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A bstract

In this thesis the control and stabilization of a two link flexible robotic arm is considered. 

Two schemes have been implemented. The first scheme is based on nonlinear inversion, 

a nonlinear controller is designed for the trajectory control of the joint angles using joint 

torquers. The inverse controller includes a servocompensator for robustness. Although, the 

inverse controller accomplishes trajectory control of the joint angles, this excites the elastic 

modes of the arm. In order to damp the elastic oscillations, a stabilizer is designed for a 

linearized system about the terminal state using pole assignment technique. A switching 

logic is used to turn on the stabilizer when it enters a specified neighbourhood. A simplified 

controller has also been designed neglecting the Coriolis and Centrifugal forces.

In the second scheme the control system design is based on nonlinear adaptive control 

and linear stabilization. First a nonlinear adaptive control law is derived such that in the 

closed-loop system the joint-angles axe precisely controlled to track rerference trajectories. 

Once the joint angle enters the vicinity of the desired terminal value, a linear stabilizer 

designed based on a linear model of the arm is switched to accomplish the final capture of 

the desired state.

Simulation results are presented for all cases to show that in the closed-loop system 

accurate joint angle trajectory tracking and elastic mode stabilization can be accomplished



inspite of the uncertainity in the payload.
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C hapter 1 

In trod u ction

The design of light weight robotic manipulators is of considerable interest. Use of such 

manipulators results in higher speed of operation, less overall cost, less energy consumption, 

smaller actuator size, higher productivity, etc. However, light weight manipulators have 

considerable structural flexibility. Dynamics of elastic manipulators is governed by coupled 

highly nonlinear differential and partial differential equations. Control of such manipulators 

is a complicated problem. Furthermore, since the robots must handle a wide variety of 

payloads along given paths, robustness of the control system becomes very important.

Recently, some attempt has been made to treat the question of control of robotic systems 

having elastic links [ 1- 7] using linearized models for small maneuvers. In [ 1] the author 

has designed a compensation for the linearized model and a has tried to verify by simulation 

how good the approach is when applied to the nonlinear system. In [ 6] an integral plus 

state feedback is designed based on a linearized model of the robot arm. In [ 7] a Linear 

Quadratic Control with a prescribed degree of stability has been used. For the control of a 

nonlinear elastic arm having two rigid links and one elastic link, controllers based on nonlinear



invertibility of related input-output maps and linear stabilization have been designed in [ 9- 

10]. In [ 10] the derived control law includes terms to compensate for the elastic motion 

of the arm and the control forces acting at the tip of the beam. Experimental results on 

the end-point control of a flexible one-link robotic arm has been presented in [ 11- 12]. In 

[ 11] a control algorithm using Linear Quadratic Guassian approach has been designed. A 

nonlinear controller for an elastic arm in the presence of uncertainly has been designed in 

[13]. The control law in [ 13] asymptotically decouples the elastic dynamics of the robotic 

arm from the rigid ones and allows the force controller to be designed separately using the 

feedback of elastic modes for vibration stabilization. A similar approach will be used in this 

study.

In this thesis, we consider the control of a two-link elastic arm which is designed in [ 1- 

2]. The equations of motion of a system of two flexible beams pinned at one end at the 

joint has been derived by the author of [ 1]. He has applied Lagrange’s equation applied to 

the distributed system. Basically he has obtained the model by superimposing the flexible 

motion over a hypothetical rigid body motion. However, it may be pointed out that the 

approach just mentioned is applicable to multi-link flexible manipulators and also to slewing 

of elastic space systems. The elastic arm of this thesis, has two rotational joints and two 

joint torquers have been provided for the control of the links.

As can be realized the open loop system is nonlinear and oscillatory due to inherent 

vibration modes of the flexible links. There are a large order of modes. The vibration 

of the system introduces additional difficulties into the control problem. Moreover, there



exists uncertainity in the system due to payload changes, joint frictional forces, etc. The 

contribution of this thesis lies in the development of nonlinear control laws for joint angle 

control and the design of linear feedback laws for stabilization of the complete elastic robotic 

arm.

First, a nonlinear decoupling control is derived for controlling the joint angles based 

on the inversion of the input (joint torques)-output (joint angles) map of the robotic arm. 

For the inversion of the map, the output variables are differentiated and in the resulting 

equation the nonlinear interacting terms are cancelled out by the proper choice of the control 

torques. Furthermore, PID (Proportional Integral and Derivative ) terms as functions of the 

joint angle tracking errors are included in the control law for obtaining third order linear 

dynamics for each tracking error, the integral term in the control law is introduced to obtain 

robustness in the system. Interestingly, the decoupling nonlinear controller accomplishes 

robust joint angle tracking and asymptotically linearizes the system as the joint angular 

velocity converges to zero. The control of joint angles excites the elastic modes of the links 

and it becomes necessary to damp the vibration of the links by using auxiliary control signal. 

The complete closed-system is simulated on the digital computer. The system responses are 

obtained in the context of nominal system, payload uncertainity, and speed of trajectory 

following.

To dampen the vibrations we use a stabilizer. The design of the stabilizer is based on 

linear control theory. We linearize the system about the terminal point. Then using pole 

placement technique we move the poles of the open loop system to obtain a stable system.



The complete algorithm is implemented in CTRL-C, a linear systems design interactive 

software package. The feedback gains thus obtained are used to stabilize the system. When 

the robot arm has reached close to the terminal position, we switch on the stabilizer. The 

switching is automatic and based on how close the arm is to the terminal state. The stabilizer 

acting along with a linearized version of the decoupling control will bring the robot arm to 

rest at it’s terminal position. Simulation of the system with respect to pole placement of the 

stabilizer was also done.

The synthesis of the controller in [ 8] used to achieve joint angle control, requires a 

large amount of computation inherent in the inverse controller which may prohibit real

time implementation of the controller. So the question of simplification of control law by 

neglecting Coriolis and Cetrifugal forces is considered. These terms that are being neglected 

are second order terms in velocity. So we expect the simplified controller to perform close 

to the complete controller during slow motion, but that may not be the case during fast 

motion. So the adverse effect of this simplification on the performance is examined. Selected 

responses of [ 8] have been presented in [ 29]. The simplified controller was simulated with 

respect to the nominal system, payload uncertainity and speed of trajectory following. The 

results are compared with that of the complete controller.

Adaptive control of a linear elastic robotic systems also have been considered in litera- 

ture[ 12, 19, 20, 21, 22]. A variable structure control system for two-link flexible arm has 

been designed in [ 23]. A nonlinear adaptive control scheme has been presented in [ 13] 

which uses additional actuators on the elastic link for stabilization. Control of flexible joint



robotic systems with uncertainity also has been considered in [ 24, 25, 26].

The decoupling control laws require the complete knowledge of the system dynamics. 

Since the computation of these terms is complicated, (moreover uncertainity also exists) 

one would like to design a controller which does not require any information on the system, 

dynamics. We take such an adaptive approach for joint angle control in this thesis. We 

design a nonlinear adaptive controller for joint angle trajectory tracking. This adaptive 

scheme does not require any information on the uncertainity bound and includes a dynamic 

system in the feedback path. The control signal is a function of only tracking error and 

its dervatives. The derivation of this control is based on the results of [ 27]. We note that 

although adaptive controller can control the joint angles, it excites the link vibration during 

maneuver. For the stabilization of elastic modes, a stabilizer is designed.

The design of the stabilizer is a little different in this case. We linearize the system and 

design the stabilizer using pole placement technique. The time to switch the stabilizer is no 

longer automatic. The stabilizer is expected to work best when the robot arm has reached 

close to the terminal state. When the stabilizer is turned on we do not have a linearized 

version of the adaptive controller. In fact the adaptive controller is completely switched off. 

We have calculated the control needed to hold joint angle of the robotic arm at the terminal 

state. So this is applied along with the stabilizer control. Extensive simulation will be done 

to verify the results in relation to payload uncertainity.

The organization of this thesis is as follows. Chapter 2 describes the Mathematical 

Model. Chapter 3 is about the Nonlinear Decoupling control scheme. Chapter 4 considers



a simplified version of the controller described in chapter 3. Finally chapter 5 discusses the 

adpative control law.
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C hapter 2 

M athem atica l M odel

A robotic arm with two revolute joints, is shown in Fig 1. The system is composed of two 

flexible bodies connected by a frictionless pinned joint. One end of the system is assumed to 

have planar motion and the relative motion of the two bodies results from torques applied 

at each joint of the system. In order to facilitate the description, the joints are numbered 

1 and 2 and the bodies will be represented by two flexible beams. At the end of beam 1, 

a concentrated mass representing the servo-motor is present at joint 2 and the joint itself; 

at the end of beam 2, a discrete mass can also appear, representing a payload to be moved 

between two points in the plane.

In Fig 1., O X Y  is an inertial reference frame with origin at joint 1, Oxiyi  is a reference 

frame with origin at joint 1, axis xi  is tangent to link 1 at point O, and O2 X2 IJ2  is a reference 

frame with origin at joint 2 with its axis X2 tangent to link 2 at point 0 2- The axis OX  

points verticaly down. If the links were undeformed, the arm would lie along OO 1 O3 . Let 0\, 

and 0 2  denote the rotation angles of this hypothetical rigid arm. The elastic deflection of the 

manipulator is denoted by uei(xi, t )  for link 1 and ue2 (x2 ,t) for link 2 and these deflections



in the deformed links may be represented by
n

uel(xu t)  =  ^2^>u(xi)qu(t)
(2 -1)

' Ue2(x 2, t )  =  X]^2.(®2)92«(0 
i=l

where <f>u and <̂2,-, i= l,- • •, n, is a set of appropiately chosen basis functions; qkj,k = 

1,2, j  =  1,- • -,n, are the time dependent generalized coordinates; and x i and x2 denote 

the distances from joint 1 and joint 2 along 0 0 \  and 0 2 0 3 , respectively. Here, we ne

glect the longitudinal and torsional modes and it is assumed that the elastic deformation 

is small. In this study similar to [ 1, 2, 12], we select the basis functions <j>ij as the eigen

functions of a cantilever beam. It has been found by experimentation that the cantilever 

eigenfunctions form an excellent basis for a compliant link in a dynamic situation [ 12]. 

Thus the motion of the arm is completely described by the vector of generalized coordinates 

z =  (0i,02,9n, • • -5 9171)9 2 1) • • -)92n)T € f?2ln+1l (Here Tdenotes transposition).

Equations of motion of the arm are derived using Lagrangian approach. For this purpose, 

first the kinetic energy, K and the potential energy, V are obtained. Then equations of motion 

are given by

where u =  (u i ,u2)t  6 R 2  is the vector of joint torques; and

B(x) =  [/2X2 | 0 2x2n]T (2.3)

where / ,  and 0  denote identity and null matrices of indicated dimensions. A complete 

derivation of equations of motion for the arm is given in [ 1] and readers may refer to it for



the details. However, in this study unlike [ 1], the strain energy due to deformation caused 

by gravitational force has been included in the potential energy. This is useful in computing 

the static deflection due to gravity in equilibrium condition.

9



C hapter 3 

D ecoupling C ontrol

3.1 In trod u ction

The control system design to be presented here is based on nonlinear inversion and linear 

stabilization. The derivation of the controller presented here is done in two steps. This 

is motivated by the fact that nonlinearity in the dynamics of an elastic robotic system is 

essentially due to the rigid modes (joint angle variables) and once the time derivatives of 

rigid modes vanish, only elastic mode oscillation due to structural flexibility persists. The 

elastic dynamics has linear behavior, and is governed by linear differential equations.

In this chapter, first we obtain a nonlinear control law un based on the inversion of input 

(control torques) - output (joint angles) map. The use of feedback control law un decoupled 

the joint angle (rigid modes) motion from the elastic motion and gives linear dynamics for 

the joint angle trajectory tracking error.

The control law tt„ also includes integral feedback of joint angle tracking error for robust

ness. The asymptotic motion of the closed-loop system using control un is nearly linear which 

includes small joint angles perturbation and bounded small oscillation of elastic modes. Ex

10



ploiting the asymptotically linearized behavior of the closed-loop system with control u n, a 

stabilizing control law u 3 is designed for regulation to the terminal state. The motion of the 

system evolves in two phases.

In the first phase, the nonlinear control un acts and the arm follows any given smooth joint 

angle trajectory. In the second phase, once the joint angle enters a specified neighborhood 

of the terminal joint angle, the stabilizer is switched on and the total control signal (un+ us) 

accomplishes final capture of the terminal joint angle and damping of elastic oscillation. 

The dual mode operation of the controller is useful in real-time control, since this gives the 

required time for the computation of stabilizer gain matrix. Therefore, a control logic has 

been introduced in the control system design which causes the closing of the stabilizer-loop 

only when the joint angle trajectory enters a specified vicinity of the terminal joint angle 

which must be the region of attraction of the terminal state. A compromise in the degree 

of joint angle trajectory tracking ability and stabilization must be made. Apparently, one 

would like to have the signal ua of small value so that joint angle tracking is not much 

disturbed.

3.2 P rob lem  Form ulation

Using the expressions for K and V in ( 2.2) gives,



where D is the positive definite symmetric inertia matrix, and K  = \  (zTD(z)z). Defining 

x = (zT, z T)T, ( 3.1) can be written as

x  =  A(x) + B(x)u, x e  R 2k, k =  (2 + 2ra) (3.2)

where A and B  are appropiate matrices obtained from ( 3.1) and B{x) = [O^xk I ■

We point out that, for simplicity, the arguments of various functions are often omitted. Let

0c(t) (= R 2 denotes a reference joint angle trajectory, where it is assumed that 6 c(t) is obtained 

from the coordinates of the end effector using a nonlinear transformation. We associate with 

( 3.2) the controlled output vector

y =  0  =  cx = cqz (3.3)

We are interested in deriving a control law such that in the closed loop the joint angle 

vector 0 (t) follows the command trajectory 0 c(t) and elastic oscillations are stabilized.

3.3 Joint A ngle C ontrol B y  System  Inversion

In this section, a control law is derived for the trajectory control of joint angles based on 

the inversion of input (joint torques) - output (joint angles) map of the system ( 3.2) and 

( 3.3). Readers may refer to [ 14, 15] in which inversion algorithms are given for obtaining 

inverse systems for nonlinear systems. Although, the inversion algorithm is applicable when 

actuator dynamics are present in the system, these actuator transfer functions are neglected 

in this study.

12



Using the inversion algorithm one obtains a sequence of systems by differentiation of the 

outputs and nonlinear transformations. By differentiating the output gives system 1 and 

system 2 of the form (Nonlinear transformations are not required here)

System1 : x = a(x) +  B{x)u 
6  =  0 =  ci(ar)

System2 : x — a(x) +  B(x)u
£2 = 9 = c2 (x) +  D2 (x)u

where

c2 (x) = caD-Hz) +

(3.4)

(3.5)

(3.6)
D 2{ x )  =  c q D  x { z ) B x

Since the inertia matrix D(z) is a positive definite symmetric matrix, D 2{x) is invertible 

for x  6 R2k. The inversion algorithm terminates here, and the tracking order of the system 

( 3.2) and ( 3.3) is 2. System 2 is invertible and one chooses a control law of the form u = un 

given by

un =  D j1(x) - c 2( x ) - G i i - G 19 -G o w  + e ^  (3.7)

where G2 =  diag(flr2;); G\ =  d iag ^ j); Go =  diag^oi)) i=l,2; tracking error 6  =  0 — 9C and

w is the output of a servocompensator

w = 0  (3.8)

In the control law u„, the function w has been included for robustness in the system. 

Substituting ( 3.7) in ( 3.5) gives linear dynamics for the tracking error governed by

0 + G29 + G\0 + Gqw = 0 (3 .9)

13



Differentiating (12) and using ( 3.8) gives

6  +  G29 d" G\9 +  Gq9 — 0  (3.10)

In the closed-loop system ( 3.2), ( 3.7) and ( 3.8), independent control of joint angles is 

accomplished by a proper choice of matrices Gt, i= 0 ,l,2 , and desirable stable responses for 

the joint angles are obtained.

Control law ( 3.7) requires second derivative of the command input 9 C since system ( 3.2) 

and ( 3.3) has tracking order 2. It is convenient to introduce a third order command generator 

of the form

9 c + P 2 9 c +  P i 6c +  P 09c =  P 09 ' (3.11)

where 0* is the desired terminal joint angle, and matrices P,-, i=0,l,2 are properly chosen to 

obtain desirable reference trajectories.

Using the control law ( 3.7), one can reproduce any smooth joint angle trajectory 0C 

provided that

0(0) = £(0) = £(0) = 0 (3.12)

However, as the joint angles follow the reference trajectories, elastic modes are excited and 

it becomes necessary to design a stabilizer to damp the elastic oscillation.

3.4 Linear Stabilizer

In the closed-loop system ( 3.2), ( 3.7) and ( 3.8), 9(t) —► 9*, the given terminal joint 

angle and 0(f), 0(f) —> 0 as t —* oo. Since elastic deformation is assumed to be small, and

14



the nonlinearity in ( 3.2) is essentially due to the rigid modes, interestingly the closed-loop 

dynamics of the system ( 3 .2 ), ( 3 .7 ) and ( 3 .8 ) is nearly linear as t  —> oo and the design of 

stabilizer using linear control theory is appropiate.

For a given reference trajectory 0c(t) terminating at 0*, one has 0c(oo) = 0c(oo) =  0. The 

equilibrium state vector a;* is obtained by solving

a(x*) +  f l(x > (x * ) =  0 (3.13)

dK
Let z * be the equilibrium value of z. In view of ( 3.1) and noting that i* =  0, and =  0 

at the equilibrium point, one must have

^ ( * - )  =  (xV ) , O jx2..)T (3.14)

The first two equations in ( 3.14) are satisfied by the control u(z*) and remaining 2n equations 

in ( 3.14) are easily solved to obtain the equilibrium value q* =  (qJj, • • • qfn,

<7215''' >?2n)T-

To this end, we linearize the closed-loop system ( 3.2), ( 3.7) and ( 3.8). Since 0 -response 

is linear, we linearize the q-response. Let

D ( z )  =
D n ( z )  D i 2( z ) 
D 2i {z ) D 22( z )

(3.15)

where Du  is a 2 x 2 matrix. Then using ( 3.1) and neglecting the second order terms in



Linearizing ( 3.16) gives

D2 1 (z*)Ad + D2 2 {z*)Aq = - K qAq -  Veq{z*)A9 

where AO = 0 — 6 *, Aq  =  q — q* and Kq is the stiffness matrix,

(3.17)

d 2 V(z ) 
dzdq

'd2 V{z) d 2 V(z)
dOdq ’ dqdq 

\V„(z),K,\
(3.18)

Here, (rrij = mass of link j)

K q — diag(Kqi, I(q2)
K qi — diag(Kqn,  • • •, K qin), (3.19)

For the design of stabilizer, it will be assumed that 0c(t) has attained the terminal value,

that is, 0C =  0",0C =  0C =  0, and thus 0(t) =  A 0(t). We are interested in designing a

stabilizing control of the form

u„ =  D2 l {x)v (3.20)

where v is determined later. Then the control law is

u — Un "b (3.21)

Using the control law ( 3.7), ( 3.8),( 3.20) and ( 3.21) in ( 3.5), substituting A0 in ( 3.16) 

from the resulting equation, solving for Aq  and collecting A0  and Aq  equations, gives

>

1

<1

—G2 A0  — G\A9 — Gqw -J- v 
D 22 {z * ) { D 2i {z * ) ( G 2A 0  +  GiAO +  G q w  — v) — V$q(z*)A0 — K qAq}

(3.22)

• 1Defining x =  (A9T, AqT, A0T, AqT, wT) , one can write ( 3.22) in the state variable form

£ =  A{z*)x + B(z*)v,x e R (2k+2) (3.23)



where 

A(z-)  =

B(z ' )  =

Okxk Ikxk Okx  2

( -G x ,0 )  (- G 2 , 0 ) - G 0

D2 2  (D2 1 G1 — Vgq, —Kq) D2 2  (D2 lG2 , 0 )  D 2 2  D 2 \Gq 
. (^2 x2 j 0 ) 0  0

Okx  2

*2X2

- D 2 2  (z*)D2 i (z*)
0 2x 2

where O’s denote null matrices of appropiate dimensions.

For the design of stabilizer we use pole assignment technique. It is interesting to note 

that six eigenvalues of the matrix A  are specified by the choice of matrices G, in (3.10), and 

the remaining eigenvalues of A  lie on imaginary axis. One chooses a feedback control law of 

the form

v = - F x  (3.24)

such that the closed loop system matrix A ci =  (A —BF)  has a given set of stable eigenvalues.

To this end, a discussion on the choice of feedback matrix F is desirable. Noting that the 

signal v affects the tracking ability of the nonlinear control law un, it is desirable to choose 

small gain matrix F for stabilization. However, for obtaining good damping, the poles of A 

must be moved sufficiently far away to the left in the complex plane. Thus here the designer is 

faced with conflicting requirements. A good choice of pole assignment may require retaining 

the six poles of A  associated with the rigid modes unchanged, and shifting the remaining 

imaginary poles of A  to the left in the stable region of the complex plane keeping their 

imaginary parts unaltered. This way in general the stabilization is accomplished which
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requires smaller control signal v resulting in only a little deterioration in joint angle tracking 

ability.

The synthesis of the complete closed-loop system (shown in Fig. 2) is done as follows. 

First the nonlinear controller un acts following any new command, and this causes the 

tracking of 9c(t). The stabilizer is switched on when the trajectory enters a specified vicinity 

of the equilibrium point, which lies in its region of attraction. Let us define a neighbourhood 

Ns of the equilibrium point

Na = {x € R2k : | AOi |<  a, | A0 ,- |<  /?, i =  1 , 2 } (3.25)

Then the switching logic switches the stabilizer on at the instant t 3 at which x( ts) 6  N 3 and

keeps the stabilizer-loop closed for t > t 3. Since in the vicinity N 3, A0(t) «  0 (t), we may use

0(t) instead of A0(t) in the control signal v.

The closed-loop system is asymptotically stable. The integral feedback aids in nulling the 

steady-state error in the joint angles in the presence of uncertainity. Since the poles of the 

system are continuous functions of the robot arm paxameters, they remain stable for small 

changes in these parameters. Although, it is extremely difficult to derive the stable range 

of parameter variations, simulation results will be presented to show that the closed-loop 

system has good robustness property.

3.5 S im ulation  R esu lts

In this secton, the results of digital simulation are presented. The nominal values of parame

ters are given in the appendix. For trajectory following, the matched initial conditions on 9(t)
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and 9c(t) at t=0  are assumed. The initial conditions are x(0) =  0, 0C(O) =  0C(O) = 0C(O) =  0> 

and w(0) =  0. The mode shapes <f>ij are selected as clamped-free modes [ 1].

A command trajectory 9c(t) was generated to control 0(0) =  0 to 9* =  (90°,60°)r . The 

matrices Pi of the command generator are taken as P; =  p,- h x 2 , i=0,l,2 and are selected 

such that the poles associated with 9ci{t), the ith component 9c(t), are at -2, -2 ±  j2. The 

feedback matrices G, are selected as G, =  gi 1 2 x2 , i= 0 , l ,2 and are set to yield poles associated 

with 9{ in ( 3.10), of values -10, -10 d: jlO, where 9 = (0 i , 0 2 ) • These poles are chosen to 

obtain fast tracking error responses. It is assumed that the elastic deflection is adeqately 

represented by the first two modes, i.e., n = 2  in ( 2 .1 ).

Let the set of eigenvalues, p(A(z*)), of A(z*) be

p ( A )  =  Sff U S e (3.26)

where Sg,  and S e are sets of eigenvalues associated with the rigid modes and elastic modes

respectively and

Se = { - 1 0 , - 1 0 , - 1 0 ± j l0 , - 1 0 ±  jlO} 
S e = {± ;15,±j22.5,±;106,±;230} (3.27)

The feedback matrix F of the stabilizer was chosen such that the set of eigenvalues p{Aci) of

the matrix Ad  is

p ( A d )  =  Sg U S e} (3.28)

where S ef  = { — 2  +  re, re 6  S e} .  Notice that in the closed-loop system the set of eigenvalues

of Sg is retained, and imaginary roots of S e are simply moved to the left by 2  units in the

complex plane. In the switching logic, the hypercube N,  has dimension such that a  =  5°,
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/? =  3°/sec.

For compactness, the following notations will be used in the sequel:

0m=(rnax | 0X |, max \ 02 | ) (deg/sec), um =  (max \ |, max \ u2  |), (Nm), (uel,u e2 ) =

(uel(JL i,t),ue2 (p 2 ,i))(m ), u em = ( max | uel(Lu t) |, max \ ue2 (L2 ,t) |) (cm) and 0m = 

(max | 0 i I, max  | 0 2 |) (deg).

3.5.1 A . T ra je c to ry  Control: S tab ilizer Loop O pen

To examine joint angle trajectory tracking ability of the nonlinear controller u„, the closed- 

loop system ( 3.2), ( 3.7) and ( 3.8) was simulated and the stabilizer-loop was not closed. 

Selected responses are shown in Fig. 3. As predicted, the tracking error 0(f) was identically 

zero. The response time of 0 was nearly 2.75 seconds. Manuever of the arm results in 

excitation of the elastic modes and figure shows persistant periodic oscillation of the elastic 

modes. Periodically varying control signal was required just to cancel the effect of elastic 

modes on the rigid modes. The maximum magnitudes were 0m =  (74.8, 48.89) deg/sec, uem 

= (5.4, 2.49) cm, and um =  (224.6, 83.7) Nm.

3.5.2 B. T ra je c to ry  control and  S tab iliza tion  : N om inal System

The complete closed-loop system ( 3.2), ( 3.7), ( 3.8) and ( 3.24) including the stabilizer was 

simulated to examine the joint-angle trajectory tracking and elastic mode stabilization ca

pability of the controller. Selected responses are shown in Fig. 4. Notice that the switching 

logic closes the stabilizer-loop in 2.38 seconds when the trajectory enters the specified hy

percube. As expected the 0-tracking error is identically zero before the stabilizer-loop closes.
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A small transient in the 0-response is caused when the stabilizer-loop is closed. However, 

an insignificant 0-tracking error is observed. The desired position is attained in about 4.5 

seconds. The maximam values were 9m =  (74.8, 49.89) deg/sec, uem = (5.08, 2.49) cm, um 

= (211.7, 83.7) Nm, and 0m =  (0.29, 0.104) deg.

3.5.3 C. T ra je c to ry  C on tro l and  s tab iliza tion  : Lower payload

To show the effect of payload changes, simulation was done with mp=3 kg. Jp =  .75 which 

is 25% lower than the nominal payload. However the controller of case B designed using the 

nominal parameters was retained. Selected responses are shown in Fig. 5. The uncertainty 

in the payload caused only a small effect on system responses. Smaller elastic deflection 

was observed and smaller control torques were required compared to the nominal case B as 

expected. The maximum values were 0m =  (74.9, 49.8) deg/sec, uem =  (4.77, 1.9) cm, um 

= (194, 67.2) Nm, and 9m =  (.1 1 , .14) deg.

3.5.4 D. T ra je c to ry  C ontro l and  S tab ilization : H igher payload

Controller was designed for the nominal payload as in case B, however the payload of the 

arm was increased by Am p =  .5, A Jp =  .125 in simulation which amounts to 12.5% increase 

in payload, selected responses axe shown in Fig. 6 . Again accurate 0-rajectory tracking 

and elastic mode stabilization was observed. The elastic deflection and control torques were 

larger in this case compared to the nominal case B. The maximum values were 0m = (74.9,

49.7) deg/sec, uem =  (5.37, 2.79) cm, um =  (225, 92) Nm, and 0m = (.34, .107) deg. It was 

found that the controller was relatively sensitive to higher payload. This suggests that the



controller should be designed for maximum payload.

3.5.5 E. T ra jec to ry  T racking and S tab iliza tion : Effect of Pole 
A ssignm ent

To show the importance of proper selection of poles of the closed-loop system matrix Aci, 

a new feedback matrix F was designed by setting p(Aci) = Sg U Sef  where Sej  =  {—2 ±  

j20, —2 ±  j'53, —2 ±  233, — 2  ± j318} and Sg is given in ( 3.27). Compared to (30), we note 

that 8  closed-loop poles of Ac/ in this case have larger imaginary parts compared to the 

poles of A  or the matrix A ci of case B. Selected responses are shown in Fig. 7. We observe 

undesirable high frequency oscillations in responses. This is caused due to modification in 

the natural oscillatory behavior of the closed-loop system ( 3.2), ( 3.7), and ( 3.8) of case A 

by the stabilizer. The maximum values were 0m = (74.8, 49.87) deg/sec, uem =  (5.69, 2.5) 

cm, um =  (483, 269) Nm, and 9m =  (.57, .24) deg. We observed larger magnitude of elastic 

deflection and control torques compared to the nominal case B.

For this choice of poles of Aci, simulation was also done in the presence of payload 

uncertainty and it was found that control system remains stable even for 75% lower and 

25% higher payload changes (These results are not shown here). This suggests that proper 

selection of feedback gain matrix F is critical in the control system.

3.5.6 F . T ra jec to ry  Tracking and S tab ilization : Slow C om m and

In order to reduce elastic deflections and control magnitude requirement, simulation was 

done using a slow command. For this purpose, poles of ( 3.11) were set at -1, -1 dhj 1.
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Simulation was done under similar condition as in case B. Selected responses are shown in 

Fig. 8 . Smooth responses were obtained. As expected smaller elastic deflection was observed 

and control magnitude was smaller. The maximum values were 9m — (37.4, 24.9) deg/sec, 

uem =  (4.26, 1.84) cm, um = (175, 63.5) Nm, and 0m =  (.14, .068) deg.

3.6 C onclusion

A dual mode control system design for control of a two-link elastic robotic system was 

presented. A nonlinear controller was designed for the independent control of joint angles 

using nonlinear inversion technique. Integral feedback was included in the nonlinear control 

law for robustness. Using pole assignment technique, a stabilizer was designed based on a 

linearized model about the terminal state. The system trajectory evolves in two phases. In 

the first phase, joint angles are controlled along prescribed paths. In the second phase, a 

switching logic turns on the stabilizer when the trajectory enters a specified neighborhood 

of the terminal state. Extensive simulation results were obtained which showed that in 

the closed-loop system accurate trajectory tracking and elastic mode stabilization can be 

accomplished.
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C hapter 4 

Effect o f C oriolis and C entrifugal 
Forces

4.1 In troduction

The control system discussed so fax includes an inverse joint angle trajectory following con

troller, a servocompensator, a linear stabilizer and a switching logic. A large amount of 

computation is required in the implementation of the exact inverse control law. A reason

able choice of simplification of the controller is to neglect the Coriolis and centrifugal forces 

from the joint angle controller. These forces contain terms of second order in the velocity of 

the generalized coordinates. In this study simplified control law by neglecting Coriolis and 

Centrifugal forces is sysnthesized. It is seen that for the slow motion of the arm, these forces 

are small, however, during rapid maneuver they are not negligible.
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4.2 P rob lem  Form ulation

The equation of motion is,

D(z)S +  D W i -  H  ^  =  B tu (4.1)

where D is the positive definite symmetric inertia matrix, B \  =  [I2 X2 O] 2  and K  =  |  

(zT D(z)z). The system ( 4.1) can be simplified by neglecting Coriolis and Cetrifugal terms. 

The simplified equation is

D{z)z +  ^  =  B lU (4.2)

Defining x =  (zT, z T)T, ( 4.2) can be written as

x  =  A(x ) +  B{x)u, x e R 2k, k = (2 +  2n) (4.3)

where A and B  are appropiate matrices obtained from ( 4.2) and B(x)  =  [0 2 xk I 

(D~1 Bi)T]T. We point out that, for simplicity, the arguments of various functions are often 

omitted. Let 0 c(t) 6  R 2  denotes a reference joint angle trajectory, where it is assumed that 

0 c(t) is obtained from the coordinates of the end effector using a nonlinear transformation. 

We associate with ( 4.3) the controlled output vector

y  =  0  =  CX =  Cq Z  ( 4 - 4 )

We are interested in deriving a control law such that in the closed loop the joint angle 

vector 9(t) follows the command trajectory 0 c(t) and elastic oscillations are stabilized.
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4.3  Joint A n gle C ontrol

In this section, a control law is derived for the trajectory control of joint angles based on the 

inversion of input (joint torques) - output (joint angles) map of the system ( 4.2) and ( 4.3).

Using the inversion algorithm one obtains a sequence of systems by differentiation of the 

outputs and nonlinear transformations. By differentiating the output gives system 1 and 

system 2  of the form (Nonlinear transformations are not required here)

System! : x  =  a(x) +  B(x)u  
6  =  0 =  ci(ar)

System2 : x =  a(x) +  B(x)u
£2 =  0 =  c2( x )  +  D 2 ( x ) u

where
T dV

c2 (x) = cqD *(z)

(4.5)

(4.6)

(4.7)dz
D 2( x ) =  c0 D~1 (z)Bi

Since the inertia matrix D(z) is a positive definite symmetric matrix, D 2 (x) is invertible 

for x  € R 2k. The inversion algorithm terminates here, and the tracking order of the system

( 4.2) and ( 4.3) is 2 . System 2  is invertible and one chooses a control law of the form u = un

given by

it„ =  Z)j1 (a:) — c2 (x) — G29 — Gi9 — G q w  +  9C (4-8)

where G2  =  diag(^2»); G\ =  diag^i,); G0  = diag(^0.), 1=1,2; tracking error 9 =  9 -  9C and 

w is the output of a servocompensator

w = 9 (4.9)

In the control law un, the function w has been included for robustness in the system.
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Substituting ( 4.8) in ( 4.5) gives linear dynamics for the tracking error governed by

0  -(- G29 + G\0 G q w  — 0 (4.10)

Differentiating ( 4.10) and using ( 4.9) gives

0 -]-G29 d* G\0 ■+- G q9 — 0 (4.11)

In the closed-loop system ( 4.3), ( 4.8) and ( 4.9), independent control of joint angles is 

accomplished by a proper choice of matrices i= 0 , l ,2 , and desirable stable responses for 

the joint angles are obtained.

Control law ( 4.8) requires second derivative of the command input 9C since system ( 4.2) 

and ( 4.3) has tracking order 2. It is convenient to introduce a third order command generator 

of the form

0 c +P20C + PiOc + PoOc =  PO0m (4.12)

where 9’ is the desired terminal joint angle, and matrices Pi, i= 0 , l , 2  are properly chosen to 

obtain desirable reference trajectories.

4.4  Linear Stabilizer

In the closed-loop system ( 4.2), ( 4.8) and ( 4.9), 0(t) —► 0*, the given terminal joint 

angle and 9(t),9(t) —*• 0 as t —» oo. Since elastic deformation is assumed to be small, and 

the nonlinearity in ( 4.2) is essentially due to the rigid modes, interestingly the closed-loop 

dynamics of the system ( 4.2), ( 4.8) and ( 4.9) is nearly linear as t —> oo and the design of 

stabilizer using linear control theory is appropiate.
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•  X •Defining x — (A9T,A q T,A0T,AqT,wT) , one can write the stabilizer equation in the 

state variable form

£ = A{z*)x + B { z * ) v , x e R {2k+2) (4.13)

where 

A(z ')  =

B(z-) =

Okxk Ikxk Okx2
( - G i , 0 )  ( - G 2, 0 ) - G o
D 22{D 2i G \  —  Vgq, —  K q) D22 { D 2\ G 2, 0 )  D 22 D 21G0 

.  (^2x2, 0 ) 0  O
Okx  2

'2x2

—D2 2  {z*)D2 \(z*)
O  2x2

where O’s denote null matrices of appropiate dimensions.

For the design of stabilizer we use pole assignment technique. It is interesting to note 

that six eigenvalues of the matrix A  are specified by the choice of matrices G, in ( 4.11), and 

the remaining eigenvalues of A  lie on imaginary axis. One chooses a feedback control law of 

the form

v =  —Fx (4.14)

such that the closed loop system matrix Aci =  (A — B F ) has a given set of stable eigenvalues.

4.5 S im ulation  R esu lts

In this secton, the results of digital simulation are presented. The nominal values of parame

ters are given in the appendix. For trajectory following, the matched initial conditions on 0(t) 

and 9c(t) at t=0 are assumed. The initial conditions are x(0) =  0, #c(0) =  0C(O) =  ^c(O) =  0,



and iw(0) =  0. The mode shapes f a  are selected as clamped-free modes [ 1].

A command trajectory 0c(t) was generated to control 0(0) =  0 to 0* =  (90°, 60°)r . The 

matrices P, of the command generator are taken as p  =  p; I 2 X2 , i= 0 , l ,2  and are selected such 

that the poles associated with 0ci(t), the ith component 0c(t), are at -2, -2 ±  j2. The feedback 

matrices G,- axe selected as G,- =  p,- 1 2 x2 , i=0,l,2 and are set to yield poles associated with 

0i in ( 3.8), of values -10, -10 ±  jlO, where 0 =(0i,02) • These poles are chosen to obtain 

fast tracking error responses.

For compactness, the following notations will be used in the sequel:

0m=(max | 0i I, max  | 02  \ ) (deg/sec), um =  (max \ U\ |, max  | u 2 |), (Nm), (uei,u e2 ) = 

(uel(L i , t ) ,ue2 (L2 ,t))(m), uem =  ( max  I uel(Li,t) I, max \ ue2 (L2 ,t) |) (cm) and 0 m  = 

(max | § 1  I, max \ 0 2  |) (deg).

4.5.1 A . T ra jec to ry  con tro l and  S tab iliza tion  : N om inal System

The complete closed-loop system ( 4.3), ( 4.8), ( 4.9) and ( 4.14) including the stabilizer 

was simulated to examine the differences between the simplified controller and the controller 

designed without simplification in [ 8 ]. Selected responses axe shown in Fig. 9. There is not 

much difference in the 0 tracking ability of the two controllers. Maximum values which are 

different are shown here for the two controllers. First for the complete controller of [ 8 ] 0m 

=  (74.9, 49.8) deg/sec, uem =  (5.08, 2.5)cm, um =  (211, 83.7) Nm and 0m =  (.294, .104)deg. 

For the simplified controller 0m =  (75.7,50.1) deg/sec, uem =  (5.83, 2.676) cm, um = (244,

85.7) Nm and0m =  (.398, .149) deg. We observed larger magnitude of elastic deflection and
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control torques compared to the controller of [ 8 ].

4.5.2 B . T ra jec to ry  C on tro l and  S tab ilization : H igher payload

Controller was designed for the nominal payload as in case A, however the payload of the 

arm was increased by Am p — .5, AJp =  .125 in simulation which amounts to 12.5% increase 

in payload. Selected responses are shown in Fig. 10. There is not much difference in the 6  

tracking ability of the two controllers. Maximum values which are different are shown here 

for the two controllers. First for the complete controller 0m =  (74.9, 49.7) deg/sec, uem = 

(5.37, 2.79) cm, um = (225, 92.1) Nm and 0m =  (.34, .11) deg. For the simplified controller 

0m =  (76, 49.9) deg/sec, uem — (6.12, 3.02) cm, um = (259, 95.1) Nm and 0 m  =  (.45, .15) 

deg. As in case A larger control torques and elastic mode deflections were observed.

4.5.3 C. T ra jec to ry  C on tro l and  stab ilization  : F ast System

In order to show the effect on deflections and control magnitude requirement for fast move

ment, simulation was done using a fast command. For this purpose, poles of ( 4.10) were set 

at -4, -4±j4. Simulation was done under similar condition as in case A. Selected responses 

are shown in Fig. 1 1 . There is not much difference in the 0 tracking ability of the two con

trollers. Maximum values which are different are shown here for the two controllers. First 

for the complete controller 0m =  (149, 99.7) deg/sec, uem =  (15, 10.6) cm, um =  (768, 332) 

Nm and 0m =  (1.485, .966) deg. For the simplified controller 0m = (189, 193) deg/sec, uem 

=  (31.8, 17.7) cm, um =  (1338, 468) Nm and 0m =  (4.925, 4.926) deg. As in case A larger 

control torques and elastic mode deflection were observed.
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4.6  C onclusions

A dual mode control system design for control of a two-link elastic robotic system was 

presented. A nonlinear controller was designed for the independent control of joint angles 

using nonlinear inversion technique. Integral feedback was included in the nonlinear control 

law for robustness. Using pole assignment technique, a stabilizer was designed based on 

a linearized model about the terminal state. Extensive simulation has been done. It is 

concluded from these results that accurate trajectory tracking and elastic stabilization are 

accomplished even when Coriolis and Centrifugal forces are neglected for reasonable fast 

motion. Furthurmore, the joint angle tracking performance is relatively insensitive even for 

faster motion. However, the elastic deflection response and control torques are sensitive to 

neglected Coriolis and Centrifugal forces in the simplified controller.
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C hapter 5 

A d ap tive control

5.1 In trod uction

The control system design to be presented here is based on nonlinear adaptive control and 

linear stabilization. The derivation of the controller presented here treats the large joint- 

angle (nonlinear) maneuver problem separately from the small terminal (linear) maneuver. 

This is motivated by the fact that nonlinearity in the dynamics of an elastic robotic system 

is essentially due to the rigid modes (joint angle variables) and once the time derivatives of 

rigid modes vanish, only elastic mode oscillation due to structural flexibility persists. The 

elastic dynamics has linear behavior, and is governed by linear differential equations.

In this thesis first we derive a nonlinear adaptive control law ua for joint angle trajectory 

tracking of reference trajectories. Interestingly, this design does not require any information 

on the system dynamics of the arm and the bounds on the uncertainity of the system used 

in sliding mode control [ 23]. The controller includes a dynamic system in the feedback 

path. This adaptive controller is simple to implement since it does not require the compu

tation of complicated functions unlike the inverse control technique. Only joint angles and
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their derivatives are required for feedback. Although, the adaptive controller accomplishes 

joint angle trajectory tracking it excites the elastic modes. Exploiting the asymptotically 

linearized behavior of the closed-loop system, a stabilizing control law u , is designed for 

regulation to the terminal state. The motion of the system evolves in two phases. In the 

first phase, the nonlinear control ua acts and the arm follows any given smooth joint angle 

trajectory. In the second phase, once the joint angle trajectory enters a specified neigh

borhood of the terminal joint angle, the stabilizer is switched on and the control signal us 

accomplishes final capture of the terminal state and damping of elastic oscillation. The dual 

mode operation of the controller is useful in real-time control, since this gives the required 

time for the computation of stabilizer gain matrix. It may be pointed out that the adaptive 

controller presented here differs from that of [ 13] in which a different robotic arm having 

one elastic link and two rigid links has been considered. Moreover, unlike [ 13], no additional 

actuators acting on the end effector are used for stabilization in this control scheme. For 

the implementation of a stabilizer in the final phase of maneuver, elastic modes are required 

for feedback. The estimate of these variables can be obtained by a Luenburger observer and 

using sensors such as strain gauges, acclererometers, and optical devices, etc.

5.2 P rob lem  Form ulation

Consider the system,



We assume that z £ Cl, a open, bounded set in R2(n+1h We point out that, for simplicity, the 

arguments of various functions are often omitted. Let 9c[t) € R 2 denotes a reference joint 

angle trajectory. Consider a reference model of the form

0 c(t) = - C 9 c( t ) - K ( 9 c( t ) - r ) (5.2)

where K =  diag(w;L), C =  2diag((,u;m), i =  1 , 2, £,• > 0, wm- > 0, and r £ R 2  is an external 

input.

We axe interested in deriving a control law such that in the closed loop the joint angle 

vector 9(t) follows the command trajectory 9c(t) and elastic oscillations are stabilized.

5.3 A daptive C ontrol o f  Joint A ngles

In this section, a nonlinear adaptive joint angle controller based on the results of [ 27, 15] is 

designed. For this purpose, we consider the differential equations for the joint angles given by

9 = M ^z )
a .  dl< dV

+ dz dz
+ Mu (z)u

= f 0 (z,z) +  Mu(z)u
(5.3)

where D l (z) =  M  =  [Mf,  ]T, Mi  =  [Mu, Mi2], M n  is a 2x2 positive definite symmet

ric matrix, and / 0 (z, i)  =  Mi • . dl< dV
+ dz 8 z

. For the derivation of the controller, M u

and f 0  axe treated as unknown functions. Define e =  (9T, 9T)T, where 9 =  9 — 9C. Then 

using ( 5.1) and ( 5.3) gives
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e =  
A

0 I '  0  '

-I< - C e + I [/i +  Muu] (5.4)
=  Ae + B[Ji + Muu] 

where A, and B are defined in ( 5.4) and

M z ,  z, r ) =  f 0 (z, z) + C0 + K(9 -  r) (5.5)

We note that A is a Hurwitz matrix.

Now a bound on the / i  is obtained which is useful in the derivation of the control law. 

In view of ( 5.3), fo can be written as

fo(z, z) =  L 2( z ,  z )  + Lx(0)q +  L 0 (z ) (5.6)

where elements of L 2 are sum of quadratic functions of the velocity of the generalized co

ordinates. Assuming that q, q, Qc, 6 C and r are bounded functions, in view of ( 5.5), it can 

easily shown that for some real numbers 6,- > 0 ,

< &i || 0  || +62 1| 0  || +&3 II 1̂1 +  ^4 +  6 5 1| 9  || + & 6  II q HIM II + H I  4 II2
A

| | / i ( M , r ) | |  < \ \ f o(z,z) + c0 + K 9 - K r \ \

b2 || 9 || + 6 3 II 9 |
= n,(«,i,6)

where b = (6 j , . . . ,  6 7 ). To this end, let us evaluate

(5.7)

uT[h +  Mxiu] > f3o\\ u ||2-  || u || I I i(z ,i, b)
= Po II u II [II « II -n(«,i,^)]

where

(5.8)
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00 =  i n f  { X min[Mu (z) , z  € f2]}

n ( z , z , 0 )  =  Pi  || 9 || +02 || 9  || + & || 9 i f  +  Pa +  02 || q || +0e  II q IIII 9 || +0r\\ q | |2 (5 .9 ) 
P  =  ( P 1, . . . , 0 7) T 
Pi =  b i / 0 o , i  =  l , . . . , 7

Here Amin[Mn] denotes the minimum eigenvalue of M.

Since A is a stable matrix, for a given symmetric positive definite matrix Q (denoted as 

Q>0), there exist a unique P > 0 B

P A  + A t P  = - Q  (5.10)

Now we chose a control law of the form

f a )  = tf [ || 0 II, II 9 II, II 9 II2, 1 , II q II, II q \ \ \ \ 9  II, II q f f .  || a(e) ||
e(<) =  - n 8 e(<),e(0 ) > 0 . (5-H)
«(<) =  - n (z,z,  p)v(e,p,  e)

where N is a diagonal matrix N =  diag(n,-;), i=l,- • -,7; nu > 0, 0  € (0,oo)7,

a(e) = 2 B TPe (5.12)

and the function u is given by

i/(e,0,e) =  sat[2R(z,z, 0 )BTPe/e] (5.13)

where for any 7/ (= R2,

m ~ \ n / \ \ v \ \  II v ll> i
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Theorem : Consider the closed-loop system ( 5.1), and ( 5.11). Suppose that the trajectory 

(q,q) remains bounded. Then the equilibrium state (e =  0 , /?, e =  0) of the system ( 5.4), 

( 5.11) is stable and || e(t) ||—>• 0 as t —> oo.

Proof: For a proof one chooses a Lyapunov function

W  =  eTPe +  ^ ( /3  -  P)TN - \ 0  - 0 ) +  ( ^ j  e (5.14)

and shows that along the trajectory of the closed-loop system

W(t) < —eTQe (5.15)

Assuming that q and q are bounded, the arguments in the proof is a simple extension of 

those of [ 13], therefore the details are omitted.

Remark 1 : Under the assumption of boundedness of q and q, the control law can be simpli

fied as follows. When q and q are bounded, ( 5.7) gives for some real numbers a, > 0

II f i{z ,z ,r )  ||<  ai || 9 || + a 2 || 9 || + a3|| 9 || +  a4 (5.16)

and there exist /?,• > 0, i =  1,.. .,4 such that

n (M ,/3 ) = Pi II 9 II + p 2 II '~9 II +ps\\ h ||2 + p4 (5.17)

Thus P s , . . . , p 7  are set to zero in ( 5.9). Such a simplified control law has been used in [ 13]
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for controlling a 3-link arm with only one flexible link.

The assumption of boundedness of the flexible modes is not unrealistic. Note that as 

(0 (t ),#(£)) tends to zero as t —► oo, the only motion remaining in the system is due to 

elastic oscilation caused by the excitation of the elastic modes during maneuver of the arm. 

Simulation results (to be presented later) confirm that once joint angles have stabilized, the 

elastic modes exhibit bounded, periodic oscillations.

5.4 Linear Stabilizer

In the closed-loop system ( 5.1) and ( 5.9), 9(t) —» 9*, the given terminal joint angle and 

9(t), 9(t) —► 0 as t —► oo. Since elastic deformation is assumed to be small, and the nonlin

earity in ( 5.1) is essentially due to the rigid modes, interestingly the closed-loop dynamics 

of the system ( 5.1), and ( 5.9) is nearly linear as t —► oo and the design of stabilizer using 

linear control theory is appropiate.

For a given reference trajectory 6 c(t) terminating at 9m, one has 0c(oo) =  9C(oo) =  0. 

Let z* =  (9T =  9*T,qT =  q’T,9T =  0,qT = 0)r  be the equilibrium state of the closed-loop 

system ( 5.1). The vector q* is obtained by solving

= 0 ,* =  3 , . . . , 2n  +  l (5.18)CfZi

where z,- are the elements of z. Let

u* =  [dV{z*)/dO] 
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be the torque required to keep the arm at the equilibrium state.

Linearizing (5.1) about the equlibrium state, gives

D(zm)Az  +  =  B xAu  (5.20)
ozaz

where Az — z — z*, and Au — u — u*.

To this end, in order to obtain robustness in the control system we introduce, a servo- 

compensator of the form

zs(t) = A 0(t) (5.21)

Defining the state vector A x  = [AzT, A z T, zJ]T G R2k,k  =  (n +  2), the system ( 5.20) and 

( 5.21) can be written in state variable form

‘  0 I 0  ' ■ 0  '

A x  = A 2 2 0 0 Ax + b 2

I 0 0 0

A u
(5.22)

=  A A x  + B  Au

d 2 V(z*)
where 0, and I denote appropriate null and identity matrices, A 2 2  = —D 1(^*)' ■ — , and

ozoz

B 2  consists of the first two columns of D~1 (zm).

For the design of the stabilizer, we use the pole placement technique, and obtain a lin

ear feedback control law Au =  —F A x  to obtain desirable pole locations of the closed-loop 

system matrix Aci =  (A — B F ). Then the control signal for stabilization is
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u , ( i )  =  li*  -  F A x  ( 5 . 2 3 )

The feedback matrix was chosen such that the poles of the Ad have the same imaginary 

parts as those of A  and the real parts were shifted to left of the imiginary axis to obtain 

stable poles..

For the synthesis of the control law in the final phase of the motion, one can set AO =  0—6c 

and AO =  0 — 0C since 0C =  0* and 0C «  0. It turns out the resulting feedback law gives 

smoother responses.

The synthesis of the complete closed-loop system (shown in Fig. 12) is done as follows. 

First the nonlinear controller ua acts following any new command, and this causes the track

ing of 0c(t). The stabilizer is switched on when the trajectory enters a specified vicinity of 

the equilibrium point, which lies in its region of attraction and the adaptive controller is 

switched off. Let us define a neighbourhood N„ of the equilibrium point

N, = { x e  R2k : | AOi |<  a , | A0{ |<  /?, i  = 1,2} (5.24)

Then the switching logic switches the stabilizer on at the instant t ,  at which x( ts) G Ns and 

keeps the stabilizer-loop closed for t > t 3.

To this end, a discussion on the robustness of the control system is appropiate. It is inter

esting to note that if one uses the adaptive control law, no matter what payload is, the joint 

angle tracking error converges to zero for any large maneuver. However, the design of stabi

lizer requires the knowledge of the inertia matrix and the expression for the potential energy

40



at the equilibrium point. The closed-loop system with the linear stabilizer is asymptotically 

stable. The integral feedback aids in nulling the steady-state error in the joint angles in the 

presence of uncertainly. Since the poles of the system axe continuous functions of the robot 

arm parameters, they remain stable for small changes in these parameters. Although, it is 

extremely difficult to derive the stable range of parameter variations, simulation results will 

be presented to show that the closed-loop system has good robustness property.

It should be pointed out that if one uses the adaptive controller given in Remark 1; the 

feedback of only joint angle tracking error and its derivative axe required, and no information 

on the flexible modes are needed during the first phase of motion of the arm. Since the 

complete state feedback is required only in the final phase, a linear stabilizer will be adequate 

to estimate the state variables.

5.5 S im ulation  R esu lts

In this section, the results of digital simulation of the closed-loop system ( 5.1), ( 5.2),

( 5.11) with the simplified function II(9,0, ft) are given in ( 5.17), and ( 5.23) are presented.

The nominal values of parameters are given in the appendix. For trajectory following, the

matched initial conditions on 0(t) and 0c{t) at t=0 are assumed. The initial conditions are

^(O) =  0, i(0) = 0, 0C(O) =  0C(O) and z3(0) =  0. The mode shapes <f>ij are selected as

clamped-free modes [ 1 ].

A command trajectory 0c(t) was generated to control 0(0) =  0 to 6* =  (90°,60°):r. For

2
the purpose of simulation we set £,■ =  0.707, u>ni = — , i — 1,2 in the command generator.

s>»
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The following constants are used in the simulation: Q = / ,  /3(0) =  [200., 200., 200., 200.]T, 

e(0) =  0.1, N =  diag (100., 100., 100., 100.), n8 =  0.2 . The values of of the design parameters 

were obtained by observing the simulated responses and trial and error.

For compactness, the following notations will be used in the sequel:

0m=(max | 0X |, max \ 02 | ) (deg/sec), um — (max \ U\ |, max | u2 |), (Nm), (itei ,u e2) = 

(uei(L i , t ) ,u e2(L2,t))(m ), uem = ( max | uel(Lu t) |, max | ue2(L2,t)  |) (cm) and 9m -  

(max | 0i |, max | 02 |) (deg).

5.5.1 A . T ra je c to ry  contro l an d  S tab iliza tion  : N om inal System

The complete closed-loop system ( 5.1), ( 5.11), ( 5.17) and ( 5.23) including the stabilizer 

was simulated to examine the joint-angle trajectory tracking and elastic mode stabilization 

capability of the controller. Selected responses are shown in Fig. 3. The stabilizer-loop is 

closed at t =  3 seconds. Joint angle tracking error is small before the stabilizer-loop closes, 

however a small transient in the 0-response is caused when the stabilizer-loop is closed. This 

is natural, since torquer can stabilize the vibrating link only by varying 0. The desired 

position is attained in about 18 seconds. The maximam values were 0m =  (75.136, 95.67) 

deg/sec, uem =  (4.09, 2.359) cm, um =  (470.1, 459.94) Nm, and 0m =  (5.6979, 5.0559) deg.

To examine whether the adaptive controller was necessary for controlling the arm, sim

ulation was done without the adaptive controller and the linear stabilizer was switched on 

right from the instant t =  0. In the closed-loop system unbounded system responses were 

obtained. This shows the importance of the adaptive controller in accomplishing stable large
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joint-angle maneuver.

5.5.2 B. T ra je c to ry  C ontro l and  stab iliza tion  : Lower payload

To show the effect of payload changes, simulation was done with mp—3.75 kg and Jp = 

.9375 which is 6.25% lower than the nominal payload. Selected responses are shown in Fig.

4. However the controller of case A designed using the nominal parameters was retained. 

For this amount of uncertainty in the payload, responses some what close to case A were 

obtained. Larger torques were required to control the arm. Joint angle tracking error was 

larger in this case. This is due to the fact that the control parameters have been tuned to 

get good responses in case A. The maximum values were 0m = (75.38, 50.34) deg/sec, uem 

= (4.13, 2.24) cm, um = (498., 466.) Nm, and 0m = (10.8, 10.7) deg. It is found that the 

controller is sensitive to lower payload.

5.5.3 C. T ra je c to ry  C on tro l and S tab ilization : H igher payload

Controller was designed for the nominal payload as in case A, however the payload of the arm 

was increased by Am p =  0.5, AJp =  0.125 in simulation which amounts to 12.5% increase 

in payload. Selected responses are shown in Fig. 5. Again accurate 0-trajectory tracking 

and elastic mode stabilization was observed. The elastic deflection and control torques were 

larger in this case compared to the nominal case B. The maximum values were 0m = (74.7, 

50.3) deg/sec, uem =  (4.29, 2.66) cm, um =  (487, 465) Nm, and 0m =  (5.69, 5.05) deg. It 

was found that the controller was relatively less sensitive to higher payload than the lower 

payload.
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5.6 C onclusion

A nonlinear adaptive control system was designed for joint angle control. The adaptive con

troller can be easily implemented since it does not require the computation of complicated 

functions unlike inverse control and it is a simple function of the tracking error. The stabi

lizer was designed based on the asymptotically linearized model of the closed loop system. 

Extensive simulation results were obtained which showed that in the closed-loop system 

accurate trajectory tracking and elastic mode stabilization can be accomplished.

For the implementation of the stabilizer the elastic modes are required for feedback. The 

missing states can be constructed by an observer using sensor data. It is pointed out that 

although, the joint angle control is accomplished by the nonlinear adaptive controller, the 

design of the stabilizer requires the knowledge of linearized model. It will be useful to design 

a linear adaptive stabilizer for the final capture of the terminal state. This will result in a 

complete adaptive control system. Some of the questions are presently being examined.

44



C hapter 6 

C onclusion

A dual mode controller for the control of a two-link elastic robotic system was presented. The 

nonlinear controller was designed for the purpose of joint angle control and a linear stabilizer 

was used to dampen the elastic modes. The system evolves in two phases. In the first phase 

the nonlinear controller is acting and in the second pase the stabilizer is switched on. In 

the case of the adaptive controller the nonlinear controler is completely switched off and the 

stabilizer alone is used to obtain the final capture of the system. Extensive simulation has 

been done. The results indicate accurate trajectory tracking aand elastic mode stabilization.

There are several open questions that remain to be answered in this area. Synthesis 

of controller using only measured variables needs attention. Ofcourse elastic modes can be 

determined using strain guages as in [ 12]. The choice of poles for robustness is extremely 

important. The delay in the actuators is not considered in the simulation.
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