engineering model named Transmutation Research Program System Engineering Model Program (TRPSEMPro) that will be used to improve productivity in the design process. The system model also includes various numerical optimization technologies and “Design of Experiments” study technologies.

Object-Oriented Analysis and Design was used for developing and implementing the TRPSEMPro system. A graphical notation, Unified Modeling Language, was employed to express object-oriented designs. Microsoft.Net architecture was used for system development and Visual Basic.NET was the major programming language behind the system. XML (Extensible Markup Language) was used widely to describe data and sets of elements and attributes that can be defined by researchers. XML Schema was used for describing the structure of the system engineering model. XML Database was used to store all the run-time data for the AMUSE module. Since significant experimental data will be generated and require systematic analysis, MS SQL Server 2000 database was selected for housing all run-time parameters and simulation results.

The model is combined with commercial software packages MATLAB OPTIMIZATION toolbox and SIMULINK module from Mathworks.

The system model, TRPSEMPro, considers input simulation modules from multiple disciplines with inconsistent input/output handles. The package with the aid of middleware can communicate with various simulation modules developed by other research groups and create an XML-based model description file. The critical components for the system engineering modeling include System Manager, Model Integration, Study Plan, and Solution Viewer.

The introduction of the middleware design provides flexibility to interface to other simulation modules without significant program modification.
The demonstration code from AMUSE macros is kept intact during all system development stages. AMUSESimulator, the middleware software package which was designed and implemented to serve as a bridge between the AMUSE code, and the systems engineering model, TRPSEMPRO. Such an approach can reduce the time-consuming modification on the system model side and keep flexibility on the simulation modules development side.

Further system enhancement allowed the user to select various process types. An interface for conducting multiple runs was created. The GUI included a list of variables, a range for those variables, all of which provide an envelope of end results.

TASK 8 PROFILE

Start Date: August 2001
Completion Date: August 2004
(This work continued under Task 24, see pages 52-53.)

Thesis Generated:

Conference Proceedings:

The main GUI for AMUSESimulator includes five parts as shown here. Menu and toolbar (Top Part) – where user can invoke all the available commands. Flowsheet contents displayed in tree view format (Left Part) – where user can select different section, stream. Flowsheet contents displayed in way of drawing blocks (Middle Part) – where user can select different sections, streams by clicking mouse at corresponding area.

The Research Staff:

Yitung Chen, Principal Investigator, Associate Professor, Mechanical Engineering Department
Darrell W. Pepper, Professor, Mechanical Engineering Department; Director, Nevada Center for Advanced Computational Methods
Sean Hsieh, Research Assistant Professor, Mechanical Engineering Department

The Students:

Sushma Gujula, Jianhong Li, Haritha Royyuru, Sridhar Munaga, and Lijian Sun, Graduate Students, Mechanical Engineering Department

The Collaborators:

James J. Laidler, Senior Scientist, Chemical Technology Division, Argonne National Laboratory
George F. Vandegrift, III, Senior Scientist, Chemical Technology Division, Argonne National Laboratory

The main GUI for AMUSESimulator includes five parts as shown here. Menu and toolbar (Top Part) – where user can invoke all the available commands. Flowsheet contents displayed in tree view format (Left Part) – where user can select different section, stream. Flowsheet contents displayed in way of drawing blocks (Middle Part) – where user can select different sections, streams by clicking mouse at corresponding area.

The Research Staff:

Yitung Chen, Principal Investigator, Associate Professor, Mechanical Engineering Department
Darrell W. Pepper, Professor, Mechanical Engineering Department; Director, Nevada Center for Advanced Computational Methods
Sean Hsieh, Research Assistant Professor, Mechanical Engineering Department

The Students:

Sushma Gujula, Jianhong Li, Haritha Royyuru, Sridhar Munaga, and Lijian Sun, Graduate Students, Mechanical Engineering Department

The Collaborators:

James J. Laidler, Senior Scientist, Chemical Technology Division, Argonne National Laboratory
George F. Vandegrift, III, Senior Scientist, Chemical Technology Division, Argonne National Laboratory

BACKGROUND

The safe and effective manufacturing of actinide-bearing fuels for any transmutation strategy requires that the entire manufacturing process be contained within a shielded hot cell environment. To ensure that the fabrication process is feasible, the entire process must be designed for remote operation. The equipment must be reliable enough to perform over several decades, and also easy to maintain or repair remotely. The facility must also be designed to facilitate its own decontamination and decommissioning. In addition to these design factors, the potential viability of any fuel fabrication process will also be impacted by a number of variables, such as the current state of technology, potential problem areas, deployment scaling, facility safety, and cost.

RESEARCH OBJECTIVES AND METHODS

The goal of this research project was to provide technical support to process designers working on the development of the fuel cycles for transmutation applications. Detailed process models were developed to better define the impact of fuel choice on the transmuter fuel cycle, including relative process losses, waste generation, and plant capital cost. These process models provide insight regarding required plant size and number of plants needed to mesh with the fuel recycling line. They also determine requirements for automation.

Manufacturing models for large-scale production in a hot cell environment were also developed. Combined, these two models allow the assessment of plant layout, and provide the framework for estimation of plant capital and operating cost estimates, and for feasibility in general. The need for development in the areas of robotic and sensor technology was assessed. The manufacturing technology developed for hot cell applications was also applicable to other, more general uses, where occupational hazards prevent human presence near processes.

The research work was divided into several tasks and subtasks:

Methods and Processes – A literature survey and detailed analysis of the research and development pertaining to candidate processes for transmuter fuel manufacture was performed. Industry standards were used to refine equipment, instrumentation, and control specifications, and assessed the reliability and safety of operations.

Simulations – This task modeled manufacturing processes to generate a realistic assessment of plant layout, size, feasibility, and technology development required for large-scale remote fabrication of fuel. Modeling of the candidate fuel manufacturing processes was conducted using the MSC.visualNastran and ProEngineer simulation software tools. The modeling of powder-processed fuels was completed, and the modeling of other fuel types (metallic, TRISO etc.) was initiated.

Process and Equipment for Autonomous Manufacturing – This task developed an understanding of the cost and capability of current generation remotely operated equipment suitable for use in radiation environments. Monitoring of the market for equipment and components with regard to suitability for automated manufacturing under hot cell conditions was conducted.

Sensors, Controls, and Operational Safety – This task determined the adequacy of current technology and the need for suitable sensor technology development for deployment in hard radiation environments. A means to identify the precise location and spatial orientation of all parts in the robot’s work envelope were implemented. The ability to position and handle materials along with trouble shooting techniques were evaluated. Radiation hardened vision systems appear to be promising technologies.

The Wäelischmiller robot inserts the fuel pins in the cladding tube.

Friction Force (N) between Second Pin and Cladding Tube vs. Time (sec) during Insertion.
Cost, Feasibility, and Large Scale Deployment – This task developed the database necessary to provide cost estimates and differential cost for various fuel manufacturing options. Efforts were initiated to tabulate and quantify estimates regarding projected cost, reliability, and plant life.

RESEARCH ACCOMPLISHMENTS

A special simulation model with a Waelischmiller hot cell robot was developed and coupled with MatLab control software. Matlab provides the interface with the robot and is used to control the system. This renders a realistic simulation of the forces and torques present during robot motion. A 3-D manufacturing process simulation using computer aided design models and the Newtonian dynamics of the moving components was developed.

Results exist in the form of movies, data sets, and images. Simulations for several robot types were developed and their proper kinematic configuration was verified. The simulations permit the detailed analysis of forces and torques in any modeled part or component.

While the simulation process generally worked flawlessly, the simulation time rose considerably as more details were added to the simulation. The speed of the simulation has been increased about 100-fold by moving to fast dual-processor computers.

Efforts to develop a vision-based methodology for locating and identifying objects within the robot’s workspace were conducted using the Artificial Intelligence algorithm for object identification.

Another accomplishment involved the development of algorithms for knowledge based pattern recognition using IF (a set of conditions is satisfied) THEN (a set of consequences can be executed) routines. Other simulation variables established included pattern matching using clustered indexing vectors containing information about an object and feature vector indexing, where a 3-D object is segmented into a set of simple geometric features. Each feature is stored with its vector segmentation and geometry information (magnitude, inner angle, etc.).

TASK 9 PROFILE

Start Date: August 2001
Completion Date: August 2004
(This work continued under Task 22, see pages 48-49.)

Thesis Generated:

Conference Proceedings:

Research Staff
Georg Mauer, Principal Investigator, Professor, Mechanical Engineering Department
Caroline Wiejak, Visiting Scholar, Ecole Supérieure d'Ingénieurs en Electronique et Electrotechnique, Noisy-le-Grand, France

Students
Jae-Kyu Lee, Jamil Renno, and Richard Silva, Graduate Students, Mechanical Engineering Department

Collaborators
Mitchell K. Meyer, Group Leader, Fabrication Development Group, Nuclear Technology Division, Argonne National Laboratory
Task 10
Development of a Mechanistic Understanding of High-Temperature Deformation of Alloy EP-823
A. K. Roy and B.J. O’Toole

BACKGROUND
During the transmutation process, a significant amount of heat can be generated in a molten lead-bismuth eutectic (LBE) target, which will be contained in a subsystem structural container made of a suitable martensitic iron-chromium-molbdenum (Fe-Cr-Mo) stainless steel such as Alloys EP-823, HT-9 and 422. These materials will be subjected to high tensile stresses while they are in contact with the molten LBE at temperatures ranging between 400 and 600°C. Therefore, a research program was conducted to evaluate the deformation characteristics of all three alloys in properly heat-treated conditions at temperatures relevant to the operating conditions.

RESEARCH OBJECTIVES AND METHODS
Experimental heats of Alloys EP-823, HT-9 and 422 were vacuum-induction-melted, followed by forging and hot rolling. The hot-rolled bars were subsequently thermally treated to produce a fully tempered and fine-grained martensitic microstructure without any retained austenite. They were austenitized at 1010°C, oil-quenched, and tempered at 621°C. The tempering operation was performed for 1.25, 1.75, and 2.25 hours, respectively, to study the effect of tempering time on the tensile properties. The hardness of all materials, before and after tempering, was measured using the Rockwell hardness scale. The tensile properties were determined at temperatures ranging from ambient to 600°C using smooth cylindrical specimens at a strain rate of 10^{-3} sec^{-1} according to the American Society for Testing and Materials (ASTM) Designation E 8. A minimum of two specimens were tested under each condition, with the average value recorded. The metallurgical microstructures of the tested specimens were evaluated by optical microscopy. The primary fracture surface of the tensile specimens was analyzed by scanning electron microscopy (SEM) to determine the extent and morphology of failure. The resultant data include the percentage elongation (%El), percentage reduction in area (%RA), yield strength, and ultimate tensile strength as functions of the testing temperature and thermal-treatments. At least two specimens per material were tested under each of the three metallurgical conditions at the desired temperatures.

RESEARCH ACCOMPLISHMENTS
The significant conclusions drawn from this investigation are summarized below:

- The hardness of all three austenitized and quenched alloys were significantly reduced due to tempering, showing a gradual reduction with increasing tempering time.
- The magnitude of the yield, ultimate and failure stress were gradually reduced with increasing temperature, showing significant reductions at temperatures above 400°C.
- The extent of ductility in terms of %El and %RA was reduced to some extent in the temperature regime of ambient to 300°C due to strain hardening. However, beyond 300°C,
the magnitude of these parameters was enhanced due to increased plastic flow.

- The morphology of failure was characterized by increased plastic deformation at elevated temperatures. Reduced cracking and dimpled microstructures were observed on the fracture surfaces indicating improved ductility at higher temperatures.
- The tempering time did not influence the metallurgical microstructure and the resultant tensile properties to any great extent irrespective of the testing temperature.

TASK 10 PROFILE

Start Date: August 2001
Completion Date: August 2004

Theses Generated:

Journal Article:

Conference Proceedings:

Research Staff

Ajit K. Roy, Principal Investigator, Associate Professor, Mechanical Engineering Department
Brendan J. O’Toole, Associate Professor, Mechanical Engineering Department

Students

Mark Jones, Prad Koppula, Raymond Kozak, Srinivasa Kukatla, Martin Lewis, Venkata Potluri, and Bhagath Yarlagadda, Graduate Students, Mechanical Engineering Department
John Motaka, Undergraduate Student, Mechanical Engineering Department

Collaborator

Stuart A. Maloy, AFCI Materials Team Leader, Los Alamos National Laboratory
BACKGROUND
The first step in any transmutation strategy is the separation of radionuclides in used nuclear fuel. The current separation strategy supporting the Advanced Fuel Cycle Initiative (AFCI) program is based on the use of a solvent extraction separation process to separate the actinides, fission products, and uranium from used commercial nuclear fuel, and on the use of pyrochemical separation technologies to process used transmuter fuels. To separate the fission products and transuranic elements from the uranium in used fuel, the national program is developing a new solvent extraction process, the Uranium Extraction Plus, or UREX+, process based on the traditional solvent extraction reprocessing technologies.

Preparing fuel for possible burnup in light water reactors, fast reactors, or accelerator-driven systems involves various chemical processes to partition the transuranics (neptunium, americium, plutonium, and curium) from the fission products. This results in waste streams that are highly radioactive and require radiation shielding for safety. These transuranic elements pose varied criticality, thermal, and radiation risks during storage and handling. Additionally, the radioactive decay of strontium and cesium waste products of the UREX+ technique produce roughly half of the thermal products and gamma radiation emissions in spent fuel. These radioisotopes require storage for approximately 300 years before heat and radiation hazards decrease to a safe level.

As the volume of waste requiring treatment increases, a higher probability exists that fissionable isotopes of plutonium, neptunium, and curium can accumulate and form a critical mass. Criticality concerns warrant an assessment of the effective neutron multiplication factor, or k_{eff}, to prevent a possible sustained fission reaction. Maintaining k_{eff} below a safe level (<0.95) prevents criticality events. This parameter can be computed for any combination of fuel and geometry using Monte Carlo neutron transport codes. Monte Carlo simulations establish the best means of examining the criticality safety of the proposed separation processes, and allow engineers to develop proper safety measures for the reprocessing and fabrication of actinide fuels.

Candidate storage containers also require analysis to assess the need for radiation shielding. Since minor actinides generate significant amounts of heat through radioactive decay, proposed containment measures must be designed to avoid excessive temperatures. radioactive decay also generates heat that can lead to melting of the fuel during storage and handling.

RESEARCH OBJECTIVES AND METHODS
The primary goal of this research program was to provide the nuclear and thermal modeling support for the development of this new separation process. The assessments of nuclear criticality, radiation for shielding, and thermal analyses of wastes in the Cs/Sr, Pu/Np, and Cm/Am waste streams will assist in designing the UREX+ process. This project was identified as a critical R&D need of the Chemical Technology Division (CTD) at the Argonne National Laboratory (ANL) as safety concerns associated with criticality, shielding, and heat buildup must be addressed prior to further development of the UREX+ process.

UNLV students used nuclear analysis codes to perform assessments of k_{eff} at different points in the separation processes that have been identified by the project collaborators at ANL-CTD. They also worked on problems to assess the need for radiation shielding and to develop software to assess the possibility of excessive temperatures due to radioactive decay in separated wastes. ANL-CTD has provided sample fuel process geometries and compositions for calculation of k_{eff} as a function of the relative concentrations of process salt, transuranics, and fission products.

RESEARCH ACCOMPLISHMENTS
An investigation and analysis of criticality and thermal effects for the safe storage of curium was completed. The assessment involved determining k_{eff} as a function of fuel burnup, initial enrichment, and time since irradiation. Additionally, since curium generates a substantial quantity of decay heat, an analysis was completed to determine the mass of curium that will lead to temperatures high enough to melt the metal. A spherical geometry was
used in the analysis. Heat removal from the sphere was assumed to be a combination of natural convection and radiation heat transfer. This heat transfer analysis was also modified and resulted in an analysis that utilized a more sophisticated and suitable cylindrical container. A report developed for Dr. Laidler at ANL described the in-depth investigation regarding the criticality and thermal properties of curium. The heat transfer spreadsheet was used for other combinations of minor actinides as indicated by ANL.

Investigators also investigated the properties of the other minor actinides, including plutonium and americium. A study was conducted on the values of k_{eff} and ultimate temperature for varying combinations of plutonium, americium, and the remaining minor actinides.

UNLV students used nuclear analysis codes SCALE 4.4 and/or MCNPX to perform assessments of k_{eff} at different points in separation processes that have been identified by ANL-CTD. They also worked on problems to assess the needs for radiation shielding and develop software to assess the possibility of excessive temperatures due to radioactive decay in separated wastes. ANL-CTD has provided sample fuel process geometry and composition for calculation of k_{eff} as a function of the relative concentrations of process salt, transuranic actinides (TRU), and fission products. The research team analyzed the cesium/strontium waste stream, the plutonium/neptunium waste stream, and the americium/curium waste stream.

TASK 11 PROFILE

Start Date: August 2001
Completion Date: August 2004

Thesis Generated:

Reports:

Recommendations for Cm and Am oxide inventories based on criticality and melting temperature.

<table>
<thead>
<tr>
<th>Cm Metal Cylinder</th>
<th>Criticality</th>
<th>Heat Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>rad (cm)</td>
<td>mass (kg)</td>
<td>rad (cm)</td>
</tr>
<tr>
<td>bare</td>
<td>4.6</td>
<td>82.52</td>
</tr>
<tr>
<td>water</td>
<td>2.7</td>
<td>16.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cm$_2$O$_3$ Cylinder</th>
<th>Criticality</th>
<th>Heat Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>rad (cm)</td>
<td>mass (kg)</td>
<td>rad (cm)</td>
</tr>
<tr>
<td>bare</td>
<td>5.4</td>
<td>125.59</td>
</tr>
<tr>
<td>water</td>
<td>3</td>
<td>21.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Am$_2$O$_3$ Cylinder</th>
<th>Criticality</th>
<th>Heat Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>rad (cm)</td>
<td>mass (kg)</td>
<td>rad (cm)</td>
</tr>
<tr>
<td>bare</td>
<td>11.2</td>
<td>1032.28</td>
</tr>
<tr>
<td>water</td>
<td>10.5</td>
<td>850.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Am$_2$O$_3$+Cm$_2$O$_3$ Cylinder</th>
<th>Criticality</th>
<th>Heat Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>rad (cm)</td>
<td>mass (kg)</td>
<td>rad (cm)</td>
</tr>
<tr>
<td>bare</td>
<td>10</td>
<td>737.9</td>
</tr>
<tr>
<td>water</td>
<td>9.3</td>
<td>593.54</td>
</tr>
</tbody>
</table>

Contour Plot of $k_{\text{effective}}$

Contour Plot of the Effective Neutron Multiplication Factor as a function of cylinder diameter and % TRU in the mixture.

Research Staff

William Culbreth, Principal Investigator, Associate Dean for Research, College of Engineering
Denis Beller, Research Professor, Mechanical Engineering Department

Students

Elizabeth Bakker, Robin Jenkins, Maurice Moore, and Jason Viggato, Graduate Students, Mechanical Engineering Department
Daniel Lowe and Robert O’Brien, Undergraduate Students, Mechanical Engineering Department

Collaborators

James J. Laidler, Senior Scientist, Chemical Technology Division, Argonne National Laboratory
George F. Vandergrift, Ill, Senior Scientist, Chemical Technology Division, Argonne National Laboratory
BACKGROUND

One of the most significant tools available for the design and analysis of accelerator-driven systems, such as the systems proposed for transmutation, is the high-energy particle transport code MCNPX. The MCNPX code suite, developed by the national laboratories, allows researchers and engineers to model the complex interactions of high-energy particles with the target and related systems, including the spallation reaction and subsequent neutron multiplication expected in the accelerator targets.

The next stage in the development of the MCNPX code suite is to validate the code by comparing the theoretical predictions from the models with experimental observations. Additionally, the nuclear database, particularly the cross sections (i.e., reaction probabilities) for high-energy particle interactions, needs to be revisited to reduce the uncertainties associated with key nuclear properties.

The Department of Energy, through its national laboratories, has initiated several experiments geared towards removing uncertainties in the MCNPX libraries, with more in the planning stages. These experiments utilize the proton and neutron beam lines at the LANSCE proton accelerator at the Los Alamos National Laboratory (LANL) to irradiate a target, producing a pulse of neutrons which are observed by the experimenters. The results of these experiments are then compared against the predictions from the MCNPX models of the system. By comparing the predicted system behavior to the data acquired from the experiments, the experimenters will be able to validate the MCNPX code and its nuclear data libraries.

Through this project, UNLV researchers were involved in support of these experiments by developing the system models in MCNPX and benchmarking/validating the models against the experimental results. UNLV students were also involved in conducting experiments at LANL and in assisting researchers in designing new experiments.

RESEARCH OBJECTIVES AND METHODS

This project involved modeling several aspects of the LANCSE beam experiments:

- Modeling targets of varying diameter in air, in a vacuum, and in the presence of humid air;
- Modeling various proton beam profiles;
- Modeling the effects of off-axis proton beam impingement on the target;
- Modeling the asymmetry introduced by the steel table below the target;
- Modeling the effect of varying ratios of Pb to Bi and the effect of impurities; and
- Modeling the system, including other structures within the test room.

With the experience gained through modeling these systems, the UNLV researchers developed, with the assistance of their national laboratory collaborators, a benchmark program for the neutron leakage tests and other tests related to transmuter development. A comprehensive three-dimensional computer-aided design (CAD) image of the LANSCE experiments was prepared using ProEngineer to help benchmark the experiments and provide accurate geometric data for MCNPX modeling.

RESEARCH ACCOMPLISHMENTS

Undergraduate student Daniel Lowe worked on neutron spallation tests at the LANSCE facility (Summer 2002). He performed MCNPX runs and worked on calculations for initial benchmarking data. His early MCNPX calculations helped the experimenters determine where foil packets should go and what types of neutron flux to expect from these foils. He also prepared foils to determine neutron flux from the experiment and assisted in radiation counting of the foils. Mr. Lowe completed Solid Works CAD models of the Blue Room at LANSCE and conducted MCNPX simulations of the summer experiments when he returned back to UNLV. His MCNPX runs included estimations of the effect of the proton beam striking the target at positions slightly off of the centerline. He also estimated the neutron energy spectra expected from the time-of-flight neutron detectors.

Through MCNPX simulations of the neutron leakage from lead-bismuth targets, the UNLV team was able to assist in the design of the experimental configurations for the LANCSE experiments.
These models were also used to predict the results for the experiments, and assist in positioning detectors for measuring the leaking. Similar computational support was also provided for proton activation experiments in sodium coolant.

Extensive studies on how MCNPX performs with respect to MPI (Message Pass Interface) and PVM (Parallel Virtual Machine) have been run. PVM was no longer supported by the LANL team after 2005, hence more emphasis was placed on how MCNPX runs with MPI on a Beowulf system.

Parallelization of MCNPX for a Parallel Virtual Machine was completed. MPI bugs and compiling problems were resolved.

Analysis of linearization characteristics on a Beowulf cluster was completed. Work was then focused on characteristics of the Supercomputing Center and the linearization of criticality studies.

Benchmarking and optimization of MCNPX to run on multiple platforms was performed. This insured that the user will not be limited to a specific system type when running simulations. In addition, the MCNPX simulations of experiments was performed.

User guides were developed for future users. These will describe how to implement an optimized version of MCNPX on a heterogeneous cluster using a Message Passing Interface. Efforts to increase the speed of MCNPX on parallel clusters of computers was conducted and a preliminary graphical user interface (GUI) for MCNPX using open source code and tools was developed. The GUI interface is written in Visual Basic allowing easy integration into Excel codes that contain databases of results from criticality and heat transfer studies of waste storage containers.

With the help of Trevor Wilcox, a doctoral student in mechanical engineering, the MCNPX software was ported to a Beowulf cluster located in the Tiberti Laboratory at UNLV. The cluster has between 32 and 50 processors available to run a single MCNPX job.

TASK 12 PROFILE

Start Date: August 2001
Completion Date: August 2004

Thesis Generated:

Suresh B. Sadineni, M.S., Mechanical Engineering Department,

Conference Proceedings:

BACKGROUND

Although liquid lead-bismuth eutectic (LBE) is a good candidate for the coolant that can be employed in a subcritical transmutation blanket, it is known to be very corrosive to stainless steel, the material used in the containment structure. To mitigate this problem, trace levels of oxygen can be introduced into the system, causing the formation of a protective oxide layer at the interface between the LBE and steel. The proper formation of this oxide layer largely depends on the accurate measurement and subsequent control of the oxygen concentration in liquid LBE.

Yttria Stabilized Zirconia (YSZ) oxygen sensors, using molten bismuth saturated with oxygen as the reference, have been utilized to accurately measure the concentration of oxygen dissolved in LBE. By measuring the voltage difference across the YSZ sensor, the oxygen concentration in test solutions can be determined relative to that in the reference solutions (the potentiometric method). The theoretical model for calculating oxygen concentration based on voltage measurements from YSZ sensors in static conditions is well understood. The real world performance of these systems, however, is less predictable.

RESEARCH OBJECTIVES AND METHODS

The research objectives of this project were as follows:

- To study the effects of unwanted electrical conductivity, contributed by the mobility of the electrons at high temperatures, for more accurate oxygen measurement.
- To study alternative and promising oxygen measuring methods.

RESEARCH ACCOMPLISHMENTS

The first experimental set up consisted of a temperature controlled U-shape container, gas supplies and exhaust, a residual gas analyzer (RGA), a high-impedance electrometer, and a computer for data acquisition. The container is tightly sealed from the outside atmosphere using a conflat flange except for gas inlet and outlet, and openings for insertion of thermocouple or RGA signal wire. Flexible heating tapes around the container heated the liquid metal to the required temperature under the control of a temperature controller. Meanwhile, the thermally insulated container is placed on a rocker to provide fluid motion that promotes mixing and homogenization of oxygen concentration in LBE.

Although some calibration results were obtained using this setup, it had several shortcomings. For instance, it was impossible to heat the system to reach the desired high temperature (up to 750 °C). In addition, direct injection of O2/H2 method adopted in this system is unlikely to produce a required extremely low oxygen level (ppm to tens of ppb) in liquid LBE. These problems in part were solved by developing a new apparatus. Some noticeable features of this apparatus were:

- Instead of using a steel tube, this apparatus incorporates a cylindrical crucible made of Magnesia Stabilized Zirconia (MSZ), and the liquid LBE is contained in this MSZ crucible. MSZ was chosen because of its desirable material properties.
- The MSZ crucible sits on a stainless steel beaker. The beaker acts as a pressure boundary, and it can distribute the weight of the molten metal and crucible to the outer support. Back-up materials are used to fill the gap between the inner crucible and beaker.
- The crucible is tightly sealed with a metallic flange, with only a few openings left for gas inlets and outlets.
- A stirring unit is employed in order to mix the gases with the molten metal. The stirrer is made of Silicon Nitride (Si3N4) ceramic. Silicon Nitride has high temperature strength, creep resistance,
oxidation resistance, and it is not wetted by any molten metal. On top of those, compared to many other ceramic materials, Si₃N₄ has good mechanical strength.

Oxygen Sensor Calibration Results

Calibration curves were obtained from two oxygen sensors. After some initial transients, voltage-temperature curves first follow constant oxygen concentration lines according to the Nernst equation, and then turn to the concentration saturation line.

The slopes of experimental and theoretical curves are almost identical, ranging from 0.33 to 0.5. This indicates that the YSZ sensors are of high sensing quality. Overlapping of the calibration curves for the two sensors indicates consistency in the sensors of the same design.

Experimental results show that tantalum oxidizes at high temperature around 480°C after running for a certain amount of time. This directly causes tantalum wires to lose electrical conductivity, and consequently, the sensor fails to provide meaningful signal output. This effect was demonstrated. In the first trial experiment cycle, molybdenum, stainless steel (SS) and tungsten were tested for this purpose. When introducing hydrogen and helium mixture into the system to clean excessive oxygen in the LBE container, it was found that Mo responds a little faster than SS.

It had been suspected that different combinations of Bi or Bi₂O₃ may have affected the sensor response. During Phase III of this project, several experiments were performed and it was determined that there are no evident effects on the sensor response. Experiment results further confirmed that even a small amount of residual oxygen inside sensor tubes will be sufficient for Bi to be oxidized.

Commercial FEM (finite element method) software, FEMLAB was used to simulate the oxygen dissolving process and the distribution in liquid LBE for the new system under three different boundary conditions. Simulation results show that the oxygen concentration distributes evenly in the whole flow field due to the strong convection flow in LBE. These simulation results with the experimental measurements help to not only determine the oxygen dissolving rate and the diffusion coefficient under different temperatures, but also provide suggestions for better experimental design.

TASK 13 PROFILE

Start Date: May 2002
Completion Date: May 2005

Theses Generated:

Journal Article:

Conference Proceedings:

BACKGROUND

Engineering metals and alloys, when subjected to tensile loading beyond a limiting value, undergo plastic deformation resulting in lattice defects such as voids and dislocations. These imperfections interact with the crystal lattice, producing a higher state of internal stress, also known as residual stress, which can be associated with reduced ductility. Residual stresses are also generated in welded structures due to rapid solidification and resultant dissimilar metallurgical microstructures between the weld and the base metals. Development of these internal stresses is often influenced by incompatible permanent strain resulting from thermal and mechanical operations associated with welding and plastic deformation. These types of operations can cause premature failures in structural materials unless these stresses are relieved by thermal treatments, which are commonly known as stress-relief operations.

During the past academic year, this project was focused on the characterization of residual stress in welded specimens consisting of austenitic and martensitic stainless steels using an activation technique based on the Positron Annihilation Spectroscopic (PAS) method. The extent of residual stress was expressed in terms of three line-shape parameters (S-, W- and T-). Further, efforts were made to characterize linear lattice defects such as dislocations in the vicinity of Fusion-Line (FL), Heat-Affected-Zone (HAZ), and the base material of the welded specimens using Transmission Electron Microscopy (TEM). The metallurgical microstructures at these three regions have also been evaluated by optical microscopy.

RESEARCH OBJECTIVES AND METHODS

The primary objective of this task was to evaluate the feasibility of the characterization of residual stresses in plastically-deformed and welded structural materials using a new nondestructive technique based on PAS. The residual stresses measured by a modified PAS method have been compared to those measured by three other techniques, namely the Ring-Core (destructive), X-Ray Diffraction (non-destructive), and Neutron Diffraction (non-destructive).

All four techniques have been used to evaluate residual stresses in cold-worked, plastically deformed and welded specimens of austenitic Type 304L Stainless Steel (SS), and martensitic Alloys EP-823 and HT-9. Alloy EP-823 is a leading target structural material to contain the molten lead-bismuth eutectic nuclear coolant needed for fast spectrum operations of an Accelerator-Driven Transmutation System. Type 304L SS is a universally-known corrosion resistant low-carbon iron-nickel-chrome alloy having optimum formability and weldability. Alloy HT-9 is known for its superior high temperature tensile properties. The metallurgical microstructures and the nature of defects have been analyzed by optical microscopy, scanning electron microscopy, and TEM.

RESEARCH ACCOMPLISHMENTS

The significant results obtained from this investigation during the past academic year are summarized below.

- For welded specimens consisting of similar materials on both sides, the residual stress in terms of the S-, W-, and T-parameters was maximum at the FL. A gradual drop in residual stress was observed with these specimens at locations away from the FL.
- The extent of residual stress was higher in martensitic Alloy EP-823 compared to that of austenitic Type 304L SS, irrespective of the weld configuration.
- Compressive residual stresses were observed in Alloy EP-823, when welded to Type 304L SS.
- The magnitude of dislocation density (\(\rho\)) was substantially higher at the HAZ compared to that of the base material of the welded specimens consisting of similar materials (Type 304L SS or Alloy EP-823) on both sides.
- In the case of the welded specimen of dissimilar materials (Type 304L SS and Alloy EP-823) on the opposite side, the concentration of dislocation in terms of \(\rho\) was greater at the HAZ on the Alloy EP-823 side of the weld.
- The enhanced value of \(\rho\) at the HAZ on the Alloy EP-823 side of the weld may be attributed to the faster rate of solidification of this alloy compared to that of the austenitic SS.
- The sizes of the HAZ on the Alloy EP-823 sides of the welded specimens were relatively larger, irrespective of the weld configuration.
OPTICAL MICROGRAPHS OF WELDED SPECIMENS OF SIMILAR MATERIALS. (a) TYPE 304L SS/TYPE 304L SS, HNO3+CH3COOH+C3H5(OH)3; (b) ALLOY EP-823/ALLOY EP-823, FRY’S REAGENT.

TASK 14 PROFILE

Start Date: May 2002
Completion Date: December 2006

Theses Generated

Journal Articles

Conference Proceedings

Ten conference papers were also published. See TRP website at http://aaa.nevada.edu for more information.

Research Staff

Ajit K. Roy, Ph.D., Principal Investigator, Professor, Mechanical Engineering Department

Students

Srinivas Chanda, Subhra Bandyopadhyay, Silpa Suresh, Satish Dronavalli, Vikram Marthandam, Anand Venkatesh, Bhagath Yarlagadda, and Raghunandan Karamcheti Graduate Students, Mechanical Engineering Department

Collaborators

Stuart A. Maloy, Ph.D., AFCI Materials Team Leader, Los Alamos National Laboratory

J. Frank Harmon, Ph.D., Director, Idaho Accelerator Center, Idaho State University

Doug Wells, Ph.D., Associate Professor, Department of Physics, Idaho State University

Farida Selim, Ph.D., Post Doctoral Researcher, Idaho Accelerator Center, Idaho State University
BACKGROUND

The recovery of iodine released during the processing of used nuclear fuel poses a significant challenge to the transmutation of nuclear waste. Iodine-129, a long-lived fission product formed by both commercial nuclear power generation and nuclear weapons production, is released when reprocessing nuclear fuel. Since iodine can be concentrated in the human thyroid, any uncontrolled release of iodine may result in an increased rate of thyroid cancer in the exposed population. For this reason, recovery of iodine is important for implementing any nuclear transmutation strategy.

The first step in any transmutation strategy is the processing of the used nuclear fuel. This step involves separating the used fuel into its constituent elemental components, allowing the recovery of the uranium, transuranic actinides, long-lived fission products, and other components, depending on the strategy and processes involved.

When used fuel rods are dissolved in concentrated nitric acid in preparation for actinide recovery, iodine is released from the fuel. A significant fraction of the iodine is lost to the vapor phase during this process, where it may potentially become a fugitive emission and be released from the plant. To avoid this, specialized filtration systems are used to try to trap and sequester the released iodine (and other fission product gases).

The primary goal of this research is to capture and immobilize the iodine released from these processes in a form that can easily be converted to a suitable target for neutron-induced transmutation. The investigators believe that iodine released during fuel reprocessing can be immobilized in a Fullerene Containing Carbon (FCC) compound or a Natural Organic Matter (NOM) matrix.

Natural organic matter (such as sphagnum moss, peat or brown coal) is an inexpensive and a renewable resource. Further processing of the trapped iodine using simple desorption or combustion processes should be able to produce iodine in a form suitable for transmutation. The investigators propose that iodine released during fuel reprocessing can be immobilized in a Fullerene Containing Carbon (FCC) compound or a Natural Organic Matter (NOM) matrix.

Natural organic matter (such as sphagnum moss, peat or brown coal) is an inexpensive and a renewable resource. Further processing of the trapped iodine using simple desorption or combustion processes should be able to produce iodine in a form suitable for transmutation. The investigators propose that iodine released during fuel reprocessing can be immobilized in a Fullerene Containing Carbon (FCC) compound or a Natural Organic Matter (NOM) matrix.

The following are the specific research objectives and goals:

- Develop bench-scale experimental set-up and procedures for simulating plutonium extraction process (PUREX) head-end vapor phase.
- Develop experimental procedures for evaluating iodine sequestering methods using bench-scale procedures.
- Develop FCC bearing material as potential iodine sequestration matrix.
- Determine binding of iodine to FCC and NOM.
- Examine alternate iodine sequestration matrices using techniques developed for FCC and NOM studies.
- Examine the effect of reaction conditions on binding.
- Elucidate the nature of the reaction products (volatile, hydrophobic, soluble, insoluble).
- Develop methodology and host matrix for converting sequestered iodine to solid matrix for evaluation as transmutation target and/or disposal matrix.
- Examine recovery of iodine from sequestration matrices.

The FCC compounds were developed and prepared by the KRI Research Industrial Enterprise (KIRSI). The KRI-KIRSI team researched the impacts of process parameters on sorption of iodine, and examined the material properties, such as how iodine attaches to the FCC compounds. The KRI-KIRSI team also examined the conversion of the iodine-loaded FCC compound to a stabilized matrix (similar to ceramic) for potential use as a disposal form, acceptable transportation material, or potential target material.
RESEARCH ACCOMPLISHMENTS

Observations related to the oxidation of iodide to iodine (I$_2$) or hypoiodic acid (HIO) by MnO$_2$ were continued. During this study, a number of synthetic (nano-particle) manganese (III, IV) oxide preparations have been shown to be capable of oxidizing iodide to iodine (or IOH) at pH as high as 5. Various synthetic preparations of MnO$_2$ were examined. These various nanoparticle manganese oxides have been characterized by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. In addition, surface areas, average manganese oxidation states and the kinetics of iodide oxidation by these materials have been measured. The rate of iodide oxidation by various manganese oxide preparations varies significantly. The oxidation rate appears to have some relationship to the average oxidation state of the manganese.

The incorporation of iodine into NOM was demonstrated in batch mixtures of MnO$_2$ and alkali lignin or sphagnum peat. The sequestration of iodine by NOM is illustrated to the left.

In another facet of this project, iodine distributions in salt impacted soils from the Virgin River, Nevada were examined. This study indicates that organic iodine was the most abundant form of iodine in the soil samples and that the content of organic iodine was correlated to total organic matter and to the lignin content (as measured by chemolysis) of the samples. These observations are consistent with the notion of the formation of organic iodine resulting from the cycling of iodine between iodide and iodate, with organic iodine resulting from the iodine or hypoiodic acid (I$_2$ and HIO) intermediate reacting with phenolic moieties in sedimentary and soil organic mater.

ACADEMIC YEAR HIGHLIGHTS

FUTURE WORK

The oxidation of iodide with MnO$_2$ will continue to be investigated using remaining funds under a no cost extension. MnO$_2$ preparations will continue to be characterized. Presently, surface acidity of the various materials is being examined.

<table>
<thead>
<tr>
<th>Combined Data</th>
<th>Depth</th>
<th>%Org Iodide</th>
<th>%Lignin</th>
<th>%C</th>
<th>% Clay</th>
<th>I</th>
<th>IO$_2^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg depth</td>
<td>1.000</td>
<td>0.458</td>
<td>0.519</td>
<td>0.407</td>
<td>0.186</td>
<td>0.339</td>
<td>0.260</td>
</tr>
<tr>
<td>Org Iodide</td>
<td></td>
<td>1.000</td>
<td>0.623</td>
<td>0.394</td>
<td>0.388</td>
<td>0.303</td>
<td>0.223</td>
</tr>
<tr>
<td>Lignin/μg</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.608</td>
<td>0.130</td>
<td>0.030</td>
<td>-0.065</td>
</tr>
<tr>
<td>%C</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.535</td>
<td>0.023</td>
<td>0.175</td>
</tr>
<tr>
<td>% Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.064</td>
<td>0.964</td>
<td>0.334</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>0.684</td>
</tr>
<tr>
<td>IO$_2^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

Correlation analysis for Black Butte soils

Research Staff
Spencer M. Steinberg, Principal Investigator, Professor, Chemistry Department
Gary S. Cerefice, Research Scientist, Harry Reid Center for Environmental Studies
David W. Emerson, Emeritus Professor, Chemistry Department

Students
Ginger Kimble, Nancy Birkner and James Dorman, Graduate Students, Chemistry Department

Collaborators
James J. Laidler, Senior Scientist, Chemical Technology Division, Argonne National Laboratory
George F. Vandergrift, III, Senior Scientist, Chemical Technology Division, Argonne National Laboratory
Michael Savopulo, V. G. Khlopkin Radium Institute—Research-Industrial Enterprise, St. Petersburg, Russia
Boris E. Burakov, Head of Mineralogical Group, V.G. Khlopkin Radium Institute—Research-Industrial Enterprise, St. Petersburg, Russia
BACKGROUND

High Temperature Gas-Cooled Reactor (HTGR) systems are currently being designed and evaluated as part of the Advanced Fuel Cycle Initiative, both as a future nuclear reactor type (in the Generation IV reactor program) and as a potential system for burning plutonium in a dual-tier transmutation strategy. HTGR designs use a TRISO-coated fuel (a silicon-carbide and pyrocarbon composite coating) to provide much of the passive containment for radionuclides.

Although this fuel form is quite stable and comprises one of the key components in the safety performance of these reactor systems, TRISO-coated fuel is comparatively difficult to recycle. If HTGR systems are to be used as part of either the first tier of a transmutation strategy or as primary power reactors, the plutonium and other actinides in the used TRISO fuel must be processed to recycle plutonium and permit recovery of minor actinides and other fission products produced.

Argonne National Laboratory has proposed a new extraction procedure to handle TRISO-coated fuels, the Fluoride Extraction Process (FLEX). The FLEX process is designed to separate the uranium in the fuel from the actinides and most fission products by taking advantage of the unique properties of uranium hexafluoride (UF₆). In the FLEX process, the used TRISO fuel is reacted with zirconium fluoride salt, forming UF₆ and the fluoride salts of the actinides and fission products. At process temperatures, the UF₆ volatizes into a gas, and is released from the molten salt mixture. This leaves behind the actinides and most fission products in a fluoride salt, which is subsequently processed using pyrochemical techniques to recover the actinides and other long-lived fission products for transmutation. The UF₆ is then cooled, causing it to sublime into solid form, which is then further processed for disposal or reuse.

The primary waste stream from the FLEX process is the fission products from the fuel, which are in a zirconium fluoride salt at the end of the process. Due to the fluorine in this waste stream, the fluoride salts are unsuitable for conversion into the traditional borosilicate waste glass. Therefore, without a suitable disposal form, this process can not be deployed.

This research attempts to develop a waste form for disposing of the zirconium fluoride fission product waste stream. Fluorapatite, a naturally-occurring fluorinated calcium phosphate, has been identified as a potential matrix for the entombment of this waste stream. If the efficacy of fluorapatite-based waste-storage can be demonstrated, then new and potentially more efficient options for handling and separating high-level wastes, based on fluoride-salt extraction, will become feasible.

RESEARCH OBJECTIVES AND METHODS

The following are the specific research objectives:

- To develop a waste matrix for the disposal of the fission product waste stream from the FLEX process;
- To develop a process to make synthetic fluorapatite that incorporates the FP-bearing ZrF₄ salt;
- To develop a fundamental understanding of the chemistry of this new waste form in order to better predict its long term behavior in a repository environment;
- To develop a fundamental understanding of natural, fluoride-bearing mineral phases to use as natural analogs to bound the predicted behavior of the FLEX fission product waste stream.

Originally, the research effort had been divided along two parallel paths: the Fabrication Path, led by collaborators at the Khlopin Radium Institute (KRI) in St. Petersburg, Russia; and the Characterization Path, led by researchers from UNLV.

The Fabrication Path is focused on examining and evaluating various techniques for fabricating synthetic fluorapatite; synthesizing synthetic fluorapatite; and examining the impacts of waste loading and other fabrication process factors on the performance of the synthetic fluorapatite as a potential waste form.

The Characterization Path is focused on adapting and refining the X-ray spectroscopy techniques currently used to characterize borosilicate glass for use in examining the fluorapatite system. This path also encompassed the examination of the ceramic and synthetic mineral waste forms created at KRI, with subsequent examination of these techniques to develop a molecular-level understanding of natural fluorapatite and other fluoride-bearing natural phases as natural analogs for the waste form. These techniques will also be used to examine the changes in surface chemistry caused by environmental degradation of these materials.

Waste form development at KRI involves the formulation, synthesis, and examination of ceramic samples to investigate the impact of processing parameters and composition on material properties (e.g. homogeneity) and performance (via leach testing). The
most promising fabrication process developed will be used to synthesize the ceramic in varying compositions to examine the impact of process parameters, ceramic formulation, and waste loading on the final ceramic phase. Based on these experiments, a baseline composition and fabrication process will be established. Finally, alternate fabrication processes, compositions, and potential alternate waste matrices will be examined and compared against the baseline composition.

Waste form characterization carried out at UNLV employs state of the art techniques that characterize the molecular structure of both natural fluorapatite and fluoride-bearing minerals and the fluorapatite-based ceramic waste form. Changes in the surface/interfacial chemistry of these materials as they undergo reactions with species in the environment will also be examined to help develop a basis for understanding the corrosion chemistry that the waste form and its natural analogs may experience under repository conditions. The UNLV researchers also synthesized several surrogate samples with help of the KRI collaborators in order to study their properties.

RESEARCH ACCOMPLISHMENTS

Research highlights for the third year of the project can be summarized as follows:

- Applying x-ray spectroscopy and more-conventional characterization techniques (e.g., Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction, and Raman Spectroscopy) to synthesized samples of apatite and fluorapatite doped with surrogates and compared those with baseline measurements of "pure" materials.
- Chemically prepared several samples in which some of the calcium in apatite materials is substituted by non radioactive actinide surrogates (Zn, Sr, Yt, Cs, Cu, Ni, Zr) or elements produced by decay of actinides.
- Chemically prepared apatite samples containing different Ca:Surrogate weight ratios and studying the physical properties of these apatites with different calcium to phosphorous molar ratios.
- Studied metal-containing apatites and fluorapatites with the same cadre of characterization techniques noted above to assess the degree of incorporation and any changes in the physical and chemical structure of the materials.

FUTURE WORK

The work is completing its third and final year of the project with the two graduate students finishing their Masters degree. The Characterization Path, led by the UNLV team, has been performing baseline spectroscopic studies of natural and pristine (no artificially added impurities) apatite materials as well as of surrogate loaded samples. The studies found that it is possible to load surrogates successfully into apatites and that it is important to control the by-products such as metal phosphates and metal fluorites that weaken and/or destroying the crystal structure. The amounts of surrogates that can be loaded strongly depend on the type of surrogate and these amounts still need to be determined. The ultimate goal is to use these techniques to achieve a molecular-level understanding of fluorapatite and other fluorine-bearing phases as natural analogs for waste-form materials. These techniques will also be used to examine changes in surface chemistry caused by environmental degradation.
Task 17

Interaction between Metal Fission Products and TRISO Coating Materials

C. Heske

BACKGROUND

This project focuses on the chemical bonding and interface formation of metal fission products with the coating materials used in tri-isotropic (TRISO) fuel particles for gas-cooled reactors. By combining surface- and bulk-sensitive spectroscopic methods, intermediate chemical phases at the interface, intermixing/diffusion behavior, and the electronic interface structure as a function of material (metal and coating materials) and temperature are examined.

In detail, the project studies the interface formation of Pd, Cs, and Ag with SiC and pyrolytic carbon. Using SiC single crystals as substrates, interfaces are prepared under controlled conditions in an ultra-high vacuum environment and are studied with a combination of experimental methods, including Photoelectron Spectroscopy, Auger Electron Spectroscopy, Inverse Photoemission, X-Ray Emission Spectroscopy, and X-Ray Absorption Spectroscopy. Furthermore, microscopic techniques (Transmission Electron Microscopy, Scanning Tunneling Microscopy, Atomic Force Microscopy) and local scanning tunneling spectroscopy are being employed.

RESEARCH OBJECTIVES AND METHODS

By combining results for the electronic and chemical structure of the fission product/TRISO layer interfaces, the research results give information about failure mechanisms of TRISO particles and fission product transport.

Furthermore, they can be used to derive strategies to tailor the interface properties for an optimization of TRISO particles in terms of, e.g., chemical and long-term stability.

The experiments use two different experimental set-ups. First, a multi-chamber ultra-high vacuum system at UNLV (see photo in the 2005-2006 Annual Report) houses the majority of surface-sensitive methods. Second, the soft X-ray fluorescence (SXF) endstation at Beamline 8.0 at the Advanced Light Source, Lawrence Berkeley National Lab is used to perform X-ray absorption and emission spectroscopy. The apparatus at UNLV consists of a surface spectroscopy chamber, a preparation chamber, and a ultra-high vacuum scanning probe microscope. Samples can be introduced into the machine through a glove box with integrated load-lock and then transferred to each of the chambers via a distribution chamber. The analysis chamber is equipped with a state-of-the-art electron analyzer, an X-ray source, an ultraviolet (UV) source, and an inverse photoemission setup consisting of a low-energy high-flux electron gun and a UV detector. The preparation chamber is used for cleaning samples with an ion source and for the deposition of metal films with an evaporator.

RESEARCH ACCOMPLISHMENTS

In the past year, emphasis was placed on a detailed analysis and description of the Cs/SiC interface formation process.

Great care was taken to prepare a clean SiC surface. It was found that the purchased SiC single crystals exhibit strong surface contaminations with oxygen. Based on an in-depth literature research, two different cleaning routes were investigated. The first route is an HF etch of the SiC surface, which is reported to result in a clean, C-terminated SiC surface. The second route is a sputter-cleaning of the surface with Ar+ ions. It was found that it was not possible to entirely remove the O with either of the techniques, showing that the crystals were significantly oxidized into the bulk. As a consequence of this investigation, a new vendor was identified and new SiC crystals were ordered.

For the deposition of Cs films on the SiC substrate, a Cs evaporator was designed and constructed. Cs films of different thickness were deposited on SiC substrates (exhibiting some degree of surface oxidation, as discussed above). Exemplarily, the survey spectra of films with different Cs thicknesses are shown (left). These spectra illustrate the stepwise increase in Cs intensity after subse-
quent deposition steps, indicating an increase in the Cs film thickness. In parallel, the Si and C intensities decrease due to attenuation by the Cs film. A careful quantitative analysis shows that this attenuation is weaker than expected, suggesting either an inhomogeneous growth of the Cs film or an intermixing at the interface.

To gain further insight into this question, and to learn more about the detailed chemical environment at the Cs/SiC interface, detailed core level X-ray photoelectron spectroscopy (XPS) spectra were recorded. As an example, a series of C 1s core levels as a function of sample preparation and Cs deposition time (below right). As is evident in the figure, a second carbon species at higher binding energies emerges, which is directly indicative of the chemical interaction between Cs and SiC. Interestingly, no changes are observed in the Si core levels, suggesting that the chemical attack of SiC by Cs is initiated at the C sites.

The X-ray photoemission experiments were supplemented by UV photoemission data (not shown), which gives detailed information about the valence electrons. The students in the project have learned about the chemical and electronic information that can be exerted from such spectra, and a detailed analysis of the Cs/SiC dataset is currently ongoing. In the previously investigated case of Pd/SiC, similar data could be used to draw the picture of the formation of a Schottky barrier at the Pd/SiC interface.

Finally, selected Cs/SiC interfaces were also investigated at the Advanced Light Source using X-ray emission spectroscopy of the Si L2,3 and the C K edge, giving additional insight into the intermixing behavior at the interface between Cs and SiC.

FUTURE WORK

The experiments on Cs/SiC will be continued including the deposition on differently prepared substrates. In addition, the interaction between Cs and pyrolytic graphite surfaces will be studied. The focus will be on single crystalline surfaces and also on rough surfaces, which will be prepared by Ar⁺ ion bombardment. This will allow an investigation of the influence of substrate roughness on the chemical Cs-SiC and Cs-C interactions.

Furthermore, the substrate temperature will be varied during deposition, up to approximately 1200 °C. Both experiments will help to correlate the results to the real case of a TRISO particle with microscopically rough interfaces involving the SiC diffusion barrier and the pyrocarbon layers. In addition, the experiments will simulate the “natural” high temperature environment present in the nuclear reactor.
BACKGROUND

Advanced nuclear processes and facilities (e.g., transmutation of nuclear waste, fast reactors, and spallation neutron sources) impose special demands on materials, which must withstand high temperatures, high radiation fields, and chemical corrosion. Proposed schemes for transmuting nuclear waste require a non-moderating coolant such as lead-bismuth eutectic (LBE). While LBE corrodes most steels, small amounts of oxygen in the LBE greatly reduces the corrosion rate, and could ideally re-grow a damaged oxide layer in-situ. The protective oxide layer would thus be self-healing. However, the fundamental understanding of the role of oxygen and passivating oxide layers is presently incomplete.

RESEARCH OBJECTIVES AND METHODS

Steel samples have been characterized before and after exposure to LBE using different types of surface microscopy, including Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), Wavelength Dispersed X-ray, X-ray Photoelectron Spectrometry (XPS), and Sputter Depth Profiling. In past work, steel samples exposed to LBE at the Institute for Physics and Power Engineering in Obninsk, Russia, were examined using SEM and EDX. Samples with the same chemical composition but different surface treatments were compared, and cold-rolled samples were more corrosion resistant than annealed samples. Increased corrosion resistance was associated with changes in oxide layer thickness, morphology, and composition. These past results were published in the Journal of Nuclear Materials.

During the present reporting period, gas-phase experiments were conducted, in which steel samples were oxidized in glass capsules at elevated temperatures in a tube furnace. Corroded steel samples were analyzed from a variety of sources, including the Delta loop at LANL and samples corroded at UNLV in the gas phase experiments.

RESEARCH ACCOMPLISHMENTS

An analysis of the role of silicon in conferring corrosion resistance was published during the present reporting period. Silicon and its various oxides were found in the oxides of silicon-containing steels after exposure to LBE, with SiO$_2$ found near the oxide/metal interface, consistent with the formation of a layer between the metal and the oxide. Results were published in the Journal of Nuclear Materials.

A model was developed and presented at the AFCI materials working group March 2006 in Santa Fe. This model and supporting experimental results indicate that the conversion of the oxide layer on the austenitic steels from an initial compact thin layer to a porous thick multilayer occurs at localized failures of the thin oxide, with the formation of diffusion channels in the thick oxide. At the May 2007 Heavy Liquid Metals (HLM) Workshop in Rome, Italy, other researchers supported this model. Currently, a paper is being prepared on the application of the defect generated diffusion channel model to austenitic and ferritic/martensitic steels for nuclear applications.

Gas phase experimental results

The gas phase oxidation of steels has been examined at oxygen concentrations approximating those in LBE. This study determines the unique aspects of oxidation in LBE. For example, in the gas phase experiments on these steels, tin was sometimes observed at the surface. Tin has been implicated in temper embrittlement. In LBE, tin does not accumulate due to the solubility of tin in LBE. Conversely, nickel is depleted from the oxide layer that forms on the austenitic steels. In LBE, this nickel can dissolve. In the gas phase, Ni depletion was also observed, indicating that nickel must dissolve into the bulk metal in this case.

After 100 h of oxidation up to 10 microns of oxide is formed, which indicates a flux of oxygen onto the metal surface that is much higher than the oxygen control mechanism (CuO/Cu couple) would allow, suggesting that some other oxygen containing species is active. Of course water is a likely suspect, and experiments have been initiated to determine the role of water as an oxygen containing/transport agent in LBE. In summary, gas phase experiments have directed the project towards studies expected to give insight into the mechanisms of LBE corrosion of steel.

Facility development

After the renovation of room 112C in the Chemistry building (CHE), the first experimental data came from an experiment in gas phase corrosion using a tube furnace. Steel samples were corroded by contact with controlled amounts of oxygen at elevated...
temperatures. The gas phase facility has produced valuable data for comparison with corrosion of steel by liquid metal. A clean bench has been installed in CHE 112C for handling liquid lead safely. A small liquid metal experiment is being assembled, and the lower section is now finished.

Analytical Techniques
In the last year, a laser Raman microscope was successfully developed, capable of performing Raman spectroscopy of sample surfaces with lateral resolution of a few microns, allowing detection of chemical species on the surface, whereas other analytical techniques (e.g., XPS or EDX) only provide elemental/oxidation state information. The laser Raman microscope can easily distinguish between the two oxides of iron, hematite (Fe₂O₃) and magnetite (Fe₃O₄), and was used in Hosterman’s 2006 masters degree.

FUTURE WORK

Plans for Summer 2007 and later consist of continuation of work specified in previous work packages. The small liquid metal exposure facility will be completed, and physical, chemical, and corrosion LBE characterization will begin. Gas phase experiments will be continued with the use of the Oxygen Control System. These experiments are planned for completion in Fall 2007. They test the specifics of LBE corrosion verses standard gas corrosion of steel, and allow a clear indication of the differences induced by the LBE. Isotope labeling experiments turned out to be more difficult than planned. ¹⁸O labeling studies following the experiments of Martinelli et al. (recently mentioned at the HLM conference in Rome) will be done on D9 and 316, and training on the required TOF-SIMS technique at the National ECSA and Surface Analysis Center for Biomedical Problems workshop will happen in August 2007. A joint paper has been planned using task work as well as investigations by the LANL and French groups to expand the model to include a broad array of structure steel corrosion phenomena in LBE.

D-9 shows failure of the thin oxide and formation of duplex oxide in localized patches. The iron moves outside the original metal surface to form Fe₃O₄ (as shown by Raman Spectroscopy) and the chromium stays in place to form an iron/chromium oxide which undercuts the thin oxide.

ACADEMIC YEAR HIGHLIGHTS

BACKGROUND

There has been a recent resurgence of interest in different oxide fuel types (e.g., Th, inert matrix, and Pu fuels) as potential advanced fuels that can be operated to relatively high burnups at lower costs than current UO₂ fuels. These fuels can also be formed to incorporate transuranics elements in the matrix. Inert fuel matrices have the advantage of burning Pu and other transuranic elements from the fuel cycle without the production of other actinide elements. Of the possible materials for use in an inert matrix, ZrO₂ has been examined. The inclusion of ZrO₂ is expected to increase chemical stability and radiation resistance. The natural analogue of zirconia, baddeleyite ((Zr,M)O₂), where M is a tetravalent ion such as hafnium), contains up to 3000 ppm U or Th. This supports the durability of inert matrix fuels using ZrO₂ in reactor conditions and repository conditions. However, fuels appropriate for the advanced fuel cycle applications should have desirable reprocessing properties, namely ease of dissolution for separations. An additional oxide which is somewhat soluble may need to be added to the ZrO₂ matrix to achieve desirable reprocessing properties. A candidate oxide is MgO.

RESEARCH OBJECTIVES AND METHODS

This project will examine inert fuels containing ZrO₂ and MgO as the inert matrix. Ceramics with this inert matrix, Ce, U and eventually Pu will be synthesized and examined. While the Advanced Fuel Cycle Initiative focus is on inert fuels with Pu as the fissile component, this task will perform initial laboratory experiments with Ce and U. The initial work with Ce will be performed early in the project with results used as a basis for U studies. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf. Most fuels use Gd or Er, but the chemical properties of Hf lend themselves to formation of solid solutions with Zr and the tetravalent actinides and will therefore be investigated. This project will provide the necessary data for evaluating the performance, reprocessing, and waste behavior of the MgO-ZrO₂ fuels from a quantified, chemical perspective.

Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of ²³⁹Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for modeling.

The research objectives of this project are as follows:

- To examine the neutronic behavior of MgO-ZrO₂ inert fuels. Variation of MgO and ZrO₂ composition ranges from 30% to 70% MgO in ZrO₂. Analysis of Gd, Er, and Hf for reactivity control ranging from 5-10% lanthanides. Analysis of reactor grade Pu as fissile component ranging from 5-10% Pu. Results will be used as parameters for fuel composition.
- To synthesize and characterize MgO-ZrO₂ ceramics containing burnable poison and fissile composition. Synthesis is based on a precipitation method. Range of MgO in ZrO₂, fissile component concentration, and burnable poison concentration based on results of neutronic calculations. Characterization of ceramics will include density, X-ray diffraction (XRD), surface area analysis, X-ray absorption fine structure, and chemical composition. Results will be applied to behavior in high temperature water, acid, and environmental conditions.
- To describe the chemical behavior of synthesized ceramics. Chemical thermodynamic and kinetic analysis will use equilibrium data, kinetic data, and surface area normalized dissolution. Different conditions will include reactor conditions (high temperature and high pressure water) and reprocessing conditions (nitric acid and elevated temperature). Environmental conditions will be near neutral solution conditions.
- To utilize project data in kinetic and thermodynamic modeling codes to evaluate the speciation of the elements in the ceramics under reactor, reprocessing, and repository conditions.

RESEARCH ACCOMPLISHMENTS

Dissolution, Reactor, and Environmental Behavior of ZrO₂-MgO Inert Fuel Matrix

K. Czerwinski

Metal Concentrations for Uranium Containing Ceramics

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Zr %</th>
<th>MgO %</th>
<th>U %</th>
<th>Er %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92.5</td>
<td>0</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>87.5</td>
<td>5</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>82.5</td>
<td>10</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>77.5</td>
<td>15</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>72.5</td>
<td>20</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>67.5</td>
<td>30</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>62.5</td>
<td>40</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>57.5</td>
<td>60</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>9</td>
<td>52.5</td>
<td>75</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>92.5</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

A reliable method for X-ray fluorescence characterization method A reliable method for X-ray fluorescence (XRF) was developed involving ashing the individual oxides, then preparing standards through the dry synthesis route. It was believed that the samples that showed heterogeneous Ce distribution were due to insufficient sintering times. Therefore, one such sample was removed from resin, resintered, and elemental mapping was performed a second time. This second mapping showed a homogenous distribution of cerium demonstrating the suitability of the method.

Synthesis and characterization of U-containing ceramics Ceramics were synthesized using MgO-ZrO₂ as the inert matrix and Er₂O₃ as a burnable poison as in previous studies; however, UO₂ is now being used as a more accurate PuO₂ analog than the previous CeO₂ containing ceramics.
A soxhlet experiment was initiated to determine the corrosion resistance of the ceramics. The results demonstrated the corrosion resistance enhancement from the inclusion of ZrO$_2$. A thermogravimetry and differential scanning calorimetry scan was performed on the precipitated material to examine calcining and sintering behavior. The material appears to change from the oxy-hydroxide precipitate to the oxide at the same temperature as the Ce-containing ceramics (260°C). The phase change also starts at the same temperature (510°C), but it does not proceed as quickly and therefore shows a broader peak.

XRD patterns were taken of all samples under investigation to qualitatively determine the phases present within the sintered sample. With no MgO present the UO$_2$ and Er$_2$O$_3$ only partially stabilizes the ZrO$_2$ resulting in a mixture of monoclinic and tetragonal Zr oxide phases. With as little as 5% wt/wt MgO, the material fully stabilizes to form a pure cubic zirconia phase. Over 10% MgO results in a MgO phase, in addition to the cubic zirconia. This pure MgO phase increases with total MgO content. When there is no longer ZrO$_2$ in the sample a MgO phase dominates, while there is a minor cubic uranium erbium oxide phase. Quantitative analysis will be performed once TOPAZ software is obtained.

Dissolution studies with nitric acid have shown a linear dissolution rate for U; however, improvements are needed for consistent kinetic constants. Also, U leaching in nitric acid is only possible at high Mg concentrations. This is due to the greater surface area of the exposed zirconia phase once the magnesia is dissolved, and the higher U concentration within the zirconia phase in these samples. Dissolution in supercritical water was extended to 3 weeks with the same results. Only Mg is found in solution.

Oxide waste forms based on project results
UY$_6$O$_{12}$ pellets were synthesized for Los Alamos National Laboratory for initial waste form studies complementary to the inert fuel research. Composition was confirmed to be delta phase by XRD.

FUTURE WORK
Further synthesis and characterization of MgO-ZrO$_2$ ceramics will be performed with the use of Pu containing material obtained from Idaho National Laboratory. The project will be the basis of further fuel studies on the oxygen to metal ratio and research into the development of oxide waste forms for Tc.

Research Staff
Ken Czerwinski, Principal Investigator, Associate Professor, Department of Chemistry
Thomas Hartmann, Staff Scientist, Harry Reid Center
Frederic Poineau, Post-Doctoral Researcher, Harry Reid Center

Students
Kiel Holliday, Graduate Student, Department of Chemistry (Radiochemistry Ph.D. Program)

Collaborators
Mitchell Meyer, Idaho National Laboratory

ACADEMIC YEAR HIGHLIGHTS
- K. Czerwinski was the U.S. delegate to the International Atomic Energy Agency Minor Actinide Inert Fuel Matrices working committee from May 2004 to present.
Task 20
Effect of Silicon Content on the Corrosion Resistance and Radiation-Induced Embrittlement of Materials for Advanced Heavy Liquid Metal Nuclear Systems
A.K. Roy

BACKGROUND
This task is focused on the evaluation of the effects of silicon content on both the corrosion behavior and radiation-induced-embrittlement of martensitic stainless steels having compositions similar to that of modified 9Cr-1Mo steel, also known as T91 grade steel. T91 grade steel was selected to be a candidate structural material to contain molten lead-bismuth eutectic (LBE), which can act both as a target material and a coolant during the spallation process. The operating temperature during this process may range from 420-550 °C. Thus, moderate tensile strength of the containment material (T91) is a major requirement.

The beneficial effects of Si on both the metallurgical and corrosion properties of chromium-molybdenum (Cr-Mo) steels have previously been demonstrated at UNLV. Therefore, additions of Si ranging from 0.5-2.0 weight percent (wt%) was attempted in this investigation to explore Si effect on both the high temperature tensile properties and corrosion behavior of T91 grade steel. Corrosion studies in the presence of molten LBE could not be performed due to a lack of proper experimental facilities at UNLV. Therefore, detailed corrosion studies involving Si-containing T91 grade steels were performed in an aggressive aqueous solution of acidic pH. Further, significant efforts have been made to determine both the impact and fracture toughness of the tested materials as a function of Si content.

RESEARCH OBJECTIVES AND METHODS
Four heats of T91 grade steel having Si levels of 0.5, 1.0, 1.5 and 2.0 wt% were custom-melted by a vacuum-induction-melting practice. They were subsequently processed and thermally-treated to achieve fully-tempered martensitic microstructures. These materials were then machined to fabricate desired types of specimens for evaluation of tensile properties, impact toughness, fracture toughness, resistance to localized corrosion, stress corrosion cracking (SCC), and crack propagation behavior. Limited tensile testing was also performed on T91 grade steels under different levels of radiation. Numerous state-of-the-art experimental techniques were employed to evaluate the desired properties. The relevant experimental techniques have been described in previous annual reports. The significant results obtained during the past fiscal year are summarized below.

RESEARCH ACCOMPLISHMENTS
- The results of tensile testing indicate that the magnitude of failure strain (ε_f) was gradually reduced with increasing temperature within a susceptible temperature range, irrespective of the Si content. Simultaneously, serrations were also noted in the engineering stress vs. strain diagrams.
- The reduced ε_f values and the occurrence of serrations within a specific temperature regime can be attributed to a metallurgical phenomenon known as Dynamic Strain Ageing (DSA). Irrespective of the Si content, the susceptibility to DSA was predominant at temperatures ranging from ambient to 400°C.
- The DSA phenomenon, as seen in this investigation, is commonly associated with the diffusion of solute elements into the matrix of the material at elevated temperatures, thus impeding the movement of dislocations through the matrix and grain boundaries. Such reduction in dislocation mobilities can significantly impair the plastic deformation, which is manifested by reduced ε_f values, as seen in this study.
A maximum dislocation density (ρ), determined from the transmission electron micrographs, was seen at 400°C, irrespective of Si content.

The work hardening index (n) and activation energy for diffusion are two key parameters influencing the DSA behavior of engineering materials. Simultaneously, both temperature and strain rate can influence the DSA behavior. The variation of n with temperature at a strain rate of 5 x 10^-4 sec^-1 is shown in the table below. A gradual increase in the n value was observed at temperatures up to 400°C, as expected.

A longer activation time using an electron beam resulted in reduced ductility in terms of εf.

The presence of higher Si content in T91 grade steel resulted in reduced impact energy and higher ductile-brittle transition temperature, indicating reduced impact resistance.

The susceptibility to SCC was enhanced at more cathodic (active) controlled potentials (Econt) and higher testing temperature, implying a synergistic effect of cathodic potential and temperature on SCC.

The morphology of failure in double-cantilever-beam specimens used in SCC testing was characterized by a combination of striations (fatigue), SCC (intergranular/transgranular), and fast fracture (dimples).

ACADEMIC YEAR HIGHLIGHTS

- P. Kumar, D. Maitra, and A. Roy, “Temperature and Silicon Content Effects on Tensile deformation of T91 Grade Steel,” Society for the Advancement of Materials and Process Engineering, Fall meeting, Dallas, TX, November 2006.
- D. Maitra, P. Kumar, and A. Roy, “The Role of Silicon Content on Tensile and Corrosion Properties of T91 Grade Steel,” MS&T, Fall meeting, Cincinnati, OH, October 2006.

FUTURE WORK

Stress corrosion cracking will be evaluated under anodic Econt, dynamic strain ageing will be characterized by transmission electron microscopy, and fracture toughness will be evaluated.

Research Staff

Ajit K. Roy, Ph.D., Principal Investigator, Professor, Mechanical Engineering Department

Arindam Ghosh, Ph.D., Research Scholar, Mechanical Engineering Department

Students

Debajyoti Maitra and Pakaj Kumar, Ph.D. Students, Mechanical Engineering Department

Srinivas Kohir, M.S. Student, Mechanical Engineering Department

Collaborators

Stuart A. Maloy, Ph.D., AFCI Materials Team Leader, Los Alamos National Laboratory

Ning Li, Ph.D., LBE Technology Development, AFCI, Los Alamos National Laboratory

Doug Wells, Ph.D., Associate Professor and Chair, Department of Physics, Idaho State University

Variation of %EI with temperature for steels (1 and 2 wt% Si), with and without cathodic Econt.

<table>
<thead>
<tr>
<th>Heat no / Temp (°C)</th>
<th>RT</th>
<th>150</th>
<th>300</th>
<th>400</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>2403 (1.0% Si)</td>
<td>0.1643</td>
<td>0.1698</td>
<td>0.1794</td>
<td>0.1994</td>
<td>0.1432</td>
</tr>
<tr>
<td>2404 (1.5% Si)</td>
<td>0.1716</td>
<td>0.1794</td>
<td>0.1945</td>
<td>0.2143</td>
<td>0.1564</td>
</tr>
<tr>
<td>2405 (2.0% Si)</td>
<td>0.1856</td>
<td>0.1702</td>
<td>0.1794</td>
<td>0.1802</td>
<td>0.1642</td>
</tr>
<tr>
<td>2406 (2.5% Si)</td>
<td>0.1699</td>
<td>0.1709</td>
<td>0.1772</td>
<td>0.1997</td>
<td>0.0994</td>
</tr>
</tbody>
</table>

Variation of n with Temperature (RT: Room Temperature)

Scanning electron microscope micrographs of double-cantilever beam specimens with 0.5 wt% Si subjected to SCC testing at 100°C in acidic solution for 30 days.
BACKGROUND

In advanced nuclear energy systems, lead-alloys (e.g., lead, lead-bismuth eutectic) emerge as strong candidates for transmutation and advanced reactor systems as nuclear coolants and high-power spallation neutron targets. However, it is widely recognized that corrosion of materials caused by lead-alloys presents a critical barrier to their industrial use. A few experimental research and development projects have been set up by different groups such as LANL to study the corrosion phenomena in their test facilities and to develop mitigation techniques and materials. One of the central or main techniques in lead-alloys coolant technology under development is to use active control of oxygen thermodynamic activity (OTA) to provide protective oxide layers.

Setting OTA in flowing lead-alloys makes corrosion highly dependent upon the oxygen concentration and the oxidation processes at materials surfaces. The active oxygen control technique exploits the fact that lead and bismuth are chemically less active than the major components of steels, such as Fe, Ni, and Cr. By carefully controlling the oxygen concentration in LBE, it is possible to maintain an iron and chrome based oxide film on the surfaces of structural steels, while keeping lead and bismuth from excessive oxidization that can lead to precipitation contamination. Thermal analysis has given an ideal oxygen level range in a non-isothermal lead-alloy coolant system. However, in a practical coolant loop, the proper oxygen level depends not only on thermal factors but also on hydraulic factors (temperature profile, flow velocity, etc.). In addition, the oxygen distribution in a non-isothermal lead-alloy coolant system is still unclear. The optimal oxygen levels still need to be investigated.

RESEARCH OBJECTIVES AND METHODS

- To elucidate the mechanism of the protective oxide layer growth of steels in static, non-isothermal flowing lead-alloy coolant systems with oxygen concentration level control.
- To elucidate the mechanism of mass transport of oxygen and corrosion products in the multi-phase system.
- To develop oxidation growth models of steels in lead-alloy coolant systems.
- To clarify the dependence of oxidation processes on thermal hydraulic factors (system operating temperature, temperature profile, flow velocity, etc.) and the oxygen concentration distribution and level.
- To clarify the optimal oxygen concentration levels in practical coolant system scales.
- To interpret the experimental results from test loops and to apply them to the design of practical nuclear coolant systems.

RESEARCH ACCOMPLISHMENTS

Cellular automata modeling of oxide layer growth with scale removal: To simulate the scale removal effect on oxide layer growth, the previous cellular automata model of oxide layer growth has been improved to consider the scale removal effect. In this model, the scale removal rate was taken to be linear. It is assumed that the oxide layer sites which are close to the oxidant site have a probability to move away. The global random walker model is still used to simulate the solid state diffusion of the ionic metal site in the oxide layer. The phenomena of oxide growth which obeyed Tedmon theory was found.
Stochastic modeling with cellular automata method on the surface growth and internal oxidation: The quantitative cellular automata model on the inward oxidation mechanism was developed. The stochastic rule to the population of particles is based on the exclusion principle. Considering the exclusion principle, which permits at most one particle per site, a particle moves to its targeted site if this site is free and simply does not move if the site it targeted was already occupied. To avoid the confliction between particles competing for a single free site, the following rule was adopted. When more than one particle attempts to move to a single open site, only one of the competing particles, which will be chosen randomly from among them, is allowed to move to this open site and the others do not move. A benchmark with the theoretical solution was made, and a good agreement was obtained.

Numerical modeling on the diffusion controlling oxidation model with scale removal: A numerical diffusion-controlling oxidation model with scale removal was developed in oxygen-containing liquid flow. Scale removal effect was considered and the formation mechanism of duplex oxide layer structure was analyzed and employed in the model. The volume expansion effect caused by density difference during the oxidation is coupled with the consideration of increasing weight of reacted oxygen. To solve the diffusion equations with an advection term caused by the moving boundaries, a coordinate transform technique was employed. The governing equations were analogized with the Stefan problem in heat transfer with phase change in the enthalpy formulation and then solved numerically by finite difference method.

Cellular automaton model on the oxide growth coupled with inward oxygen diffusion: To simulate the oxide layer growth of steel in liquid lead alloy environment, a cellular automaton model was developed that considered inward oxygen diffusion. In this model, the lattice sites are occupied by metal, oxide, or lead alloy, while the interstitial sites are route ways for oxygen to occupy and diffuse. The benchmark of cellular automata model for pure oxygen diffusion has been made and a good agreement has been obtained.

FUTURE WORK

The next phase of the project involves accomplishing the following tasks:
- Structure stability analysis on oxide layer under liquid metal environment for different operating conditions.
- Model the erosion-corrosion process mechanisms in oxygen-controlled lead-alloy systems.
- Identify the protective oxide layer growth under corrosion and oxidation mechanisms using stochastic methods.
- Clarify the dependence of the oxidation process on the hydraulics factors (system operating temperature, temperature profile, flow velocity, etc.) and the oxygen concentration distribution and level.
- Predict the optimal oxygen concentration levels in practical coolant system scales.

ACADEMIC YEAR HIGHLIGHTS

The safe and effective manufacturing of actinide-bearing fuels for any transmutation strategy requires that the entire manufacturing process be contained within a shielded hot cell environment. To ensure that the fabrication process is feasible, the entire process must be designed for remote operation. The equipment must be reliable enough to perform over several decades, and also easy to maintain or repair remotely. The facility must also be designed to facilitate its own decontamination and decommissioning. In addition to these design factors, the potential viability of any fuel fabrication process will also be impacted by a number of variables, such as the current state of technology, potential problem areas, deployment scaling, facility safety, and cost.

RESEARCH OBJECTIVES AND METHODS
The goal of this research project is to provide technical support to process designers working on the development of the fuel cycles for transmutation applications. Detailed process models have been developed to better define the impact of fuel choice on the transmuter fuel cycle, including relative process losses, waste generation, and plant capital cost. These process models provide insight regarding required plant size and number of plants needed to mesh with the fuel recycling line. They also determine requirements for automation.

Manufacturing models for large-scale production in a hot cell environment have also been developed. Combined, these two models allow the assessment of plant layout, and provide the framework for estimation of plant capital and operating cost estimates, and for feasibility in general. The operations of robotic equipment and the sensor technology required for safe and reliable robot control have been evaluated through simulations in three-dimensional space. The manufacturing technology developed for hot cell applications is also applicable to other, more general uses, where occupational hazards prevent human presence near processes.

The research work performed during the reporting period was divided into several tasks:

Simulations: This task modeled manufacturing processes to generate a realistic assessment of plant layout, size, feasibility, and technology development required for large-scale remote fabrication of fuel. Modeling of the candidate fuel manufacturing processes was performed using the MSC.visualNastran and ProEngineer simulation software tools. To date, the modeling of dispersion and tri-isotropic (TRISO) fuels for gas-cooled reactors has been completed. A parametric study to determine the process reliability and possible reliability improvements for various fuel types and equipment configurations is in progress.

Cost, Feasibility, and Large Scale Deployment: This task will develop the database necessary to provide cost estimates and differential cost for various fuel manufacturing options. Cost estimates regarding projected capital cost, reliability, and plant life have been developed and are being refined as additional knowledge is developed.

Automated Vision-Based Image Acquisition and Robot Control: This task explores and demonstrates strategies for the reliable and flexible control of the material handling robots inside the hot cell by means of automated vision systems. Since the cameras can be positioned outside the hot cell, such systems would have significant advantages over sensors inside the hot cell, resulting in potentially reduced system maintenance and increased system reliability.

RESEARCH ACCOMPLISHMENTS
Research during the past year focused on vision-based recognition and spatial location of fuel pellets inside a hot cell.

Recognition of Cylindrical Fuel Pellets by the Charge-Coupled Device (CCD) Camera: The images of cylinders that are captured by the camera have properties which make the recognition of the cylinder more difficult. The real time cylinder pictures contain shadows as well as reflections (specularity) caused by lighting conditions. This project seeks to detect the cylinders’ contours in order to identify and classify it correctly. Changes of lighting conditions can make the correct identification difficult at times.

Camera Calibration and Dimensional Measurements using the CCD Camera

Calibration objects: Calibrating a camera requires several corre-
Corresponding 3D and 2D points. Calibration objects are mostly planes or cubes (two or three orthogonal planes) with special markings. Here, those markings are chess board patterns with equidistant corners distributed accurately over the object surface. The corners define the known points in the world coordinate system and can be easily identified in the image from edge detection algorithms. This step provides the opportunity to estimate the projection matrix. Another method of calibrating is self-calibration. This technique obtains correspondences from the camera movement in a static scene using image information alone.

Estimation of the projection matrix: The camera calibration algorithm was programmed in Matlab. The regions of interest were defined for every single image by selecting the 4 outmost corners of the chess pattern. The Matlab software identifies and saves the positions of the individual black square’s corners for processing. The optimization method of Levenberg-Marquardt is applied which also includes the adaptive correction of the lens distortion.

Two-View Triangulation: Triangulation is the process of finding the position of a point in space given its position in a stereo image pair. This task is essential for vision-based robot pick and place operations. The Linear-Eigenmethod is the simple triangulation method that is used for extracting the 3D points.

Optimal Triangulation: Suppose there are two point correspondences x and x’ from two images, and the goal is to reconstruct the 3D point X. If the correspondences are accurate (which cannot usually be expected) the rays of x and x’ will lie in the same plane and thus will intersect in X. In the presence of noise, accurate point coordinates cannot be expected. It follows that x and x’ may not lie in a plane, which means that there is no intersection. A method for correcting the existing point correspondences such that the corresponding rays will lie in the same plane consists in finding a global minimum of a cost function. For this approach, it is assumed that the fundamental matrix is well defined.

Recognizing calibration cubes: Until now a disadvantage of the calibration process has been the need to determine the point correspondences of the calibration object and a given 3D model manually. A desirable feature would be the automatic mapping from calibration cube points to the 3D locations of a 3 plane model. This would allow estimating the projective matrix automatically. For the experimental validation, several calibration objects were arranged on a paper grid in order to cover multiple points in the 3D space.

For the tests, 50 points were used to estimate the fundamental matrix. The same points have been reapplied as control points. The triangulation error was around 0.2 inches at a distance to the calibration points of 10 inches. In the proximity of the calibration points the error was below 0.1 inch. The errors are attributed by the following effects:

- Quality deficiencies of the camera device
- Inaccurate calibration objects (perpendicularity)
- Linearity of the algorithm

FUTURE WORK

Vision-based control of hot cell robots: Images of scenes inside a hot cell, such as fuel pellets, will be acquired in real time under varying lighting conditions and in increasingly complex environments. The development of algorithms for reliable object identification, for validation and measurement of the object geometry, location, and orientation, and for camera calibration, will continue.

Vision-based robot servoing: Using a Fanuc M-16iB industrial robot, the stereo vision system will be installed in lab Thomas Beam Engineering Building (TBE) Room B-162, and the task will proceed to test the visual servoing algorithms under more realistic conditions.

Tests of the camera system in noisy environments will continue for the vision system’s ability to discern fuel pellets from other objects present.

The conceptual design plant layout, and cost estimates for possible Transmuter Fuel fabrication plants will continue for various fuel types. (Simulations of oxide, metallic, and dispersion fuels have been completed.)

Capital and operations cost estimates will be developed for various fuel options. Target Plant capacity approximately 100 metric tons annually.

Research Staff
Georg Mauer, Principal Investigator, Professor, Mechanical Engineering Department

Students
Koushik Damera, and Prathima Sajja, Graduate Students, School of Computer Science
Kyle Gohres, Undergraduate Student, School of Computer Science
Tobias Kotthäuser, Undergraduate Student, Mechanical Engineering Department, University of Duisburg, Germany

Collaborators
Mitchell K. Meyer, Group Leader, Fabrication Development Group, Nuclear Technology Division, Argonne National Laboratory

ACADEMIC YEAR HIGHLIGHTS

BACKGROUND

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to stainless steel. The corrosion is due to relatively high solubilities of the base and major alloying components of steel, such as Ni, Fe, Cr, etc. in LBE at elevated temperatures. Without some protection, the steel structures rapidly corrode in LBE through dissolution and leaching of these materials.

Thus, for long term reliability of the structures, it is necessary to provide some protection of the steel surface from corrosion, without affecting the bulk properties of the steel. One such technique that has been well investigated is the use of oxygen control at the surface of the steel, which maintains a coating of oxide layer that protects the steel surface. The protective layer forms due to the higher affinities of the steel alloying components to oxygen compared to lead and bismuth. However, once a continuous film of oxide is formed, a competing process takes place; the oxide layer interacts with the LBE causing reduction of the oxide layer at higher temperatures. It is thus critical to maintain an optimum flow of oxygen at the LBE/steel interface, which is made challenging by the non-uniform temperature distribution in the transmutation systems. In addition, while the oxygen control technique works effectively at lower temperatures, it is not appropriate for higher operational temperatures (500-600 °C), which is becoming increasingly important. Thus, it is necessary to develop alternative techniques for corrosion protection of steel that will perform reliably at elevated temperatures and under thermal cycling in LBE.

RESEARCH OBJECTIVES AND METHODS

The objective of this project is to develop a novel nanostructure based coating technology that will provide significantly improved corrosion resistance for steel in LBE at elevated temperatures (500-600 °C), as well as provide long-term reliability under thermal cycling. The nanostructure based coatings will consist of a layer of nanoporous alumina with the pores filled with an oxidizing metal such as Cr, followed by a capping layer of alumina. Alumina, which is a robust anti-corrosion material, provides corrosion resistance at elevated temperatures. The Cr serves two purposes: (1) it acts as a solid filler material for the pores in the alumina, enhancing its mechanical and chemical integrity, and (2) it acts as a second layer of defense against corrosion by providing a replenishable source of Cr (for the formation of a chromium oxide protective layer) in case the alumina layer is compromised. The innovation of this project is the use of a nanoporous alumina layer for the coating, which is mechanically flexible and can expand and contract with the underneath steel surface. As a result, the mechanical integrity of the coating is preserved under thermal cycling. In addition to their usefulness at higher temperatures, the proposed coatings can also provide increased reliability at lower temperatures by complementing the oxygen control technique. The nanostructure based coatings developed in this project will significantly enhance the long-term reliability of steel structures in LBE at elevated temperatures and under thermal cycling.

Working with the national laboratory collaborator, the stainless steel alloys HT-9 and EP-823 were chosen as the candidate materials for investigation at this time. The above project objective will be achieved in three phases; each phase will be carried out over a one-year period.

Phase I will develop the fabrication technology for the coatings on steel, and study their structural integrity at elevated temperatures and under thermal cycling.

Phase II will perform corrosion studies of the structures in LBE at elevated temperatures.

Phase III will use the data from Phases I and II to develop an optimized coating technology for improved structural integrity under thermal cycling, and improved corrosion resistance in LBE at elevated temperatures. If necessary, multiple layers of such coating structures will be used for increased resistance to corrosion.

During Year 3 of the project (2006-2007), extensive investigation was carried out on the deposition of longer and improved quality metal nanowires inside the pores using a new technique as well as the establishment of the experimental setup for characterization of the coatings.
Researchers previously, during Phases I & II of the project, a significant problem was encountered with the synthesis of Cr nanowires inside the alumina pores, the uniformity of coverage was very poor. As a result, alternative metals to form nanowires were looked into and nickel was selected primarily due to its established electrochemical synthesis procedure.

A number of recipes were investigated for their suitability for synthesis inside nanoscale pores, and the process parameters were experimentally optimized for the synthesis of nanowires. The deposition of the Ni nanowire was performed in a two-electrode arrangement with a mixture of NiSO\textsubscript{4}•6H\textsubscript{2}O, NiCl\textsubscript{2}•6H\textsubscript{2}O and H\textsubscript{2}BO\textsubscript{3} as the source of Ni. The wires were deposited at a potential difference of 1 V between the anode and the cathode and at ambient temperatures. The Ni nanowire samples were characterized by Field Emission Scanning Electron Microscopy (SEM), which showed excellent uniformity and coverage. However, while Ni can provide very good structural integrity to the porous alumina, one potential problem is its higher dissolution rate in LBE.

In addition, it was noted that the heights of the Ni nanowires were limited, and even with extended deposition times, the heights were limited to a few tenths of a micron. This limited height was believed to be arising due to the dynamics of fluid flow inside the nanoporous alumina.

To address the above issues, two different approaches were taken. A systematic study was continued during the past year to improve the deposition uniformity of the Cr nanowires, and some improvement was achieved. The uniformity of coverage showed improvement and experimental optimization of process parameters was continued for further improvement of the coverage uniformity. In addition, a new and promising approach was initiated for the deposition of metal nanowires inside the nanoporous alumina as described below.

During the past year, a new technique was initiated and investigated for the deposition of metal nanowires inside the nanoporous alumina. This technique involves the electro-phoretic deposition of nanoparticles inside the pores followed by recrystallization into nanowires. The major advantage of this technique is that the chemistry of nanoparticle synthesis is separated from the formation of nanowires, as a result it has the potential to eliminate the limitations encountered in nanowire synthesis. Nanowire deposition inside the alumina pores is made challenging by the nanoscale fluid flow and chemical reactions inside the nanoscale volume of nanoporous alumina pores. In this new technique, nanoparticles of the desired metal are first synthesized by an established technique in an emulsion form, which are then incorporated inside the nanoporous alumina pores. Since nanoparticles are relatively less complex to incorporate inside pores, it provides an excellent means for the synthesis of nanowires of good uniformity and desired heights. The nanoparticles can be synthesized using an established technique such as sol gel technique. The nanoparticles can be then annealed to form the nanowires or sonication can be used during electro-phoretic incorporation to form the nanowires.

Deposition of Cr nanowires on steel substrates will be achieved by using the following procedure. A new batch of steel samples will be coated with metallic aluminum which will be anodized using constant current anodization. Since it is not possible to obtain cross-sectional images of the structures on steel samples, the voltage-time characteristics will be measured to monitor the quality of the anodized alumina structures. A typical voltage-time characteristic obtained during the anodization of aluminum on steel samples, when compared to data from silicon samples, confirms the good quality of the nanoporous alumina. Cr nanoparticles will be synthesized using the sol-gel technique and will be then electro-phoretically incorporated inside the nanoporous alumina. Sonication will be used during deposition to fuse the nanoparticles to form nanowires. A sonication apparatus was obtained for this purpose. This will be followed by the deposition of a thick film of dense alumina, the process technology for which has already been developed during the previous phase of the research.

FUTURE WORK

The next phase of the project is to characterize the samples fabricated using the new technique, including structural integrity of the coatings with Cr at elevated temperatures and under thermal cycling. The samples will then be characterized by SEM and also scratch tested to evaluate the structural integrity and adhesion properties of the coatings for thermal cycling at different temperatures. A programmable furnace had been acquired and a specialized sample holder fabricated to perform automated thermal cycling of the coatings developed on steel samples. However, the functions of the programmable furnace were delayed due to facility issues. To address this, a smaller furnace was acquired and installed for the characterization of the samples.
BACKGROUND

The UNLV Transmutation Research Program is developing technology for the transmutation of nuclear waste to address long-term disposal issues. Integrating and enhancing the Argonne Model for Universal Solvent Extraction (AMUSE) code that contains a great part of chemical separations processing, is the major part of a previous 3-year project. Simulating the Light Water Reactor (LWR) Spent Fuel Treatment Facility (SFTF) processes is the major focus for this three-year project. The approach is to combine commercial process simulation software, ASPEN-Plus, with the chemical separation calculation from the AMUSE code. Based on the current Integrated System Optimization Program, ISOPro, developed by UNLV, the project objective is to create a system framework that interacts with both programs and provides analyzed results useful for SFTF design that provides the functionality of receiving, temporarily storing, and preparing spent nuclear fuel for leaching.

The spent fuel treatment facility has many individual processes that make up the overall separations processes. As illustrated in the overall process flow sheet below, each block represents a unique process that carries out an individual chemical separation. Each individual process block contains numerous operations that are responsible for the chemical separation. By removing the primary constituent, U, from spent fuel enables more waste to be stored at geologic repositories. The Uranium Extraction Process (UREX) is often the first removal process in the overall scheme of spent fuel recycling. After extracting U and Tc from the spent fuel, the washed and rinsed effluents (Cs/Sr raffinate) move on to the next separation process.

A key concept in the SFTF plant design is the recycling of nitric acid. The purpose of the nitric acid recycle system is to concentrate the spent nitric acid to a desired molarity that in turn can be recycled back into the process. The spent nitric acid streams from many processes are collected and sent to a distillation column where it is separated from the impurities collected in the various separation processes. The feed to the separation column contains acetic acid and water as well as the desired nitric acid.

RESEARCH OBJECTIVES AND METHODS

The major objectives described below will lead to a creation of framework that combines all the strengths of AMUSE’s complicated calculations, well-established commercial system process package and ISOPro’s flexible parameter optimization modules. Development of the process simulation code can be done using the solvent extraction process at Argonne National Laboratory in collaboration with the research team from Mechanical Engineering Department at UNLV. The objectives of this project are:

- To develop a framework for simulating the Spent Fuel Treatment Facility process using the AMUSE code, ASPEN-Plus commercial process package and ISOPro system engineering model.
- To develop middleware interfaces that can communicate between the AMUSE code and ASPEN-Plus packages.
- To extend the existing system engineering model for the optimization process that includes process simulation results.
- To include a scenario-based database system that efficiently reports required information as chart output using web-based programming, and Microsoft Visual Basic (MS VB).

RESEARCH ACCOMPLISHMENTS

- Integrated the ASPEN-Plus process model with the ISOPro system engineering modeling package, developed by the UNLV team.
- Tested the simplified system process integration using the ISOPro package.
- Generated complete version of the ISOPro package user manual and tutorial.
- Made an interface to interact with ASPEN-Plus through the ISOPRO Package

To interact with both the AMUSE and ISOPro packages, the middleware interface based on the ISOPro should provide the capability of interacting with external programs, converting input and

![Modified TRPSEMPro system architecture](image-url)
output data and managing process results. The major task for the year was to complete the interface to the ASPEN-Plus program through the developed ISOPro package. The data communication and result presentation from these two programs are valuable for the SFTF’s process design task. The internal MS Access database was developed for storing intermediate and final simulation results from both programs. However, input and output data files originally generated from each individual program are kept intact and are used to populate the initial data sheet within each middleware interface. Although the program integration was completed, the final SFTF’s system optimization work is not included in this report due the export control nature of the AMUSE code. The optimization can be completed by the ANL research team by plugging the full AMUSE program into the ISOPro package. The accomplishments for the year are summarized as follows:

- The framework design was revised to improve the performance of the system. It defines the data flow from ASPEN-plus to AMUSE with the data set “parser module” in the middle. Based on the discussion with ANL staff, the UREX+1a process simulation flow chart was updated based on the input and output natures defined in the database storage.
- The middleware for the ASPEN-Plus interacts with the ASPEN-Plus and populates data into a user friendly, tabulated format. It displays the information from streams and its elements. The user can modify the input values and directly run the simulation through the interface. There are sets of standard menu items listed to provide faster access. A “Tree” view of the streams is organized into “Input” and “Output” based on the “Blocks” definition retrieved from the Aspen “bkp” file. After each simulation run from the ASPEN-plus, input/output information is updated into the interface. The selected programming algorithm can significantly impact the read/write efficiency of the code, especially loading a large and complicated “bkp” file. A “nested hash” programming technique was used. To accelerate data access, ASPEN-Plus information was stored in two hashes, one for Input streams and one for Output streams.

FUTURE WORK

Future work will include optimization of the system and chemical separation processes using the ISOPro system engineering modeling package developed by the UNLV team.

ACADEMIC YEAR HIGHLIGHTS

Screenshots of the newly updated ISOPRO interface to the ASPEN-Plus; (left) input stream; (right) output stream.

Research Staff
Yitung Chen, Principal Investigator, Associate Professor, Mechanical Engineering Department; Sean Hsieh, Research Assistant Professor, Mechanical Engineering Department; Nevada Center for Advanced Computational Methods

Students
Matthew Hodges, Graduate Student, Mechanical Engineering Department; Ming Chang, Rulong Li and Ling Kwan, Graduate Students, Computer Science Department

Collaborators
James J. Laidler, Senior Scientist, Chemical Technology Division, Argonne National Laboratory; George F. Vandergrift, III, Senior Scientist, Chemical Technology Division, Argonne National Laboratory
BACKGROUND

In the Transmutation Research Program the separation of the trivalent actinides Am and Cm from the trivalent lanthanides, and even each other, has been identified as an area of particular interest. The removal of lanthanides from trivalent actinides is necessary for the neutron economy of a fuel containing Am and Cm. Furthermore, a fuel containing only Am would ease the demands on a reactor for transmutation. The destruction rate of Cm isotopes in a reactor is comparable to their decay rate. Separation and storage of the Cm, and reintroduction into the fuel of the Pu daughters, is a transmutation option that can be explored if a suitable method for the separation of Cm from Am is obtained. Furthermore, removal of Cm would reduce difficulties in fuel fabrication.

Electrochemical methods can be used to effectively separate actinide and lanthanide species from complex mixtures. This is based on the unique electrochemical properties of each specific target species. In studies it has been found that with the exception of Ce, aqueous solutions provide unsuitable electrochemical windows to effectively evaluate the thermodynamic properties that are useful for chemical separation. Therefore a more novel approach was examined which eliminated the aqueous solution with a Room Temperature Ionic Liquid (RTIL) solution. RTIL solutions do not suffer from the side reactions that are prominent in aqueous environments. In addition the potential window is much larger for the RTIL solutions. The RTIL solutions are a new starting point for the electrochemical separation of individual species from a mixture.

RESEARCH OBJECTIVES AND METHODS

The objectives of this project are to use electrochemical techniques to develop a thermodynamic understanding of actinide and lanthanide species in RTIL solution, and to use this data to effectively separate species with very similar chemical properties. In consultation with a national laboratory collaborator, electrochemical methods and materials will be evaluated and used to exploit the thermodynamic differences between similar chemical species, enhancing the ability to selectively target and sequester individual species from mixtures. This project is in its third year and has successfully completed phases 1 and 2. Phase 3 has been partially completed. The tasks have been expanded to include a fourth phase.

Phase 1
Evaluate thermodynamic oxidation/reduction properties of Ce using electrochemical methods.

Phase 2
Evaluate the thermodynamic properties of chelated Ce, Sm, and Eu at carbon, platinum and gold electrodes.

Phase 3
Examine the use of conductive polymer membranes for the uptake and expulsion of complexed and uncomplexed actinide and lanthanide species.

This phase still needs to examine the uptake, selective adsorption and separation of individual actinide and lanthanide species, including the isolation of Cm from Am, using conductive polymer/metal composite membranes containing bound chelates.

Phase 4
Prepare and characterize RTIL solutions. Examine the electrochemical window and evaluate the electrochemical properties of lanthanide and actinide species in the non-aqueous ionic environment.

The following were specific goals for this year:

54
To prepare RTIL solutions.
- To evaluate the potential window of RTIL solutions.
- To develop a fundamental understanding of the thermodynamic properties of actinide and lanthanide species (such as Cm, Am, Ce, Nd, Eu, and Sm) in RTIL solutions.

RESEARCH ACCOMPLISHMENTS

The electrochemical window for RTIL systems is based primarily on the reduction of the cation and oxidation of the anion used to make the solution. The potential window is significantly larger for RTILs ranging from approximately 4.5 to 6 V when compared to aqueous environments. The figure to the left illustrates the potential windows obtained in aqueous solutions of 0.1 M H₂SO₄ (blue line) and the RTIL, tri-n-butylmethylammonium bis(trifluoromethylsulfonyl)imide ([MeBu₃N][NTf₂], red line) at GC, Au, and Pt electrodes. For each electrode the positive and negative potential limits provide an absolute potential window of approximately 4.5 V for Pt, 5.0 V for Au, and 6.0 V for GC.

The advantage to eliminating aqueous side reactions and expanding the potential window is that previously inaccessible electrochemical reactions may be observed. These systems provide a huge potential window for the observation of oxidation and reduction of lanthanides and actinides. In addition, the potential mediated deposition of f-elements is possible - indicating that the controlled separation of chemical species is thermodynamically feasible. For example, the reduction of Pu³⁺, Am²⁺, Am³⁺, Cm²⁺, and U³⁺ all occur before E = -1.90 V vs. Ag/AgCl, well within the negative potential limit for the RTIL at platinum (-2.6 V vs. Ag/AgCl), gold (-2.2 V vs. Ag/AgCl), and glassy carbon electrode (-3.4 V vs. Ag/AgCl) in the RTIL solutions shown in the before mentioned figure. The preliminary electrochemical characterization of Eu in RTIL is shown in the figure below.

Through using infrared (IR) and ultraviolet-visible spectra, it was observed that the uranyl did complex to the anion of the RTIL. However, a more interesting way to complex the uranyl to the RTIL is by adding uranyl carbonate directly to the RTIL and then using Argon gas to remove the carbonate. The results yielded a soluble UO₂-bis(trifluoromethylsulfonyl)amide (TFSI) complex that produced reversible electrochemical reactions with Uranium including the U(VI)/U(V) couple. The Cyclic Voltammogram (CV) also yielded the U(IV)/U(III) couple. This method could prove to be very useful in observing the electrochemistry of any metal-carbonate species.

FUTURE WORK

Future work will focus on the development of RTIL solutions suitable for the potential mediated oxidation/reduction and deposition of lanthanide and actinide species. The ultimate goal is to separate individual species using the electrochemical potential of species.

ACADEMIC YEAR HIGHLIGHTS

Research Staff

David W. Hatchett, Principal Investigator, Assistant Professor, Department of Chemistry
Ken Czerwinski, Associate Professor, Department of Chemistry

Students

Sandra Elkouz and Wendy Pemberton, Graduate Students, Department of Chemistry

Collaborators

George F. Vandegrift, Associate Division Director for Nuclear Fuel Cycle Programs, Chemical Engineering Division, Argonne National Laboratory
BACKGROUND

The extraction of tetravalent Pu and hexavalent uranyl in nitric acid solution by tributylphosphate (TBP), based on the formation of organic phase neutral complexes such as Pu(NO₃)₄•2TBP and UO₂(NO₃)₂•2TBP, has been the foundation of actinide purification for a number of decades. Upon reduction of Pu(IV), Pu(III) is back extracted into an aqueous phase. However, the data needed for detailed modeling of Pu extraction is not available for all conditions of concern to the Advanced Fuel Cycle Research and Development program. This proposal was developed with Dr. George Vandegrift of Argonne National Laboratory to obtain the necessary data for Pu extraction modeling.

Understanding the role of nitrate in actinide speciation is important for determining the necessary data for extraction modeling. Difficulties in modeling Pu extraction under some nitrate conditions may be due to ill-defined constants of formation for the dinitrate and trinitrate species of U and Pu. The influence of pertechnetate on the speciation of U and Pu in the TBP-dodecane-nitric acid system is still poorly understood. Since pertechnetate is capable of reoxidizing reduced Pu species, it may have a profound impact on the extraction of Pu.

In the uranium extraction process, acetohydroxamic acid (AHA) is expected to be used. AHA can complex and reduce Pu, decreasing its extraction into the organic phase; the effect of uranyl-

RESEARCH OBJECTIVES AND METHODS

The research objective is to experimentally evaluate the fundamental speciation of Pu and U in the TBP-dodecane-nitric acid-AHA system and the effect of pertechnetate, specifically:

- To determine the influence of nitrate on the speciation of U and Pu in the TBP-dodecane-nitric acid system. The aqueous and organic speciation of U and Pu are examined as a function of the nitric acid concentration, nitrate concentration, actinide ion concentration, temperature, and time.
- To determine the speciation of U and Pu with AHA in the presence and absence of TBP-dodecane organic phase. The aqueous and organic speciation of U and Pu are evaluated as a function of AHA concentration, metal ion concentration, metal ion redox state, pH, and temperature.
- To determine the interaction of AHA with pertechnetate, and the effect on the interaction of AHA and pertechnetate with U and Pu.
- To incorporate thermodynamic and kinetic data into existing modeling codes.

All of the initial experiments were performed with uranyl, UO₂²⁺. The results obtained from U are the basis for further experiments with Pu. In extraction experiments, the aqueous and organic phases are contacted in equal volumes from 0.3 to 5.0 mL.

RESEARCH ACCOMPLISHMENTS

Uranyl Nitrate. The complexation of uranyl (0.01 to 0.1 M) with nitrate was studied at 1 M HNO₃ with excess nitrate (from LiNO₃) varied from 0 to 10 M. It was found that at higher nitrate
concentrations, more uranyl was present in the organic phase, and, in the absence of uranyl, more HNO₃ extracted.

Uranyl-AHA. The complexation of uranyl with AHA and its effect on U extraction into TBP-dodecane was studied via ultraviolet-visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR), and Inductively Coupled Plasma-Atomic Emission Spectroscopy in perchlorate and nitrate media. The concentrations of uranyl (0.1 to 10 mM) and AHA (1 to 700 mM) and the pH (1 to 10) were systematically varied. It was determined via NMR that there are at least two species of uranyl-AHA, that the species formed is pH-dependent, and that there is little hydrolysis at 25 times or higher molar excess AHA. The low-pH species extracts from perchlorate media as well as free uranyl, and the high-pH species remains in aqueous solution. In nitrate media, the nitrate competes with and oxidizes the AHA under acidic conditions; the exact interactions remain to be explored.

In addition, methods for synthesis of the uranyl-AHA solid were developed; the solid was characterized by UV-Vis, Fourier Transform Infrared spectroscopy, NMR, laser fluorescence, melting point, and X-ray Absorption Fine-structure Spectroscopy (XAFS), and a crystal structure was obtained. The uranyl-AHA is present as a highly symmetrical polymer, in which each equatorial atom is exactly 180° from its opposite and the ligand planes are twisted within and between unit cells.

Technetium-AHA. Previous work failed to observe pertechnetate reduction by AHA; however, in the presence of catalytic acid (0.5 to 4 M HNO₃ or HClO₄) and a large excess of AHA (0.5 to 4 M), pertechnetate (0.1 to 20 mM) will be reduced to the Tc⁴NO(AHA)₂ species in aqueous media. This species is highly water soluble and does not extract into 30% TBP. The presence of uranyl has no effect on the formation or extraction of this species, and up to hundredfold excess UO₂⁺ does not affect the rate of formation. There is significant evidence that the reaction is instantaneous and the change in the Tc-AHA UV-Vis spectrum is due to the increasing pH as AHA hydrolyzes to acetic acid. However, the mechanism of formation is yet to be elucidated.

FUTURE WORK

The stability constants of the higher nitrado species of uranyl have yet to be determined; preliminary UV-Vis and laser fluorescence studies have been performed. The stability constant of the uranyl-AHA species is also unknown; UV-Vis and NMR studies are underway. The mechanism of Tc-AHA formation and its effect on Pu redox and extraction will be explored.

Research Staff

Ken Czerwinski, Principal Investigator, Associate Professor, Department of Chemistry
Cynthia Gong and Frederic Poineau, Post-Doctoral Researchers, Harry Reid Center

Students

Amber Wright, Wendy Pemberton, and Jeanette Daniels, Graduate Students, Department of Chemistry (Radiochemistry Ph.D. Program)
Jeremy Maute and Trent Ohman, Undergraduate Students, Department of Chemistry

Collaborators

George Vandegrift, Argonne National Laboratory
Thomas Albrecht-Schmitt, Auburn University

ACADEMIC YEAR HIGHLIGHTS

The UV-Vis spectrum of uranyl nitrate in 30% TBP varies with nitrate concentration.

XAFS Structure of Technetium(II)-nitrosyl-AHA.
BACKGROUND

In the Reactor-Accelerator Coupling Experiments (RACE) Project of the U.S. Advanced Fuel Cycle Initiative (AFCI), a series of accelerator-driven subcritical systems (ADSS) experiments have been conducted at the Idaho State University’s Idaho Accelerator Center (ISU-IAC) and at the University of Texas (UT) at Austin. In these experiments, electron accelerators are used to induce Bremsstrahlung photon-neutron reactions in heavy-metal targets. They produce a neutron source of 0.8×10^{12} n/s per kW of electron beam, which will then initiate fission reactions in the subcritical systems. These subcritical systems include a compact, transportable assembly at ISU and a TRIGA reactor at UT-Austin. A variety of fuel and assembly geometries are being studied: at ISU 150 flat plates of 20%-enriched uranium-aluminum alloy plated with aluminum are used; and at UT-Austin 20%-enriched UZr-H fuel are used. A third phase at Texas A&M using 70%-enriched UZr-H “FLIP” fuel has been put on hold. The use of compact accelerators and a small target allow the target to be placed in various positions in or adjacent to these subcritical assemblies to “map” the coupling of driven neutron sources; measuring core coupling and mapping adjoint flux.

The RACE Project is an important intermediate step between the recent European program MUSE and a future near full-scale demo. For MUSE, which was conducted by the CEA at Cadarache, France, the driving neutron source was produced by D-D or D-T reactions which produced a nearly mono-energetic source of 2.45 or 14.1 MeV and a maximum strength of $\sim 10^{10}$ n/s. For design of full scale ADSS, a complete knowledge of the effects of the driving neutron source is essential. This will ultimately require spectral, temporal, directional, and intensity fidelity in prototype experiments. In the absence of this fidelity, simulated sources should match some of the characteristics of projected driving sources to build confidence in the predicting performance of these systems, and codes and methods must be validated. The RACE Project will provide experience in a higher energy range (above 14.1 MeV) and with a stronger and more isotropic source than the MUSE experiments. In addition, a high-power RACE phase could provide valuable information on thermal feedback effects in TRIGA reactors. This combination of attributes of the RACE Project will provide highly valuable information in advance of the prototype or demonstration programs.

RESEARCH OBJECTIVES AND METHODS

The specific research objective of this three-year project is to design and conduct accelerator driven experiments, which will help demonstrate in the U.S. the ability to design, compute, and conduct ADSS experiments and to predict and measure source importance, coupling efficiency, sub-critical reactor kinetics and source-driven transients. In addition, databases will be created for both steady state and transient ADSS experiments for the nuclear community to develop and test new computational codes and methods, and the importance of a driving neutron source in various regions of different subcritical assemblies will be mapped. Experiments will be conducted and compared to calculations with radiation transport and thermal-hydraulics codes such as MCNPX and RELAP.

RESEARCH ACCOMPLISHMENTS

ISU RACE Experiments: UNLV collaborated with ISU and CEA in a series of ADSS experiments at the Idaho Accelerator Center. This series of ADSS experiments was conducted with a low-power, 20-MeV electron accelerator coupled to the Subcritical Assembly (SCA) with a tungsten-copper neutron generating target. Dozens of individual experiments were conducted to measure a variety of parameters and ADSS responses, including break-point frequency, flux stability, a long-duration reference pulsed-neutron-source experiment, a beam trip experiment, and a variable criticality experiment, which was conducted by observing the neutron response while water was drained from the SCA. The last series of these experiments were completed in October, 2006.

Since the conclusion of the ISU RACE Project experiments, results were compared from ISU RACE experiments conducted at ISU in October with Monte Carlo radiation transport modeling to...
analyze effective delayed neutron fraction (β_{eff}) in these far-subcritical, under-moderated systems using MCNP. The simplest approach based on 2 k-eigenvalue predictions with and without accounting for delayed neutrons gave unsatisfactory results due to the lack of convergence. Calculations have been completed with and without a plutonium-beryllium neutron source, which, although it was small, did affect the results. Two more-suitable techniques based on different weighting functions are currently under investigation.

The statistical behavior of calculated effective delayed neutron fraction based on two independent calculations (with and without delayed neutrons) for a critical system was more stable than for the subcritical case. Again, calculations have been completed with and without a plutonium-beryllium neutron source. Two more-suitable techniques based on different weighting functions are currently under investigation. The importance function is being used as an approximation of an adjoint weighting of the space- and velocity-dependent neutron population to calculate the effective neutron lifetime. Use of the value of a particle leaving a collision is being compared to that of a particle entering an event. Another computational approach that is based on a power iterations method (KCODE) to directly assess the efficiency of delayed neutrons is under development. The shape function for the steady-state problem, which will be used as a weighting function, was calculated and the relative efficiency of neutrons causing fission was determined.

High-power Target Design: The High-power RACE Target was transported to ISU’s IAC in August 2006 for further tests to measure neutron generation and heat transfer while coupled to an electron linac. An accelerator-driven neutron production experiment was conducted and temperatures were recorded at several points. Since completing the experiments, experimental results are being evaluated. The Target is being modeled using Gambit and the CFD code FLUENT for comparison with experiments. During this reporting period, the potential complexity of the CFD modeling was upgraded with a parallel processing system. Refinement was continued of the MCNPX transport model to reduce statistical uncertainty and to perform parametric studies to study impacts of accelerator performance and characteristics, such as beam spread in energy or position.

RACE Project Management: In his role as national RACE Project Director, the PI began to conclude the RACE Project with several universities and several European organizations. These organizations have contributed to several aspects of the RACE Project, including target design and analysis for High-Power RACE. Contracts supporting RACE Project work at the University of Michigan, Texas A&M University, and University of Texas at Austin ended during the summer, the Idaho participation was terminated in December, and the UNLV portion of the RACE Project will end summer 2007. EUROTRANS participants may continue to evaluate experimental data.

UNLV hosted, and students and faculty attended, an Advanced MCNPX Workshop at UNLV. As a result, the group was able to greatly improve statistical results of calculations of electron-photon-neutron transport.

FUTURE WORK

During the summer of 2007, graduate student Evgeny Stankovskiy will complete his doctoral dissertation, which will be the final research within the RACE Project. In addition, the PI will be the General Chair of the Fifth Workshop on Accelerator-Driven Subcritical Systems Experiments will be conducted at the Idaho State University as part of the Eighth International Topical Meeting on Applications and Utilization of Accelerators (AccApp’07).

UNLV graduate students Timothy Beller and Ryan LeCounte couple the UNLV High-Power RACE Target to a linear electron accelerator at the Idaho Accelerator Center.

ACADEMIC YEAR HIGHLIGHTS

Research Staff

Denis Beller, Principal Investigator, Research Professor, Department of Mechanical Engineering

Students

Evgeny Stankovskiy, Graduate Student, Department of Mechanical Engineering

Timothy Beller, and Ryan LeCounte, Graduate Students, Department of Mechanical Engineering

Collaborators

George Imel, Argonne National Laboratory; John Bennion and Alan Hunt, Idaho State University; William Charlton, Texas A&M University; Sean O’Kelly, University of Texas at Austin; and, John C. Lee, University of Michigan
Task 28
Impact of the Synthesis Process on Structure Properties for AFCI Fuel Candidates
K. Czerwinski

BACKGROUND
Synthesis of actinium mononitrides using carbothermic reduction of the corresponding oxides has a few outstanding issues, including the formation of secondary phases such as oxides and carbides and low densities of the final product. Furthermore, the requirement of a high process temperature at 1700°C, for more than 12 hours is also a drawback particularly for Americium-bearing samples. Therefore, it is important to explore the use of other possible routes to synthesize actinide mononitrides.

A low temperature process is used in this research to produce actinide mononitrides using a fluoride route in which the first step is to mix the actinide oxide with NH$_4$HF$_2$. The second step involves the heat-treatment of the resulting ammonium actinide fluoride salts in ammonia atmosphere. Using different analytical techniques available, the experimental conditions can be studied and optimized to synthesize the required materials with high phase purity. Such available techniques are X-ray Powder Diffraction (XRD), Thermogravimetry and Differential Scanning Calorimetry (TG/DSC), and microscopic techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Once the experimental conditions are studied and optimized, a number of actinide nitride systems (uranium, thorium, and neptunium) will be synthesized and characterized to provide knowledge on the chemistry of the systems. Characterization of these nitride systems will include chemical phase identification, lattice parameter refinements, morphological studies, microstructural verifications, thermal behavior, reaction mechanism, and reaction kinetics.

RESEARCH OBJECTIVES AND METHODS
The research objectives are:
- To explore a low-temperature fluoride route to synthesize actinide nitrides.
- To characterize actinide nitrides structurally and thermally.
- To use high resolution TEM techniques to explore the microstructure of the radioactive samples.

RESEARCH ACCOMPLISHMENTS
Uranium based nitride synthesis and characterization

The fluoride route was successfully used to synthesize three uranium nitride samples with different stoichiometry (UN$_2$, U$_2$N$_3$, and UN). Experimental conditions were optimized to synthesize high phase purity UN (97 wt.%). Thermal decomposition of UN$_2$ under different atmospheric conditions was also studied, and ultra high purity argon could successfully be used to reduce the sample completely to UN at 1100°C, see graph on the opposite page. UN$_2$ and U$_2$N$_3$ decomposition kinetics into UN were studied under argon at three different temperatures (1000, 1050, and 1100°C).

Optical microscopy and SEM were used to explore the morphology of uranium nitride samples. Bright Field Transmission Electron Microscopy was also used to confirm the morphological observations. Microstructural studies of the samples were carried out using high resolution (HR) TEM with the help of selected area diffraction (SAD) patterns. X-ray energy dispersive spectrometry of TEM was utilized to characterize the elemental distribution and to verify the phase purity of the samples. Powder XRD patterns of the as-synthesized uranium nitrides, UN$_3$, U$_2$N$_3$, and UN were collected and analyzed. Optical microscopic studies showed that the particle sizes of these uranium nitride samples range from 100 to 5000 nm. The microstructure of the UN sample shows the presence of UO$_2$ as a secondary phase on the surface of the sample. In this region, the lattice fringes correspond to the (222) interplanar d-spacing of UO$_2$. X-ray Energy Dispersive

Scanning Electron Microscopic images of the (a)7NH$_4$F.6UF$_4$ and (b) (NH$_4$)$_4$ThF$_8$ samples. (a) 7NH$_4$F.6UF$_4$ particles are well-crystallized (hexagonal unit cell with a rhomb-centered, a (b) = 15.40 Å and c = 10.49 Å and UN$_2$ is cubic (fcc) with a = 5.310 Å) (b) Well-crystallized (NH$_4$)$_4$ThF$_8$ acicular-shaped particles (triclinic unit cell with lattice parameters a = 8.477, b = 8.364, and c = 7.308 Å).
Spectrometry (XEDS) demonstrated that U was prominent, but it is difficult to identify the presence of N due to overlaps with peaks from O and C. However, the magnified XEDS spectra verifies the presence of N in samples, and this figure also displays the presence of O only in the UN sample. Thus, the XEDS verifies the phase purity of the synthesized sample.

Thorium based nitride synthesis and characterization
Use of the fluoride route was successful only up to the formation of ThNF. The removal of fluorine, which should have lead to the formation of thorium nitrides was unsuccessful at different experimental conditions. However, the characterization of ammonium thorium fluoride and ThNF was done using the above mentioned techniques.

FUTURE WORK
The next phase of the project involves accomplishing the following tasks:
- Explore other experimental conditions and chemicals to synthesize thorium nitrides.
- Study any reaction mechanism and kinetics involved in thorium nitride formations.
- Characterize thorium-based nitrides using the above mentioned techniques.
- Determine the ammonium bifluoride reaction with neptunium oxide.
- Explore the reaction route to synthesize Np-based nitrides.
BACKGROUND

Increasing the proliferation resistance of the nuclear fuel cycle is one of the stated goals for the Global Nuclear Energy Partnership program. From a proliferation aspect, the greatest challenge to closing the nuclear fuel cycle is ensuring that nuclear material is not diverted during the recycling processes. As part of the safeguards-by-design concept, new separations facilities will incorporate integral systems capable of providing materials accountability for the actinide elements to minimize the potential for undetected diversion of material. The goal of this project is to evaluate technologies to meet this need. Optical spectroscopic techniques, such as Ultraviolet-Visible Spectroscopy (UV/Vis) and Laser Fluorescence Spectroscopy (LFS), are quantitative analytical techniques that have been used for measuring the concentration of the actinides under laboratory conditions.

In UV/Vis spectroscopy, the sample is illuminated by a continuous spectrum (from the UV through the Visible wavelengths). The transmitted light is measured, allowing the determination of the absorbance of the light as a function of wavelength. The wavelength of the absorbance is dependent on the electronic structure of the absorbing atom, and is proportional to the concentration of the absorbing element in the sample. For LFS, the sample is illuminated at a single wavelength, which is absorbed by the target atoms in the sample. The energy absorbed is re-emitted through fluorescence. The wavelength of the absorbance, and the fluorescence-response, is again dependent on the electronic structure of the absorbing atom, and is proportional to the concentration of the absorbing element in the sample.

Both techniques are strongly dependent on the chemical speciation of the elements to be measured, providing a tool for not only the determination of material concentrations for mass balances, but also providing inspectors and plant operators with a tool to examine the process chemistry itself. As optical techniques, both of these methods can be adapted for fiber optics, allowing the instrumentation to be placed in shielded areas of the plant to minimize the impact of the radiation fields on the detectors and increase the accessibility of the systems for maintenance and inspection.

RESEARCH OBJECTIVES AND METHODS

The goal of this project is to evaluate the application of these analytical techniques to the on-line, real-time measurement of the actinide elements in the process streams of a solvent extraction process, with particular attention to the UREX+ and PUREX processes. Based on the experience gained through this effort, engineers will have the information necessary to decide if these technologies should be advanced to the prototype stage and tested at the pilot plant level. Through the experimental work planned as part of this effort, researchers will also develop a better understanding of the chemical interactions of the actinide elements, providing additional data for the development of first-principles based models of the solvent extraction process. The information gathered through these experiments will also add to the database on the UREX+ solvent extraction process, particularly in the off-normal operating regimes.

The research objectives are:

- To evaluate the potential for utilizing UV-Visible and laser fluorescence spectroscopy to determine actinide concentrations under process conditions, including the spectroscopic impact of acid concentration, solvent vs. aqueous product streams, ligand concentrations (TBP, AHA), and chromophoric agents (e.g. iron) from fission products or corrosion/degradation products.
- To examine what process chemistry information can be extracted from the spectroscopic signals along with the actinide metal concentrations.
- To examine the fundamental chemistry underlying the spectroscopic behavior under process conditions in support of process chemistry modeling activities.

RESEARCH ACCOMPLISHMENTS

To evaluate the potential application of optical spectroscopy techniques for the determination of uranium in the aqueous process streams of the UREX process, the impact of process chemistry on the absorbance and fluorescence behavior of the uranyl ion was examined. For the UREX flowsheet, the potential areas for deployment of these techniques was divided into four categories, based on the chemical environment, each represented by a feed or product stream: the process feed, the raffinate (actinide/fission product) stream, the technetium product stream, and the uranium product stream. These process ranges also allowed researchers to examine the potential application of these technologies to a PUREX-based flow sheet as well.
UV/Vis Spectroscopy

The UREX feed stream and uranium product will both have molar quantities of uranium present. The concentration of uranium in these streams is expected to exceed the linear range of detection for a 1 cm path length cell. To measure these high concentration streams by UV/Vis, plant designers would need to either insert a reduced path-length slip stream or add the capability for a fixed mass dilution in the slip stream. Either of these options, or more realistically the combination of the two, could reduce the absorbance in the system back to within the linear response range of the technique.

The raffinate and technetium streams are expected to have significantly lower concentrations of uranium. For the UREX process, the raffinate stream will also contain the AHA from the process. Based on the measured molar extinction coefficients for uranium under the chemical environments expected for these streams, the expected uranium concentrations will likely fall below the detection limits observed for a 1 cm optical path. While the limits of detection may be able to be extended with a longer path length, scattering and other phenomena would likely only limit this to an order of magnitude reduction in the detection limit. Even with these limitations, the technique could still be used to establish a threshold value for uranium, which may be useful in detecting changes in process chemistry. UV/Vis spectroscopy, combined with titration by a fixed mass of a caustic stream, can also be used to probe for the presence of AHA in the raffinate stream, allowing for independent confirmation that the plant is running the UREX flowsheet and has not switched to a plutonium extraction process (such as PUREX).

Laser Fluorescence Spectroscopy

The primary focus of the year two work on the project was the evaluation of Time Resolved Laser-induced Fluorescence Spectroscopy (TRLFS) techniques for the determination of uranium under process conditions. The impact of process chemistry on the observed lifetime and fluorescence yield of uranium in the aqueous process streams was investigated. TRLFS was determined to be significantly more sensitive for the detection of uranium, so much so that the signals in the feed and uranium product streams would easily saturate the detection systems. This sensitivity, however, may make the technique ideal for observing streams where the uranium concentration is expected to be very low, such as the technetium product stream and the raffinate stream. The detection limits and linear response regimes for both these process streams have been examined.

FUTURE WORK

For the final project year, work will continue to apply the spectroscopy techniques to expand the fundamental understanding of the chemistry of uranium under process conditions, with the goal of providing the theoretical basis to allow a better interrogation of the observed spectra to confirm process chemistry conditions. Research will also examine the potential spectral interferences on the determination of uranium due to dissolved iron (and other corrosion products), fission products, and other actinide elements.

In parallel, the application of these techniques to the organic process streams will be examined. Initial TRLFS experiments on uranium samples extracted into the organic phase have showed no fluorescence under laser irradiation. The reason for this is being investigated, but the leading hypothesis is that the C-H oscillators of the organic matrix are acting as quenching agents in much the same way that O-H oscillators do in a water based system. As a result, it is unlikely that TRLFS will be useful for determination of uranium concentrations in the organic streams. Initial experiments suggest that UV-Visible spectroscopy, however, appears to be a viable alternative technique for these organic process streams.

Potential Application Locations for Optical Spectroscopy in the UREX Flowsheet

ACADEMIC YEAR HIGHLIGHTS

Task 30
Combined Radiation Detection Methods for Assay of Higher Actinides in Separation Processes
D. Beller and W. Kernan

BACKGROUND

Monitoring of transuranic actinides (TRU—includes neptunium, plutonium, americium, and curium) during the separation of used nuclear fuel has been identified as a critical research area in the U.S. Advanced Fuel Cycle Research and Development program (AFC R&D). Recycling of used fuel by chemically separating it into uranium, fission products, and TRU would be the first step in this new fuel cycle. Material Protection, Accounting, and Control (MPAC) is necessary for materials accounting, criticality monitoring, and assurance of proliferation resistance.

In the MPAC project, faculty and students are investigating the potential to use combined neutron and gamma-ray detector systems to measure quantities and isotopic constituents contained during separations and intermediate storage. This will require knowledge of the nuclear and decay characteristics of materials during processing, the development of conceptual designs of monitoring systems, radiation transport studies to develop an understanding of operational regimes, and experiments to confirm performance. In addition, both passive and active concepts will be investigated, including collaborations with the Idaho Accelerator Center at Idaho State University (ISU) to use electron linear accelerators for producing photoneutrons in situ, for photon activation of TRU, or for stimulating emissions processes (e.g. x-ray fluorescence).

RESEARCH OBJECTIVES AND METHODS

The ultimate objective of this project is to develop technology to detect and accurately measure quantities of higher actinides in processing systems without taking frequent samples. These systems include used fuel receipt, separations batches, and pipelines. A variety of measurements may be combined to calculate flow rates of actinide elements with a to-be-determined precision. Nuclear and decay characteristics of materials during processing will be acquired, conceptual designs of monitoring systems will be developed, radiation transport studies will be conducted to develop an understanding of operational regimes, and experiments will be performed to confirm performance. Radiation transport and scoping studies will be conducted to investigate combined gamma-ray, neutron, and active and passive detection techniques to measure quantities and isotopic constituents contained during separations and intermediate storage. Scoping and design studies will first be performed using validated data sets (decay properties and reaction cross sections) and the radiation transport code MCNPX. Basic measurements will then be performed and compared to predictions. Experiments to be conducted in subsequent work are to be determined, but may include small quantities of radioactive actinides at UNLV in addition to accelerator-coupled experiments at ISU.

RESEARCH ACCOMPLISHMENTS

Students continued to develop concepts and models for use of the 3He Neutron Multiplicity Detector System (NMDS, which was developed as part of Task 6) for MPAC. Technology for assaying fuel rods and/or complete assemblies, and the use of the NMDS and other techniques to assay dilute quantities of TRU in waste and other process streams were investigated.

Lead and Carbon-based Slowing Down Spectrometers

Neutron slowing down spectrometers (SDSs) were modeled and plans were developed to conduct experiments at ISU with their carbon-based SDS. This work will be used to investigate technology for assaying fuel rods and/or complete assemblies. In preparation for these experiments, MCNPX was used to model neutron transport characteristics in lead and carbon-based SDSs. The energy of neutrons measured in a neutron detector with an SDS can be characterized by the equation $E = K/(t+t_0)^2$, where E is the energy of the neutron when it was created at the source (not its energy when detected), t is the time of the radiation detection (count) after a source event, and K and t_0 are characteristics of the particular SDS. Thus, if an accelerator pulse is used to generate neutrons which then initiate fission, the time history of the spectrum can be de-convolved to yield the energy spectrum. In addition, the neutron multiplicity can simultaneously be measured by the NMDS.

However, the detector system must be able to resolve the time dependence of the neutron signal. Because 3He detectors, such as those contained in the NMDS, have a slow response, the SDS configurations must be studied before conducting experiments. Those studies are currently ongoing, beginning with benchmarking computational methods. A Los Alamos lead SDS was mod-
eled to benchmark computational methods for determining energy-time correlation constants, and energy-time correlation constants are now close to those obtained in LANL experiments. The next step will be to use the MCNPX code to design an experiment using the ISU carbon-based SDS and electron linac, followed by experiments conducted at ISU in the next year. During this period, plans were developed to conduct experiments at ISU with the carbon-based SDS to develop technology for assaying fuel rods and/or assemblies.

MPAC for UREX+ Processes

Another application of NMDS to MPAC might utilize the measurement of both passive and active neutron multiplicity in very dilute concentrations of higher actinides, such as in a non-actinide waste stream. This is being investigated since it may be more feasible to monitor where actinides are not supposed to be than where they are. The NMDS will be used to assay actinides in pipes, tanks, etc. in a UREX+ fuel separations plant to measure quantities and isotopic constituents in such a stream. Sources and configurations were investigated to simulate a waste pipe that contains residual higher actinides from UREX-plus for use in upcoming experiments.

Neutron Multiplicity Detector System

Several programming and maintenance issues with the NMDS that were revealed during testing in December were repaired or resolved. New detector wiring that was installed on one detector group of NMDS significantly reduced background count rates (noise). As a result, all of the of standard cables were replaced with coaxial cables. In addition, as a result of differences in detector response between the original Russian data acquisition system and the new LabView-based system, detector response is being re-mapped with the data collection and analysis software. These improvements are expected to significantly improve the performance of the NMDS.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Resonance energy (eV)</th>
<th>K (keV-microsec) LANL</th>
<th>K (keV-microsec) UNLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir-191</td>
<td>1.5</td>
<td>164</td>
<td>148</td>
</tr>
<tr>
<td>Ta-181</td>
<td>4.3</td>
<td>161</td>
<td>148</td>
</tr>
<tr>
<td>Au-197</td>
<td>4.9</td>
<td>162</td>
<td>194</td>
</tr>
<tr>
<td>Ag-109</td>
<td>5.2</td>
<td>161.5</td>
<td>191</td>
</tr>
<tr>
<td>Ta-181</td>
<td>10.4</td>
<td>162</td>
<td>193</td>
</tr>
<tr>
<td>Cd-111</td>
<td>27.5</td>
<td>163</td>
<td>187</td>
</tr>
<tr>
<td>Au-197</td>
<td>58.9</td>
<td>189</td>
<td>174</td>
</tr>
</tbody>
</table>

Comparison of UNLV MCNPX computed time constants versus LANL’s values for the LANL LSDS benchmark.

ACADEMIC YEAR HIGHLIGHTS

♦ A collaboration with the V. G. Khlopin Radium Institute was developed for an upgrade to and maintenance on the Neutron Multiplicity Detector System.

FUTURE WORK

In the final year of this project modeling will be completed, the NMDS will be tested further, and it will be employed in two separate experiments. One is with a carbon-based neutron slowing down spectrometer to develop lead-based SDS technology to assay fuel assemblies upon receipt for separations, and the other is to assay a process pipe containing dilute concentrations of separated higher actinides. The carbon-based SDS has been constructed at the Idaho Accelerator Center. Actinides for the pipe assay experiments are available at UNLV, how they will be used in these studies is yet to be determined.
Task 31
Decoupling and Disturbance Rejection Control for Target Circulation
J. Ma, J. Lee, W. Yim

BACKGROUND

In 1998, the Institute of Physics and Power Engineering (IPPE) and Experimental and Development Organization “Gidropress” in Russia, began the design and construction of a prototype lead-bismuth eutectic (LBE) accelerator target, the Target Complex 1 (TC-1), under the International Science and Technology Center (ISTC) project #559 (“Pilot Flow Lead-Bismuth Target of 1 MW Power for Accelerator Driven Systems”) in support of the international efforts to develop accelerator-driven spallation systems for nuclear transmutation and other applications.

Liquid LBE is employed as a spallation target as well as a coolant in the TC-1. The TC-1 design, fabrication, and initial testing were completed at IPPE in Obninsk, Russia, in mid-2001. The system was then prepared for transport and shipped to UNLV, arriving in May 2002, where it was to become a viable testing facility in the U.S. to support research in heavy liquid metal coolant technology for the nuclear industry.

During the thermal and engineering test of the TC-1 in 2005 at UNLV, it was observed that the existing control algorithm led to a very slow convergence to the target temperature setting and also showed unstable oscillatory behavior. The original algorithm was not robust enough to handle the complicated heating system of the TC-1, where nine heating zones (elements) are compacted in one tight container. This interaction and coupling between each heating zone, as well as a heat disturbance from a low efficiency electromagnetic (EM) pump caused the overall temperature control system to be complex and nonlinear.

The objective of the proposed research was to study the coupling effect between each heating zone, and to improve the overall temperature control system of the TC-1 loop. In addition to the temperature control algorithm modification, a 24-hour automatic monitoring system of the EM pump was developed for robust and safe operation of the loop.

RESEARCH OBJECTIVES AND METHODS

The Primary objective of this task was to modify the existing control algorithm to achieve precise temperature control to the desired setting range. Safety issues, such as an alarm system and user-friendly design, were secondary objectives.

The TC-1 system has more than a single input and a single output, and it exhibits a nonlinear interactive property between the heater inputs and temperature outputs. For the effective control of the temperature in multiple locations of the TC-1 system, these nonlinear interaction terms must be eliminated or decoupled in the control loop. Eliminating these interaction terms requires the identification of these interacting, or coupling, terms. After successful elimination of the coupling terms, the closed loop control algorithm can be designed to achieve the precise tracking of the temperature on multiple locations of the TC-1 under external temperature disturbance from the EM pump. One example of such algorithms is a Proportional-Integral-Derivative control law that can be easily implemented for the existing LabVIEW codes of the Monitoring and Controlling and Scram Protection System.

In addition, the electromagnetic pump used for molten LBE circulation becomes a large heat source, particularly due to its low efficiency. A disturbance-observer-based control method was used to compensate modeling uncertainties as well as external disturbance. The disturbance observer regards the difference between the actual output and the output of the nominal model as an equivalent disturbance applied to the nominal model. The disturbance-observer-based control algorithm can achieve a precise tracking of set temperatures despite the highly coupled thermal disturbance existing in the loop.

Furthermore, the alarm system and a 24-hour monitoring and dial-out system was designed.

RESEARCH ACCOMPLISHMENTS

The performance of the TC-1 loop in 2001 at Obninsk, Russia and 2005 at UNLV was evaluated using available raw data. The proc-
The interacting terms between heater inputs and target temperature outputs in each zone were identified experimentally. These identified terms were expressed in a discrete transfer function matrix. The system identification was carried out by heating up one zone from room temperature to 50°C, while keeping others off. This temperature was selected to avoid a large difference between others. The transfer functions, which are used to describe dynamic response between individual inputs and outputs, were identified. A non-interacting, or decoupling, control algorithm based on the identified model was developed to reduce the influences from each zone.

Significant improvement in the controller performance was achieved by upgrading the existing controller. The heaters of all heating zones were well controlled to maintain the temperature of all zones within the desired range. The temperature difference is approximately 5°C.

A 24-hour monitor device was installed and wired to the main program. It can automatically dial out when the temperature is too high, or when an abnormal current passes through the EM pump. The current transformers were assembled to detect actual heater on/off statuses. Signals from these current transformers were regulated and recorded by the data acquisition system for further investigation.

One fatal defect of the watch-dog device was found that will need to be corrected. This significant defect will lead to a continuous heating up without control.

FUTURE WORK

A by-pass system was designed and is under construction to modify the TC-1 loop as a testing loop for material and thermal hydraulic studies. The control program will consider the new heating components for the bypass system, which will be connected to the TC-1. Control improvement of the EM pump, variable voltage transformer, variable frequency driver, heat indication, etc. will make this main control system more user-friendly and easily manipulated.
Task 32
Modeling and Design Algorithms for Electromagnetic Pumps
D.P. Cook

BACKGROUND

Electromagnetic (EM) induction pumps are used in a number of nuclear energy related applications, such as circulation of molten lead-bismuth eutectic alloys in neutron targets, and circulation of liquid sodium metal in Gen IV Sodium-cooled Fast Reactors (SFR). Because EM pumps have no moving parts which can fail, they are considerably more reliable than conventional mechanical pumps for molten metal usage, and thus EM pumps are favored over mechanical pumps even though their pumping efficiency is lower and their initial cost is higher when compared to mechanical pumps of similar flow rates.

The figure below shows a cut-away picture of an annular, linear induction pump (ALIP), such as has been used in prototype SFRs and the Target Complex 1 (TC-1) loop at UNLV. These ALIPs consist of three main parts:

• an inner cylindrical core fabricated from a ferromagnetic material,
• an annular channel through which the liquid sodium flows, and
• an outer ferromagnetic core in which a set of inductor coils are embedded.

During operation, a 3-phase, alternating current travels through the inductor coils. This current produces a magnetic field which, in turn, induces a current in the liquid sodium in the pump annulus and inner core. Pumping forces develop in the liquid sodium due to the interaction of the magnetic field and the induced current, causing the liquid sodium to flow down the length of the annulus. The magnitude of these pumping forces, and hence the operational efficiency of the pump, is dependent on a large number of design parameters, including coil current and position, material selection for the inner and outer cores, and size of the annular gap.

Research on the design of EM pumps has been conducted by a number of researchers in Korea, Germany, Japan and Russia. No major papers on the topic have been published by researchers in the U.S. in the past 10 years. If the U.S. is to continue to maintain a research presence in nuclear power research and development, it is imperative that a solid foundation in EM pump design be developed by researchers within this country. The development of this foundation is the primary aim of this research task.

RESEARCH OBJECTIVES AND METHODS

The research objectives of this task are:

• A literature review of topics pertinent to EM pump design. These topics include the equations governing the physical phenomena occurring in EM pumps and mathematical algorithms used in modeling these physical phenomena, different EM pump configurations, and the effects of materials properties on pump performance.
• Development of computational models of the TC-1 loop at UNLV.
• Evaluation of the computational models through comparison with experimental data taken on the TC-1 loop.
• A parametric study of the TC-1 loop investigating the pumping efficiency as a function of operating conditions, materials properties, and geometric parameters.

RESEARCH ACCOMPLISHMENTS

On-line EM Pump Literature Database

An on-line literature database has been set up on a UNLV website and now contains over 120 entries. Further work will continue this next year. The database will be expanded in terms of the number of entries, and key word searches will be incorporated into the database. This database can be found at:

http://nstg.nevada.edu/mmrpg/research/LitSurvey/EMP-Literature.html

Computational Modeling

Several preliminary models of EM pumps have been developed. The results published to date from this task have focused on the calculation of the EM phenomena (current density, magnetic field, and electromagnetic body forces) in the pump. The first of these EM models was an analytic formulation of Maxwell’s equations, in which the magnetic vector potential was the primary solution variable. Use of the method of separation of variables and Fourier transforms allowed the expression of the magnetic vector potential to be expressed in an integral form that could then be
The second model was developed using Comsol, a MATLAB-based platform, and relies on the finite element method to discretize and solve the partial differential equations. The software can run the finite element analysis together with adaptive meshing and error control according to a variety of iterative numerical solvers. The figures above and bottom right show a comparison of the radial and axial components of the magnetic flux density calculated in the pump from the analytic and numeric model. It should be noted that, in these calculations, the velocity of the liquid metal, which can have a significant effect on the magnetic field, was specified, not calculated via solution of the Navier-Stokes equations.

FUTURE WORK

The next phase of the project involves development of a fully-coupled magnetohydrodynamic solver, for calculating both the EM and fluid flow phenomena in the EM pump. For this model, the EM field phenomena will be calculated using an integral formulation of Maxwell’s equations, and the fluid flow phenomena will be calculated using a finite volume formulation of the Navier-Stokes equations. This model has been under development for several months and should be completed during Summer 2007.

Results from the current mathematical models have shown that the efficiency of EM pumping systems can be very dependent on several operating parameters, in particular the frequency of the applied three-phase current and the inductor winding patterns. To further explore the sensitivity of the system to these parameters and to ensure the validity of the computational models that are being developed, plans to construct a lab-scale EM pumping system have been discussed. The system would be a rectangular loop, roughly 2 meters by 1 meter in dimension. The EM pump that would be providing the motive force to the fluid would be of variable frequency, allow changes in the inductor winding pattern, and have removable magnetic cores. This type of pumping system would allow extensive opportunity to validate the computational models.

ACADEMIC YEAR HIGHLIGHTS

Comparison of the analytic and numeric calculations of the radial component of the magnetic flux density in the TC-1 pump along the pump axis.

Comparison of the analytic and numeric calculations of the axial component of the magnetic flux density in the TC-1 pump along the pump axis.

Research Staff
Daniel P. Cook, Principal Investigator, Assistant Professor, Mechanical Engineering Department
Yitung Chen, Co-Principal Investigator, Associate Professor, Mechanical Engineering Department
Jian Ma, Co-Principal Investigator, Assistant Research Professor, Mechanical Engineering Department
Huajun Chen, Co-Principal Investigator, Assistant Research Professor, Mechanical Engineering Department

Students
Chensong Dai, Graduate Student, Electrical Engineering Department
Lillian Jane Ratliff, Undergraduate Student, Electrical Engineering Department
Lucas Bang and Siul Ruiz, Undergraduate Students, Mechanical Engineering Department

Collaborators
Ning Li, LBE Team Leader, Los Alamos National Laboratory
BACKGROUND

In the Advanced Fuel Cycle Research & Development (AFC R&D) activities, the uranium extraction (UREX+1) process is proposed as one of the most promising techniques to separate transuranic elements (TRU) from light water reactor spent nuclear fuel in the years to come. The isotope 99Tc will be separated together with U within the first process steps. After the separation of U, Tc must be immobilized by their incorporation in a suitable storage and waste form.

A candidate process to immobilize 99Tc is to alloy metallic Tc with excess metallic zirconium. This material has potential advantages in terms of the future reuse of 99Tc and its potential transmutation. Providing a Tc storage/waste form strongly promotes the AFC R&D and the separation of TRU elements using the UREX+1 process. However, little thermodynamic data in the binary technetium–zirconium metal system exist, and only few data are available on the synthesis of Tc-Zr alloys and on their potential performance under temporary or geological storage conditions.

In this project, systematic investigations on the Tc-Zr binary metal system will be evaluated for the first time. The synthesis of metallic Tc as well as its alloys with Zr will be evaluated. In order to provide valuable data to AFC R&D, the thermodynamic equilibrium phases, as well as their performance under temporary or geological storage conditions, will be examined.

RESEARCH OBJECTIVES AND METHODS

The research objectives of this project are as follows:
- Evaluate anion exchange methods for achieving the separation of Tc from U.
- Synthesize metallic Tc from the separated product.
- Synthesize and characterize Tc alloys.
- Investigate Tc-corrosion and Tc-leaching of binary Tc-Zr phases under a range of conditions.

The following experimental techniques are used in the evaluation of the solutions and solids from the experiments: ultraviolet-visible spectroscopy, time-resolved laser fluorescence spectroscopy, X-ray Absorption Fine-Structure Spectroscopy (XAFS), and microscopy.

RESEARCH ACCOMPLISHMENTS

Separations

Static and dynamic experiments were performed to investigate the interaction of technetium with selected anion exchange resins. The kinetic static experiments showed Reillex resin had superior Tc sorption kinetics and was selected for further study. Reillex treated by nitric acid (Resin 6) was also used in the studies.

Dynamics experiments were performed on simulated UREX solution in order to determine the separation factor for uranium and technetium and to study the possibility of a Tc elution from the resin. The one column experimental set-up consisted of a reservoir of 250 mL, linked to a peristaltic pump, with a constant flux which can be between 1.2 to 8.4 mL/min. It is connected to a small column (length = 5 cm and diameter = 1 cm) and contained 1 g of resin (Reillex HP or Resin 6).

The process is divided into 3 steps: absorption, washing, and elution. For absorption, 150 mL of the UREX solution were placed in the reservoir and pumped with a peristaltic pump through the column at a constant flow rate (2, 4 or 8 mL/min). Samples were collected into centrifugation tubes (45 mL ± 0.5 mL for the first two and 10 mL ± 0.2 mL for the others). For each sample, 10 µL of solution were removed and mixed with 10 mL of liquid scintillation fluid in a plastic vial, and 99Tc was counted by liquid scintillation. The samples were eluted with a 50 mL solution of NH₄OH (1M or 2 M) and were introduced in the reservoir and poured through the column with the same constant flow rate.

Samples were collected into centrifugation tubes of 10 mL ± 0.2 mL with 10 µL of samples were removed and mixed with 10 mL of liquid scintillation fluid for 99Tc analysis. For samples containing a high amount of technetium, a dilution (1/100) was necessary for the liquid scintillation analysis in order to be able to use the calibration curve. To optimize U/Tc separation, treated and un-

Separation process with two columns.
treated resin were combined. The set-up is composed as before by a reservoir, a pump and two columns.

The absorption and washing steps were carried out with exactly the same conditions, as presented above.

Concerning the elution step, the columns are disconnected and only the first one containing the treated resin is eluted, whereas the second one is kept for a re-use and for an eventual Tc reprocessing by pyrolysis. A suitably pure Tc and U stream resulted from the experiment.

Solid phase synthesis

Steam reforming of pertechnetate in the presence of carbon yielded Tc metal at 700°C under Ar or N₂. Alloy samples were prepared by grinding Tc and Zr metal in different ratios, from 25% to 75% Tc. Cylindrical pellets were obtained by pressing the powder and arc melting to produce the alloys. After arc melting, samples were analyzed by X-ray diffraction and optical microscopy. The alloy phases included hexagonal (α-phase) and cubic (β-phase) Zr phases. There is a diffraction peak that does not correspond to referenced Tc or Zr phases (α-Zr, β-Zr, Tc metal, Tc₂Zr, Tc₃Zr, ZrO₂ or TcO₂). Those peaks were fitted using a theoretical phase derived from the structure of Nb₃Te₇. This result which reveals a new Tc-Zr phase (Zr₃Tc₇), should be taken with prudence and further analysis by microprobe analysis will be done in order to confirm this hypothesis.

FUTURE WORK

The further characterization of Zr-Tc alloys will be continued, including XAFS analysis. Dissolution studies to examine mechanisms and characteristics of the waste forms will be performed. Based on input from national laboratory collaborators, future studies will include the Zr-Tc-Fe alloy systems as well as initial experiments on oxides.

Kinetics of TcO₄⁻ removal from solution with initial [TcO₄⁻] = 0.02 M by Dowex Marathon and Reillex resins

ACADEMIC YEAR HIGHLIGHTS

- Presentation on Tc separations at Global Nuclear Energy Partnership Separations Working Group Meeting.
BACKGROUND

Nitride fuels have appropriate properties for advanced fuels, including high thermal conductivity, thermal stability, solid-state solubility of actinides, fissile metal density, and suitable neutronic properties. The presence of oxide and carbide impurities that occur during the current nitride fuel synthesis limits their utility in advanced fuel cycles. The presence of these impurities can lead to the formation of phases with different properties from the bulk material, including the formation of secondary phases. Even a small amount of oxygen in the nitride fuel can reduce thermal conductivity by 10%. This limits the ability to fully develop nitride fuels for advanced reactors. To avoid the entrainment of carbides and oxides in the final actinide nitride product, a non-aqueous, carbon free solution phase route is proposed and investigated in this project.

A drawback of nitride fuels involves their synthesis. For nitride fuels, the current synthetic route is carbothermic reduction from the oxide to the nitride, which is based on solid phase reactions involving a stepwise process from the metal oxide, to the carbide, and finally the nitride. This high temperature, solid-phase approach is plagued by impurities in the final nitride product and difficulties in the synthesis and fabrication steps. A direct solution-based synthesis would eliminate, or at least minimize, the impurities and other synthetic problems. The proposed solution route to nitride would also have the added benefit of providing several adjustable parameters that would allow control of the properties of the final solid product.

RESEARCH OBJECTIVES AND METHODS

The objective of this project is to develop solution phase synthetic routes for actinide nitrides for use in nuclear fuels. In the 1970s, a synthesis for actinide nitrides was proposed based on the reaction of plutonium triiodide (PuI₃) and uranium tetraiodide (UI₄) with sodium metal in liquid ammonia giving PuN and UN, respectively, as the reaction products. The synthetic chemistry of trivalent actinide complexes was advanced greatly with the discovery at Los Alamos National Laboratory (LANL) of efficient routes to soluble iodide starting materials of the type AnI₃⁺L₄, where An is uranium, neptunium, or plutonium, and L is tetrahydrofuran (thf), pyridine, dimethylsulfoxide, etc.

\[
\text{An} + 1.5 \text{I}_2 + x_s \text{L} \rightarrow \text{AnI}_3 \text{L}_4
\]

PuI₃ is soluble in ammonia, presumably as the ammonia adduct PuI₃(NH₃)₄. More recent efforts by ANL and LANL collaborators have investigated amido reactions with actinides to produce An(NR₂)₃ complexes, where An = U, Np, Pu:

\[
\text{AnI}_3 \text{(solv)} + 3 \text{NaNR}_2 \rightarrow \text{An(NR}_2)_3 + \text{NaI} + \text{solv}
\]

These results suggest that the amido complexes could provide a non-aqueous solution method for the synthesis of nitrides. The resulting sodium iodide is readily soluble in liquid ammonia, making separation of these products possible. From these results, a plausible route for the synthesis of nitride fuels is:

\[
\text{An} + 1.5 \text{I}_2 \rightarrow \text{AnI}_3 \text{(NH}_3)_4 \rightarrow \text{An(NH}_2)_3 \rightarrow \text{AnN}
\]

where An is uranium, neptunium, plutonium or americium. To achieve the solution synthesis of actinide nitrides the fundamental chemical coordination and speciation involved in the above reaction will be examined. The non-aqueous synthetic route, based on amido chemistry, potentially provides property control over the nitride product. The resulting nitride product should be free of the impurities inherent in the carbothermic reduction technique.

The experiments are being performed by a joint research team from UNLV, LANL, and Argonne National Laboratory (ANL), with actinide experiments performed at each laboratory. This project maintains special emphasis on student participation in the project research with all team members collaborating in the educational efforts. The young researchers from UNLV have the opportunity to perform research at ANL and LANL, helping train the next generation of radiochemists and actinide scientists with experience in DOE laboratories. The synthesis of nitride fuels through this method is complementary to the ongoing carbothermic reduction syntheses being performed within the UNLV Radiochemistry program. The ANL and LANL participants are experts in synthetic actinide chemistry, including non-aqueous chemistry and materials science.

The experimental methods for the synthesis of the amido actinide species relies upon the use of inert atmosphere and elevated pressure. These conditions can be reached with the use of Schlenk
lines, pressure vessels, and glove boxes. A combination of these techniques is being utilized in the project. Characterization of the resulting amido species will primarily utilize X-ray diffraction, employing methods and equipment already developed by the UNLV, ANL, and LANL partnership.

Single crystal X-ray diffraction will be used for examination of final and intermediate products at the atomic level for the determination of molecular structure, atomic interaction and spacing, crystal structure, speciation, and elemental oxidation state. X-ray Powder Diffraction, high resolution Transmission Electron Microscopy in combination with Energy Dispersive X-ray Analysis, Parallel-collection Electron Energy-Loss Spectroscopy, Electron-beam Microprobe Analysis and Scanning Electron Microscopy are currently in use at UNLV and will also be used to evaluate the actinide nitrides. For complete product characterization, X-ray Absorption Fine-structure Spectroscopy will also be used for analysis. Thermal analyses (Thermogravimetric Analyzer, Differential Thermal Analyzer, and Differential Scanning Calorimetry) of the final products will also be performed at UNLV.

RESEARCH ACCOMPLISHMENTS

The preliminary studies into the synthesis of actinide nitride fuels through a low temperature, liquid ammonia based synthesis route have been conducted on the uranium containing system, and there is good indication for the success of synthesizing uranium(III) nitride. The dissolution of iodine in ammonia is a rapid process, resulting in a pale green solution, which does not result in any observable oxidation of iodine. The cannula transfer of dissolved iodine into the reaction vessel containing U metal has been conducted with little to no residual iodine remaining in the original flask. The metal being used for these reactions has a noticeable brown/black oxide coating that prevents the formation of UI₃(NH₃)ₓ.

Stirring of U metal fragments with dissolved iodine in ammonia for 24 hours revealed a thickening of the oxide coating, which presumably is a result of O₂ or H₂O contamination in the solvent. Procedures for cleaning the metal prior to the reaction are under development. Two measures are being taken in order to use the most purified solvent possible; the highest grade ammonia available is being obtained and several procedures are being developed to dry and deoxygenate the solvent. These actions should allow the reaction to proceed without formation of the boundary oxide layer between the two reactants.

FUTURE WORK

There are a number of alternate synthetic routes for producing the UI₃(solv)ₓ precursor to U(III)N, which are available for successful project completion should this method be ineffective. Any number of these precursors can be adapted for inclusion into the reaction process, yet these precursors will increase the likelihood of carbon inclusion and contamination into the final product. However, it is believed that the proposed procedure would be most beneficial for the desired outcome and for the introduction of a novel, viable synthetic route for accessing U(III). Once the synthetic process is understood for the uranium species, only minor modifications are anticipated for the transuranic species.

A depiction of dissolved iodine reacting with uranium metal after the liquid ammonia solvent has evaporated.
BACKGROUND

The completion of criticality experiments for mixtures of transuranic actinides (TRU—includes Np, Pu, Am, and Cm) that will be created during the separation of used nuclear fuel may be a requirement in order to construct prototype plants for the Global Nuclear Energy Partnership. In this program and the Advanced Fuel Cycle Research and Development (AFC R&D) program that supports it, economic and environmental methods are being developed to reduce the impact of waste from commercial nuclear fuel cycles.

Recycling of used fuel by chemically separating it into U, fission products, and TRU would be the first step in this new fuel cycle. Proposed mixtures and concentrations of TRU covering a wide range of conditions must be examined theoretically and experimentally to demonstrate criticality safety in advance of construction of a processing facility. Theoretical studies may be limited because of insufficient nuclear data for the rarer isotopes of Np, Pu, Am, and Cm. These data limitations include reaction cross sections in some energy regimes, thermal feedback coefficients, and delayed neutron fractions.

RESEARCH OBJECTIVES AND METHODS

In this project, which is a collaboration between UNLV, LANL, ANL, and ORNL, criticality studies will be conducted to support the development of future fuel cycle facilities. The first step in determining requirements for criticality studies is an examination of past experiments and criticality and sensitivity studies as well as available databases. Further sensitivity studies will determine what kinds of experiments should be performed to insure criticality safety in advanced processes. This information can then be used to formulate an optimum set of experiments that can be analyzed in advance using state-of-the-art radiation transport codes. As these facilities and experiments will include complex geometries, a Monte Carlo N-Particle (MCNP) transport code will be used in these sensitivity, scoping and design studies. The work may also require generation of new cross section libraries and thermal scattering coefficient databases. Future criticality studies may include cross section sensitivity studies and design of critical experiments including dilute mixtures of Pu, mixed higher actinides in solution, and fuels.

Research Staff
Denis Beller, Principal Investigator, Research Professor, Mechanical Engineering Department

Students
Ryan LeCounte, Lawrence Lakeotes and Timothy Beller, Graduate Students, Mechanical Engineering Department
Tanya Sloma, Undergraduate Student, Mechanical Engineering Department

Collaborators
Richard McKnight, Argonne National Laboratory (ANL)
Michael Dunn, Nuclear Data Division, Oak Ridge National Laboratory (ORNL)
David Hayes, Los Alamos National Laboratory (LANL)
Thomas Ward, UNLV Russian Collaboration Science Adviser, TechSource, Inc.

ACADEMIC YEAR HIGHLIGHTS

♦ Students and faculty participated in the Advanced MCNPX Workshop at UNLV where criticality studies and cross section perturbation techniques were discussed.

RESEARCH ACCOMPLISHMENTS

The project was initiated in September 2006. Discussions occurred with LANL, ORNL, and ANL regarding project scope and direction. The appropriate division of effort between cross-section sensitivity studies and design of required criticality experiments, such as measurement of thermal feedback coefficients in dilute mixtures of plutonium with varying isotopic constituents, needs to be determined. The project will likely focus on sensitivity studies. At UNLV, separations processing facilities and components will be concentrated on, as opposed to critical cores.

One conceptual study could focus on the capability to measure thermal feedback coefficients in dilute mixtures of plutonium with varying isotopic constituents. Another could involve the modeling of a liquid- or solid-core critical assembly to assess the ability to measure integral critical parameters with small quantities of TRU, rather than a full core of fuel containing TRU. Students collected information on code systems and references on criticality and sensitivity studies and to research cross section uncertainties for Am and Cm at room temperature in uranium extraction (UREX) separations processes.

The SCALE code system was acquired for processing cross sections for sensitivity studies. MCNP, MCNPX, SCALE, and data libraries were loaded for processing cross sections and conducting sensitivity studies.

FUTURE WORK

During the following year SCALE and MCNP/MCNPX will be used to investigate cross section sensitivity of UREX process and conceptual integral experiments.
BACKGROUND

In order to maximize the utilization of the proposed repository facility, the short-term decay heat generated by high-level waste must be removed from the waste stream. The proposed waste management baseline strategy for the GNEP program calls for the separation of cesium and strontium from used nuclear fuel in order to minimize the short-term heat loading in the repository facility. The separated waste stream will be converted to an aluminosilicate waste form, stored for decay (approximately 300 years), then managed as low-level radioactive waste.

The goal of this project is to examine two potential concerns regarding the long-term performance of a proposed cesium/strontium waste form. To facilitate long-term storage, up to 300 years, the disposal containers will need to be able to survive for the entire storage interval. The first aspect of the project will explore the potential interaction of the aluminosilicate waste form with the storage canister materials to determine if there is any corrosion or chemical interaction concerns for the storage of the materials.

At the end of the storage interval, most of the 137Cs in the waste form will have decayed to its daughter, 137Ba. While this decay provides a significant reduction in the decay heat generated by the waste form, it poses a new concern. Barium is hazardous, and is identified by the U.S. Environmental Protection Agency (EPA) as a hazardous constituent under the Resource Conservation and Recovery Act (RCRA). To dispose of any material containing a RCRA-identified constituent, the material must be demonstrated to be durable enough to prevent the release of the hazardous component or must be treated as hazardous waste. For the Cs/Sr waste stream, failure to contain the barium within the waste form would require disposal as a mixed waste stream, greatly increasing the disposal costs. Understanding the potential impacts of radioactive damage, high storage temperatures, and the crystallographic impacts of the decay transmutation itself on the performance of the waste form 300 years from now poses a significant challenge.

RESEARCH OBJECTIVES AND METHODS

The research effort at UNLV will be divided into materials compatibility and waste form performance subtasks. The materials compatibility subtask will examine the potential for chemical interactions between the waste form material and proposed structural materials for the disposal container (carbon steel, stainless steel, etc.). The waste form performance subtask will examine the leach resistance of the waste form, with particular attention to barium retention. The performance subtask will also work with the ANL team to develop the cold analog samples for comparison with the aged 137Cs-bearing aluminosilicate.

To examine the potential for waste form-storage materials interactions, coupons of potential container materials (carbon steel, 316L stainless steel, Inconel 617, and Zircalloy-2) will be contacted with the Cs/Sr-loaded aluminosilicate waste form material. These coupons will be exposed at fixed temperatures for up to 6 months. The samples will be analyzed for weight loss as well as structural changes to determine if any material-material interactions would be expected for this waste form.

The performance of the waste form will be evaluated using the Toxic Constituent Leaching Protocol (TCLP), established by the EPA as a standard analysis to determine if a material requires disposal as a hazardous waste. The resistance of the waste form to leaching will be examined following the TCLP, with a particular focus on barium retention. Standard dissolution/leaching tests will also be performed for comparison. To evaluate the impact of radiologically produced barium in the waste form, an archived sample of 137Cs-bearing aluminosilicate material from ANL will be used to examine the chemical environment of the Ba. Analog cold samples will be prepared at UNLV for comparison and baseline measurements, and experimental protocols will be evaluated with the cold samples to evaluate the feasibility of performing leach testing on the hot, archived sample.

RESEARCH ACCOMPLISHMENTS

This effort represents a new project started in May 2007 with a kick-off meeting between the UNLV researchers and the national program collaborators. Since this meeting, the test plan and sample matrix has been developed, and the procurement for the metal coupons has been initiated.

FUTURE WORK

For the next academic year, the material chemical interaction experiments will be started to explore the corrosion of potential container materials in contact with the waste form. Samples of the waste form will be synthesized using single components of the waste stream to determine the speciation of the Cs, Sr, Y, Ba and Zr within the waste form by X-ray diffraction and electron microscopy.
E. Philip Horwitz, PG Research Foundation, Inc., gave a seminar entitled “Alpha Emitters: From Earth to Moon to Man.”

Robert O’Brien graduated with a Master of Science in Materials and Nuclear Engineering becoming UNLV’s second Nuclear Engineering graduate.

The UNLV Student Section of the American Nuclear Society had their annual field trip. This year they went to Los Alamos National Laboratory and included stops in Albuquerque and Sante Fe, NM.

Micha Polak, Ben-Gurion University of the Negev, gave a seminar entitled “Alloy nanocluster compositional structure and heat-capacity based on TB coordination-dependent bond energetics and the statistical-mechanical FCEM approach.”

Alan Dobson and Chris Phillips, Energy Solutions, gave a seminar on the British recycling program to the UNLV Radiochemistry Group.

Eleven graduate students and seven faculty members staffed an informational booth at the Town of Pahrump Fall Festival. This is the program’s major community outreach to discuss nuclear issues with the citizens of Nye County, Nevada.

American Nuclear Society President Harold McFarlane gave a presentation in Las Vegas on the nuclear industry.

Rhonda Hopkins, NSTec, presented a seminar at UNLV entitled “Scientific Work Conducted by the Remote Sensing Laboratory.”

Riland Carson, Remote Sensing Laboratory, presented a seminar at UNLV entitled “Remote Sensing Laboratory (Part 2): Technical Symposium.”

UNLV faculty participated in a DOE-Academia meeting in Chicago on DOE Nuclear Energy University Programs.

Two M.S. Materials and Nuclear Engineering students presented an exhibit on the HP RACE Target for UNLV Engineering freshman recruitment for about 50 students and parents.

Two faculty members, Yury Korovin and Vladimir Artisyuk, from the Institute for Nuclear Power Engineering, Obninsk, Russia visited UNLV to investigate potential collaboration on a textbook and research.

Bob Summers, NSTec, gave a seminar on missions at the Nevada Test Site.

David Ashley, the new UNLV President, visited the Harry Reid Center to meet with division directors and tour the facilities. He particularly expressed his interest in hearing about the Transmutation Research Program.

The UNLV College of Engineering hosted an Advanced MCNPX Workshop. Attendees included a large contingent from UNLV, plus staff members from Los Alamos, Nevada Test Site, Idaho State University, and other organizations.

Vladimir Novosselov, Ural Subsidiary of Federal Government Service Academy, Chelyabinsk, Russia, visited UNLV to discuss the history of the former Soviet Union nuclear fuel cycle.

Todd Allen, University of Wisconsin, visited UNLV and toured facilities as part of a User Facility study for DOE-NE.

Tyler Sullens was hired after a search for a Research Professor in Radiochemistry as the replacement for Thomas Hartmann who accepted a faculty position at Idaho State University.

Nine Radiochemistry program students and faculty presented papers at the American Chemical Society conference in Chicago, IL.

A GNEP poster was prepared and displayed at the Las Vegas Grand Prix (April 6-8), the Pahrump Earth Day Festival (April 21), and the Las Vegas Family and Kids Expo (May 26-27).

A tour of the Nevada Test Site was organized for the UNLV community. Two bus loads of mainly students and staff participated in the tour.

Jill Duggan and Annabelle Malins from the United Kingdom embassy gave presentations entitled “The Energy Challenge – Moving to a Low Carbon Future: The UK experience in developing climate policy.”

Tom Ward, GNEP liaison and TRP science adviser visited UNLV to discuss infrastructure and potential future aspects of the UNLV program.

UNLV hosted the GNEP Economic Analysis Working Group meeting.
Transmutation Research Program Financial Statement

Program Administration

<table>
<thead>
<tr>
<th>Program Support</th>
<th>FY01</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>$187,305</td>
<td>$348,324</td>
<td>$564,755</td>
<td>$452,274</td>
<td>$575,395</td>
<td>$515,340</td>
<td>$2,643,393</td>
</tr>
<tr>
<td>Other Costs</td>
<td>$121,779</td>
<td>$72,336</td>
<td>$115,047</td>
<td>$108,013</td>
<td>$139,019</td>
<td>$75,000</td>
<td>$631,194</td>
</tr>
<tr>
<td>LANL Subcontract</td>
<td>$150,000</td>
<td>$162,500</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$312,500</td>
</tr>
<tr>
<td>SRNL Subcontract</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$70,250</td>
<td>$0</td>
<td>$70,250</td>
</tr>
</tbody>
</table>

Infrastructure Augmentation

<table>
<thead>
<tr>
<th>New Hires</th>
<th>FY01-02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$112,692</td>
<td>$240,648</td>
<td>$433,832</td>
<td>$391,028</td>
<td>$691,846</td>
<td>$360,000</td>
<td>$2,230,046</td>
</tr>
</tbody>
</table>

Academic Programs

<table>
<thead>
<tr>
<th>FY01-06</th>
<th>FY04</th>
<th>FY05</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,492,446</td>
<td>$799,837</td>
<td>$838,661</td>
<td>$604,933</td>
</tr>
</tbody>
</table>

International Collaboration

<table>
<thead>
<tr>
<th>FY01-06</th>
<th>FY04</th>
<th>FY05</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,000,000</td>
<td>$4,500,000</td>
<td>$3,860,000</td>
<td>$3,500,000</td>
</tr>
</tbody>
</table>

Student Research Task by Task

<table>
<thead>
<tr>
<th>Task</th>
<th>FY01-06</th>
<th>FY04</th>
<th>FY05</th>
<th>TOTAL</th>
<th>Task</th>
<th>FY01-06</th>
<th>FY04</th>
<th>FY05</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>$424,291</td>
<td>$165,253</td>
<td>$148,921</td>
<td>$470,944</td>
<td>Task 28</td>
<td>$119,694</td>
<td>$77,097</td>
<td>$196,791</td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td>$483,361</td>
<td>$149,704</td>
<td>$228,998</td>
<td>$557,853</td>
<td>Task 29</td>
<td>$151,217</td>
<td>$100,973</td>
<td>$252,190</td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td>$576,563</td>
<td>$140,865</td>
<td>$177,101</td>
<td>$362,998</td>
<td>Task 30</td>
<td>$144,201</td>
<td>$102,596</td>
<td>$246,797</td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td>$432,679</td>
<td>$103,587</td>
<td>$177,101</td>
<td>$393,867</td>
<td>Task 31</td>
<td>$0</td>
<td>$92,511</td>
<td>$92,511</td>
<td></td>
</tr>
<tr>
<td>Task 5</td>
<td>$271,950</td>
<td>$106,290</td>
<td>$142,928</td>
<td>$394,217</td>
<td>Task 32</td>
<td>$0</td>
<td>$90,973</td>
<td>$90,973</td>
<td></td>
</tr>
<tr>
<td>Task 6</td>
<td>$369,218</td>
<td>$56,921</td>
<td>$91,522</td>
<td>$169,742</td>
<td>Task 33</td>
<td>$0</td>
<td>$92,511</td>
<td>$92,511</td>
<td></td>
</tr>
<tr>
<td>Task 7</td>
<td>$453,388</td>
<td>$79,941</td>
<td>$135,153</td>
<td>$294,908</td>
<td>Task 34</td>
<td>$0</td>
<td>$178,666</td>
<td>$178,666</td>
<td></td>
</tr>
<tr>
<td>Task 8</td>
<td>$350,090</td>
<td>$242,228</td>
<td>$71,195</td>
<td>$370,515</td>
<td>Task 35</td>
<td>$0</td>
<td>$134,785</td>
<td>$134,785</td>
<td></td>
</tr>
<tr>
<td>Task 9</td>
<td>$221,001</td>
<td>$91,545</td>
<td>$133,114</td>
<td>$283,760</td>
<td>Task 36</td>
<td>$0</td>
<td>$15,680</td>
<td>$15,680</td>
<td></td>
</tr>
<tr>
<td>Task 10</td>
<td>$243,371</td>
<td>$135,776</td>
<td>$117,525</td>
<td>$579,672</td>
<td>Task 11</td>
<td>$281,975</td>
<td>$0</td>
<td>$281,975</td>
<td></td>
</tr>
<tr>
<td>Task 11</td>
<td>$181,019</td>
<td>$104,228</td>
<td>$91,522</td>
<td>$305,763</td>
<td>Task 12</td>
<td>$0</td>
<td>$247,563</td>
<td>$247,563</td>
<td></td>
</tr>
</tbody>
</table>

Infrastructure Facilities Augmentation

<table>
<thead>
<tr>
<th>FY01-02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Microanalysis and Imaging Laboratory</td>
<td>$105,313</td>
<td>$63,000</td>
<td>$63,000</td>
<td>$63,000</td>
<td>$357,313</td>
</tr>
<tr>
<td>Materials Performance Laboratory</td>
<td>$227,493</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$227,493</td>
</tr>
<tr>
<td>Transmission Electron Microscope</td>
<td>$1,459,369</td>
<td>$321,582</td>
<td>$150,000</td>
<td>$166,914</td>
<td>$2,247,865</td>
</tr>
<tr>
<td>ICP – Atomic Emission Spectrometer</td>
<td>$100,163</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$100,163</td>
</tr>
<tr>
<td>Lead-Bismuth and Other Molten Materials Facilities</td>
<td>$234,198</td>
<td>$121,579</td>
<td>$217,227</td>
<td>$66,843</td>
<td>$781,501</td>
</tr>
<tr>
<td>Machining System and Equipment</td>
<td>$72,619</td>
<td>$22,500</td>
<td>$934</td>
<td>$0</td>
<td>$96,053</td>
</tr>
<tr>
<td>Flow Visualization System (Task 2)</td>
<td>$22,207</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$22,207</td>
</tr>
<tr>
<td>Pyrolyzer, Baths, and Controller (Task 15)</td>
<td>$20,921</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$20,921</td>
</tr>
<tr>
<td>Prof. B.J. Das Startup Package Equipment</td>
<td>$50,000</td>
<td>$0</td>
<td>$49,972</td>
<td>$0</td>
<td>$99,972</td>
</tr>
<tr>
<td>Actinide Chemistry Laboratory</td>
<td>$0</td>
<td>$260,000</td>
<td>$123,800</td>
<td>$98,153</td>
<td>$270,000</td>
</tr>
<tr>
<td>Oxygen Control System</td>
<td>$0</td>
<td>$50,000</td>
<td>$0</td>
<td>$0</td>
<td>$50,000</td>
</tr>
<tr>
<td>Totals</td>
<td>$2,292,283</td>
<td>$838,661</td>
<td>$604,933</td>
<td>$394,910</td>
<td>$624,654</td>
</tr>
</tbody>
</table>

International Collaboration

<table>
<thead>
<tr>
<th>FY01-02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khlopin Radium Institute Contracts</td>
<td>$342,550</td>
<td>$23,950</td>
<td>$0</td>
<td>$0</td>
<td>$366,500</td>
</tr>
<tr>
<td>International Science and Technology Center</td>
<td>$87,500</td>
<td>$98,250</td>
<td>$51,700</td>
<td>$800</td>
<td>$249,950</td>
</tr>
<tr>
<td>International Collaboration Program Coordination</td>
<td>$92,098</td>
<td>$33,000</td>
<td>$70,000</td>
<td>$12,765</td>
<td>$84,300</td>
</tr>
<tr>
<td>Totals</td>
<td>$522,148</td>
<td>$155,200</td>
<td>$121,700</td>
<td>$13,565</td>
<td>$76,000</td>
</tr>
</tbody>
</table>
Transmutation Research Program Administration

Photo Gallery

TRP Director
Anthony E. Hechanova

TRP Deputy Director
Gary S. Cerefice

TRP Finance Director
Patricia Rugeiro

TRP Finance Director
Leisa Rodriguez

Assistant/Coordinator
Rebecca Arbour

Finance Assistance
Hallie Lyons

Laboratory Director
Thomas O'Dou

Laboratory Manager
Trevor Low

Webmaster
John Knoten

HRC Network Admin
Kris Davidson

HRC Travel Coordinator
Joseph Zimmerman

Project Assistance
Kathy Lauckner

Program Developer
Steven Curtis

International Programs Adviser
Thomas Ward

Not pictured:
Ruby Bynum
Cristalyne Estella
Transmutation Research Program Staff, Faculty Researchers and Students

Group Leader
Structure & Solid Phase Analysis
Thomas Hartmann
(Accepted faculty position at Idaho State University Fall 2006)

Group Leader
Radiochemistry
Ken Czerwinski

Group Coordinator
Materials for Nuclear Applications, Ning Li (LANL)

Assistant Research Professor
Molten Materials Research
Jian Ma

Assistant Research Professor
Radiochemistry
Tyler Sullens

Assistant Research Professor
Materials
Longzou Ma

Visiting Professor
Radiochemistry
Al Sattelberger

Post Doctoral Researcher
Cynthia Gong

Post Doctoral Researcher
Frederic Poineau

Not pictured:
Leslie Jardine, Russian Program Coordinator
Task 1:

Yitung Chen
Associate Professor
Associate Director, NCACM
Mechanical Engineering Department

Darrell W. Pepper
Professor
Mechanical Engineering Department
Director, NCACM

Randy Clarksean
Adjunct Professor
Mechanical Engineering Department

Yulien Chen
Paul Lawson
Not pictured

Taide Tan

Xiaolong Wu

Task 2:

Robert A. Shill, Jr.
Associate Professor
Electrical and Computer
Engineering Department

Mohamed B. Trabia
Chair
Mechanical Engineering
Department

William Culbreth
Associate Dean for Research
College of Engineering

Anoop George
Satishkumar Subramanian
Qin Xue
Myong Holl
Greg Loll
Task 3:

- John Farley
 Professor
 Department of Physics

- Allen Johnson
 Assistant Professor
 Department of Chemistry

- Dale Perry
 Adjunct Professor
 Lawrence Berkeley National Lab

- Umar Younas

- Brian Hosterman

- Thao Trung Ho

- Dan Koury

- Julie Manzerova

- Denise Parsons

- Lindsay Wylie

- Chris Harland

- Stacy Sidle

Task 4:

- Ajit Roy
 Professor
 Department of Mechanical Engineering

- Mohammad Hossain

- Sudheer Sama

- Venkataramakrishnan
 Selvaraj

- Ramprashad Prabhakaran

- Phandi Gudipati

Nikata Agarwal
Aaron Tippets
Not pictured
Task 5:

Samir Moujaes
Associate Professor
Department of Mechanical Engineering

Yitung Chen
Associate Professor
Associate Director, NCACM
Department of Mechanical Engineering

Kanthi Dasika

Chao Wu

Narain Armbya
Not pictured

Guanjun Li

Task 6:

Denis Beller
Research Professor
Department of Mechanical Engineering

Timothy Beller

Brice Howard
Dean Curtis
Steve Curtis
Shruti Patil
Task 7:

Phillip Patton
Associate Professor
Department of Health Physics

Mark Rudin
Associate Professor
Department of Health Physics

Tserenpagma Chaoui
Ashley Gann
Sung Yop Kim
Jeffrey Wyler
John Shanahan
Yayun Song

Deanna Tuttle

Task 8:

Yitung Chen
Associate Professor
Associate Director, NCACM
Mechanical Engineering Department

Sean Hisieh
Research Associate Professor
Mechanical Engineering Department

Sushma Gujula
Sridhar Munaga

Not pictured

Darrell W. Pepper
Professor
Mechanical Engineering Department
Director, NCACM

Jianhong Li
Haritha Rooyuru
Lijian Sun
Task 9:

Georg Mauer
Professor
Department of Mechanical Engineering

Caroline Wiejak
Visiting Scholar

Richard Silva

Jae-Kyu Lee

Jamil Renno

Task 10:

Ajit Roy
Professor
Department of Mechanical Engineering

Brendan O'Toole
Associate Professor
Department of Mechanical Engineering

Prad Koppula
Raymond Kozak
Not pictured

Venkata Potluri

Srinivas Kukatla

Mark Jones

John Motaka

Martin Lewis

Bhagath Yarlagadda
Tasks 11 & 12:

William Culbreth
Associate Dean for Research
College of Engineering

Denis Beller
Research Professor
Mechanical Engineering Department

Robin Jenkins
Ashraf Kaboud
Not pictured

Robert O'Brien

Trevor Wilcox

Daniel Lowe

Suresh Sadineni

Elizabeth Bakker

Task 13:

Yingtao Jiang
Assistant Professor
Department of Electrical and Computer Engineering

Bingmei Fu
Assistant Professor
Department of Mechanical Engineering

Yi Lu
Shahidur Rahaman
Not pictured

Jian Ma
Assistant Research Professor
Department of Mechanical Engineering

Xiaolong Wu
Task 16:

Dennis Lindle
Professor
Department of Chemistry

Chinthaka Silva

Dale Perry
Adjunct Professor
Department of Physics

Chirantha Rodrigo

Oliver Hemmers
Assistant Research Professor
Department of Chemistry

Task 17:

Sharath Sudarshanam
Lothar Weinhardt
Sunil Subramanyam
Alessio Luinetti
Timo Hofmann
Sharath Sudarshanam
Lothar Weinhardt
Sunil Subramanyam
Alessio Luinetti
Timo Hofmann

Lothar Weinhardt
Post-Doctoral Fellow
Department of Chemistry

Ich Tran

Kyle George

Clemens Heske
Associate Professor
Department of Chemistry

Clemens Heske
Task 18:

John Farley
Professor
Department of Physics

Allen Johnson
Assistant Professor
Department of Chemistry

Thao Trung Ho

Dan Koury

Jenny Welch

Timothy Lane

Brian Hostermann

Task 19:

Ken Czerwinski
Associate Professor
Department of Chemistry

Thomas Hartmann
Staff Scientist
Harry Reid Center

Deborah Callway
Not pictured

Frederic Poineau

Kiel Holliday
Task 20:

Ajit Roy
Professor
Department of Mechanical Engineering

Pankaj Kumar

Sreenivas Kohir

Debajyoti Maitra

Task 21:

Yitung Chen
Associate Professor
Department of Mechanical Engineering

Jichun Li
Assistant Professor
Department of Mathematics

Chaiyod Soontrapa
Jinsuo Zhang

Not pictured

Huajun Chen
Postdoctoral Researcher
Department of Mechanical Engineering

Taide Tan
Task 22:

Georg Mauer
Professor
Department of Mechanical Engineering

Koushik Damera

Kyle Gohres
Tobias Kotthaeuser
Prathima Sajja
Not pictured

Task 23:

Biswajit Das
Associate Professor
Department of Electrical and Computer Engineering

Arghya Banerjee

Tan Wu

Kishire Sreenivasan
Rani Krishna
Nilanjan Halder
Lillian Ratliff
Not pictured
Task 24:

Yitung Chen
Associate Professor
Department of Mechanical Engineering

Sean Hisieh
Research Associate Professor
Mechanical Engineering Department

Jianfei Wu
Not pictured

Ling Kwan
Ming Chang
Matthew Hodges
Ruilong Li

Task 25:

David Hatchett
Assistant Professor
Department of Chemistry

Ken Czerwinski
Associate Professor
Department of Chemistry

Sujanie Gamage
Not pictured

Sandra Elkouz
Wendy Pemberton
Task 26:

Ken Czerwinski
Associate Professor
Department of Chemistry

Mari Bonaud
Michel Draye
Ira Racoma
Lena Wright
Not pictured

Cynthia Gong
Wendy Pemberton
Amber Wright

Task 27:

Denis Beller
Research Professor
Department of Mechanical Engineering

Evgeny Stankovskiy

Timothy Beller & Ryan LeCounte set up the High-Power RACE Target experiment at the Idaho Accelerator Center.
Task 28:

Ken Czerwinski
Associate Professor
Department of Chemistry

Thomas Hartmann
Staff Scientist
Harry Reid Center

Chinthaka Silva

Task 29:

Gary Cerefice
Research Scientist
Harry Reid Center

Ken Czerwinski
Associate Professor
Department of Chemistry

Jeremy Maute

Not pictured

Nicholas Smith
Task 30:

Denis Beller
Research Professor
Department of Mechanical Engineering

Warnick Kernan
Lawrence Lakeotes
Pavan Attur
Luis Durani
Ryan LeCounte
Not pictured

Timothy Beller
Quinten Newell

Task 31:

Jian Ma
Assistant Research Professor
Department of Mechanical Engineering

Woosoon Yim
Professor
Department of Mechanical Engineering

Joon Soo Lee
Assistant Research Professor
Department of Mechanical Engineering

Xiuju (Julia) Tan
Task 32:

- Daniel Cook
 Assistant Professor
 Department of Mechanical Engineering
- Lucas Bang
- Lillian Ratliff
- Matthew Cutler
- Chensong Dai
- Siul Ruiz
- Not pictured
- Yitung Chen
 Associate Professor
 Department of Mechanical Engineering
- Huajun Chen
 Postdoctoral Researcher
 Department of Mechanical Engineering

Task 33:

- Ken Czerwinski
 Associate Professor
 Department of Chemistry
- Thomas Hartmann
 Staff Scientist
 Harry Reid Center
- Frederic Poineau
- Julie du Bouchau du Mazaubrun
 Not pictured
- Julie Gostic
Task 36:

Gary Cerfice
Research Scientist
Harry Reid Center

Longzhuo Ma
Research Scientist
Harry Reid Center
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>ADSS</td>
<td>Accelerator-driven subcritical systems</td>
</tr>
<tr>
<td>ADTTA</td>
<td>Accelerator-Driven Transmutation Technologies and Applications</td>
</tr>
<tr>
<td>AFC</td>
<td>Advanced Fuel Cycle</td>
</tr>
<tr>
<td>AFCI</td>
<td>Advanced Fuel Cycle Initiative</td>
</tr>
<tr>
<td>AHA</td>
<td>Acetohydroxamic acid</td>
</tr>
<tr>
<td>ALI</td>
<td>Annual limit on intake</td>
</tr>
<tr>
<td>ALIP</td>
<td>Annular, Linear Induction Pump</td>
</tr>
<tr>
<td>AMAD</td>
<td>Activity median aerodynamic diameter</td>
</tr>
<tr>
<td>AMPT</td>
<td>Advance in Materials and Processing Technologies</td>
</tr>
<tr>
<td>AMUSE</td>
<td>Argonne Model for Universal Solvent Extraction</td>
</tr>
<tr>
<td>ANL</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANS</td>
<td>American Nuclear Society</td>
</tr>
<tr>
<td>ASM</td>
<td>American Society of Metals</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer aided design</td>
</tr>
<tr>
<td>CAINE</td>
<td>Computer Applications in Industry and Engineering</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-coupled device</td>
</tr>
<tr>
<td>CEA</td>
<td>French Atomic Energy Commission</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
</tr>
<tr>
<td>CL</td>
<td>Constant load</td>
</tr>
<tr>
<td>CPP</td>
<td>Cyclic potentiodynamic polarization</td>
</tr>
<tr>
<td>CTD</td>
<td>Chemical Technology Division</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltamogram</td>
</tr>
<tr>
<td>CW</td>
<td>Cold-worked</td>
</tr>
<tr>
<td>DAC</td>
<td>Derived air concentration</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data Acquisition</td>
</tr>
<tr>
<td>DC</td>
<td>Dose coefficient</td>
</tr>
<tr>
<td>DCAL</td>
<td>Dose and risk calculation software</td>
</tr>
<tr>
<td>DCB</td>
<td>Double-cantilever beam</td>
</tr>
<tr>
<td>DELTA</td>
<td>Development of Lead-Bismuth Target Applications (test loop at LANL)</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DSA</td>
<td>Dynamic Strain Ageing</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential thermal analysis</td>
</tr>
<tr>
<td>ECS</td>
<td>Electrochemical Society</td>
</tr>
<tr>
<td>EDAX</td>
<td>Energy dispersive x-ray spectroscopy</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive spectrometry</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-Ray Analysis</td>
</tr>
<tr>
<td>EELS</td>
<td>Electron energy loss spectrometry</td>
</tr>
<tr>
<td>%EI</td>
<td>Percent elongation</td>
</tr>
<tr>
<td>ENSDF</td>
<td>Evaluated nuclear structure data file</td>
</tr>
<tr>
<td>EUROTRANS</td>
<td>European research program for the transmutation of high level nuclear waste in an accelerator driven system</td>
</tr>
<tr>
<td>FCC</td>
<td>Fullerene containing carbon</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FGR</td>
<td>Federal Guidance Report</td>
</tr>
<tr>
<td>FL</td>
<td>Fusion-Line</td>
</tr>
<tr>
<td>FLEX</td>
<td>Fluoride extraction process</td>
</tr>
<tr>
<td>FLUENT</td>
<td>Computational Fluid Dynamics Code</td>
</tr>
<tr>
<td>GNEP</td>
<td>Global Nuclear Energy Partnership</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical user interface</td>
</tr>
<tr>
<td>HAZ</td>
<td>Heat Affected Zone</td>
</tr>
<tr>
<td>HE</td>
<td>Hydrogen embrittlement</td>
</tr>
<tr>
<td>HEPA</td>
<td>High efficiency particulate air</td>
</tr>
<tr>
<td>HLM</td>
<td>Heavy Liquid Metals</td>
</tr>
<tr>
<td>HR</td>
<td>High resolution</td>
</tr>
<tr>
<td>HTGR</td>
<td>High Temperature Gas-Cooled Reactor</td>
</tr>
<tr>
<td>HTMEF</td>
<td>High Temperature Materials Experiments Facility, UNLV</td>
</tr>
<tr>
<td>IAC</td>
<td>Idaho Accelerator Center, Idaho State University</td>
</tr>
<tr>
<td>IC</td>
<td>Ion Chromatography</td>
</tr>
<tr>
<td>ICONE</td>
<td>International Conference on Nuclear Engineering</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers, Inc.</td>
</tr>
<tr>
<td>INL</td>
<td>Idaho National Laboratory</td>
</tr>
<tr>
<td>IPPE</td>
<td>Institute for Physics and Power Engineering</td>
</tr>
<tr>
<td>KRI-KRISI</td>
<td>Khlopin Radium Institute Research Enterprise, St. Petersburg, Russia</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LANSCE</td>
<td>Los Alamos Neutron Science Center</td>
</tr>
<tr>
<td>LBE</td>
<td>Lead-bismuth eutectic</td>
</tr>
<tr>
<td>LFS</td>
<td>Laser Fluorescence Spectroscopy</td>
</tr>
<tr>
<td>MATLAB</td>
<td>A software system integrating mathematical computing and visualization</td>
</tr>
<tr>
<td>MCNP</td>
<td>Monte Carlo n-particles code</td>
</tr>
<tr>
<td>MCNPX</td>
<td>Monte Carlo n-particles code, extremely high-energy version</td>
</tr>
<tr>
<td>MPAC</td>
<td>Materials Protection, Accounting, and Control</td>
</tr>
<tr>
<td>MPI</td>
<td>Message passing interface</td>
</tr>
<tr>
<td>MS & ST</td>
<td>Materials Science and Technology</td>
</tr>
<tr>
<td>MS SQL</td>
<td>Microsoft Standard Query Language</td>
</tr>
<tr>
<td>MS VB</td>
<td>Microsoft Visual Basic</td>
</tr>
<tr>
<td>MSZ</td>
<td>Magnesia Stabilized Zirconia</td>
</tr>
<tr>
<td>NACE</td>
<td>National Association of Corrosion Engineers</td>
</tr>
<tr>
<td>NE</td>
<td>Office of Nuclear Energy</td>
</tr>
<tr>
<td>NEDHO</td>
<td>Nuclear Engineering Department Heads Organization</td>
</tr>
<tr>
<td>NERI</td>
<td>Nuclear Energy Research Initiative</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>NICEST</td>
<td>Neutrons in Solid-State Chemistry and the Earth Sciences Today and Tomorrow</td>
</tr>
<tr>
<td>NMDS</td>
<td>Neutron multiplicity detector system</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NOM</td>
<td>Natural organic matter</td>
</tr>
<tr>
<td>NTS</td>
<td>Nevada Test Site</td>
</tr>
<tr>
<td>NUBASE</td>
<td>A nuclear properties database</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>OTA</td>
<td>Oxygen Thermodynamic Activity</td>
</tr>
<tr>
<td>PANI</td>
<td>Polyaniline</td>
</tr>
<tr>
<td>PAS</td>
<td>Positron annihilation spectroscopy</td>
</tr>
<tr>
<td>PEELS</td>
<td>Parallel energy loss spectroscopy</td>
</tr>
<tr>
<td>PNNL</td>
<td>Pacific Northwest National Laboratories</td>
</tr>
<tr>
<td>PUREX</td>
<td>Plutonium extraction process</td>
</tr>
<tr>
<td>PVM</td>
<td>Parallel virtual machine</td>
</tr>
<tr>
<td>%RA</td>
<td>Percent reduction in area</td>
</tr>
<tr>
<td>RACE</td>
<td>Reactor-accelerator coupled experiment</td>
</tr>
<tr>
<td>RADDDB</td>
<td>Radiological Data Base</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RELAP</td>
<td>Plant Safety Modeling Code</td>
</tr>
<tr>
<td>RGA</td>
<td>Residual gas analyzer</td>
</tr>
<tr>
<td>RSL</td>
<td>Remote Sensing Laboratory</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RTIL</td>
<td>Room Temperature Ionic Liquid</td>
</tr>
<tr>
<td>SAMPE</td>
<td>Society for the Advancement of Materials and Process Engineering</td>
</tr>
<tr>
<td>SCA</td>
<td>Sub Critical Assembly</td>
</tr>
<tr>
<td>SCALE</td>
<td>Standardized Computer Analyses for Licensing Evaluation code</td>
</tr>
<tr>
<td>SCC</td>
<td>Stress corrosion cracking</td>
</tr>
<tr>
<td>SDS</td>
<td>Slowing Down Spectrometer</td>
</tr>
<tr>
<td>SEE</td>
<td>Secondary electron emission</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SFR</td>
<td>Sodium-Cooled Fast Reactor</td>
</tr>
<tr>
<td>SFTF</td>
<td>Spent Fuel Treatment Facility</td>
</tr>
<tr>
<td>SNS</td>
<td>Spallation Neutron Source</td>
</tr>
<tr>
<td>SRNL</td>
<td>Savannah River National Laboratory</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>SSR</td>
<td>Slow-strain-rate</td>
</tr>
<tr>
<td>STAR-CD</td>
<td>A commercial computational fluid dynamics software package</td>
</tr>
<tr>
<td>SXF</td>
<td>Soft X-ray Fluorescence</td>
</tr>
<tr>
<td>TBP</td>
<td>Tributylphosphate</td>
</tr>
<tr>
<td>TC-1</td>
<td>Target Complex 1</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>TFSI</td>
<td>bis(trifluoromethylsulfonyl)amide</td>
</tr>
<tr>
<td>TG/DSC</td>
<td>Thermogravimetry and Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>TOF-SIMS</td>
<td>Time of Flight Secondary Ion Mass Spectrometer</td>
</tr>
<tr>
<td>TRIGA</td>
<td>Training, Research, Isotopes, General Atomics</td>
</tr>
<tr>
<td>TRISO</td>
<td>A silicon carbide and pyrocarbon composite coating</td>
</tr>
<tr>
<td>TRLFS</td>
<td>Time Resolved Laser-Induced Fluorescence Spectroscopy</td>
</tr>
<tr>
<td>TRP</td>
<td>UNLV Transmutation Research Program</td>
</tr>
<tr>
<td>TRPSEMPro</td>
<td>TRP System Engineering Model Program</td>
</tr>
<tr>
<td>TRU</td>
<td>Transuranic actinides</td>
</tr>
<tr>
<td>TTF</td>
<td>Time-to-failure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHV</td>
<td>Ultra High Vacuum</td>
</tr>
<tr>
<td>UNLV</td>
<td>University of Nevada, Las Vegas</td>
</tr>
<tr>
<td>UREX</td>
<td>Uranium extraction process</td>
</tr>
<tr>
<td>UREX+</td>
<td>Uranium extraction process plus</td>
</tr>
<tr>
<td>UTS</td>
<td>Ultimate tensile strength</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>UV-visible</td>
</tr>
<tr>
<td>XAFS</td>
<td>X-ray absorption fine-structure spectroscopy</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible markup language</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>YS</td>
<td>Yield strength</td>
</tr>
<tr>
<td>YSZ</td>
<td>Yttria-stabilized zirconia</td>
</tr>
</tbody>
</table>
References

UNLV Transmutation Research Program references, current activities and other miscellaneous information can be found on the TRP website at:
http://aaa.nevada.edu

Credits

The University of Nevada, Las Vegas Transmutation Research Program is administered by the Harry Reid Center for Environmental Studies under the auspices of the U.S. Department of Energy (Grant No. DE-FG07-01AL67358 & Grant No. DE-FC07-06ID14781).

This report was produced by Anthony Hechanova and Rebecca Arbour.

Contact Information

All correspondence should be sent to the TRP Director:

Anthony E. Hechanova, Ph.D.
Harry Reid Center for Environmental Studies
University of Nevada, Las Vegas
4505 Maryland Parkway, Box 454009
Las Vegas, Nevada 89154-4009
Tel. (702) 895-1457
Fax. (702) 895-2354
E-mail: hechanov@unlv.nevada.edu