4-15-2006


Kamalakar Alluri  
*University of Nevada, Las Vegas*

Georg F. Mauer  
*University of Nevada, Las Vegas, georg.mauer@unlv.edu*

Follow this and additional works at: [https://digitalscholarship.unlv.edu/hrc_trp_fuels](https://digitalscholarship.unlv.edu/hrc_trp_fuels)

Part of the Nuclear Engineering Commons, Oil, Gas, and Energy Commons, and the Robotics Commons

Repository Citation

Available at: [https://digitalscholarship.unlv.edu/hrc_trp_fuels/54](https://digitalscholarship.unlv.edu/hrc_trp_fuels/54)

This Report is brought to you for free and open access by the Transmutation Research Program Projects at Digital Scholarship@UNLV. It has been accepted for inclusion in Fuels Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Design Concepts and Process Analysis for Transmuter Fuel Manufacturing

QUARTERLY PROGRESS REPORT #6

UNLV AFCI University Participation Program

Prepared by: Mr. Kamalakar Alluri and Georg F. Mauer
Department of Mechanical Engineering
UNLV, Las Vegas, NV 89154-4027
Phone: (702) 895-3830
FAX : (702) 895-3936

Reporting Period: January 1, 2006 through March 31, 2006

Date of Submission: April 15, 2006
Project Milestones

- Completed a systematic study seeking to arrive at an optimized plant configuration, using value engineering techniques in January 2006.
- Vision-based robot serving and automated plant safety monitoring is currently in progress.

1. Concepts for Vision-Based Robot Control

A calibrated camera within its field of vision can guide the end effector accurately to its destination, and monitor the execution of the robot task at hand. Fig. 1 shows the example of pellet insertion into a cladding tube. While other sensors can be used to guide the robot, cameras are the most versatile. Cameras also can be positioned outside the hot cell, and thus reduce exposure and contamination risks.
Fig. 2 shows the robot motion control concept. The reference or controlled variable is generally a six-dimensional vector with 3 Cartesian location coordinates, and 3 angles defining the end effector orientation.

2. Work performed

The camera system and image recognition software were configured and tested. The image acquisition and processing is done with Matlab software tools. A remotely controllable Panasonic color camera is connected to the controller PC through a frame grabber.

The first step is image recognition. According to the requirements of the project, the greatest point of interest is cylindrical objects, i.e., fuel pellets. The pellet(s) present in the image are identified, and their spatial location and orientation is determined. Fig. 3 shows an example of pellet identification in Matlab. Undesired image elements are removed as seen in Fig. 4 and Fig. 5.

The software for real-time image acquisition and processing, and for camera control, is now operational.

Cylinder Recognition Procedure

For the recognition of the shape of a cylinder we examine first the contour of the shape, and then the shape with all its points inside.

A contour consistent with a cylinder is identified if
1. 2 lines are parallel and are the same length
2. Each end of the contour is a half-ellipse

A true cylinder must meet additional criteria:
1. One of the 2 ends is a complete ellipse
2. The other end is a half-ellipse that has the same characteristics as the ellipse.
3. Work Plan for April to June 2006

- Calibrate Camera, and determine accuracy of location and orientation measurements of identified parts.
- Test camera system in noisy environments for the vision system’s ability to discern pellets from other objects present.
- Develop Matlab code and document results

**Fig. 3** Example of Pellet identification in Matlab
Fig. 4 Example of Image Processing in Matlab, part 1

Fig. 5 Example of Further Image Processing in Matlab