
UNLV Retrospective Theses & Dissertations

1-1-1988

Three-dimensional computerized model of an elastic robotic arm Three-dimensional computerized model of an elastic robotic arm

Allison Jeanne Krueger
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Krueger, Allison Jeanne, "Three-dimensional computerized model of an elastic robotic arm" (1988). UNLV
Retrospective Theses & Dissertations. 57.
http://dx.doi.org/10.25669/idwk-iwhv

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/idwk-iwhv
mailto:digitalscholarship@unlv.edu

INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of th is reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright m aterial
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning a t the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and w hite photographic p rin t for an additional
charge.

Photographs included in the original m anuscript have
been reproduced xerographically in this copy. H igher
quality 6" x 9" black and white photographic prin ts are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

U niversity M icrofilms International
A Bell & Howell Information C o m p a n y

3 0 0 North Z e e b R oad, Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 USA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

O rder N u m b er 1338265

T h r e e - d im e n s io n a l c o m p u te r i z e d m o d e l o f a n e la s t ic r o b o t i c a r m

Krueger, Allison Jeanne, M.S.

University of Nevada, Las Vegas, 1989

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

THREE DIMENSIONAL COMPUTERIZED MODEL

OF AN ELASTIC ROBOTIC ARM

by

Allison Jeanne Krueger

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

in

Mechanical Engineering

Department of Civil and Mechanical Engineering

University of Nevada, Las Vegas

August, 1989

The thesis of Allison Jeanne Krueger for the degree of Masters of Science in Mechanical

Engineering is approved.

L x '
Prof. William Culbreth, Ph.D., Chairperson

Prof. Samaan Ladkany, Ph.D., Examining Committee Member

- /

Prof. Mohammed Trabia, Ph.D., Examining Committee Member

\ J ^

m i u c t i H t ' t _______________________
Prof. ^ahjendra Singh, Ph.D., Examining Committee Member

t a w <
Prof. Ronald Smith, Ph.D., Graduate College Dean

August, 1989

ABSTRACT

Interactive computer simulation software in the area of robotics is becoming increasingly

important for the design of new robots and trajectory planning. The present work involved the

creation of a computer simulation software package for an elastic robotic arm. The simulation

used a three—link robotic arm controlled by two hydraulic actuators. The computer simulation

was unique in four major areas. Using a specialized Silicon Graphics IRIS Workstation, a

three-dimensional model of the three—link elastic robotic arm was created. Traditionally, due

to the lack of memory and speed in available computers, solid three-dimensional robotic

models have been fairly simple and involved static wireframe renditions of the robot. The

software simulation developed in the present work was highly interactive with the user. The

user is easily able to move the different links, change parameters, and alter dynamic applied

forces. Since the second and third links of the arm were elastic, the forces and torques applied

to the arm had a definite effect in the form of deformations. The deformations of the robotic

arm were modelled and presented on a computer monitor. The kinematics were modelled.

Kinematic alterations were possible by user interaction. The user was allowed to adjust the

angles of the links by either moving the different links or by changing the magnitude of the

forces in the two actuators. By addressing each of these four topics, a more complete computer

simulation package was designed.

TABLE OF CONTENTS

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF THEORY NOMENCLATURE

LIST OF PROGRAM NOMENCLATURE

1. INTRODUCTION

2. HISTORY

3. THEORY

3.1 Computer Graphics Workstation
3.2 User Interaction
3.3 Kinematics
3.4 Three-Dimensional Graphics
3.5 Static Analysis

3.51 Determine the Static Reactions
3.52 Determine the Virtual Displacements

of the Hydraulic Actuators
3.53 Determine the Deformation

3.6 Dynamic Analysis
3.61 Determine the Static Reactions
3.62 Determine the Applied and Dynamic

Actuator Forces
3.63 Determine the Inertial Reactions
3.64 Determine the Velocities and

Accelerations
3.65 Determine the New Position of the

Arm in Time
3.66 Determine the Dynamic Reactions
3.67 Determine the Deformations

4. PROGRAM IMPLEMENTATION

4.1 Organization of Models
4.2 User Interaction
4.3 Three-Dimensional Graphics

iv

iii

vii

x

xi

xiv

1

5

11

11
13
18
23
33
33

39
45
52
54

54
54

57

67
67
70

76

76
81
91

4.31 Define the Points of the Base 93
4.32 Define the Points of Segment # 1 100
4.33 Define the Points of Segment # 2 106
4.34 Define the PointB of the Wing

Segment and Segment # 3 109
4.35 Define the Length and Angles of

the Hydraulic Actuators 112
4.36 Transform the Coordinates 113
4.37 Create the Graphical Output 113
4.38 Draw the Base 115
4.39 Draw Segment # 1 118
4.310 Draw Segment # 2 121
4.311 Draw the Wing Segment 123
4.312 Draw Segment # 3 125
4.313 Draw the Pins and Hydraulic

Actuators 127
4.4 Kinematics 129

4.41 Transformation of the User’s
Perspecitve 129

4.42 Transform the Base 130
4.43 Transform Segment # 1 133
4.44 Transform Segment # 2 135
4.45 Transform the Wing Segment 137
4.46 Transform Segment # 3 138

4.5 Static Analysis 140
4.51 Determine the Static Reactions 141
4.52 Determine the Differential Change in

the Angles and Virtual Displacements
of the Actuators 147

4.53 Determine the Defflections, Torsional
Twist and Acial Extension 150

4.54 Complete the Kinematic Analysis 159
4.55 Draw the Three-Dimensional

Robotic Arm Image 159
4.56 Allow User Interaction 159
4.57 Check the Validity of the

Altered Angle 159
4.6 Dynamic Analysis 165

4.61 Determine the Static Reactions 166
4.62 Determine the Applied and Dynamic

Actuator Forces 167
4.63 Determine the Inertial Reactions 167
4.64 Determine the Velocities and

Accelerations 172
4.65 Determine the New Angles Based on the

New Time Step 183
4.66 Determine the Dynamic Reactions 183
4.67 Determine the Deformation 188
4.68 Complete the Kinematic Analysis 195
4.69 Draw the Three-Dimensional

Robotic Arm Image 195
4.610 Allow User Interaction 195

v

5. USER DIRECTIONS 196

5.1 Static Model 196
5.2 Dynamic Model 196
5.3 VI Editor Commands 197
5.4 User Interaction Capabilites 197

5.41 Angle Interaction 197
5.42 Deformation 198
5.43 Forces and Moments 198
5.44 Segment Levels 199
5.45 Program Control 199
5.46 Velocities and Accelerations 199

5.5 Input Parameter File ROBOTS.DAT 201
5.6 Dynamic Input File DYNIN.DAT 204

6. RESULTS 205

6.1 Three-Dimensional Graphics 205
6.2 Kinematics 205
6.3 User Interaction 207
6.4 Deformation Analysis 210
6.5 Dynamic Analysis 216

7. CONCLUSION 219

BIBLIOGRAPHY 220

APPENDIX A - GLOSSARY 222

vi

LIST OF FIGURES

1.1 Elastic Robot Ann of the ARO 4

3.1 Switch Box of the IRIS 3130 14

3.2 Dial Box of the IRIS 3130 15

3.3 Mouse of the IRIS 3130 16
*

3.4 Rotation of the Coordinate System OUVW 19

3.5 Translation of the Coordinate System OUVW 20

3.6 Rotation and Translation of the System OUVW 21

3.7 Point P Described with Respect to the
XYZ Coordinate System 22

3.8 Square & Octagon ShapeB with Vertices 24

3.9 Four Points in Space 2o

3.10 Four Points Connected in the Order
(1—3—2—4—1) 26

3.11 Four Points Connected in the Order
(1 —2 —3—4—1) 26

3.12 Three-Dimensional Square 27

3.13 A Square Cylinder SubBectioned into
Smaller Cylinders 27

3.14 3—D Square with Levels 28

3.15 Three—Link System 29

3.16 Three Link System in Components 29

3.17 Pin Locations For Force and Moment Analysis 34

3.18 Moment Arm Definitions of the Base 35

3.19 Moment Arm Definitions of Segment # 1 37

vii

3.20 Moment Arm Definitions of Segment # 2 38

3.21 Moment Arm Definitions of Segment # 3 40

3.22 Hydraulic Actuator AB 42

3.23 Hydraulic Actuator DE 44

3.24 Axial Deformation Due to Torsional Twist 45

3.25 Comparison of the Lengths of Segment
AC and AB 48

3.26 Vectors and Pin Locations for the Velocities
and Accelerations of Segment # 1 59

3.27 Vectors and Pin Locations for the Velocities
and Accelerations of Segment # 2 63

4.1 Organization of Static Model Program 79

4.2 Organization of Dynamic Model Program 80

4.3 Organization of the Routine SINVAR 82

4.4 Organization of the Routine DINVAR 8 6

4.5 Variables of the Base 94

4.6 Vertices of the Base 95

4.7 Z—Coordinates of the Pins of the Base 99

4.8 Variables of Segment # 1 101

4.9 Vertices of Segments #1, #2, and # 3 103

4.10 Subsections and Levels of A Segment 105

4.11 Wing & Beam Components of Segment # 2 107

4.12 Variables of Segment # 2 108

4.13 Variables of Segment # 3 111

4.14 Local and Reference Coordinate Frames 131

6.1 Three-Dimensional Computerized Image on
the IRIS 3130 (Color Photograph) 206

6.2 White Computerized Image on the IRIS
3130 (Color Photograph) 206

viii

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Arm with ^ = 0 ° , $^=30°, $ 3 = 0 °

$ 0 = 1 2 0 ° (Color Photograph) 207

Change of World Perspective
(Color Photograph) 208

Input Parameter File robot&dat
(Color Photograph) 208

Base with Dimensions Height=2.198m and
Width=0.36m (Color Photograph) 209

Base with Dimensions Height=1.25m and
Width=0.75m (Color Photograph) 209

Experimental Setup For Measuring
Static Deflection 211

Segments # 1 and # 2 as one Cantilever Beam 215

Segments # 1 and # 2 as two Cantilever Beams 215

Robotic Arm with Severe Deflection
(Color Photograph) 216

ix

LIST OF TABLES

Mass of Objects for Experimental
Measurements of Deflections

Experimental Measurements of Static
Deflections

Static Deflections Predicted From
Static Model SMODEL.F

Relative Experimental Deflections VS.
Relative Calculated Deflections

THEORY NOMENCLATURE

A — Cross—sectional area of actuator

1 ^A. — Coordinate Transformation Matrix 1

— Acceleration of the point Pin # 1 = 0.0

dCj — Differential Change in Length of Actuator AB

dCg — Differential Change in Length of Actuator DE

E — Modulus of elasticity of actuator.

E — Modulus of elasticity of segment i
i

F — Axial load

F ^ — Dynamic force of actuator ab

F*k — Applied force of actuator ab
g

F , — Static force of actuator ab ab

F*J — Dynamic force of actuator de

F^e — Applied force of actuator de

F j — Static force of actuator de. de

G — The shear modulus of elasticity,
i

I..— Moment of Inertia for link i about the j axis
>J

J — Polar moment of inertia.
1

L — level number

L. — Distance on Begment i from Pin # i to Pin # (i+ l)

L — P , the distance between Pins #1 & #2 .
1 12

L — P , the distance between Pins # 2 & #3 .
2 23

u \ — is the moment reaction in the local yj—axis.

m ! + % = . . amd> + M? + \ cosd>
(i+l)yi (i l)y M (i l)x M

M .j — Dynamic moment reaction at Pin # i in the j direction
g

M .j — Static moment reaction at Pin # i in the j direction

Q^.. — Inertial force reaction at Pin # i in the j direction
g‘J ^

q?.. — Distributed forces per segment i length due to inertial

torques in the j direction applied at the Center of Gravity

q.j. — Distributed forces per segment i length due to inertial

forces in the j direction applied at the Center of Gravity

P — Position Vector

P.j — Distance from Pin # i to Pin # j

P. . — Distance from center of gravity of link i to Pin # i

R — Rotation Matrix

R ('+ l)y ' _ *°rce react*on *n *ke local yj—axis.

r ! t i = R / + v cos<i — R^ . . sin<$.
(i+l)y (i+l)y 1 (i l)x 1

R. j — Dynamic force reaction at Pin # i in the j direction
g

R.j — Static force reaction at Pin # i in the j direction

T2j \ ~ Vector from Pin # 1 to Pin # 2

V3 / 2 — Vector from Pin # 2 to Pin #3

T — Homogeneous Transformation Matrix

T ^ .. — Inertial moment reaction at Pin # i in the j direction gij v

u ^ — Axial extension for Segment #1

u ^ ~ Axial extension for Segment # 2

V. — Displacement of segment i in the y direction

Vjj — Velocity of Base, = 0.0

— Velocity of Segment # 1 at Pin # 2

W. — Displacement of segment i in the z direction

x. — Linear distance along the x axis where deflection calculations

are determined

Qt. — Angular acceleration at Pin # i in the j direction

6 — Change in length due to torsional twist

&T — Time step

— Angle i

0 ^ — Torsional twist about the x axis for Segment #1

9^j — Torsional twist about the x axis for Segment # 2

9 ^ — Slope of displacement for segment i about the z axis

5 . — Slope of displacement for segment i about the y axis

0 — Angular velocity of Base, U)̂

fl — Angular Acceleration of Base

~ The Sum of the Angular Velocity of the Base and Segment #1

— Angular velocity at Pin # i in the j direction

U) — W, x lx

U) — U) + u ,
y oy ly

UJ — OJ. z lz

xiii

PROGRAM NOMENCLATURE

AC1 = Accelerations of partitions of segment # 1

AC2 = Accelerations of partitions of segment # 2

AD = ADjust a certain segment

ALPHA = angular accelerations

ANGINC = INCremental value for ANGles

ANGX = ANGle of rotation of the world about X—axis

ANGY = ANGle of rotation of the world about Y—axis

ANGZ = ANGle of rotation of the world about Z—axis

ANGOCNT = ANGle CouNT of the base

ANG1CNT = ANGle CouNT of segment # 1

ANG1MN = ANGle #1 MiNimum value

ANG1MX = ANGle # 1 MaXimum value

ANG2CNT = ANGle CouNT of segment # 2

ANG2MN = ANGle # 2 MiNimum value

ANG2MX = ANGle # 2 MaXimum value

ANG3CNT = ANGle CouNT of segment # 3

ANG3MN = ANGle # 3 MiNimum value

ANG3MX = ANGle # 3 MaXimum value

ANG4CNT = ANGle CouNT of actuator ab

ANG5CNT = ANGle CouNT of actuator de

ANG6CNT = ANGle CouNT of wing segment

BASEDI = BASE Diameter

BASEHE = BASE HEight

BASMAS = BASe MASs

B CM ASX = Base Center of MASs, X—coordinate

BCMASY = Base Center of MASs, Y—coordinate

BM1X = Base mass moment of inertia about the X—axis

BMIY = Base mass moment of inertia about the Y—axis

BMIZ = Base mass moment of inertia about the Z—axis

B S = BaSe

BSDT = BaSe Deformed and Transformed

DPHU. = differential change in angle one

DPHI2 = differential change in angle two

DT = Differential Time step

PACTI = Forces of ACTuators from Input

FABD = Force of actuator AB, Dynamic

FABS = Force of actuator AB, Static

FDED = Force of actuator DE, Dynamic

FDES = Force of actuator DE, Static

GAMMA = angle between segment # 2 and wing

H1A = Hydraulic actuator # 1 cross-sectional area

HIE = Hydraulic actuator # 1 modulus of Elasticity

H1L = Hydraulic actuator # 1 flag

H1LENG = Hydraulic actuator # 1 LENGth

H1MASS = Hydraulic actuator # 1 MASS

H1MAXL = Hydraulic actuator # 1 MAXimum Length

H1MINL = Hydraulic actuator # 1 MiNimum Length

H1THIC = Hydraulic actuator # 1 THICkness

H2A = Hydraulic actuator # 2 cross—sectional area

xv

H2E = Hydraulic actuator # 2 modulus of Elasticity

H2L = Hydraulic actuator # 2 flag

H2LENG = Hydraulic actuator # 2 LENGth

H2MASS = Hydraulic actuator # 2 MASS

H2MAXL = Hydraulic actuator # 2 MAXimum Length

H2MINL = Hydraulic actuator # 2 MiNimum Length

H2THIC = Hydraulic actuator # 2 THICkness

MD = Moments, Dynamic

MS = Moments, Static

NFACT = Number of current dynamic entry of Forces of ACTuators

NF = Number of input Forces

OMEGA = angular velocities

PB = Pins on Base

PBDT = Pins on Base Deformed and Transformed

PIN AX = PIN A on the base, X—coordinate

PINAY = PIN A on the base, Y—coordinate

PINBX = PIN B on segment #1 , X—coordinate

PINBY = PIN B on segment #1 , Y—coordinate

PINDX = PIN D on segment #1 , X—coordinate

PINDY = PIN D on segment #1 , Y—coordinate

PIN EX = PIN E on the wing segment, X—coordinate

PINEY = PIN E on the wing segment, Y—coordinate

PIN1X = PIN #1 , X—coordinate

PIN1Y = PIN # 1 , Y-coordinate

PIN2X = Pin # 2 on Segment #1 , X—coordinate

PIN2Y = Pin #2 on Segment # 1 , Y—coordinate

PIN3X = Pin # 3 on Segment # 2 , X—coordinate

PIN3Y = Pin # 3 on Segment #2, Y—coordinate

PNE = adjustment is Postive, Negative, or an Error

PW ss Pins on Wing segment

PWD = Pins on Wing segment Deformed

PWDT = Pins on Wing segment Deformed and Transformed

PI = Pins on Segment # 1

P1D = Pins on Segment # 1 Deformed

P1DT = Pins on Segment # 1 Deformed and Transformed

P2 = Pins on Segment # 2

P2D = Pins on Segment # 2 Deformed

P2DT = Pins on Segment # 2 Deformed and Transformed

QD = Dynamic forces, f=m a

RD = forces, Dynamic Reactions

RS = forces, Static Reactions

SI = Segment # 1

SI A = Segment # 1 cross-sectional Area

S1CMAX = Segment #1 Center of MAsb, X—coordinate

S1CMAY = Segment #1 Center of MAss, Y—coordinate

SID = Segment # 1 Deformed

SIDE = Segment # 1 DEflection

S1DIVN = Number of Divisions Segment # 1 is partitioned into

S1DM = Segment # 1 Deflection Multiplier

S1DT = Segment # 1 Deformed and Transformed

S1E = Segment #1 modulus of Elasticity

S1G = Segment # 1 modulus of rigidity

S1IX = Segment # 1 area moment of inertia about the X—axis

SHY = Segment # 1 area moment of inertia about the Y -axis

S1IZ = Segment # 1 area moment of inertia about the Z—axiB

S1JO = Segment # 1 area polar moment of inertia

S1LENG = Segment # 1 LENGth

S1MASS = Segment # 1 MASS

S1MIX = Segment # 1 mass moment of inertia about the X—axis

S1MIY = Segment # 1 mass moment of inertia about the Y—axis

S1MIZ = Segment # 1 mass moment of inertia about the Z—axis

S1P1X = Pin # 1 on Segment #1, X—coordinate

S1P1Y = Pin # 1 on Segment #1 , Y—coordinate

S1RF = Segment # 1 Undeformed and Transformed

S1SL = Segment # 1 SLope of deflection

S1THIC = Segment # 1 THICkness

S2 = Segment # 2

S2A = Segment # 2 cross-sectional Area

S2CMAX = Segment # 2 Center of MAss, X—coordinate

S2CMAY = Segment # 2 Center of MAss, Y—coordinate

S2D = Segment # 2 Deformed

S2DE = Segment # 2 DEflection

S2DIVN = Number of Divisions Segment # 2 is partitioned into

S2DM = Segment # 2 Deflection Multiplier

S2 DT = Segment # 2 Deformed and Transformed

S2E = Segment # 2 modulus of Elasticity

S2G = Segment # 2 modulus of rigidity

S2EX = Segment # 2 area moment of inertia about the X—axis

S2IY = Segment # 2 area moment of inertia about the Y—axis

S2IZ = Segment # 2 area moment of inertia about the Z—axis

S2JO = Segment # 2 polar moment of inertia

xviii

S2LENG = Segment # 2 LENGth

S2MASS = Segment # 2 MASS

S2MDC = Segment # 2 mass moment of inertia about the X—axis

S2MIY = Segment # 2 mass moment of inertia about the Y—axis

S2MIZ = Segment # 2 mass moment of inertia about the Z—axis

S2P2X = Pin # 2 on Segment # 2 , X—coordinate

S2P2Y = Pin # 2 on Segment #2 , Y—coordinate

S2RF = Segment # 2 Undeformed and Transformed

S2SL = Segment # 2 SLope of deflection

S2THIC = Segment # 2 THICkness

S3 = Segment # 3

S3CMAX = Segment # 3 Center of MAss, X—coordinate

S3CMAY = Segment # 3 Center of MAss, Y—coordinate

S3D = Segment # 3 Deformed

S3DT = Segment # 3 Deformed and Transformed

S3LENG = Segment # 3 LENGth

S3MASS = Segment # 3 MASS

S3P3X = Pin # 3 on Segment #3 , X—coordinate

S3P3Y = Pin # 3 on Segment # 3 , Y—coordinate

S3RF = Segment # 3 Undeformed and Transformed

S3THIC = Segment # 3 THICkness

S4CMAX = Segment # 4 (load) Center of MAss, X—coordinate

S4CMAY = Segment # 4 (load) Center of MAss, Y—coordinate

S4LENG = Segment # 4 (load) LENGth

S4MASS = Segment # 4 (load) MASS

S4THIC = Segment # 4 (load) THICkness

TD = Dynamic Torques, T=I*alpha

VE1 = VGlocities of partitions of segment # 1

VE2 = VElocities of partitions of segment # 2

WING = Wing segment

WINGD = Wing segment Deformed

WINGDT = Wing segment Deformed and Transformed

WINGRF = Wing segment Undeformed and Transformed

WLENG =s LENGth of Wing segment

xx

1

CHAPTER 1

INTRODUCTION

In July, 1987 the University of Nevada, Las Vegas, Department of Civil and Mechanical

Enginerring received a research grant from the United States Army to model the dynamic

behavior of elastic robot arms.

An elastic robotic arm differs from a rigid robotic arm in both construction application.

Rigid segments are typically used to prevent unwanted deformation and oscillations. They also

allow an accurate determination to be made of the position of the end—effector through angular

encoders located at the joints. In construction, rigid robotic arms have been made out of thick

steel or other similar materials. It is common to have a weight—to—load ratio of at least ten to

one for rigid robots making them heavy and difficult to move. The operational environment of

the rigid robotic arm is not variable since the robot is usually bolted to the floor of a specific

work area. This creates a very limited range of applications based on the lack of mobility. An

elastic robotic arm is designed to be manufactured out of lightweight material. By building the

arm out of lightweight high-strength materials the arm may be made mobile and still highly

functional. W ith the arm constructed out of a more flexible material, new problems arise.

Two of the most prevalent problems in elastic robotic arms are oscillatory mode shapes and

three-dimensional deformation.

The ARO research grant specified five areas of study: (1) Sensory Perception, (2)

Robot Control, (3) Structural Analysis, (4) Elastic Robot Simulation, and (5) System

Integration and Evaluation of System Performance under various robot and sensor

configurations.

The sensory perception research involved developing sensors to detect deformations,

oscillatory frequencies, and mode Bhapes. The procedures developed are applicable to both

elastic and rigid robotic arms. Types of sensors studied were vision, ultrasound range, and

end—effector mounted force/torque sensor systems. The output of the sensors served as input

for the controller.

Robot control was researched with the following goals: (1) system observation with

minimal sensors, (2) optimal performance based on available sensor input, and (3) maximum

accuracy and speed while keeping costs down. The goals were to be reached by developing

control algorithms and keeping such points as sensor input, costs, and system requirements in

view.

Structural Analysis research involved the utilization of high-strength lightweight

materials. The structure was required to meet the payload and workspace requirements. Also,

the structural design was required to meet the minimization and decoupling requirements of

oscillatory mode forms and deformation effects. A successful structural design also improves

state controllability. To aid in meeting the structural design requirements, finite element

analysis software packages will be referenced.

The fourth area of research was Elastic Robot Simulation. The simulation was to be a

dynamic computer-based model. The model was to be based on a three-dimensional,

three—link, revolute geometry robotic arm. This allowed a more realistic image to be made of

the system required by the Army. The dynamic behavior of the arm was based on applied

forces and torques and upon a Btatic and quasi—dynamic analysis. There axe four areas that

the computer simulation encompassed: (1) user interaction, (2) three-dimensional

representation of the arm, (3) the kinematic behavior, and (4) dynamic modelling of the

deformation. The goal of this thesis project was to meet the stated four requirements of the

elastic robot computer simulation.

The fifth area of research was the System Integration and Evaluation of System

Performance under various robot and sensor configuration. This involved the construction of a

scale model of the robotic arm and the testing of the arm. It will be tested under various

loading conditions and control configurations. The results will then be compared to those of

the analytical model.

Physical characteristics of the arm included a reach of 2.8 meters (110.24 in.) and the

2capability of manipulating a load of 50.00 kg at a maximum acceleration of 9.81 m /s . The

base, or link one was composed of a stout base rotated by a hydraulic actuator connected

through a rack-—and—pinion drive. Links two and three are driven by two hydraulic actuators.

The first actuator was connected to the base and to link two while the second actuator was

connected between links two and three. The links were composed of square hollow sections,

38.1 mm (1.5 in.) square out of grade 46 steel, 6.35 mm (0.25 in.) in wall thickness, see Figure

1.1.

Lightweight robotic arms have applications in various space projects and mobile

applications, such as being used from a truck or Bpace workstation. The research completed in

these five areas will help to advance the levelB of performance and speed of flexible robotic

systems.

4

PIN E

VING

SEGMENT #2

SEGMENT #1 SEGMENT #3

z

FIGURE 1.1

ELASTIC ROBOT ARM OF THE ARO

5

CHAPTER 2

HISTORY

Research in the area of computer simulation is relatively new, dating back to the mid

1970’s. There are two basic classifications of system modelling. The first classification is for

implementation applications. This application requires software which models a process for

which the robot will complete in a given work environment. At this point the robotic arm

would have already been designed and the modelling software would be used to maximize the

efficiency of a layout for the workspace and robotic arm. The second type of modelling

software is for design. An engineer would use this software to design a robotic arm for a

specific application. ThiB would involve specifying a range of payloads that could be efficiently

manipulated. This type of software package would help to eliminate the overdesign typical of

rigid robot systems. By using a simulation software package, design parameters of the robot

can be varied with dynamic effects reviewed in both graphical and tabular output. The

majority of simulation packages that have been written fall into the first classification.

In 1977 Heginbotham at the University of Nottingham in Great Britian designed one of
(2)

the first computer models' . This simulation was based on SAMMIE (System for Aiding Man

Machine Interaction Evaluation). The computer image of the robot was a wireframe and was

used to simiulate an industrial process. From this initial research, various computer

simulations have taken on numerous aprearances and capabilities. The appearance and

capabilities of a given software package vary widely. Capabilities can range from analytical

kinematic and dynamic models to workspace modelling and object collision avoidance

verification. The appearance and capabilities related to this thesis are three-dimensional

graphics, user interaction, kinematics, and the dynamic modelling of elastic deformation.

Graphical appearances of the robotic arm have ranged in complexity from simple stick

figures to two— and three-dimensional images in full color. Two methods for graphical

representation exist; using the graphic capabilities of a CAD/CAM or CAE, system and

graphical plotting programs.

(2)Wanecke' , (1978) created a database of two hundred different robots. The graphical

(12)interpretation included a topview of machines and obstacles in a polygon shape. Norton' ,

(1983) completed a graphical simulation of the Puma robot using an Apple computer. The

graphics data was represented using a "layer" format. Norton stored the geometry of each arm

of the robot in an independent "layer" of a three dimensional array. Each row of the array

layer represented a different node. Each column represented the x, y, and z coordinates. Lines

were then drawn connecting the various nodes. Magnenat—Thalman and T h alm an ^^ , (1984)

used the programming language, Pascal, to create the MIRA—3D and MIRA—SHADING

routines. The software included three-dimensional vector arithmetic, graphical statements,

image transformations, and viewing transformations.

The General Electric CAE system SDRC utilizied an array of existing programs along

with the drawing capabilities of a CAE system. Although this was among the first to use a

color raster display, the system was very limited due to the lack of program interfacing

capabilities. Another General Electric simulation package was Robot—Sim, designed by

T h o m as^^ , (1984). As with the previous G.E. software package, this one was also based on

interfacing with a CAE system. Objects were shown in a three-dimensional workspace. A

multiple of viewing angles were available to the user giving the capability of seeing the entire

situation on the screen.

(14)Okino' , (1985) stated that research problems in areas of CAD/CAM systems based on

solid modelling had made slow progress. CAD/CAM systems were initiated in the solid

modelling field as a kernel. Okino stated that the solid modellers at this time were

considerably slow, incomplete in the areas of drawing tangential curves and surface, and hidden

line removal, very limited in the complexity of geometric shapes, provided minimal user

interaction interfaces, lacked accuracy, and had minimal effective applications.

As computer hardware has increased in power and capabilities the quality of

three—dimensional graphics has alBO increased. Silicon Graphics, Inc. has produced a system

called the IRIS (Integrated Raster Imagining System) Workstation based on the UNIX

operating system. There were three pipeline components that the IRIS was designed in in order

to increase graphics speed. A Motorola 68020 acted as the system’s CPU, the first of the

pipeline components.

(7)Herbert and Hoffman' , (1985) completed their computer simulation using the IRIS

Workstation. They created a three-dimensional image of the CMU Direct Drive Arm II by

referencing the IRIS’s graphics library. The model was used to visualize and edit manipulation

tesks of the robot. Full color, hidden line removal, and shading algorithms of the IRIS system

were used. The viewpoint could be zoomed in and out as well as rotated and translated about

any axis. The objects displayed were in a solid object representation and several objects could

appear at once.

(15)Parker' , (1986) generated a model arm which was described to the system through a

variety of parameters including the number and types of joints, axes of rotation, and graphical

description of each arm component. The commands were written using FORTRAN. The

objects were drawn as a wireframe.

By allowing the user any interactive capabilities, the simulation package becomes

(13)increasingly valuable. Norton' , (1983) also allowed user interaction. His package allowed

the user to try a variety of layouts for a parts feeder, fixtures, and workstations. The images

were displayed on the screen and then each possible configuration which met the stated

requirements were displayed. Objects and fixtures could be redefined with minimal effort.

(81Work at General Electric' , (1984) produced a simulation which was concerned with

dynamic path errors. After displaying the dynamic path errors, the user could specify arm

speeds, settling time, and deceleration rates to meet accuracy requirements. The user could

also edit the workspace interactively,. This capability included additions, changes, and

deletions of objects and obstacles and repositioning of the manipulator. A library format was

(13)used by Thomas' , (1984) of General Electric. The user could select a robot and gripper

from the library.

(7)Herbert and Hoffman , (1985) allowed the user pop—up menus and an x—y mouse.

This gave the ability to edit the dimensions of a solid and to change the viewpoint.

(15)In Parker' , (1986) the user was allowed interaction in the form of inputing the

parameters of the system from the keyboard. By changing a parameter, although this does not

appear to be possible during the running of the simulation, the movement of the robot was

altered.

Dave and J a n a ^ , (1987) set the objective of their package to be user—oriented. The

simulation would be used as an educational tool. Through the use of menus, the user could

study basic principles of robot kinematics, programming and workcell design. Individual joints

as well as the world view could be altered by the user. The wire model was based on the

Microbot and was written in Pascal. By referencing the 200 different robot types in the

database, Wanecke allowed the user to interact in defining a workspace. After each selection,

any obstacle collisions were reported.

Kinematics deals with the position of the elements of the robot manipulator as a

(7)function of time irregardless of the forces which are producing the motion. Inm an' , (1984) of

the General Electric Company included a general purpose kinematic analysis algorithm. This

algorithm gave both the forward and inverse solutions. T hom as^^\ (1984) provided the user

with accurate information on reach and approach vectors, and singularities during moves.

(14)Parker' , (1985) used a matrix format to describe the arm. Each element was

described using a homogeneous position vector, P = (p^, p^, p^, 1). To alter the coordinates of

the given point, the standard matrix transformations were used. There exists a unique matrix

transformation for a distinct rotation about each of the three axes, x, y, z. and a translation

about any point.

Dave and J a n a ^ , (1987) created a teaching simulation system which allowed a system

to be designed and a full presentation of the kinematic information for the system. Through

their menudriven program, the angles of each joint were constantly updated on the screen. The

user had a selection of various kinematic information and functions available by specifying a

homogeneous transformation matrix, x, y, z, coordinates, absolute joint angles, or incremental

angles. Forward and inverse kinematic solutions were also an option to the user.

The majority of simulation packages follow one of the afore mentioned kinematic

formats. The kinematic theory is very standardized. The variance from one model to the next

has based on the author’s desire to manipulate the kinematic data.

Since the majority of simulation packages that have been written fall into the

classification of implementation computer models, deformation and dynamic modelling have not

been a high concern. As design modelling software becomes increasingly important, the ability

to model dynamic effects becomes a highly desired capability.

T h o m a s ^ \ (1984) realized the importance of dynamic modelling was. He stated that

dynamic models which can provide information such as link masses and inertia, actuator

speeds, torque and inertia; gripper and workpiece mass and inertias will be highly important.

This information can then lead to determining actual velocities and accelerations of a link and

arm deflections from simple beam equations for a link. The dynamic model information and

products will help to meet optimal paths, reduced cycle time, and also reduce peak

accelerations to extend the life of the robot.

• (2)Liegeois' , (1980) designed a computer simulation system he called M.I.E.E. He

manipulated the dynamics by using the Lagrangian equations. Outputs were the load

capacities and joint torques. The output was in a tabular form. G a n n o n ^ and P e tro k a^ ^ ,

(1986) at the Naval Postgraduate School both chose to use Lagrangian dynamics for the

derivation of the deflection equations.

(3)
Derby , (1981) wrote a computer program which determined the bending due to

gravity and motion accelerations at the calculated positions. The calculations were an option

in his computer program. After the arm was positioned and the bending was calculated, the

program would list if the members were exceeding their elastic limits. Derby treated the beam

as a cantilever beam with a fixed base. He used simple beam analysis to determine the

bending, axial deformation and axial twist.

11

CHAPTER 3

THEORY

3.1 The Computer Graphics Workstation

The computer system used on this project was an IRIS 3130 Workstation constructed by

Silicon Graphics, Inc. IRIS is an acronym for Integrated Raster Imaging System. It was a

high resolution color graphics computing system. The graphic capabilities encompassed both

two— and three-dimensional lines, curves, polygons, and characters. The IRIS hardware can

be divided into three components: the Application/Graphics Processor, the Geometry Pipeline,

and the Raster Subsystem.

The Applications/Graphics Processor was responsible for controlling the application

software, geometry pipeline, and the raster system. To control these three areas, the

applications/graphics processor ran the UNIX operating system, various application programs,

the graphics library, and I/O software. The graphics library contained more than 200 routines

which allowed the user to build images by specifying points, lines, and polygons. Graphics

routines were represented in either two— or three-dimensional coordinates which the user could

define.

In the next step, the graphics routines were passed through the Geometry Pipeline. In

the pipeline the coordinates were transformed, clipped to normalized coordinates, and scaled

through transformations to the Bize of the screen or window. The Geometry Pipeline was

composed of twelve VLSI chips. The VLSI chips were referred to as the geometry engines.

The output of the Geometry Pipeline was sent to the third component of the IRIS

system, the Raster Subsystem. There were five major hardware components of the Raster

Subsystem: Frame Buffer Controller, Bitplane Update Controller, Display Controller,

Bitplanes, and the High Resolution Color Monitor. The purpose of the Raster Subsystem was

to fill in pixels between line endopoints and polygons, convert character codes into bitmapped

characters, perform shading, depth—cueing, and hidden surface removal. The bitplanes acted

as storage where a color value for each pixel resided. The graphic drawings were drawn on the

screen through the use of the Raster Subsystem. A line which was to be drawn on the screen

would be stored in the bitplanes by a patem of color codes for specific pixels. The bitplanes,

therefore, controlled what was viewed on the screen.

13

3.2 User Interaction

The IRIS had four peripherals that allowed the user to interface with a program: (1)

Dial Box consisting of eight dials, (2) Switch Box consisting of thirty—two switches, (3) Mouse

with three input buttons, and (4) Keyboard consisting of a standard set of keys plus a complete

numeric keypad, (See figures 3.1, 3.2, and 3.3.). Silicon Graphics had defined variables for each

input of the device: eight dials, thirty—two switches, three mouse keys, and eighty—three

keyboard keys. Each input device had a unique variable name and a unique value stored in

that variable. See Appendix A of the IRIS User’s Guide Volume II Graphics Programming,

pages A—22 through A—35 for a complete list. As an example, for Switch # 1 the variable

name was SWO and the ASCII value was 111; for the "H" key, the variable was HKEY and the

ASCII value was 27; and for Dial # 5 , the variable is DIAL4 and the ASCII value was 261. See

figures 3.1 through 3.2 for identification of input device variables and values.

To use the interactive hardware on the workstation from a FORTRAN program, two

steps were followed. First all input devices to be referenced were initialized. This involved

changing the status of a given device so that if that device was called upon, a signal would be

placed in the events queue and the program would be able to interpret the user's input. This

action was completed by using the IRIS command, QDEVIC. Each device name would be sent

to the subroutine so that the input device status would be changed to allow input. As an

example, if the user wished to use the Dial Box the dials would be initialized by

CALL QDEVIC(DIALO)

CALL QDEVIC(DIALl)

CALL QDEVIC(DIAL2)

CALL QDEVIC(DIAL6)

CALL QDEVIC(DIAL7)

2 2

2 3 2 52 4 2 6 2 82 7

3 22 9

FIGURE 3.1

SWITCH BOX OF THE IIUS 3130

15

FIGURE 3.2

DIAL BOX OF THE IRIS 3130

17

The second Btep to allow the user to interact with a FORTRAN program involved

processing the input signal. The input signal placed an entry on a stack in the computer

memory, called the events queue. An entry was composed of two parts, the device number and

the device value. The device value was stored in the variable, VAL, and the device number in

QTYPE. These were both 16—bit integers. To read an entry from the events queue, the IRIS

subroutine QREAD was called. QREAD was a function which read the device value of the

first entry on the events queue. The programmer could then program an action to be

associated with a certain input device. For example, if the user selected the letter "Q", the

program would be stopped. Or, by selecting a certain switch, certain information would be

written to the screen. These actions would be completed as follows:

DEV = QREAD(VAL)

IF(DEV.EQ.QKEY) GO TO 999

The term, GO TO 999 would shift the program control to a command to stop the program.

IF(DEV.EQSWl) THEN

WRITE(*,*)’ Switch # 2 has been selected.’

ENDIF

Alternative methods for user interaction I/O devices involved the use of standard

FORTRAN commands. Information could be read from a file through formatted and/or

unformatted READ statements and information could be written to a file using formatted

and/or unformatted WRITE statements.

18

3.3 Kinematics

The kinematics of a robotic arm may be defined as the analytical study of the geometry

of motion of the arm with respect to a fixed reference coordinate system. Two types of

kinematic analyses exist. The first type is direct kinematics. Direct kinematics is based upon

the given information including joint angles, number of degrees of freedom, and geometric line

parameters.The deBired output is the position of the end effector. The second type of analysis

is inverse kinematics. In inverse kinematics, the desired position of the end—effector and all the

link parameters are given. The appropriate joint angles are then calculated to place the

end—effector in the desired position. It must also be determined if the angles are valid based

on the given specifications. This modelling software prepared for this thesis was based on a

direct kinematic analysis.

Robot arms are multilink systems. The position of each link must be described with

respect to a fixed reference frame. Since each link could rotate and/or translate with respect to

a reference frame, each link would have a unique, local coordinate frame system. The

end-product of the direct kinematic analysis was to find a relationship between the local

coordinate system of a link and the reference coordinate system. This relationship was

described by a homogeneous transformation matrix, T. The homogeneous transformation

matrix could be considered as four submatrices:

T = ’S x S P 3xl

f 1x3 lx l

Ro t a t ion
M atrix

Pe r spective
M atrix

Pos i t i on
Vec t or

S c a l i n g
Term

(3.1)

The rotation matrix described rotations about the x, y, and z axes with respect to the reference

coordinate system. For example, let OXYZ be the reference coordinate system and OUVW be

the local coordinate system. A rotation about the z—axis of 45° would graphically look like the

following:

FIGURE 3.3

MOUSE OF THE IRIS 3130

19

Y

4 5

FIGURE 3.4

ROTATION OF THE COORDINATE SYSTEM OUVW 45°

and the rotation matrix would look as follows:

R =
cos 45° —sin 45° 0.0

sin 45° cos 45° 0.0

0.0 0.0 1.0

(3.2)

The position vector submatrix expressed a three-dimensional translational relationship between

the local coordinate system and the reference coordinate system. A translation of the following

20

v

Px

P z

FIGURE 3.5Z

TRANSLATION OF COORDINATE SYSTEM OUVW

would result in a vector P as follows:

1. 0

The lower left submatrix is the perspective transformation which is not used in this project and

therefore would be a null matrix. The final submatrix, the lx l lower right matrix iB for

scaling. It will be a constant value of 1.0.

An example of a homnogeneous transformation matrix could be based on the following

system:

21

FIGURE 3.6

ROTATION AND TRANSLATION OF COORDINATE SYSTEM OUVW

From the above system, a homogeneous transformation matrix describing the reference frame

UVW with respect to the reference frame OXYZ would be

T =

cos 45° —sin 45° 0.0 pa
sin 45 cos 45 0.0 p

0. 0

0.0

0. 0

0.0

y
1 . 0 pz
0.0 1 .0

(3.4)

Now, if a robot arm consisted of multiple links, a description of the relationship between each

local coordinate system and the reference system would be required. This could be

accomplished by building upon the previous link's relationship. The homogeneous matrix

would then describe the location of the ith coordinate frame with respect to the reference

coordinate frame. °T. is a chain product of successive coordinate transformation matrices,

1 ^A. where 1 ^A. described the relationship between joints i—1 and i. If there were four

joints,

— ®A * \a *2A +3A4 “ 1 2 3 4' (3.5)

22

A relationship between the reference point, 0, and joint 2 would be found by

°T 2 = °A 1*1A2 (3.6)

Say a point, P, was described with respect to the local coordinate system of link # 2 .

+ ^

FIGURE 3.7

POINT P DESCRIBED WITH RESPECT TO THE XYZ COORINDATE SYSTEM

The point could be described with respect to the fixed reference frame, OXYZ, by multiplying

the position vector by the homogeneous transformation matrix, T, where

P =

z
1.0

(3.7)

which is the position vector of point P with respect to coordinate system of link # 2 and

°T2 = V A2 <3'8>
which is the transformation matrix describing the orientation of the coordinate system of link

2 with respect to the OXYZ. Then

PT = T*P. (3.9)

which is the transformed position vector, point P with respect to OXYZ.

23

3.4 Three Dimensional Graphics

The first step in drawing any object in three-dimensional space was to define the

coordinate system by stating a point of reference. To accomplish this on an IRIS Workstation,

several steps would be completed. First, the graphics system was initialized. The IRIS

subroutine GBEGIN would be the first graphics subroutine called in a program. This

subroutine allocated memory for symbol tables and display lists, and initialized hardware.

Next, the size of the text and graphics windows would be defined. Two IRIS subroutines were

required: PREFPO defined the graphics window coordinates in terms of screen coordinates,

TEXTPO defined the text window in terms of screen coordinates.

CALL PREFPO(0, 1023, 200, 767)

CALL TEXTPO(0, 1023, 0, 200)

The parameters in these subroutines denoted the screen coordinates for the locations of the

graphics and text windows. The coordinates were the pixel numbers:

(left,right,bottom,top)

Both the background color of the text window and the color of the text could be defined

through the IRIS commands, PAGECO which specified the background color of the text

window, and TEXTCO which defined the color of the text in the window. The colors sent to

the subroutines were IRIS defined through integer variables. Now that the size of the graphics

window had been defined, a scale for the graphics window could be established. By calling the

IRIS subroutine ORTHO, the graphics window would be given a three dimensional scale. To

give the screen a size of

- 3.5 < X < 3.5

- 0.5 < Y < 5.0

- 3.5 < Z < 3.5

the command ORTHO was called in the following form

CALL ORTHO(—3.5, 3.5,-0.5, 5.0,-3.5, 3.5)

24

Any point in space is a unique point based on the unique set of coordinates. The

coordinates could be placed in a 4 x 1 matrix called a position vector. The 4 x 1 matrix gives

the x, y, and z directional magnitudes which describe the relationship between the reference

point and the point being labeled. The value s of the position vector is the scaling factor

usually equal to one.

P = (3.10)

For an object to be described in three dimensional space, the programmer would use as many

points as required to adequately describe the object. For example, consider the following two

shapes:

(3)

<2 >(4)

<1>(5)

(8 >

(7?

FIGURE 3.8

SQUARE AND OCTAGON SHAPES WITH VERTICES

The square only required four vertices hence only four position vectors were required to describe

it. The octagon, had eight vertices and therefore, eight position vectors would be required.

The matrix containing the vector information could then be expanded from a (4x1) to a (4x4)

for the Bquare, and to a (4x8) for the octagon. So, by stating the reference axis XYZ and then

adding four points to the space, a picture similar to the following would be obtained:

Y 25

(1)

(3) <4)

Z

FIGURE 3.9

FOUR POINTS IN SPACE

Each of the four points have their own position vectors:

iT
x = [7,6,0,l]

= [2,6,0, lj

= [2 ,1 ,0 ,l]

= [7 ,l.O .l]

(3.11)

(3.12)

(3.13)

. 4 - | . , * , v , - | (3.14)

The four position vectors could be placed in one matrix that would be a 4 x 4 matrix and take

on the form of

P =
7 2 2 7
6 6 1 1
0 0 0 0
1 1 1 1

(3.15)

To obtain the figure, the points would then be connected in a systematic manner. For the two

examples shown, this would have just required drawing lines from one point to the next point

in a sequential manner. Now, if the group of four points were be connected in the order of

(1—3—2—4—1) the object drawn would have look like

26

Y

(1)

C3) <4)

Z
FIGURE 3.10

FOUR POINTS CONNECTED IN THE ORDER (1—3—2—4—1)

If the four points were to have been connected in the order (1—2—3—4—1) a square would have

been obtained.

Y

(2) (1)

(3)

Z

FIGURE 3.11

FOUR POINTS CONNECTED IN THE ORDER (1—2—3—4—1)

Now, consider a three dimensional square cylinder.

27

C8>

(3)

FIGURE 3.12

THREE-DIMENSIONAL SQUARE

There were a total of eight points required to accurately describe the cylinder. The entire

cylinder could have also be thought of as a number of smaller square cylinders connected

together.

LI
— Z

FIGURE 3.13

A SQUARE CYLINDER SUBSECTIONED INTO SMALLER CYLINDERS

28

Each cross—section division in the y—z plane could be called a level. A level would be

described through the coordinates of the four vertices of that cross-section. Each level would

describe either the back of one cylinder or the front of the neighboring cylinder.

Y

L6
L5

L4
L3

L2
L I

FIGURE 3.14

3 -D SQUARE WITH LEVELS

To draw the complete cylinder, the programmer would have simply referenced points of

pairs of levels. To draw cylinder 1, you would have reference levels 1 and 2; to draw cylinder

2 , you would have reference levels 2 and 3 , and so on.

A three-dimensional matrix or array offered a perfect storage medium for such an

object. Here, each level could be stored in a different part of the 3—D array. The level

number would then correspond to the third index of the array (*,*,L).

For a multi—link robot arm, each link could be described in its respective local

coordinate frame. Then, the arm would be assembled by using the homogeneous

transformation matrix to transform the position vectors from the local coordinate system to the

reference coordinate system. For example, for the given three link arm,

29

LIN K # 8

LINK #1

PIN #1

LIN K # 0

FIGURE 3.15

TH REE-LINK SYSTEM

First, links zero, one, and two were described using their local coordinate frames, or,

LINK #0

7 >

1 2

- ^ x 1 1 X ru

Za
LINK #1 LINK ttE

FIGURE 3.16

THREE-LINK SYSTEM IN COMPONENTS

30

Then, the transla tion and rotation of each local coordinate system with respect to the previous

one was specified. This information would complete the A matrices. For example, the local

coordinate system of link # 0 was the same as the reference. So,

1.0 0.0 0.0 0.0

A = 0.0 1.0 0.0 0.0 (3.16)

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

For link #1 , it was desired to have a rotation of 6 = 30° about the z—axis. There also existed

a translation between the local coordinate system for link # 1 and the frame of reference. The

translation was the distance from pin # 0 to pin # 1 or

Pi
P =

lx

piy
Plz
1.0

(3.17)

So,

Al =

cos 30° —sin 30° 0.0 Plx

s in 30° cos 30° 0.0 p ly (3.18)

0 . 0 0 . 0 1 . 0 Plz

0 . 0 0 . 0 0 . 0 1 . 0

For link # 2 , it was desired to have an angle rotation of 0 = 90° about the z—axis and the

translation was the distance from pin # 1 to pin # 2 or

So,

P =
v 2x

P2 y

P2 z
1. 0

2 =

cos 90° —sin 90° 0.0 P2x

s in 90° cos 90° 0.0 P2y

0 . 0 0 . 0 1 . 0 P2 z

0 . 0 0 . 0 0 . 0 1 . 0

(3.19)

(3.20)

31

The transformed points were found as follows:

LinkO-T = AQ*LinkO (3.21)

L in k l-T = A ^ A ^ L in k l (3.22)

Link2—T = j y 0A ^ l J^*Link2 (3.23)

The final step to reach the desired configuration, Figure 3.16 was to connect the transformed

points with line segments. There were two types of objects which the IRIS could draw. The

first were line segments. Using the IRIS commands you must have first moved to the

beginning of the line segment and then drawn a line to the coordinates of the end of the line

segment, or the next point. Both routines required the x, y, and z coordinates of each points.

The subroutines were MOVE and DRAW

CALL MOVE(Plx ,P ly ,P lz)

CALL DRAW(P2x,P2y,P2z)

The second type of shape was a polygon. A polygon could be drawn as an outlined shape, or

as a solid. To draw a polygon, the programmer must have first declared an array of size (3,4).

The three rows would contain the (x, y, z), coordinates for each of the four points, one to each

column. If a polygon contained eight vertices, the array would be of size (3,8). The

coordinates of the vertices were stored in the declared array and then the IRIS subroutine was

called. For a filled polygon, the call would be

CALL P0LF(4, POLYSQ)

where 4 denoted the number of vertices and POLYSQ was the declared array.

To highlight the 3—D images drawn on the workstation graphics screen, different colors

could be used for different entities. The IRIS had a color map which was a table composed of

24—bit RGB values. Each 24—bit value had a unique value or index. The index was stored in

the bit planes. Then, when the IRIS was going to draw something, it referenced the color map

by the index stored in the bit plane.

A default color map could be referenced by a variable name in which the desired color index

was stored in that variable. For example, IRIS had declared the value of 1 to be stored in the

32

variable BLUE. The programmer could call the subroutine COLOR with the variable BLUE

and the color blue will be used to draw all subsequent graphic objects.

CALL COLOR(BLUE)

The programmer could also define a color by using the IRIS subroutine MAPCOL. The

subroutine required four parameters, the index value, and then the values for the three guns,

red, green, and blue.

CALL MAPC0L(111,111,0,111)

The calling of the subroutine gave a color which was a combination of red and blue the index

111. Now, if the color subroutine was to be called

CALL COLOR (111)

that color would be used for drawing.

3.5 Static Analysis

For the robotic arm in Figure 1.1, a static deformation analysis was completed on

Segment # 1 and Segment #2 . The arm would be in an unique geometric configuration based

on the angles of each link, the dimensions of the links, and also the location of the pins, (see

figure 3.17). Based on the given geometric configuration of the arm, there were three

calculations involved with determining the static deflection of the segments:

(1) Determine the Static Reactions

(2) Determine the Virtual Displacements of the Hydraulic Actuators

(3) Determine the Deformation.

3.51 Determine the Static Reactions. Under static analysis, the beam could be

considered to be in equilibrium. That is,

5# = 0.0 (3.24)

Ehi = 0.0 (3.25)

For a three—link robotic arm with an end—effector and two actuators, the static reactions

would be found at Pin #0, #1 , #2 , # 3 , and # 4 , the point of load, as well as the forces in

both actuators. Based on free—body diagrams, Bannoura, (1988) determined the static

reactions to be as follows:

Reactions at Pin # 0 Due to Static Loading Conditions, (see figures 3.17 and 3.18):

34

PIN # 2

LINK # 2

LINK # 3LINK #1

LDAD

PIN # 3
PDINT DF LDADPIN #1

LINK #0

PIN #0

FIGURE 3.17

PIN LOCATIONS FOR FORCE AND MOMENT ANALYSIS

35

PIN APIN #1

CL

FIGURE 3.18

MOMENT ARM DEFINITIONS OF THE BASE

Reactions at Pin #1 due to Static Loading Conditions, (see figures 3.17 and 3.19)

s s s
F = (P cos(b *F sind> —P sm<f> *F cosd> —

a b id 1 de 5 Id 1 de 5
s s

P cos<b *W + P cos<j> *R —P sin<b *R) /
lg l 1 1 12 T 1 2y 12 1 2x

(P
v lb

cos<f) sin (f) —P ain^ cob< ̂)
1 4 lb 1 4

(3.32)

s s s s
R = F COEid) —F cob(I) + R (3.33)

lx de 5 ab 4 2x
s s B

R = F sin (h —W —F sin d> + r (3.34)
iy de 5 1 ab 4 2y
8 s

R
lz

=R
2z

(3.35)

s s s
M = P sin (f>* R +M (3.36)

lx 12 1 !« 2x
s s s

M = —P cob<t> *R +M (3.37)
iy 12 1 2z 2y
s

M
lz

=0.0 (3.38)

Reactions at Pin # 2 due to Static Loading Conditions, (see figures 3.17 and 3.20):

37

PIN B PIN D PIN # 2

P1G1
P1B
■ PD1

P I P

FIGURE 3.19

MOMENT ARM DEFINITIONS OF SEGMENT #1

PIN E

PIN # 3N # 2

P 2 E

P 2 G 2
P 2 3

FIGURE 3.20

MOMENT ARM DEFINITIONS OF SEGMENT # 2

39

Reactions at Pin # 3 due to Static Loading Conditions, (see figures 3.17 and 3.21):

s s
R = R

3x 4x
(3.46)

s s
R = -W +R

3y 3 4y
(3.47)

S 8
R = R

3z 4z
(3.48)

CD CD CD
M = P sin0 *R +M

3x 34 3 4z 4x
(3.49)

8 s s
M = —P cos d) *R +M

3y 34 3 4z 4y
(3.50)

s s s
M = P cos<f) *R —P amd) *R —

3z 34 3 4y 34 3 4x
s

P cosd> *W +M (3.51)
3g3 3 3 4z

Reactions at Point of Load due to Static Loading Conditions, (see figure 3.17):

R ^ = 0.0 (3.52)

K y = WeiShtload (3-53>

R84z = 0.0 (3.54)

M4x = _ P 4 g4*sin V COŜ 3*W4 (3‘55)

M jy = 0.0 (3.56)

M4s = “ P4g4+CQ̂ 0+CO8̂ 3*W 4 (3'57)

Where:

R. j — Static force reaction a t Pin # i in the j direction
g

M .. — Static moment reaction at Pin # i in the j direction lj

W. - Weight of link i

P.j — Distance from Pin # i to Pin # j

P.g. — Distance from center of gravity of link i to Pin # i

3.52 Determine the Virtual Displacements of the Hydraulic Actuators. The axial forces

S 8of the actuators, and created virtual displacements in the respective actuator. Virtual

displacements in the actuators were products of a change in the fluid pressure in the hydraulic

40

Y

LDADPIN #3

P34

FIGURE 3.21

MOMENT ARM DEFINITIONS OF SEGMENT # 3

cylinders. The pressures could be varied by three separate servovalves. A change in length of

any actuator resulted in a change in the angle associated with that actuator. For actuator AB,

the angles were <j>̂ and <j)̂ . For actuator DE, the angles effected were (j) ,̂ (j)̂ and (f>̂ . The

locations of Segments # 1 and # 2 were then adjusted due to the differential change in the

angleB.

The differential change in the angles could be determined by first describing the

relationship of the actuator geometry. For actuator AB, (see figure 3.22), the relationship was

from the law of cosines,

C x 2 = A * + B j 2 —2A1 B 1 cos(/?). (3.58)

Based on the geometric configuration, the differential change in (j)^ was equal to the differential

change in /3

6^ = 60 (3.59)

Differentiating the equation by d C j/d /3 gave an equation which described the differential

change of the length of the actuator, to the change of /j.

2 C 1 dC 1 = 2 A1 B 1 sin/3 d/3 (3.60)

The change of length, dC^, could also be described based on the deformation as a result of an

axial loaded member in compression,

d 0 ! = H <3-61>

where

F = Axial load equal to F®^

L = Length of member equal to

A = Cross-sectional area of actuator

E = Modulus of elasticity of actuator.

Substituting F ^ and into equation 3.61 yielded

SEGMENT HI

PIN B

PIN HI

BASE

ACT. AB

PIN A

FIGURE 3.22

HYDRAULIC ACTUATOR AB

Therefore, solving equation 3.60 for d/3 yielded

c ,
d/3 = .■ p - \ » dC ,. (3.63)r A j B ^ amP ^ *

Substituting equation 3.62 into 3.63 yielded

Ffl C 2

: V ae ■ <3-64>
The relationship describing the virtual displacement for actuator DE was very similiar,

(see figure 3.23). S ta ting with the law of cosines

° 2 = k 2 + B2 ~ 2A2B2 COs(a)- (3,65)

For this geometric configuration, a would need to be determined. Again, from Figure 3.23

K = n - (j) l (3.66)

a = 211 - 0 6 - K (3.67)

The differential change in a was equal to the differential change in (j) .̂

d a = d(j>2. (3.68)

The differential equation was

2C2 dC 2 = 2A2 B2 s in a d a (3.69)

As with actuator AB, the change of length, dC 2 could also be described based on the

deformation as a result of an axial loaded member in compression,

dC2 = f | (3.70)

where

• sF = Axial load equal to F ^

L = Length of member equal to CL
it

A = Cross-sectional area of actuator

E = Modulus of elasticity of actuator.

Substituting F®e and Cg into equation 3.70 yielded

44

ACT

Y

SEGMENT #2

PIN E

'A2

#2

T DEC2

SEGMENT #1
DE B2

PIN D

PIN. #1

FIGURE 3.23

HYDRAULIC ACTUATOR DE

45

Therefore, solving equation 3.69 for d a yielded

C2
Aa = SS aina dC2* <3-72>

Substituting equation 3.71 into 3.72 yielded

F S C 2

i a = »i b , L i « • <3-73>

The differential change in angles would then need to be added to the respective angles so that

the deformation analysis was correct. The static reactions would not need to be recalculated

because the static loading condition was considered to be quasi—static.

3.53 Determine the Deformation. The first and second segments of the robotic arm

were assumed to be slender flexible elastic beams. Each segment had four types of

deformation:

(1) Torsional twist about the x axis

(2) Axial extension in the x direction.

(3) Deflection in the y direction

(4) Deflection in the z direction

Torsional twist and axial extension were based upon the following equations of Bannoura,

T c o b 0 + T s i n (j) x 2e = s l x 1 g i y i f L x _ 1)+
xl -- 1 l —5 —'

L J G
1 l x l

M c o s <f) +M s i n <j)
2x______ l » y ______ I (x) (3 .7 4)

L J G
l l x l

o
T c o s ^ + T s i n (b x

9 = g 2 * 2 s * y 2fL x — 2)+
x 2 2 2 ,

L J G
2 2 x 2

M c o s <f) +M s i n <f>
3x 2 ____ 3y_____ i (x) (3.75)

L J G 2

2 2 x 2

Since the loading conditions were considered to be static, the above equations simplified to

M 8 c o s <f> +M 8 s i n <b
9^ = 2x 1 2y_______ I (x^) (3.78)

L J G
1 1 x 1

M c o s (b +M 8 s i n <b
9 = 3 x 2 3 y 2 (x) (3.791x 2 2> \ /

L J G
2 2 x 2

R 8 c o s d> + R 8 s i n d)
\ = — _____ 1___ 11 L (Xj) (3.80)

L A E
1 1 1

R c o s 0 + R 8 s i n d)
\ = — _____ _ 3y 1 (x2) (3.81)

L A E
2 2 2

Where:

u^j — Axial extension for Segment #1

u^g — Axial extension for Segment # 2

9 ^ — Torsional twist about the x axis for Segment #1

9 j — Torsional twist about the x axis for Segment # 2
g

R.j — Static force reaction at Pin # i in the j direction

— Static moment reaction at Pin # i in the j direction

47

L — P which is the distance between Pins # 1 & #2.
1 12

L — P which is the distance between Pins # 2 & #3.
2 23

J — Polar moment of inertia,
i

G — Shear modulus of elasticity,
i

x^ — The x distance along Segment #1

Xg ~ The x distance along Segment # 2

The torsional twist also produced a deformation along the x—axis. Based on Figure 3.24

B

BA C

FIGURE 3.24

AXIAL DEFORMATION DUE TO TORSIONAL TWIST

The orginial length was AB. The angle of twist was 6 ^ . Based on this angle, AB was rotated

to the new position. This created a shortening of the linear length, that is, AC < AB

48

FIGURE 3.25

COMPARASION OF THE LENGTHS OF SEGMENTS AC AND AB

To determine the deformation of the segment,

6 = AB - AC (3.82)

the length of AC would be required . By using a trigonometric relationship and given the

magnitude of AB,

« ^ = I f . (3-83)

AC = AB * cos 6xJ. (3.84)

Solving for 6

S = AB(1 - cos (K). (3.85)

The toted deformation along the x axis was then

Total Deformation. = 6 + u^. (3.86)

The deflections in the y and z directions were also based on the equations of Bannoura.

V.= q | y i Ix?-4L.x?+6L 2 x21 +
i ------------- [i 11 1

2 4 E . I
1 z i

1 2 0 E . I L.
i z i *

T 2x?—5L.xf +12L?x?l
L 1 11 1 ‘J

R I
(i + l)

6 E I
i z i

I^ S L x2 - x3) +
i i i

M
(i + 1) z i x 2

2 E I
i z i

0 .= q ‘ y i [4x?—12L.x?+12L.x.l + 81 -------------- L 1 11 1 lj
2 4 E . I

i z i

i y i |10x?—20L.x?+12L?x.| -L i i i i lj
2 0 E . I L

i z i i

 L 1 1 y 1(6L x — 3x2) — (i »>**
6 E . I . 11 1

1 z 1

w i z i T 4 .T 3 „T2 2lw . = x .^ i l .x :+ 6l : x : +
i ---------------- L i 1 i 1 ij

E I
i z i

2 4 E . I
1 y i

q ° i 8 i ^2xj-5L.xf+12L?x?j

0 .=
yi

1 2 0 E . I L
1 y i i

R
(i ' ») z i (3L x 2 — x3) —

i i i
6 E . I

l / y 1

M (i * l) y i , 2

2 E I
i y i

^ Z 1 ^4x?-12L.x2 +12L2 x.J +

2 4 E . I
1 y i

2 Z

1 2 0 E . I L
i y i i

* 1 1 0 x ? -2 0 L .x ?+ 2 4 L 3x.
---------- L i i i i i

l l z l f 6 L x - 3 x 2! - i i y *
6 E I

i y i

(6 L x -3 x 2)
i 1 i E l

i y i
Simplifying the equations based on static loading conditions yielded

R / . + ̂ N
V:= (1 1 > y l(3L x2 - x 3) + (1 1 > 2 1 X2

1 i i i i
6 E I

i z i
2 E I

i z i

49

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

50

9 . = (1 * l) y i r 6 L x - 3 x 2 l - (1 ̂ 1) z 4 x (3.92)
2 1 6 E . I . i l l i

i z i E l
i z i

R? . ♦ ̂ M/ + ̂ .
W .= J _ L _ L L 1 1 (3L X2 - X3) - l > * ' x 2 (3.93)

1 i i i i
6 E I 2 E I

i y i i y i

K . * \ . M 1 . + \ .
9 •= (l 1 j z l (6 L x - 3 x 2l - (1 1 ^ x. (3.94)
^ 6 E . I . i i i E l 1

i y i i y i

Where:

V. — Displacement of segment i in the y direction

9 .̂ — Slope of displacement for segment i about the z axis

W. — Displacement of segment i in the z direction

— Slope of displacement for segment i about the y axis

x. — Linear distance along the x axis where deflection calculations

are determined

L. — Distance on segment i from Pin # i to Pin # (i+ l)

E — Modulus of elasticity of segment i
i

I.j — Moment of about the i axis for segment j

m | — Moment reaction in the local yi—axis.

M(i*0y i = “ (i V - V (3-95)
R, . , — Force reaction in the local yi—axis,

u + ljy i
R, + , = R^ . . cos<A — R/ * , sin d) . (3.96)

(i l)y (i+l)y l (i l)x i
The static analysis could be considered in a cyclical format. For a given geometry, the

reactions and virtual displacements were determined. Next, the deformation would be

determined at incremental steps along the length of both the segments. The first calculation

would be at the lower pin, that is at Pin # 1 for Segment # 1 . The deformation would be

51

determined at each interval until the upper pin position was reached, Pin # 3 on Segment #2.

As the deformation analysis was completed for Segment #2 , the analytical cycle would be

completed. The next step would be the altering of the geometric configuration of the robot.

And, the process would then be continued.

52

3.6 Dynamic Analysis

A Dynamic deformation analysis was also completed on Segments # 1 and # 2 of the

robotic arm in Figure 1.1. The dynamic analysis was not as simplistic as the static analysis

because the beam was not in equilibrium, but instead,

S ? = ma (3.97)

XSi = t a (3.98)

where I is the Inertial Tensor matrix. Therefore, there existed velocities and accelerations

associated with the different links. A quasi—static analysis was completed on the links by

stepping the robot through very small time increments under the influence of applied actuator

forces. These applied actuator forces were determined by the user and placed in the dynamic

input parameter file. (See Chapter 5.5). Initial values for the angles, velocities, and

accelerations of Segments #1, # 2 , and the Base were defined to be equal to zero.

In summary, the quasi—static dynamic analysis of the robot was accomplished by using

the angles, velocities, and accelerations of each segment along with the applied hydraulic

actuator forces to calculate the new position of each segment after a very small time increment.

Newton’s equations of motion were employed to calculate the new velocioties and accelerations

of the segments by using the masses and moments of inertia given in the parameter file. This

numerical technique produced solutions that were equal to the exact solutions as the time

increment becomes vanishingly small. On the IRIS workstation, a time increment of 1

millisecond was chosen.

In a more complete description of the quasi—static analysis, eight steps were

accomplished during every cycle of the analysis. One caculation cycle on the computer

corresponded to one time increment of actual robot motion.

(1) Determine the Static Reactions. The first step was to calculate the static

reactions. These reactions were based on the initial configuration of the arm, the load and the

weight of the various segments. The static reactions acted as a point of reference.

(2) Determine the Applied and Dynamic Actuator Forces. The applied actuator

forces for time step # 1 were read in from the dynamic input parameter file. Based on the

static reactions determined in (1) and the applied forces of time step # 1 , the Dynamic

Actuator forces could be determined.

(3) Determine the Inertial Reactions. Under the dynamic conditions the

= m a and Sivt =1? Or. To determine the velocities and accelerations, the angular acceleration OL

must be determined for each segment. To determine a, first the sum of the moments must be

determined. The Inertial reactions were defined to be E? and and were based on the static

and dynamic reactions of the arm.

(4) Determine the Velocities and Accelerations. Since is the inertia tensor

and a characteristic of the segments and known, and EM was just determined in (3), OC could

be determined for each segment. Next, the angular velocity, U! could be determined from O.
a) *

Based on the U1 and a of the Base and Segments # 1 and # 2 , the linear velocities and

accelerations for Segments # 1 and # 2 could also be determined. The velocities and

accelerations determined in this step are for the given time step associated with the applied

actuator forces. The magnitude of the time step was specified by the user in the input

parameter file.

(5) Determine the New Position of the Arm in Time. Based on the time step,

the initial angles and the angular velocities and accelerations, any change in the angles could be

determined and the new angular position of the segments could as be determined.

(6) Determine the new Static Reactions. New static reactions must be

calculated based on the new angular positions of the segments.

(7) Determine the Dynamic Reactions. The dynamic reactions must also be

determined based on the new angular positions of the segments. The inertial reactions were the

sum of the static reactions and the dynamic reactions. Therefore, these reactions must be

redetermined.

(8) Determine the Deformations. The positions of the segments and the

reactions are now accurate for the given time step. The deformations could now be calculated.

After the deformations were determined, the process is returned to (2) where the applied

actuator forces for the next time step are obtained from the dynamic input parameter file.

3.61 Determine the Static Reactions. The static reactions would be determined first.

This would then allow the dynamic actuator forces to be calculated based on the applied

actuator forces which the user had specified in the input file and the static actuator forceB.

The static reactions were based on the same equations as those used for the static analysis,

equations 3.26 through 3.57.

3.62 Determine the Applied a n d D y n a m ic Actuator Forces. The input into the dynamic

model was the applied actuator forces. The dynamic forces could be determined from the

applied forces, and the static forces,

= (3.99)' ab ~ ab ab

= c - 4 <3-io°>
Where:

— Dynamic force of actuator AB

F ^ — Applied force of actuator AB

K b — Static force of actuator AB

Fde — Dynamic force of actuator DE

F^e — Applied force of actuator DE

Fde — Static force of actuator DE.

3.63 Determine the Inertial Reactions. Based on the dynamic reaction equations of

Bannoura, the inertial forces, o f a n d inertial torques, T*?. were determined.
i j ij

Inertial reactions at Pin #0 :

Qd = R d + W + W + W + W - R 8 -
gOy Oy 0 1 2 3 4y

Qd — Qd — Qd
g ly g 2y g 3y

Qd = Rd — Rs — Qd — Qd — Qd
gOz Oz 4z g lz g2z g3z

Td = M — (P + P sin^ +P sin^ +
gOx Ox 01 12 1 23 2

P sin^)R8 — M8 —
34 3 4z 4X

P *Qd - (P + P sin^)Qd -
OgO gOx 01 lg l 1 g lz

(P +P sin <b + P sin6)Qd —
0 1 12 1 2g 2 2 g 2z

(P +P sin$ + P sin0 +P sinii)Qd —
01 12 1 23 2 3g3 3 g3z

ij»d ipd
g lx g2x g3x

Td = Md + (P cobS +P c o s d) +P cos(b)R8 — M8 +
gOy Oy 12 1 23 2 34 3 4z 4y

P COB(j) * Qd + (P cos(b + P cos<b)Qd +
lg l 1 g lz 12 1 2g 2 2 g 2z

J J

(P cos6 +P costj) +P cos<j))Q — T —
12 1 23 2 3g3 3 g3z g ly

Td - T d
g2y g3y

Td = Md + P cos<b *W + (P cosd) +P cosd>)W +
gOz Oz lg l 1 1 12 2 2g2 2 2

(P cos d) + P c.oa(b + P cosd>)W —
12 1 23 2 3g3 3 3

(P C0 8 ($ +P cos <f) +P cosd>)R8 +
12 1 12 2 34 3 4y

(P + P Bind) +P sin^ +P sin<b)RS — M8 +
01 12 1 23 2 34 3 4x 4z

P *Qd - P cos (j) *Qd + (P + P sin 4)Qd -
Oz gOx lg l 1 g ly 01 lg l 1 g lx

(P cos0 + P cos<p)Qd + (P + P Bind) + P Bind)Qd
12 1 2g 2 2 g 2y 01 12 1 2g 2 2 g 2 x

(P cos d) +P cos<j) +P cos<f>)Qd +
12 1 23 2 3g3 3 g3y

(P +P Bind + P sind +P sind)Qd —
01 12 1 23 2 3g3 3 g3x

rjA ^ _____ _ rpd
g lz g2z g3z

Inertial reactions at Pin #1 :

d , 8 s 8 ,
Q = R — F cos d + F cos d — R — F cos d +

g lx lx d e 5 ab 4 2x d e 6

d d
F cos d> — R

a b 4 2x

55

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

d , B 8
Q = R — F 8 sind + W + F sind — R —

gly ly de 5 1 ab 4 2y
d d dF sind + F sind — R
de 6 ab 4 2y

d * s d
Q = R - R - R

glz lz 2z 2z
d , s s d

T =M - P sind *R - M - P sind *Q -
glx lx 12 1 2Z 2x lgl 1 glz

d A
P sind *R — M_

12 l 2Z 2x
d , s s d

T = M + P sind *R - M + P cosd *Q +
gly ly 12 1 2z 2y lgl 1 glz

d d
P cosd *R - M

12 T i 2z 2y

T g lz = ~ P lb * 8in^ l * Fab + P lb * C08^ l +Fab*8in?i4 +

Fde*8b,V V C08^ l - Fde+C° 8^ * P ld * s in ^ -

W l* P lg l* C08(^ l + P 12*C° 8^ l* R 2y "

P 12*S*n ^ l* R2x

Inertial Reactions at Pin #2 :

d , s 8 , d
Q = R + F cosd — R + F cosd — R

g2x 2x de 5 3x de 5 3x
d , 8 8

Q = R + W — R + F sind +
g2y 2y 2 3y de 5

A d
F sind - R

de 5 3y
d i s d

Q = R — R - R
g2z 2z 3z 3z
d , s s d

T = M - P sind *R - M - P sind *Q -
g2x 2x 23 2 3z 3x 2g2 2 g2z

d d
P sind *R — M

23 2 3z 3x
d , s s d

T = M + P cosd *R - M - P cosd * Q +
g2y 2y 23 2 3z 3y 2g2 2 g2z

d d
P cosd * R — M

23 2 3z 3y
Td = P *cosd *F ,d *sind, — P„ *sind.*F d*cos0_ +g2z 2e ^6 de T 5 2e T6 de r 5

56

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

57

- V 8” ^ . -

W 08̂ <3-II8>
Inertial Reactions at Pin #3:

d , 8
Q = R —R (3.119)

g3* 3x 4x v '

d j 8
Q = R + W — R (3.120)

g3y 3y 3 4y

d 8
Q = R - R (3.121)

g3z 3z 4z v '
d , 8 8

T = M - P sind *R -M -
g3x 3x 34 3 4z 4x

d
P sm(f) * Q (3.122)

3g3 3 g3z
8 8

Td = Md +P cosd *R -M +
g3y 3 y 3 4 3 4z 4y

d d
P cob if) * Q - M , (3 .123)

3g3 r 3 g3z 3y v '
J J s 8 8

T _ = M —P cosd *R +P sind *R +P cosd *W —M —
g3z 3z 34 3 4y 34 3 4x 3g3 3 3 4z

d d
P cos<b * Q + P sin0 * Q (3 .124)

3g3 3 g3y 3g3 3 g3x

Where:

R. j — Dynamic force reaction at Pin # i in the j direction

Mdj — Dynamic moment reaction at Pin # i in the j direction

Qd.. — Inertial force reaction at Pin # i in the j direction
gU ^ J

T .. — Inertial moment reaction at Pin # i in the j direction
g>J

The inertial reactions were found by initially calculating the terms at Pin # 3 and then working

in descending pin order.

3.64 Determine the Velocities and Accelerations. Once the inertial terms had been

calculated, the angular velocities and accelerations could be determined. Angular accelerations

could be extracted from the inertial torques:

Tg0x = fxx’ “ 0x Tg0y = ‘, / V TgO. = fV o , <3I28>

Tglx = fxx*“ lx Tglx = V “ ly T gO» = I* „ ° l ! <3128>

, - I *a„ t “ = I * a . T“ = 1* a„ (3.127)g2x xx 2x g2y yy 2y g2z zz 2z ' '

The angular velocities were then determined based on the equation

U) = W. + a*£t (3.128)

oj. = w. + an *6t un = u. + a. *5tOx iox Ox Oy loy Oy

U)n = U). + a n (3.129)Oz i oz Oz v '

"lx = Hi* + V * "ly = “ily+ V ft
"l* = "il« + V ft (3130>

W2x = "i2x + V * % = % + V *
“ 2. = "i2» + V * <3' I3I>

Where:

W. = Initial angular velocity

W.j — Angular velocity at Pin # i in the j direction

& . — Angular acceleration at Pin # i in the j direction

For Segment #1 , the velocity was

W r t x ? 2 / 1 + ('2 /l>A • <3-131>xyz
Where

-*

^l/O ^A = U1 x r 2 / l (3.132)
' xyz '

fl — Angular velocity of Base, UIq

— Velocity of Base, = 0.0

2/1 ~ Vector from Pin #1 to Pin # 2

was equal to zero because the point 0 or Pin # 0, was defined to be stationary. The vector

r 2 / 1 could also be explained graphically through figure 3.26. Simplifying equation 3.131

?i = iV V + " i* 72/r (3’133)
The vector T2 / \ was a variable based on the deformation of segment # 1 . The vector

components of T2/ \ are eclual to the deformed coordinate information of the various levels of

Segment #1

SEGMENT #1 Pin # 2

2 / 1BASE

Pin #0

X

FIGURE 3.26

VECTORS AND PIN LOCATION FOR THE
VELOCITIES AND ACCELERATIONS OF SEGMENT # 1

60

~*2f\= S lD T (ltl 1L)i+ S lD T (2 ,llL)j+SlD T(3Il,L)k (3.134)

Where:

L — Level number

The translational velocities were determined at points along the beam equal to each level. For

simplicity, let

(3.135)

(3.136)

(3.137)

To complete the calculation for the velocity of Segment #1 , the two cross products would be

determined.

r2/1x = S lD T (l,l,L)i

r2/1y = SlD T(2,l,L)j

r2/1z = SlDT(3,l,L)k

w,Ox % W0 (3.138)

r i /ox r i / o y r i / o z

Since the base was not able to rotate about the x or z axes. So, the velocities and accelerations

about those axes were zero. This simplified equation 3.151 to

S 0 X V = r2 / lZ* % 1 “ r2 / lx*W0y k

The next cross product was

v v = LJ.lx L J . L J . ly lz
,x r i /ny r i /nzr i /ox r i / o y r i / o :

(3.139)

(3.140)

5 1 XV = (r2 / lZ*Wly "■r2 / ly^ l z) ’1 +

(r2 / lX+Wl z - r2 / l z*wix>j +

(r2/ l y^ l x - r2/ l X* V k- (3>141)
The velocity of Segment #1 then, a t a given distance along Segment # 1 was the sum of the

two cross products:

^1 = (r2 / lZ* % + r2 / lZ*Wly ~ +

(r2 / lX*Wl z - r2 / lZ* V j +

<-*2/1*% + r2 / ly+Wlx “ r2 /lX+Wly^k' (3-142)

61

The acceleration of Segment # 1 was based on the equation
-*

a l = a 0+ ^ X *2/1 + ^ x^ X *2/1^ +
-♦ -»

X ^l/O ^A + (r 2 /p Axyz xyz

Where:

a^ — Acceleration of the point Pin #1 = 0.0

n = V “o

^ l / o U ^ - W1 x r 2 / l
—f

(I 2/1)A “ " l X A X X2 /l + “ l X *2/1'

Substituting equations 3.157 through 3.159 into 3.156 yielded the acceleration to be

a i = -C“ o x * 2 / l } + x (^ o x * 2 / l)} + {2Ax ; i / o } +

x A x * 2 / l } + { “ l X x2 /l>

The cross-products were:

{“ O X r 2 /l* “2/ 1-*

r2 / l ’*a 0y i - r2 /lx*°0y k
{wfl x (5 0 x r 2/1)} =

^ 2 / l X*^0y)i + (- " 2 /lZ*W0x)k-
-*

<2V * l / 0 > =

2* % 2(r2 / ly+Wl x - r2 / lX* V i +

2*W0y2 r̂2 / lZ*Wly - r2 /ly*£Jlz^k

W }=
W ^ x ^ v r t y 1;

Wls (r2 / lx*fe,l z “ r2 /lz*Wlx)>i

^ l z ^ 2 / l Z*Wl y - r2 / ly* V -

Wlx(r2 /ly*Wl x - r2 /lX̂ ly)> j

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

62

^Wlx^r2/ l x*Wlz “ r2/ l Z+(Jlx^ -

V V ^ i y - W * ^ (3' 151)

{V * 2 /1 } =
<r2/ l Z+ai y - r2/ l y*a iz>i +

<r2 / l X* a i z - r2 / l z* a ix > j +

{r2 / ly*“ l x - r2 / lX*a iy>k (3‘152)

The velocity of Segment # 2 was described by the equation

\^2 = + fixyz x (3‘153)

Where:

— Velocity of Segment #1 at Pin # 2

flxyz — The Sum of the Angular Velocity of the Base

and Segment #1 , u) + U ^ + Û + (J^ (3.154)

~ Vector from Pin # 2 to Pin # 3
-*

^*3/2^A = X *3/2 3̂’155^' xyz '

The vector r ^ 2 could also be explained graphically through figure 3.27. Simplifying

equation 3.166

^2 = ^1 + ^xyz X *3/2 + A X *3/2- (3-156>

The vector r ^ 2 was a variable based on the deformation of Segment #2 . The vector

components of *2/2 were e(lual to the deformed coordinate information of the various levels of

Segment # 2

r 3/2= S2DT(l)l,L)i+S2DT(2,l,L)j+S2DT(3,l,L)k (3.157)

Where:

L — level number

The translational velocities was determined at points along the beam equal to each level. For

simplicity, let

*3/2X = S2DT(1>1,L)i (3.158)

SEGMENT #1 Pin # 2

SEGMENT

2 /1 Pin # 3

BASE

3 / 2

Pin #0

FIGURE 3.27

VECTORS AND PIN LOCATION FOR THE
VELOCITIES AND ACCELERATIONS OF SEGMENT # 2

64

r 3/2y = S2DT(2,l,L)j (3.159)

1 z j 2 z = S2DT(3,l,L)k (3.160)

Also, for simplicity, was equated to

+ " , i + <3161>
Where:

Ux = " l* (3-162)

Wy = % + “ ly (3-163)

« = w1b (3.164)

To complete the calculation for the velocity of Segment # 2 , the two cross-products were

determined:

il x 7 , ._ = xyz 3/2

(r3/2, *Wy ” r3/2y* ")i +

(r3/ 2X*Wz - r3/ 2ZX > j +

r̂3/2y*Wx r3/2X#Wy^k' (3.165)

S2 x 7 3/2 =

(r3/ 2Z+£t;2y - r3/ 2y*W2z)i +

(r3/2X*W2 z - r3/2Z*W2x)j +

r̂3/2y*W2x ” r3/2X+W2y^k‘ (3.166)

The velocity of Segment # 2 then, a t a given distance along Segment # 2 was the sum of the

two cross-products:

^ 2 = (r2 / l Z* W0y + r2 / l Z* Wly - r2 / l y *Wlz +

r3/2Z+Wy “ r3/2y*Wz + r3/2Ẑ 2 y “ r3/2y*W2z)i +

(r2 / lx*Wlz “ r2 / l z*Wlx + r3/2X*Wz ~

r3/2z+Wx + r3/2x*W2z “ r3/2Z*W2x^ +

^ / l ^ O y + r2 / l y *Wl x - r2 / l X* Wly +

r3/ 2y+£t;x - r3/ 2X*Wy +

r3/2y+W2x “ r3/2X*W2y^k' (3.167)

The acceleration of Segment # 2 was based on the equation

-* -* Aa - = a ,+ U x r. . + x(ft x ? „ .„) +1 xyz 3/2 xyz ' xyz 3 /2 '

2^xyz X ^r 3/2^ + ^3 /2^

Where:

a^ — Acceleration of Pin # 2

(i = 3 . + rt x 5 „xyz 2 xyz 2

^r 3/2^= U2 X r 3/2

(r 3/2^= U2 X W2 X r 3/2 + a 2 X r 3/2*

First, it was neccesary to simplify

Let

f t = QL + ft x J , ,xyz 2 xyz 2
i J k

Xlll„ =ftxyz <d a; a;x y z
£d„ a;. aL 2x 2y 2z

xyz y 2z z 2y

(<d td„ - £d td„)j ' y 2z z 2y'

(td 6d„ - (d £d-)k ' y 2z z 2y'

f t = (<d Cd_ - £d 0 L) x ' y 2z z 2y;

f t = (U Wn — (J a / „) y v y 2z z 2y'

f t = (cd £d. - Cd Cd„) z ' y 2z z 2y'

Substituting equation 3.184 into 3.181 yielded the acceleration to be

-* -*
a , = a + {ft x ?„ ,„} + {ft x (ft x !?,.„)} + {2ft x r , 2 1 1 xyz 3/2J 1 xyz ' xyz 3/2 J 1 xyz 3

“2 X W2

The cross products were:

{Cd9 x Cd0 x r 3^2) + {a 2 X *3/2^

(r3/2 n y “ r3/ 2x* ^ i +

65

(3.168)

(3.169)

(3.170)

(3.171)

(3.172)

(3.173)

(3.174)

(3.175)

(3.176)

(3.177)

j} +

(3.178)

r̂3/ 2X*^* +3/2

r̂3/2y*^x r3/2X*^y^k

^ x y z X ^ x y z X X3 /2 ^ =

{V (r3/2y*Wx - r3/2X*Wy) _

" i^ S / a * * " . “ r3/2ZX » * +

{Wz ^ 3 / 2 Z+a,y - r3/2yX) ~

" * ^ r3/2y*a;x “ r3/2x*fc,y » j +

{a,x ^ r3/2X*Wz - r3/2Z*Wx) -

Uy*lI3/2**Uy - I3 / ? * Uz » *

{2dxyz X z3/2> =

2*{Wy*(r3/2y*W2x — r3/2X*W2y) “

^ (r3/2X*W2 z - r3/2Z+a;2x^^

£*x*(r3/2y*W2x ~ r3/2X*W2 y ^ j

2*^Wx^r3/2X*a;2z ~ r3/2Z*W2x ̂ ~

W ^ y ~ r3/2y*W2z)>k

{^2 x x r 3/ 2> =

^ 2 y ^ r3/2y*W2x - r3/2X*W2y ̂ ~

W2z^r3/2X*W2z ~ r3/2Z*W2 x ^ 1

^W2z^3/2Z*W2y - r3/2y*W2z ̂ -

W2x^r3/2y*W2x “ r3/2X*W2 y ^

^W2x^r3/2X*W2z ~ r3/2Z*a,2x) ~

V rj A " r3A)}k
^a 2 X r 2 /l^ =

^r3/2Z*tt2y - r3/2y*a 2 z^ +

■fr3/2X*a 2z ~ r3/2Z*a 2 x ^ +

66

(3.179)

(3.180)

(3.181)

(3.182)

67

^r3/2y*a 2x ~ r3/2X*a 2y^k (3.183)

3.65 Determine the New Position of the Arm in Time. The next place in time was a

function of the time step, the present magnitude of the angles, differential change in angles, the

velocities, and the accelerations. The differential changes in angles were based on the same

equations as those in the static analysis. For Segment # 1 , the new location, or angle, was

determined from the equation

=s + 0.5*Vj*&2 (3.184)

The magnitude of the angular velocity, of Segment # 1 was the anular velocity of Segment

1 in the Z—directionn. The magnitude of the angular acceleration,V^ of Segment # 1 was also

the angular acceleration of Segment # 1 in the Z—direciton. The differential change in angle

(pj was 6<f)̂ and the time step was St.

Similarly, for Segment #2 ,

<t>2 = <j>2 + S< t> 2 + + °-5* V ^ 2 (3,185)

The magnitude of the angular velocity, of Segment # 2 was the angualr velocity of Segment

2 in the Z—direciton and the magnitude of the angular acceleration for Segment # 2 was the

angular acceleration for Segment # 2 in the Z—direction.

The differential change in angle (f) was 6<f>„.

3.66 Determine the Dynamic Reactions. The dynamic reactions were based on the

equations :

XF = ma SM = ! a (3.186)
X X X XX X v '

XF = ma XM = 1 Q (3.187)
y y y yy y

XF = ma XM = f a . (3.188)z z z zz z

Bannoura based his dynamic analysis on the above equations to reach a basic format of

XF = ma = Qd (3.189)

and

XM = l a = T d. (3.190)

68

Where:

m — Mass of link

a — Acceleration of link

Qt — Angular acceleration of link

I — Mass Moment of Inertia Matrix

Qd — Inertial force reaction
g

T — Inertial moment reaction
g

Dynamic Reactions at Pin #0

The dynamic reactions were found at Pins #0 , # 1 , # 2 , and #3 .

Dynamic Reactions at Pin # 0 (See Figures 3.17 and 3.18)

r J 3C=R® +Q d +Q d +Qd +Q d
4x gOx g lx g2x g3x

Rd = -W - W - W -W +R 8 +Q d +Q d +Q d +Q d
Oy 0 1 2 3 4y gOy g ly g2y g3y

Rd = R 8 +Q d +Q d +Qd +Q d
Oz 4z gOz g lz g2z g3z

Md =(P + P sind) +P sind) + P sin<b)R 8 +M 8 +P *Qd +
Ox 01 12 1 23 2 34 3 4z 4* OgO gOx

(P + P s\a(f))Qd +
01 lg l 1 g lz

(P +P sin^ +P Bind))Qd +
01 12 2g 2 2 g 2 z

(P +P sin<0 +P sind + P sind)Qd +
01 12 M 23 2 3g3 3 g3z

T d +T d + T d + T d
gOx g lx g2x g3x

Md = —(P cosd> + P cosd) +P cos(f>)R 8 +M 8 —
Oy 12 1 23 2 34 3 4z 4y

P cosd) * Qd —(P cosd) + P cosd))Qd —
lg l 1 g lz 12 1 2 g 2 2 g 2z

(P cos d> + P cos d) +P cos (I))Qd + T d + T d +
12 r l 23 r 2 3g3 3 g3z gOy g ly

T d + T d
g2 y g 3 y

Md = - P cos<b *W - (P cosd) + P cosd))W -
Oz lg l T 1 1 12 2 2g 2 2 2

(P COB d) +P COS <f> +P COS <b)W +
12 1 23 2 3g3 3 3

(P cosd) + P cosd) +P cosd>)R 8 —
12 1 12 2 34 3 4y

(P + P sind) +P sin<b + P sin^)R 8 +M 8 —
01 12 1 23 2 34 3 4x 4z

(3.191)

(3.192)

(3.193)

(3.194)

(3.195)

P *Qd + P cosd *Qd - (P + P sind)Qd +
Oz gOx lg l 1 g ly 01 lg l 1 g lx

J J

(P cosd -fP cosd)Q —(P +P sind + P sind)Q +
1 2 r l 2 g2 2 g 2 y 0 1 1 2 1 2 g2 2 7 g2 x

(P cosd -fP cosd +P cosd)Qd —
12 1 23 2 3g3 3 g3y

(P +P sind +P sind + P sind)Qd +
01 12 1 23 2 3g3 3 g3x

T d + T d + T d + T d
gOz g lz g2z g3z

Dynamic Reactions at Pin # 1 (See Figures 3.17 and 3.19)

d 8 8 8 dR = F cosd —F cosd +R + F cosd +
lx d e 5 ab 4 2x d e 6

d d d
Q — F cosd + R

g lx a b 4 2x
, s s

R = F 8 sind —W —F sind +R +
ly de 5 1 ab 4 2 y

d d d dF sind + Q — F sind + R
d e 6 g ly a b 4 2y

, s <i d
R =R +Q + R

lz 2z g lz 2 z
, s s d

M = P sind *R +M + P sind *Q +
lx 1 2 1 2 Z 2 x lgl 1 glz

d d d
P sind *R + T +M

1 2 1 2 Z glx 2 x
, s s d

M = —P sind *R +M —P cosd *Q —
ly 12 1 2 z 2y lg l 1 g lz

d d d
P cosd *R + T + M

12 1 2 z g ly 2 y

Md = 0.0
lz

Dynamic Reactions at Pin # 2 (See Figures 3.17 and 3.20)

, s s d , d
R = —F cosd +R +Q —F cosd + R

2x de 5 3x g2x d e 5 3x
, s s d , d

R = —W +R —F sind +Q —F sind + R
2y 2 3y de 5 g2y de 5 3y
. s d d

R = R +Q + R
2z 3z g2z 3z
, s s d

M = P sind *R +M +P sind *Q +
2x 23 2 3z 3x 2g2 2 g2z

d d d
P sind *R + T +M

23 2 3z g2x 3x

(3.196)

(3.197)

(3.198)

(3.199)

(3.200)

(3.201)

(3.202)

(3.203)

(3.204)

(3.205)

(3.206)

70

j 8 8 d
M = —P c obd) *R +M +P coa d> * Q —

2y 23 2 3z 3y 2g2 2 g2z
d d d

P cobd> * R + T +M (3.207)
23 2 3z g2y 3y

Md = 0.0 (3.208)
2 z '

Dynamic Reactions At Pin # 3 (See Figures 3.17 and 3.21)

, a d
R = R +Q (3.209)

3x 4x g3x '
, 8 d

R = -W + R +Q (3.210)
3y 3 4y g3y
, s d

R = R +Q (3.211)
3z 4z g3z
, s s d d

M = P sindt *R +M +P amd> * Q + T (3.212)
3x 34 3 4z 4x 3g3 3 g3z g3x
, s s d d

M = - P coa<b *R +M - P coad) * Q + T (3.213)
3y 34 3 4z 4y 3g3 3 g3z g3y
, 8 8

M =P coa6 *R - P sin d> *R - P cosd> *W
3z 34 3 4y 34 3 4x 3g3 3 3

8 d
+M + P cosd) * Q —

4z 3g3 3 g3y
d d

P sin(f) * Q + T (3.214)
3g3 3 g3x g3z

3.67 Determine the Deforxnations. As in the static analysis, the dynamic analysis

considered Segments # 1 and # 2 to be slender flexible elastic beams. Four types of

deformation existed as a result of the loading, geometry, and material characteristics:

(1) Torsional twist about the x—axis

(2) Axial extension in the x direction.

(3) Deflection in the y direction

(4) Deflection in the z direction

Torsional twist and axial extension were based upon the following equations of Bannoura,

T c o s d) + T s i n (b x 2

e = e 1* 1 g l y ' (L x - 1)+
x l 1 1 — 5 ------

L J G
1 1 x 1

M c o s (j) + M d s i n 0
2 * 1 2 y l (x) (3.215)

L J G
1 1 x 1

71
2

T c o 8 d) + T s i n <b x
9 = 8 2 x 2 S 2 y 2 (L x — 2) +
x 2 2 2 o

L J G *
2 2 x 2

M c o s (j) +M ̂ 8 i n (b
3x 2 3y 1 (x) (3.216)

L J G 2

2 2 x 2

2

Q c o 8 ^ + Q s i n 6 x
u = S lx 1 V L x - 1 H

xl -- 1 l — 5 -----
L A E 1

1 1 1

R ^ c o a <f) + R ^ s i n ^
2x 1 2y 1 (x) (3.217)

L A E
1 1 1

2

Q c o s + Q s i n 6 x
u = s 2x 2 S 2 y 2 f L x _ 2)+

x2 -- 2 2 ~ ^ -----
L A E *

2 2 2

R c o s d) + R ^ B i n d)
3x 2 3 y 2 (x ^ (3.218)

L A E
2 2 2

Where:

— Axial extension for Segment # 1

1 1 ^ 2 — Axial extension for Segment # 2

— Torsional twist about the x axis for Segment # 1

2 — Torsional twist about the x axis for Segment #2

R ^. — Static force reaction at Pin # i in the j direction1 j IT J

M^. — Static moment reaction at Pin # i in the j direction

L — P which is the distance between Pins # 1 & i t 2.
1 12

L — P which is the distance between Pins # 2 & #3.
2 23

J — Polar moment of inertia,
i

G — Shear modulus of elasticity,
i

Xj — X distance along Segment # 1

Xg — X distance along Segment # 2

72

The function of the dynamic equations for torsional twist and axial extension were the same as

that for the static analysis. The dynamic torsional twist also produced a deformation along the

x axis. The change in length due to the torsional twist was found through the same algorithm

as the Btatic analysis. See figures 3.24 and 3.25.

6 = AB(1 — cos 0^.). (3.219)

The total deformation along the x axis was then

Total Deformation = 5 + u ..
XI

The deflections in the y and z directions were:

V.= q 1 y 1 [x4 -4L .x 3 -f6L2 x2l +
t l J i i i i j

2 4 E . I
1 zi

i y i _ Ĵ 2x3—5L.xf + 1 2L3x2 j

1 2 0 E . I L.
i z i 1

R t - * \ i •I 1 1) y V-1T „2 _ _L (l 1) z l „2

6 E I
i z i

\ 3L - x") +
i i i

2 E I
i z i

0 .= 9 1 X 1 ["4x3—12 L .x ? + 12L.X.1 + zi ------------- [i l i i ij
2 4 E . I

i z i

i y i |10x?-20L.x?+12L 3 x.
’ L 1 1 1 1 ! .

2 0 E . I L
i z i i

R 1 Md
R i . + \ i .(l l) y V R T . ^ _ ^ _ (l l) z i

6 E . I .
1 Z 1

(6 L x — 3x) -
" i i i

W .= q 'l Z i [x f—4L.x?+6L?x?l +
l L i i i i iJ

E I
i z i

2 4 E . I
1 y i

q °
1 2 1 j^2Xj-5L.xf+12L3x2j +

1 2 0 E . I L
i y i i

(3.220)

(3.221)

(3.222)

73

Where:

R f • ♦ ^
1 ' z l f3L x 2 — x 3) —-----------------v. i . ./

6 E I
i y i

U ^ y 1 x 2 (3.223)

2 E I
i y i

q
0yi= ~ 1 f4x?-12L.x?+12L?x.l +

_ L 1 1 j i i
2 4 E . I

1 y i
q °

1 * * 10x?-20L.x?+24L?x. +
--------------- l 1 l l i

1 2 0 E . I L .
1 y i i

R d
(i * 1) z ir6L x _ 3 x 2 j _

6 E . I 11 1
i y i

M • ' <) ■

1 y 1 x. (3.224)
E I 1

i y i

q° = 6 fT cobS — T sin6) (Z.MM
izi giy 1 glx 1 y 1

1

q° = 6 fT cos<b — T Bind)) (3 Wfil
2 z2 - y a g2 y Y 2 g2 * K ’

2
6 T

, 0 _ j ^ l z

2
1

q iyl= L i l - (3-227)
L 2

6 T
q° = g 2 z (3.228)

2 y 2 ,

L 2

2
Q c o s (j) — Q s i n ^ W

a = g l y 1 g l * 1 _ l coed> f3.229'l
lyl -----------------------1------------------------- * 1

1 1

Q c o s (j) — Q B i n d) W
q = g 2 y 2 S 2 X 2 —_____2 cos^ (3230)

2 ^ 2 L L 2

2 2

Where:

V. — Displacement of segment i in the y direction

0 ^ — Slope of displacement for segment i about the z axis

W. — Displacement of segment i in the z direction

0 . — Slope of displacement for segment i about the y axis

x. — Linear distance along the x axis where deflection calculations

are determined

q?„ — Distributed forces per segment i length due to inertial

torques in the j direction applied at the center of gravity

q.j. — Distributed forces per segment i length due to inertial

forces in the j direction applied at the center of gravity

L. — Distance on segment i from Pin # i to Pin # (i+ l)

E — Modulus of elasticity of segment i
i

I.j — Area Moment of Inertia about the i axis for segment j

m ! , . — Moment reaction in the local yi—axis.
(i+ l)y i

i M(i +i) y i = M (i +i)yBin^i+ M (i +Oxcos0 i (3,233)
R, , « — Force reaction in the local yi—axis.

(i+ l)y i J

R(i+I)y = R(i+i)yco8̂ r R(i+i)*sin«V (3,234)
The dynamic analysis could also be considered in a cyclical format. But, the dynamic

analysis was dependent upon the user’s dynamic input file, dynin.dat, which contained different

magnitudes of forces for the actuators. Therefore, based on a given pair of applied actuator

forces, the eight calculation steps were completed. The deformation analysis was completed

over the Segments # 1 and #2 . The Base, end—effector, Segment #3 , and Wing Segment were

considered to be rigid. The deformation was determined at incremental steps along the length

of both the segments. The first calculation was be at the lower pin, that is a t Pin # 1 for

Segment #1. The deformation would be determined at each interval until the upper pin

position was reached, Pin # 3 for Segment #2 . As the deformation analysis was completed for

Segment #2 , the analytical cycle would be completed.

76

CHAPTER 4

PROGRAM IMPLEMENTATON

4.1 Organization of Models

Two computer models have been written. The models were based on a purely static

analysis of the robot and on a dynamic analysis. As discussed in Section 3.5, the static loading

conditions assumed that the arm was in static equilibrium,

EF = 0 . 0 (4.1)

EM = 0.0 (4.2)

This model was called SMODEL, (Static Model). The second model analyzed the deflection

under dynamic loading conditions. The sum of the forces and moments were then equal to the

inertial forces and torques

El? = m a (4.3)

E ik = l a (4.4)

This model was called DMODEL, (Dynamic Model).

The routines written to accomplish the user interaction, kinematics, three-dimensional

graphics, static analysis, and dynamic analysis were basically the same for both models. The

main difference was in the global variable file. The variables which were global variables were

stored in common blocks. The common blocks were stored in a file called COMMON. The

dynamic file requires some variables which were not required by the static model. To keep

both models independent of each other, two common blocks were created. The common block

associated with the static model was named SCOMMON and the common block for the

77

dynamic model was named DCOMMON. Since the routines associated with the dynamic

variables would reference the dcommon block and the static variables would reference the

scommon block, two different versions of a subroutine had to be written. All versions

associated with the static model have filenames and subroutine names that were prefixed with

an "S" and all routines associated with the dynamic model had filenames and subroutine names

that were prefixed with a "D".

Subroutines were linked to their calling routine through the FORTRAN statement

$INCLUDE"subroutine.f"

This allowed the routines to be stored in their own files thereby decreasing the length of the

main program. The files were named after the subroutine. For example, the static version of

the routine 1NSCRN was stored in the file sinscm.f and the dynamic version was stored in the

file dinscrn.f.

The routines that were not similar were those associated directly with the static and

dynamic analysis. The routine STATIC was the control point for the static analysis and the

routine DYNAMIC was the control point for the dynamic analysis.

STATIC called all routines associated with the determination of the force and moment

reactions, angles of actuators, static deformations in the x, y, and z directions, kinematics,

graphic images, and user interaction. After the static deflections were found, the position

vectors of the deformed coordinates were homogeneously transformed through kinematic

equations. For this, STATIC called STFORM, (Static model — transformations). After the

points were kinematically transformed, the objects were ready to be drawn. The routine

SDRROB, (Static model — draw robot), was called. This routine simple called all the routines

required to draw each link. Now, the static analysis was complete and the image was drawn on

the screen. The next Btep was to allow the user to interact with the model. User interaction

was accepted through the subroutine SUSR, (static, model — user). Based on the type of user

interaction, the program control would return to STATIC where the entire process would take

place again. This continued until the user selected the Q key, to quit or stop the model.

78

The subroutine DYNAMIC followed a format similar to STATIC. The major difference

was that the analysis steps were encompassed in a Do—loop. The Do—loop was executed as

many times as there were entries in the dynamic input file. The dynamic input file, dynin.dat,

was created by the user. It contained actuator forces as functions of time. By defining the

actuator forces, the angles of Segments # 1 and # 2 were defined. Movement of Segments #1

and # 2 was then accomplished by changing the actuator forces.

The main programs were SMODEL and DMODEL. The purpose of the main programs

was to calculate forces, torques, deformations and other kinematic values of the robot and to

display on the this analytical information on the screen. The programs called initialization

subroutines and the analysis routines (see figures 4.1 and 4.2). The initializing responsibilities

were completed as follows:

(1) Initialize the screen

(2) Initialize the variables

(3) Initialize the user input devices

by the routine calls

CALLINSCRN

CALL INVAR

CALL INUSR

The last subroutine called was the deflection analysis routine, STATIC or DYNAMIC,

CALL (STATIC or DYNAMIC).

Program control stayed within the analysis routine until the user either stopped the model or in

the case of the dynamic analysis, all the actuator input forces had been analyzed.

As the routines are explained in depth, the main name, invar, inscm, etc. will be

referenced. Any major differences between the static and dynamic models will be cited. To

reference the static routine, look under the routine name prefixed by an "S". To reference the

dynamic rooutine, look under the routine name prefixed by a "D".

SCOMMON

SMDDEL

■STATIC

SI.NSCRN

SINVAR

SINUSR

R E F E R E N C E

S U B R O U T IN E CALL

FIGURE 4.1

ORGANIZATION OF STATIC MODEL PROGRAM

DCOMMON

DMODEL

D IN U S R

D IN V A R

DYNAMIC

D1NSCRN

R E F E R E N C E

SUBR O U TIN E CA LL

FIGURE 4.2

ORGANIZATION OF DYNAMIC MODEL PROGRAM

81

4.2 USER INTERACTION

The user could interact with the model through two basic methods. The first method

was through the input parameter files. There were two input parameter files, robots.dat and

dynin.dat, Sections 5.3 and 5.4. The first input file was the robot parameter file. Both models

referenced this input file. The second input file was associated with the dynamic model. The

user created an input Hie that contained a list of forces for the two actuators. By varying the

forces in the actuators the angles of the segments were altered. The subroutine, invar, initialize

variables, acted as a control point for all routines associated with reading the parameter file

and initializing values of variables. The second method of user interaction was through the

hardware.

The robot parameter file allowed the user the greatest control over the program input.

The parameter file, robots.dat contained a complete description of each link including

dimensions and material characteristics as well as initial condition parameters. The input

parameter file could be edited by any text editor. On the IRIS, there were two editors, VI, a

screen editor and "ed", a line editor. Both the dynamic and static models referenced the file,

robots.dat.

The first routine called by invar was pread, (parameter read), (see figure 4.3). pread was

responsible for opening the input parameter file, robots.dat and reading all the values from that

file. The file, robots.dat followed an outline type format

A.

1 .

a.

b.

2.

a.

b..

B.

ROBOTS.DA

S I N V A R

P R E A D

SDEFIN1

S D E F I N 2

R E F E R E N C E

SUBROUTINE CALL

FIGURE 4.3

ORGANIZATION OF THE ROUTINE SINVAR

83

The outline format controlled how the values were read in and stored, pread looked at the first

six characters of each line. Values only appeared on lines which were prefaced by a lowercase

letter. The lines prefaced by uppercase and numeric lines were descriptive lines telling what

link and what attribute of that link were being described. To store the values,

two-dimensional arrays were used.

Based on the first two characters, the value was stored in either the array A or B. All

information under the heading "A 11 was stored in the array A and all information under "B"

was stored in array B. If a third section of the input parameter file was to be added, an array,

’C’, would be required to be defined. By storing the values in arrays at this point, the routine

pread, could be used by both the static model as well as the dynamic because none of the

values were stored as specific global variables. This meant that neither the common block file

of the static nor the dynamic model was required for reference. Also since the values were

stored in arrays at this point, it was easier to expand the program, if so desired. The

dimensions of the arrayB were equal to or greater than the number of numeric entries under the

uppercase letter and by the largest amount of smaller case letters under a numeric heading.

For example, under A, there were eight difference subheadings and the greatest number

lowercase letters was twenty under (2.), Segment # 1 and also (3.), Segment #2. So, array A

was dimensioned to at least, A(8,20). By declaring

REAL A(40,40)

there was room for expansion. It was assumed that logically, the first group of variables would

all be stored in the A array.

The next two BpaceB of any line in the parameter file determined which row of the array

the variable was stored in and the last two spaces determined which column. A formatted read

statement read each line of the parameter file. The following was the FORTRAN format

statement and read statement:

101 FORMAT(3(A2),58X,F12.2)

READ(1,101)CHAPTER, TITLE, SUBTITLE, VALUE

84

Based on the given line,

b. LENGTH 178

the read statement would have assigned the following values to the variables

CHAPTER = 2 spaces

TITLE = 2 spaces

SUBTITLE = b.

VALUE = 1.78.

The value was stored according to the CHAPTER, TITLE, AND SUBTITLE.

To flag the end of the parameter file, two asteriks appeared in the first two spaces.

When CHAPTER equalled the input file was closed and the control of the program

returned to invar.

The next Btep was to transfer the values of the arrays into understandable variable

names. The routine definl (Define, part 1) took the information in the arrays A and B and

placed the valueB into named variables such as SILENG and BASEDI. The values in the

arrays were loaded by row into the proper variables:

BASEDI = A (ll,l)

BASEHE = A(l,2)

PINIX =A(1,3)

PIN1Y = A(l,4)

BASMAS = A(l,5)

BCMASX = A (l,6)

BCMASY = A(l,7), etc

Since the same parameter file was used for both the static and dynamic models, if there

existed a value in the parameter file which was not required for the static model, the routine

sdefinl ignored the value. If a variables was to be added to the parameter file, the variable

name would need to be declared in the common block and then the variable would need to be

added in the proper location of the defml routine.

85

The routine dinvar also called the routine DYREAD (dynamic read), (see figure 4.4) to

read all the dynamic input from the dynamic input file dynm.dat. The dynamic input file,

dynin.dat (see figure 4.4) allowed the user to alter the angles of the segments by changing the

forces in the actuators. The user could input a maximum of 998 pairs of forces for actuators

AB and DE. This routine was called by the routine dinvar after the routine pread had been

called, dyiead opened the file dynin.dat and read each line through the format and read

statements

101 F0RMAT(1X,13,2(2X, F13.2))

READ(12,101) I,FD1, FD2.

The routine first processed the contents of the variable 1 represetning the time increment. As

long as I was not equal to 999, the values FD1 and FD2 were stored in the two—dimmensional

array FACTI. The first row of FACTI stored the forces for actuator AB and the second was

for storing for the forces of actuator DE. The variable NFACT stored the number of pairs of

actuator forces. During the dynamic analysis, the array containing the actuator forces was

referenced. A dynamic analysis was completed for each pair of actuator forces.

Another level of user interaction ocurred through the subroutines iniiar and usr. The

first subroutine, iniiar initialized all input hardware. This involved changing the status of a

given device so that if that device was called upon a signal would be added to the events

queue. This action was completed by using the IRIS command, QDEVIC. Each device, or

variable name had to be sent to the subroutine so that the input device status would be

altered.

CALL QDEVIC(SWO)

CALL QDEVIC(SWl), etc.

If additional input devices were desired, the devices would need to be initialized by simply

adding the device name to this file.

P R E A D

D D E F IN l

DINVAR

R E F E R E N C E

SUBRO U TIN E CA LL

FIGURE 4.4

ORGANIZATION OF THE ROUTINE DINVAR

87

The second routine written for user interaction was usr. This routine carried out tin

action based on the user interaction device. When the user selected a dial, key or button, a

value was sent to the queue. The IRIS function QREAD returned the value that was on the

top of the stack. In the following line

DEV = QREAD(VAL)

the variable DEV was the value of the input device which had just been selected by the user.

Based on the value of DEV, an action was completed. This action could have been anything

from rotating the world coordinates through the mouse to writing the deflections of Pin # 2 to

an output file. The mouse buttons were responsible for rotating the world, or the user’s

perspective. The dials were responsible for rotating each element of the arm, and the switches

were responsible for allowing information to be written to either the screen or an output file.

Each model wrote to a specific output file. For the static model, the output file was aout.dat,

and for the dynamic, the file was dout.dat. Although the dialB allowed the user to manipulate

the arm by moving the segments, the dynamic model did not allow the user to move Segments

1 or # 2 through the dials. This was not allowed because the dynamic model relied on the

actuator forces in the dynamic input file to alter the angles of segments # 1 and # 2 . The user

interaction capabilities were as follows:

DIAL # 1 — Rotate Base Positively

DIAL # 2 — Rotate Base Negatively

DIAL # 3 — Rotate Segment #1 Positively

DIAL # 4 — Rotate Segment # 1 Negatively

DIAL # 5 — Rotate Segment # 2 Positively

DIAL # 6 — Rotate Segment # 2 Negatively

DIAL # 7 — Rotate Segment # 3 Positively

DIAL # 8 — Rotate Segment # 3 Negatively

Mouse #1 — Rotate World about X—Axis

Mouse # 2 — Rotate World about Y—Axis

88

Mouse # 3 — Rotate World about Z—Axis

Switch # 1 — Angle of Actuator AB

Switch # 2 — Static Forces and Moments

Switch # 3 — Angular Velocities and Accelerations

of Segment # 1

Switch # 4 — Segment #1: Deflection and Slope

Switch # 5 — Angle of Base

Switch # 6 — Angle of Actuator DE

Switch # 7 — Dynamic Forces and Moments

Switch # 8 — Translational Velocity and Acceleration

of Segment # 1

Switch # 9 — Segment # 2 : Deflection and Slope

Switch #10 — Static Forces and Moments written

to an output file

Switch #11 — Angle of Segment #1

Switch #12 — Angle of Wing Segment

Switch #13 — Inertial Forces and Torques

Switch #14 — Angular Velocity and Acceleration

of Segment # 2

Switch #15 — Deflection of Pin # 2

Switch #16 — All angles written to an output file

Switch #17 — Angle of Segment # 2

Switch #18 — Angle of World View

Switch #19 — Force of Actuator AB

Switch #20 — Translational Velocity and Acceleration

of Segment # 2

Switch #21 — Deflection of Pin # 3

Switch #2 2 — Velocities and Accelerations of Segment #1

written to an output file

Switch #23 — Angle of Segment # 3

Switch #24 — Differential change in the angles of

the actuators

Switch # 25 — Force of Actuator DE

Switch #26 — Segment #1 : Deflection and Slope

written to an output file

Switch #27 — Segment #2: Deflection and Slope

written to an output file

Switch #28 — Velocities and Accelerations of Segment # 2

written to an output file

Switch #29 — Increment Level Number of Segment #1

Switch #30 — Decrement Level Number of Segment #1

Switch #31 — Increment Level Number of Segment # 2

Switch #32 — Decrement Level Number of Segment # 2

Numeric Pad # 0 — Represents Pin # 0

Numeric Pad # 1 — Represents Pin # 1

Numeric Pad # 2 — Represents Pin # 2

Numeric Pad # 3 — Represents Pin # 3

Numeric Pad # 4 — Represents Pin # 4 , or Load

As an example of user interaction, say the user wanted to write the static forces and

moments to the output file, then, he or she would select Bwitch #10. Then, usr would write

the reactions at Pins # 0 , 1, 2, 3, and the load to the output file. If the user chose to write the

reactions to the screen, the user would then need specify which pin, # 0, 1, 2, 3, or 4 by

90

pressing the 0, 1, 2, 3, or 4 of the numeric key pad on the keyboard. The selection of a pin or

joint was required because of the limited space in the text window of the screen.

The static and dynamic analysis was completed for Segments # 1 and # 2 at each level.

Switches #29 through #32 allowed the user to increment or decrement counters of the level

numbers for Segments # 1 and # 2 . Based on the limited space in the text window, if the UBer

wanted to display information regarding a specific level, such as velocity, acceleration or

deformation, the counter for that link would be referenced and then the information at the

level number would be written to the screen.

If the user did not wish to continue with the model, by selecting the Q key, the model

was terminated. Since the dynamic model does not allow the user to change the angles through

the dial box, the user could continue the dynamic analysis by selecting the N key.

91

4.3 Three Dimensional Graphics

The routine to initialize the graphic capabilities was inscm (intialize screen). As required

by the IRIS, the first subroutine called was the IRIS subroutine GBEGIN. Next, the graphics

and text windows were defined. The text window was placed on the bottom of the screen.

The dimensions of the text window were 1024 pixels by 201 pixels, a height of twelve lines.

The graphics window was defined to occupy the upper 1024 x 766 pixels of the workstation

screen. The calk to define the screens were

CALL PREFPO(0,1023,201,767)

the graphics screen and

CALL TEXTPO(0,1023,0,200)

for the graphics window. Full color capabilities were utilizied on the graphics window. The

colors for the text window were chosen to be a blue background with the text written in white.

CALL PAGECO(BLUE)

CALL TEXTCO(WHITE)

For asthetic reasons, the cursor symbol of the mouse, a red arrow that is usually placed

on the screen, was filtered off by the command

CALL CURSOF.

This prevented the arrow from being drawn on the screen.

The final action of the routine inscra was to scale the screen. The limits of the x, y, and

z axes were selected to be

-3 .5 < X < 3.5

-0.75 < Y < 5.0

-3 .5 < Z < 3.5.

By calling the routine ORTHO, the screen was scaled

CALL ORTHO(-3.5,3.5,-0.75,5.0,-3.5,3.5).

92

This roughly represented the actual workspace in meters, defined by the working ARO elastic

robot.

At this point, all graphics initializing tasks have been completed. Now, the coordinates

of the vertices of each segment had be defined. The coordinates of the links could be defined

based on the parameters specified by the user in the input parameter file, robots.dat and the

shapes the links would follow. A reference group of coordinates based on the local coordinate

system of each segment was determined for each link. This reference group of coordinates

would then be deformed and transformed, that is, all analyses would be based upon the initial

reference coordinates.

Three-dimensional arrays acted as the medium of storage for all link coordinates and

two-dimensional arrays stored all the pin coordinates. The arrays are:

BS = BaSe

BSDT = BaSe Deformed and Transformed

PB = Pins on Base

PBDT = Pins on Base Deformed and Transformed

PW = Pins on Wing segment

PWD = Pins on Wing segment Deformed

PWDT = Pins on Wing segment Deformed and Transformed

P I = Pins on Segment # 1

P1D = Pins on Segment # 1 Deformed

P1DT = Pins on Segment #1 Deformed and Transformed

P2 = Pins on Segment # 2

P2D = Pins on Segment # 2 Deformed

P2DT = Pins on Segment # 2 Deformed and Transformed

SI = Segment # 1

SID = Segment # 1 Deformed

93

S1DT = Segment # 1 Deformed and Transformed

52 = Segment #2

S2D = Segment # 2 Deformed

S2DT = Segment # 2 Deformed and Transformed

53 = Segment # 3

S3D = Segment # 3 Deformed

S3DT = Segment # 3 Deformed and Transformed

WING = Wing segment

WINGD = Wing segment Deformed

WINGDT = Wing segment Deformed and Transformed

The routine which initialized and determined all initial coordinates was defin2, defin variables,

part 2 .

4.31 Define the Points of the Base. The local frame of reference for the base was

located at the bottom of the base and at the center (see figure 4.5) for a graphical explanation

of the variables of the base. The base was considered to be a circular cylindrical shape, but the

IRIS did not allow the user to draw a circle in the x—z plane. To compensate, the base could

be drawn in a polygonal cylindrical shape of n sides. By increasing the value of n, the cylinder

would take on a more circular shape.

The base was drawn with eight sides, an octagonal cylinder. The required a total of

sixteen vertices. The first eight vertices were located at the bottom of the cylinder and the

second eight were at the top of the cylinder. The base was oriented in the x and z plane is

such a manner that vertices 1, 3, 5, and 7 were located on either the x or z axis. Then, vertices

2, 4, 6 , and 8 were located at 45° angles from the x— and z—axes, (see figure 4.6).

The variables COORD 1 and C00RD2 were used to determine the x and z cooridinates

of the eight vertices.

COORD1 = base radius = BASEDI/2 (4.5)

COORD2 = COORD l*COS(45) (4.6)

B A S E D I

P IN A X

F R D N T

FIGURE 4.5

VARIABLES OF THE BASE

B
A

S
E

H
E

95

(3)

(4)

45 (1)(5)

45

(8)<6 >

s£—CDQRD2—»-

 C0DRD1-
(7)

Z
(> - DENDTES VERTEX NUMBER

FIGURE 4.6

VERTICES OF THE BASE

96

From figure 4.6 it was easy to see that vertices 1, 3, 5, and 7 laid directly upon either the x—

or z—axes. Therefore, the other coordinate, either the x or z coordinate, was equalled to zero.

The y components of the coordinats were either 0.0 or BASEHE.

(1) COORD1 0.0

(3) 0.0 —COORD1

(5) —COORD1 0.0

(7) COORD 1 0.0.

The coordinates of vertices 2, 4, 6 , and 8 were positive/negative combinations of COORD2:

___________X____________ Z _

(2) COORD2 —COORD2

(4) —COORD2 —COORD2

(6) —COORD2 COORD2

(8) COORD2 COORD2.

The bottom of the base rested at the origin, y = 0.0. The second eight vertices resided

at y = BASEHE.

The coorindate information was stored in the array BS which was declared as

REAL BS(4,8,100)

The four rows represented the x—coordinate, y—cooridinate, z—Coordinate, and Scaling factor

of the position vectors, respectively. Each of the eight columns represented a different position

vector, that is, each column stored the cooridnate of a different vertex. The third dimension

was used to allow each level of the base to be stored. Where Y = 0.0 was level # 1 and where

Y = BASEHE was level #2 . If the base was not considered to be rigid, then the user would

have been able to divide the base into subsections and therefore, there would be a variable

number of levels. The value of BS(3,3,1) corresponded to the z—coordinate of the third vertex

where the height y = 0.0, or level # 1 . The storing of the cooridnates of the vertices was

completed through a Do—Loop. The Do—loop was executed twice. When 1 = 1, the bottom

97

coordinates were stored and when 1 = 2, the top coordinates were stored.

DO 10 I = 1,2

Store the ’X* coordinates of each vertex in the base array.

BS(l,l,I)=COORDl

BS(1,5,I)=—COORD1

BS(l,2,I)=COORD2

BS(1,4,I)=—COORD2

BS(1,6,I)=—COORD2

BS(l,8,I)=COORD2

Store the V coordinate of each vertex in the base array.

BS(3,3,I)=—COORD1

BS(3,7,I)=COORDl

BS(3,2,I)=—COORD2

BS(3,4,I)=—COORD2

BS(3,6,I)=COORD2

BS(3,8,I)=COORD2

Store the ’y’ coordinate of each vertex in the base array. The ’y’ coordinate is a

function of the number of levelB.

DO 11 11=1,8

BS(2,II,I)=(BASEHE)*(I—1)

The scaling factor was also initialized to equal one.

BS(4,II,I)=1.0

11 CONTINUE

10 CONTINUE

Define2 also placed the coorindates of the pions in their proper arrays. The array PB holds all

the coordinates of pins placed on the Base. The array was a (4x4) allowing at this time a total

of four pointB to be placed on the Base at this time. If additional pins were to be added, the

98

column size of the array would just be increased. The four rows represented the three

components, x, y, and z and the scaling factor of the position vector. The columns are assigned

the pins in the following order:

Column # 1 = Pin #1

Column # 2 = Pin A

The coordinates for the pins were stored as follows:

PB(1,1)=0.0

PB(2,1)=PIN1Y

PB(3,1)=0.0

PB(4,1)=1.0

PB(1,2)=PINAX

PB(2,2)=PINAY

PB(4,2)=1.0

Pins were not always placed at the center of a link. On a circular link, there was a

requirement of an adjustment for the z—coordinate of the pin. The z—coordinate of the pin

was a function of the x—coordinate. Pin A was not placed at the center. Two functions were

required, one for the domain (0 < x < COORD2) and one for the domain (COORD2 < x <

COORD1), See Figure 4.7. For (0 < x < COORD2) the slope was

Ml=((COORD2—COORDl)/COORD2). (4.7)

For (COORD2 < x < COORD1) the slope was

M2=(—COORD2/(COORD 1—COORD2)). (4.8)

Based on the linear equation of a line,

zx(x) = n ^ x + b x (4.9)

and

z2(x) = n y c + b2> (4.10)

To solve for and b j the boundary conditions were (0,COORD1) and

respectively. Then,

bx = COORD1

and

b„ = —m *COORDl.
P r o p o s e d P in L o c a t i o n

< 1>

(8)

: £ - C 0 D R D 2 - ~

— --------- C 0 0 R D 1 -
<7>

D E N O T E S V E R T E X NUMBER

FIGURE 4.7

Z—COORDINATES OF THE PINS OF THE BASE

Therefore, the functions were

Zj(x) = m^x + COORD1

and

Zj(x) = n ^ x — COORD1).

(COORD1,0),

(4.11)

(4.12)

(4.13)

(4.14)

100

The FORTRAN code was

IF(PB(1,2).GE.O.O.AND.PB(1,2).LE.COORD2) THEN

PB(3,2)=M1*PB(1,2)+C00RD1

ELSE

PB(3,2)=M2*(PB(1,2)—COORD1)

ENDIF.

4.32 Define the Points of Segment #1 . The next section to be defined was Segment #1

and the pins associated with Segment # 1 . Everything was described with respect to Segment

l ’s local coordinate frame (see figure 4.8). The local coordinate frame was described through

the variables S1PIX and S1P1Y. The coordinate frame was located where Pin # 1 was on

Segment #1 . The pin coordinates were stored in the array P I where

Column # 1 = Pin # 2

Column # 2 = Pin B

Column # 3 = Pin D.

All measurements on Segment #1 had to be with respect to the local frame of reference. The

measurement of PIN2X was measured from the left most point of the segment. This was not a

correct coordinate if the reference point was the location of Pin #1 . Therefore, to compensate

for the location of Pin #1 , and the local reference frame, the cooridnates were defined as

follows:

P1(1,1)=PIN2X—S1P1X

P1(2,1)=PIN2Y—S1P1Y

Pl(3,l)=0.0

Pl(4,l)=1.0

P1D(4,1)=1.0

P1DT(4,1)=1.0

P1(1,2)=PINBX—S1P1X

101

z
S1P1X-

Y

— S1THIC —

TDP

Y

S1CMAX ■
— PINBX
 PINDX

PIN2X —
- S1LENG

FRONT

FIGURE 4.8

VARIABLES OF SEGMENT # 1

102

P1(2,2)=PINBY—S1P1Y

Pl(3,2)=SlTHIC/2

Pl(4,2)=1.0

P1D(4,2)=1.0

P1DT(4,2)=1.0

P1(1,3)=PINDX—S1P1X

P1(2,3)=PINDY—S1P1Y

Pl(3,3)=SlTHIC/2

Pl(4,3)=1.0

P1D(4,2)=1.0

P1DT(4,2)=1.0

Next, the cooridnate of the vertices were determined. The x—axis was defined as running

the length of the segment along the centerline. This segments was considered to be a square

hollow cylinder. The y— and z—axes bisected the width and height respectively (see figure 4.9).

The number of total vertices was a function of the number of subsections the user had defined,

S1DIVN. The user could subdivide segments # 1 and # 2 into a maximum of 99 subsections.

ThiB allowed the deflection analysis to be completed at each subsection line or level. Each

subsection could be though of as a rectangular parallelepiped (see figure 3.14). The vertices to

draw the first subsection were the four vertices of level # 1 and the four vertices of level #2.

Similarly, the vertices requried to describe the second rectangle subsection were the vertices of

level # 2 and the vertices at level #3 . So, if the user defined S1DIVN number of subsections,

there was S1DIVN+1 or

S1J=S1DIVN+1

number of levels and a total of (S1DIVN+1)*4 number of vertices to describe the segment (see

figure 4.10). The width and height were constant throughout the length of the beam. The

103

<2> CD

- Z

(3)

OJ

S*THIC (4)

() - DENOTES VERTEX NUMBER

FIGURE 4.9

VERTICES OF SEGMENTS # 1 , # 2 , AND #3

104

length in the x—direction though, was a function of the level number. By using a Do—loop, the

coordinates of each level were determined. The loop was executed as many times as the

number of levels therefore, each interation addressed a specific level. The length of the given

level was a function of the iteration number. The scaling factor was also defined to be equal to

one.

DO 100 1=1,S1J

Determine the x—coordinate and the scaling factor.

DO 101 J= l,4

S1(1,J,I)=(S1LBNG/S1DIVN)*(I—1)—S1P1X

S1(4,J,I)=1.0

S1D(4,J,I)=1.0

S1DT(4,J,I)=1.0

101 CONTINUE

Determine the y—coordinates.

S l(2,l,I)=SlTEIC /2

Sl(2,2,I)=SlTHIC/2

S1(2,3,I)=—S1THIC/2

S1(2,4,I)=—S1THIC/2

Determine the z — coordinates

Sl(3,l,I)=SlTH IC/2

S1(3,2,I)=—S1THIC/2

S1(3,3,I)=—S1THIC/2

S 1(3,4,1)=S 1THIC/2

100 CONTINUE

SUBSECTIDNS

S 2 S 3 S 4 S 5

LI L2 L 3 L 5L4 L6

L E V E L S

FIGURE 4.10

SUBSECTIONS AND LEVELS OF A SEGMENT

106

4.33 Define the Points of Segment # 2 . Segment # 2 followed the same general pattern

as #1 . The Wing and beam segments of Segment # 2 (see figure 4.11), were treated sperately.

The beam segment was also divided into subsections as defined by the user. The local frame of

reference was orented in the same manner (see figure 4.12). Only one pin resided on Segment

#2. The coordinates were stored in the array P2, Column #1 .

P2(l, 1)=PIN3X—S2P2X

P2(2,1)=PIN3Y—S2P2Y

P2(3,l)=0.0

P2(4,l)=1.0

P2D(4,1)=1.0

P2DT(4,1)=1.0

The total number of subsections was stored in S2D1VN and the total number of levels was then

S2J=S2DIVN+1.

Next, the coordinates were defined.

DO 200 1=1,S2J

The x—direction coordinates and scaling factors were determined.

DO 201 J= l,4

S2(1,J,I)=(S2LENG/S2DIVN)*(I—1)—S2P2X

S2(4,J,I)=1.0

S2D(4,J,I)=1.0

S2DT(4,J,I)=1.0

201 CONTINUE

The y — coordinates were determined.

S2(2,l,I)=S2THIC/2

S2(2,2,I)=S2THIC/2

S2(2,3,I)=—S2THIC/2

107

GAMMA

WING

BEAM

FIGURE 4.11

WING AND BEAM COMPONENTS OF SEGMENT # 2

108

-S2THIC-

TDP

GAMMA

P I N E.
P I N # 3N # 2

P I N E X

W LENG.

■S2CMAX
P I N 3 X

FRDNT

FIGURE 4.12

VARIABLES OF SEGMENT # 2

109

S2(2,4,I)=—S2THIC/2

S2(3,4,I)=S2THIC/2

200 CONTINUE

4.34 Define the Points of the Wing Segment and Segment # 3 . The Wing segment and

Segment # 3 were based on the same shape as Segments # 1 and #2 , but, they were considered

to be rigid and therefore were neither subdivided nor analyized. Since neither of these

segments could be divided, each had a total number of levels equal to two.

The Wing Segment was the same thickness as Segment # 2 . The Pin E which connected

the top of actuator DE to the Wing resided on the Wing (see figure 4.12). The coordinates for

this pin were stored in the array PW in column #1.

PW(1,1)=PINEX

PW(2,1)=PINEY

PW(3,1)=0.0

PW(4,1)=1.0

PWD(4,1)=1.0

PWDT(4,1)=1.0

The dimensions of the vertices of the Wing Segment were defined as follows:

DO 290 1=1,2

The y coordinates were

WING(2,l,I)=S2THIC/2

WING(2,2,I)=S2THIC/2

WING(2,3,I)=—S2THIC/2

WING(2,4,I)=—S2THIC/2

The z coordinates were

WING(3,l,I)=S2THIC/2

WING(3,2,I)=—S2THIC/2

WING(3,3,I)=—S2THIC/2

WING(3,4,I)=S2THIC/2

The x coordinates and scaling factors were

DO 291 J= l,4

WING(1,J,I)=(I—1)*WLENG

WING(4,J,I)=1.0

WINGD(4,J,I)=1.0

WINGDT(4,J,I)=1.0

291 CONTINUE

290 CONTINUE

Segment # 3 did not contain any actuator pins. The only pin lcoation which resided on

Segment # 3 was the location of Pin # 3 which connected the end—effector to Segment #2 .

This location was described for Segment # 3 through the variables S3P3X and S3P3Y (see

figure 4.13). The only coordinates required then for the segment were the eight vertex

coordinates.

DO 300 1=1,2

The x—direction coordinates and scaling factor were

DO 301 J= l,4

S3(1,J,I)=S3LENG*(I—1)—S3P3X

S3(4,J,I)=1.0

S3D(4,J,I)=1.0

S3DT(4,J,I)=1.0

301 CONTINUE

I l l

Y

LDAD

PIN #3

S3CMAX
S3P3X S3LENG

FRDNT

FIGURE 4.13

VARIABLES OF SEGMENT # 3

The y — coordinates were

S3(2,l,I)=S3THIC/2

S3(2,2,I)=S3THIC/2

S3(2,3,I)=—S3THIC/2

S3(2,4,I)=—S3THIC/2

The z — direction coordinates were

S3(3,l,I)=S3THIC/2

S3(3,2,I)=—S3THIC/2

S3(3,3,I)=—S3THIC/2

S3(3,4,I)=S3THIC/2

300 CONTINUE

4-35 Define the Length and Angles of the Hydraulic Actuators. The angles and lengths

of actuators AB and DE had to be initially determined. Both were functions of the pin

locations and <f)̂ , (j) ,̂ (f) ,̂ and <f)̂ . First, the length of actuator AB and <f)̂ were found (see

figure 3.22).

BETA=1.5706+ANG1CNT

HI A1=PIN 1Y-PINAY

H1B1=PINBX—S1P1X

H1D1=H1A1+H1B1+SIN(ANG1CNT)

H1E1=H1B1*C0S(ANG1CNT)

H1LENG=SQRT(H1D1**2+H1E1**2)

ANG4CNT=ASIN(H1D1/H1LENG)

The length of actuator DE and the magnitude of were determined (see figure 3.23).
0

KAPPA=1.5706—ANG1CNT

ALPHA=6.2831—ANG6CNT—KAPPA

H2A2=PINEX

H2B2=PIN2X—PINDX

H2C22=H2A2**2+H2B2**2+2*H2A2*H2B2*COS(KAPPA)

H2LENG=SQRT(H2C22)

SIGMA=ACOS((H2A2**2—H2B2**2—H2C22)/(—2*H2B2*H2LENG))

ANG5CNT=SIGMA+ANG 1CNT

4.36 Transform the Coordinates. After the links had all been defined, the deflection

analysis was initiated. When the magnitude of deflection was calculated, the reference

coordinates fo the segments were adjust. The sum was the deformed coordinates of the

segments.

Deformed Reference Deformed= +
C oord inates Coordinates M ag n itu d es

The deformed coordinates were stored in the arays SID, S2D, WINGD, and S3D. By storing

the deformed coordinates in the above mentioned arrays, the original coordinates were

preserved. This was required because a point of reference was required.

After the deflection analysis was completed, the coordinates were transformed. The

input to the transformation routine, TFORM was the deformed cooridnates. The output was

the coordinates which were deformed and transformed. These coordinates were stored in the

arrays BSDT, S1DT, S2DT, WINGDT, and S3DT. Now, the links were ready to be drawn on

the screen.

4.37 Create the Graphical Output. The routine DRROB, draw robot, controlled all the

drawing routines. The first routine called was RAXIS, reference axis. This routine was the

same for both models. It first cleared the screen using the color black by calling the IRIS

command

CALL COLOR(BLACK)

CALL CLEAR.

Next, using the IRIS commands MOVE and DRAW, a three-dimensional reference axis system

was drawn. The color white was used to draw the axis system.

CALL COLOR(WHITE)

114

The axis was drawn at the three-dimensional coordinates (2.0, 2.0, 2.0). Each axis was 0.2 in

length magnitude.

CALL MOVE(2.0, 0.0, 2.0)

CALL DRAW(2.2, 0.0, 2.0)

CALL MOVE(2.0, 0.0, 2.0)

CALL DRAW(2.0, 0.2, 2.0)

CALL MOVE(2.0, 0.0, 2.0)

CALL DRAW(2.0, 0.0, 2.2)

Each axis was labeled with the appropriate letter, X, Y, or Z.

CALL CMOV(2.2, 0.0, 2.0)

CALL CHARST('X>, 1)

CALL CMOV(2.0, 0.2, 2.0)

CALL CHARST(’Y’, 1)

CALL CMOV(2.0, 0.0, 2.2)

CALL CHARST(’Z', 1)

The drawing of each link was a three part process. First a white outline of where the

undeformed segment would lay was drawn. Next, the deformed segment was drawn in two

parts. First, a solid filled deformed object was drawn. Then, to differentiate between the sides,

a wireframe was overlayed on the deformed solid object. The links were drawn in the following

order:

Base

Segment # 1

Segment # 2

Wing Segment

Segment # 3

Pins

Actuators.

115

4.38 Draw the Base. Graphical The base was drawn as an octagonal cylinder. The

solid shape was drawn by the routine DRBS, draw base, solid. Eight rectangular panels, the

sides, were drawn, the, the bottom and top octagon shaped panels were drawn. The IRIS

subroutine POLF, polygon filled, was used. The routine required the number of vertices, n,

defining the polygon, and the varible name of a (3,n) array storing the coorindates of the

vertices. To draw the base, two arrays were required:

REAL POLYOC(3,8), POLYSQ(3,4).

The first array, POLYOC (polygon — octagon) was used to draw the top and bottom. The

second array, POLYSQ (polygon — square), was used to draw the rectangular side panels. The

solid base was drawn in the color magental.

CALL COLOR(MAGENTA)

Do—Loops 12 and 13 drew the side panels 1 through 7. A panel was drawn by

referencing the same vertices of the bottom level as in the top. For example, side panel #1

consisted of vertices # 1 and # 2 of levels # 1 and #2 . Side panel # 2 consisted of vertices # 2

and #3 of levels # 1 and # 2 .

Panel V ertices Required

1 1 & 2

2 2 & 3

3 3 & 4

4 4 & 5

5 5 & 6

6 6 & 7

7 7 & 8

8 8 & 1

Do—loop 13 stored the coordinate information of the four vertices by incrementing the row

index.

116

DO 12 J = 1,7

DO 13 K = 1,3

POLYSQ(K,l) = BSDT(K,J,1)

POLYSQ(K,2) = BSDT(K,J,2)

POLYSQ(K,3) = BSDT(K,(J+1),2)

POLYSQ(K,4) = BSDT(K,(J+1),1)

13 CONTINUE

After all the coordinates have been stored in POLYSQ, the solid polygon was drawn.

CALL POLF(4,POLYSQ)

Do—loop 12 incremented the vertices so that panels one through seven could be drawn.

12 CONTINUE

Next, the last panel, 8, was drawn

DO 14 K =l,3

POLYSQ(K,l) = BSDT(K,8,1)

POLYSQ(K,2) = BSDT(K,8,2)

POLYSQ(K,3) = BSDT(K,1,2)

POLYSQ(K,4) = BSDT(K,1,1)

14 CONTINUE

CALL POLF(4,POLYSQ)

Last, the top and bottom panels were drawn. Do—loop 16 stored the coordinates of the

vertices. Then, the shape was drawn. Do—loop 15 controlled which level was drawn. Since

only the top and bottom were required to be drawn, the loop was only executed twice. When

1 = 1 the bottom was drawn and when 1 = 2 the to was drawn.

DO 15 1=1,2

DO 16 J= l,3

POLYOC(J.l) = BSDT(J,1,I)

POLYOC(J,2) = BSDT(J,2,I)

117

P0LY0C(J,3) = BSDT(J,3,I)

P0LY0C(J,4) = BSDT(J,4,I)

P0LY0C(J,5) = BSDT(J,5,I)

POLYOC(J,6) = BSDT(J,6,I)

P0LY0C(J,7) = BSDT(J,7,I)

P0LY0C(J,8) = BSDT(J,8,I)

16 CONTINUE

CALL POLF(8,POLYOC)

15 CONTINUE

The routine DRBW (draw base — wire), overlayed a wired frame on the solid object.

The color had to be a shade of magenta so that it was visible to the user. The IRIS command

MAPCOL would allow the user to create a shade by specifying the intensity of the red, green,

and blue guns.

CALL MAPCOL(157, 157, 0, 157)

IBWIRE=157

CALL COLOR(IBWIRE)

First, the bottom and top octagons were outlined. To outline the shapes lines were

drawn to connect the vertices of each level in numerical order. Do—loop 11 incremented the

level number while Do—loop 12 incremented the vertex number.

DO 11 3=1,2

CALL M OVE(BSDT(l,l,J), BSDT(2,1,J), BSDT(3,1,J))

DO 12 1=2,8

CALL DRAW(BSDT(1,I,J), BSDT(2,U), BSDT(3,I,J))

12 CONTINUE

The conection from vertex (8) to vertex (1) was completed.

CALL DRAW(BSDT(1,1,J), BSDT(2,1,J), BSDT(3,1,J))

11 CONTINUE

118

To draw the wireframe, lines were drawn from the bottom to the top. Vertex # 1 of the

bottom was connected to vertex # 1 of the top. Do—loop 13 incremented the vertex number.

DO 13 1=1,8

CALL MOVE(BSDT(l,I,l), BSDT(2,I,1), BSDT(3,I,1))

CALL DRAW(BSDT(1,I,2), BSDT(2,I,2), BSDT(3,I,2))

13 CONTINUE

4.39 Draw Segment # 1 . Next, Segment #1 was drawn. To draw the solid shape, only

one array was required.

REAL POLYSQ(3,4).

The color light blue, cyan, was used to draw the segment.

CALL COLOR(CYAN)

A similar fomrat was used to draw the side panels as in DRBS. Because SEgment #1

could be subsectioned, each subsection was completely drawn and then the level number was

incremented and the next subsection was drawn. Do—loop 110 incremented the level number

from one to the next to last level. This was required becasue to draw the last subsection, the

do—loop would have referenced a level number which was out of range. Do—loop 111

incremented the vertices and Do—loop 112 incremented the rows.

DO 110 I=1,S1DIVN

DO 111 J = 1,3

DO 112 K = 1,3

POLYSQ(K.l) = S1DT(K,J,I)

POLYSQ(K,2) = S1DT(K,J,(I+1))

POLYSQ(K,3) = S1DT(K,(J+1),(I+1))

POLYSQ(K,4) = S1DT(K,(J+1),1)

112 CONTINUE

Before 111 could be incremented, the polygon was drawn.

119

CALL P0LF(4,POLYSQ)

111 CONTINUE

Before the levels can be could be incremented, the fourth panel had to be drawn. Do loop 113

transfered the coordinates to the polygon array so that the fourth side of every subsection could

be drawn.

DO 113 K =l,3

POLYSQ(K.l) = S1DT(K,4,I)

POLYSQ(K,2) = S1DT(K,4,(I+1))

POLYSQ(K,3) = S1DT(K,1,(I+1))

POLYSQ(K,4) = S1DT(K,1,I)

113 CONTINUE

CALL POLF(4,POLYSQ)

110 CONTINUE

After all the subsections had been drawn, the left and right ends had to be drawn. This

only required the four vertices of level # 1 and be connected to each other and the four vertices

of the last level to be connected to each other, the value of the last level is stored in S1J.

S1J=S1DIVN+1

Do—loop 114 was only executed twice. It was executed once when I = 1, for the first level or

left end. Then, it was incremented by a step of S1DIVN to I = S1J, the last level number

where the loop was executed a second time. Do—loop 115 was used to slimline the passing of

coordinate information into the polygon array.

DO 114 I=1,S1J,S1DIVN

DO 115 J= l,3

POLYSQ(J.l) = S1DT(J,1,I)

POLYSQ(J,2) = S1DT(J,2,I)

POLYSQ(J,3) = S1DT(J,3,I)

120

POLYSQ(J,4) = S1DT(J,4,I)

115 CONTINUE

CALL POLF(4,POLYSQ)

114 CONTINUE

Ab with the Base, a wireframe was overlayed on the solid segment shape. The routine

DRS1W (draw Segment # 1 — wire), completed the wire frame of Segment #1 . A color that

was a slightly different shade of cyan was used.

CALL MAPCOL(150, 0, 150, 150)

I1WIRE=150

CALL COLOR(IIWIRE)

The wireframe was constructed by connecting the same vertex of each level and also

connecting the four vertices of the left end together and then the four vertices of the right end.

Do—loops 101 and 102 created the end pieces. The only two levels required for reference for

these items were the first and last. Do—loop 101 was executed only twice as with Do—loop 114

fo the solid drawing routine. Do—loop 102 incremented the vertex number so that a line was

drawn from (1) to (2) to (3) to (4).

S1J=S1DIVN+1

DO 101 J=1,S1J,S1DIVN

CALL M OVE(SlDT(l,l,J), S1DT(2,1,J), S1DT(3,1,J))

DO 102 1=2,4

CALL DRAW(S1DT(1,I,J), S1DT(2,I,J), S1DT(3,I,J))

102 CONTINUE

The final draw statementthen connected (4) to (1).

CALL DRAW(S1DT(1,1,J), S1DT(2,1,J), S1DT(3,1,J))

101 CONTINUE

Do—loops 103 and 104 drew the lines connecting the same vertex of each level. Do—loop 103

incremented the vertex while Do—loop 104 incremented the level.

121

DO 103 1=1,4

CALL M0VE(S1DT(1,I,1), S1DT(2,I,1), S1DT(3,I,1))

DO 104 J=2,S1J

CALL DRAW(S1DT(1,I,J)1 S ID Tfol.J), S1DT(3,I,J))

104 CONTINUE

103 CONTINUE

4.310 Draw Segment 4k2. Segment # 2 was next to be drawn. The same algorithm can

be used to draw both the solid and wire forms of Sgment # 2 as used for Segment #1 . The

only difference between the routines is that for Segment # 2 the array S2DT and the variables

S2DIVN was referenced instead of S1DT and S1DIVN.

To draw the solid form, the routine called was DRS2S (draw Segment # 2 — solid).

Segment # 2 was drawn in a solid form using the color yellow.

CALL COLOR(YELLOW)

Draw the subsection side panels.

DO 210 I=1,S2DIVN

DO 211 J = 1,3

DO 212 K = 1,3

POLYSQ(K,l) = S2DT(K,J,I)

POLYSQ(K,2) = S2DT(K,J,(I+1))

POLYSQ(K,3) = S2DT(K,(J+1),(I+1))

POLYSQ(K,4) = S2DT(K,(J+1),I)

212 CONTINUE

CALL POLF(4,POLYSQ)

211 CONTINUE

Now the fourth side panel of the subsection was drawn.

DO 213 K =l,3

POLYSQ(K.l) = S2DT(K,4,I)

P0LYSQ(K,2) = S2DT(K,4,(I+1))

P0LYSQ(K,3) = S2DT(K,1,(I+1))

P0LYSQ(K,4) = S2DT(K,1,I)

213 CONTINUE

CALL POLF(4,POLYSQ)

210 CONTINUE

Draw the left and right ends.

S2J=S2DIVN+1

DO 214 I=1,S2J,S2DIVN

DO 215 J= l,3

POLYSQ(J.l) = S2DT(J,1,I)

POLYSQ(J,2) = S2DT(J,2,I)

POLYSQ(J,3) = S2DT(J,3,I)

POLYSQ(J,4) = S2DT(J,4,I)

215 CONTINUE

CALL POLF(4,POLYSQ)

214 CONTINUE

The wireframe was drawn by the routine DRS2W (draw SEgment # 2 — wireframe).

The color used was a slightly different hue of yellow.

CALL MAPCOL(175, 175, 175, 0)

I2WIRE=175

CALL COLOR(I2WIRE)

Again, this algorithm was exactly the same as that found in DRS1W except for the

variables referenced. First, the left and right ends were outlined.

S2J=S2DIVN+1

DO 201 J=1,S23,S2DIVN

CALL MOVE(S2DT(l,l,J), S2DT(2,1,J), S2DT(3,1,J))

DO 202 1=2,4

CALL DRAW(S2DT(1,I,J), S2DT(2,I,J), S2DT(3,I,J))

202 CONTINUE

CALL DRAW(S2DT(1,1,J), 8207(2,1,3), S2DT(3,1,J))

201 CONTINUE

Next the aide panels were outlined.

DO 203 1=1,4

CALL MOVE(S2DT(1,1,1), S2DT(2,I,1), S2DT(3,I,1))

DO 204 J=2,S2J

CALL DRAW(S2DT(1,I,J), S2DT(2,I,J), S2DT(3,I,J))

204 CONTINUE

203 CONTINUE

4.311 Draw the Wing Segment. Next, the Wing Segment was drawn. The routine

DRWS, draw Wing Segment — Solid, was called for this action. The routine referenced the

color yellow so that the Wing Segment matched Segment #2.

CALL COLOR(YELLOW)

This routine differed from DRS1S and DRS2S because the Wing was considered to be rigid and

could not be subdivided. Therefore, there were only four side panels to be drawn instead of

4xn(number of divisions). Do—loops 410 and 412 drew the sides one through three.

DO 410 J = 1,3

DO 412 K = 1,3

POLYSQ(K.l) = WINGDT(K,J,1)

POLYSQ(K,2) = WINGDT(K,J,2)

POLYSQ(K,3) = WINGDT(K,(J+1),2)

POLYSQ(K,4) = WINGDT(K,(J+1),1)

412 CONTINUE

124

CALL P0LF(4,P0LYSQ)

410 CONTINUE

Now, side panel # 4 was drawn by connecting the vertices (1) and (4) of the two levels in

Do—loop 413.

DO 413 K =l,3

POLYSQ(K,l) = WINGDT(K,4,1)

POLYSQ(K,2) = WINGDT(K,4,2)

POLYSQ(K,3) = WINGDT(K,1,2)

POLYSQ(K,4) = WINGDT(K,1,1)

413 CONTINUE

Do—loops 414 and 415 drew the left and right sides.

CALL POLF(4,POLYSQ)

DO 414 1=1,2

DO 415 J= l,3

POLYSQ(J.l) = WINGDT(J,1,I)

POLYSQ(J,2) = WINGDT(J,2,I)

POLYSQ(J,3) = WINGDT(J,3,I)

POLYSQ(J,4) = WINGDT(J,4,I)

415 CONTINUE

CALL POLF(4,POLYSQ)

414 CONTINUE

The routine DRWW (draw wing — wireframe), was called next to overlay the wireframe

of the Wing Segment. The color used was the same as that used to draw the wireframe of

Segment #2.

CALL MAPCOL(175, 175, 175, 0)

IWWIRE=175

CALL COLOR(IWWIRE)

The side panels were drawn first through Do—loops 401 and 402.

DO 401 J= l,2

CALL MOVE(WINGDT(l,l,J), WINGDT(2,1,J), WINGDT(3,1,J))

DO 402 1=2,4

CALL DRAW(WINGDT(1,I,J), WINGDT(2,I,J), WINGDT(3,I,J))

402 CONTINUE

CALL DRAW(WINGDT(1,1,J), WINGDT(2,1,J), WINGDT(3,1,J))

401 CONTINUE

Finally, the left and right panelB were outlined through the Do—loop 403.

DO 403 1=1,4

CALL MOVE(WINGDT(l,I,l), WINGDT(2,I,1), WINGDT(3,I,1))

CALL DRAW(WINGDT(1,I,2), WINGDT(2,I,2), WINGDT(3,I,2))

403 CONTINUE

4.312 Draw Segment # 3 . The final segment to be drawn was Segment #3 . The

routines DRS3S and DRS3W were the same as those for the wing except the variables wee

changed respectively. Segment # 3 was drawn in the solid form using the color green.

CALL COLOR(GREEN)

First, the side panels were drawn.

DO 310 J = 1,3

DO 312 K = 1,3

POLYSQ(K,l) = S3DT(K,J,1)

POLYSQ(K,2) = S3DT(K,J,2)

POLYSQ(K,3) = S3DT(K,(J+1),2)

POLYSQ(K,4) = S3DT(K,(J+1),1)

312 CONTINUE

CALL POLF(4,POLYSQ)

310 CONTINUE

Next, the fourth side panel and the left and right panels were drawn.

DO 313 K =l,3

POLYSQ(K.l) = S3DT(K,4,1)

POLYSQ(K,2) = S3DT(K,4,2)

POLYSQ(K,3) = S3DT(K,1,2)

POLYSQ(K,4) = S3DT(K,1,1)

313 CONTINUE

Do—loops 314 and 315 drew the left and right sides.

CALL POLF(4,POLYSQ)

DO 314 1=1,2

DO 315 J= l,3

POLYSQ(3,l) = S3DT(J,1,I)

POLYSQ(J,2) = S3DT(J,2,I)

POLYSQ(J,3) = S3DT(J,3,I)

POLYSQ(J,4) = S3DT(J,4,I)

315 CONTINUE

CALL POLF(4,POLYSQ)

314 CONTINUE

A color shade of green was used to draw the wireframe in the routine DRS3W, draw

Segment # 3 — wireframe.

CALL MAPCOL(107, 0, 107, 0)

I3WIRE=107

CALL COLOR(I3WIRE)

First, the left and right panels were outlined.

DO 301 J= l,2

CALL MOVE(S3DT(1,1,J), S3DT(2,1,J), S3DT(3,1,J))

127

DO 302 1=2,4

CALL DRAW(S3DT(1,I,J), S3DT(2,I,J), S3DT(3,I,J))

302 CONTINUE

CALL DRAW(S3DT(1,1,J), DT(2,1,J), S3DT(3,1,J))

301 CONTINUE

Finally, the side panels were outlined.

DO 303 1=1,4

CALL MOVE(S3DT(l,I,l), S3DT(2,I,1), S3DT(3,I,1))

CALL DRAW(S3DT(1,I,2), S3DT(2,I,2), S3DT(3,I,2))

303 CONTINUE

4.313 Draw the Pins and Hydraulic Actuators. After all the segments have been drawn,

the pis and actuatoro were drawn. The pins were drawn through the routine DRPIN (draw

pins). All the pins were drawn in red.

CALL COLOR(RED)

Circles were used to denote a pin. The IRIS circle command does not reference a third

dimension, z. Therefore, the pins were drawn in the x—y plane.

First, PINS # 1 , #2 , and # 3 were drawn.

CALL CIRCF(PBDT(1,1), PBDT(2,1), 0.01)

CALL CIRCF(P 1DT(1,1), P1DT(2,1), 0.01)

CALL CIRCF(P2DT(1,1), P2DT(2,1), 0.01)

Next, the pins for actuator AB were drawn.

CALL CIRCF(PBDT(1,2), PBDT(2,2), 0.01)

CALL CIRCF(P1DT(1,2), P1DT(2,2), 0.01)

Finally, the pins for actuator DE were drawn.

CALL CIRCF(P 1DT(1,3), P1DT(2,3), 0.01)

CALL CIRCF(PWDT(1,1), PWDT(2,1), 0.01)

The actuators were drawn by the subroutine DRACT (draw actuators). The line style

128

could be changed through the IRIS routine RESETL. A solid line was used, but a variety of

other line styles were available.

RESETLV = 1

CALL RESETL(RESETLV)

Next, the thickness of the line was determined by the IRIS command LINEWI. The value in

LINEWV denoted the width of the line by the number of pixels. The line for the actuators

waB a width of three pixels.

LINEWV=3

CALL LINEWI(LINEWV)

The actuators were drawn by connecting th two pin locations by a line, first, actuator AB was

drawn.

CALL MOVE(PBDT(l,2),PBDT(2,2),BASEDI/2)

CALL DRAW (PlDT(l,2),PlDT(2,2),SlTHIC/2)

Finally, actuator De was drawn.

CALL MOVE(PBDT(l,2),PBDT(2,2)IBASEDI/2)

CALL DRAW (PlDT(l,2),PlDT(2,2),SlTHIC/2)

The line width was reset before leaving this routine.

LINEWV=1

CALL LINEWI(LINEWV)

129

4.4 Kinfimatira

The kinematics of the robot arm were completed by the routine tform, (transform). An

A matrix was created for each link of the arm and also for the world rotation:

AWO — World Rotation A2 — Segment # 2

AO — Base A3 — Segment # 3

A1 — Segment # 1 Aw — Wing Segment

Each of the A matrices were declared as 4x4 real arrays.

REAL AWO(4,4), AW(4,4), A0(4,4), Al(4,4), A2(4,4), A3(4,4)

Input into the routine included the magnitudes of the angles, the deformed coordinates of each

link’s vertices, and the deformed coordinates of all the pins.

4.41 Transformation of the User’s Perspective. The world rotation A matrix, AWO,

consisted of no translation but a rotation about each axis, x, y, and z. A rotation matrix for

the x—axis was:

A = x

A =
y

1 .0 0 . 0 0 . 0 0 .0

0 .0 cos# s i n # 0 .0
X X

0 .0 —s i n # cos# 0 .0
X X

0 .0 0 . 0 0 . 0 1 .0

for the y—a x i s w a s :

cob 0 0 . 0 —8 i n # 0 .0
y y

0 . 0 1 .0 0 . 0 0 .0

s i n # 0 .0 cos# 0 .0
y y

0 . 0 0 . 0 0 . 0 1.0

for the z—a x i s w a s :

(4.15)

(4.16)

cos#z sin #z 0 . 0 0 . 0

= —sin # z cos#z 0 . 0 0 . 0

0 . 0 0 . 0 1 . 0 0 . 0

0 . 0 0 . 0 0 . 0 1 . 0

(4.17)

130

The rotation submatrix was then the product of the three rotation matrices:

AWO = A *A *A (4.18)x y a ' '

This matrix allowed the user to rotate the entire object as if they were walking around the

arm. The magnitudes of the angles of rotation were stored in the variables ANGX, ANGY,

and ANGZ. The elements of the AWO matrix were:

AWO(l,l)=COS(ANGY)*COS(ANGZ)

AWO(2,l)=(COS(ANGZ)*SIN(ANGX)*SIN(ANGY))+(COS(ANGX)*SIN(ANGZ))

AWO(3,l)=(-COS(ANGX)*SIN(ANGY)*COS(ANGZ))+(SIN(ANGX)*SIN(ANGZ))

AW O(l,2)=—COS(ANGY)*SIN (AN GZ)

AWO(2,2)=(—SIN(ANGX)*SIN(ANGY)*SIN(ANGZ))+(COS(ANGX)*COS(ANGZ))

AWO(3,2)=(COSE(ANGX)*SIN(ANGY)*SIN(ANGZ))+(SIN(ANGX)*COS(ANGZ))

AW 0 (1 ,3)=SIN (AN GY)

AW 0(2,3)=—COS(ANGY)*SIN (ANGX)

AWO(3,3)=COS(ANGX)*COS(ANGY)

AWO(4,4)=1.0

To support the fact that no translation existed, rowB one through three of column # 4 were

equal to zero. Also, no perspective transformations existed as can be seen from the fact that

columns one through three of row # 4 equalled zero. The scaling factor was equal to one. The

rotation of the world coordinates was the first step in building the homogeneous transformation

matrix T

T = AWO. (4.19)

4.42 Transform the Base. The next step was to associate the base’s local coordinate

frame with the reference coordinate frame, (see figure 4.14). Initially, the two frames were the

same, but, as the base was allowed to rotate about the y—axis, this relationship changed. Since

the base did not translate about the reference frame, the AO matrix was composed only of a

rotation about the y—axis. The scaling factor equalled one. The magnitude of the angle of

rotation was stored in the variable ANGOCNT.

131

Y

P I N 8 2

LI N K 8 2

L I N K 8 3L I N K

P I N 8 3
P I N 81

L I N K 8 0

P I N 8 0

FIGURE 4.14

LOCAL AND REFERENCE COORDINATE FRAMES

132

AO =

c o b <b 0 . 0 s i n d i 0 .0o r o
0 . 0 1.0 0 . 0 0.0

-s in $ 0 .0 c o s <b 0 .0To

(4.20)

0 . 0 0.0 0 . 0 1.0

The programmed matrix was:

A0(l,l)=COS(ANG0CNT)

A0(1,3)=SIN(ANG0CNT)

A0(3,1)=-SIN(ANG0CNT)

AO(3,3)=COS(ANGOCNT)

A0(2,2)=1.0

A0(l,4)=0.0

A0(2,4)=0.0

A0(3,4)=0.0

A0(4,4)=1.0

The matrix T was given by:

T = AWO*AO. (4.21)

To multiply the two matrices, the routine MAT2MUL (2—d matrix multiplication) was

called. MAT2MUL could only multiply arrays which were two-dimensional. Three arrays

were sent to MAT2MUL. The first two arrays were multiplied in order and the product was

placed in the third array. An integer variable specified the number of columns to be multiplied

because the arrays which held the pin coordinates were also two-dimensional and were

multiplied in this routine.

CALL MAT2MUL(AWO,AO,T,4)

After T had been determined all the base vertices and coordinates of the pins on the base had

to be transformed. Based on equation 3.9,

PT = T*P or,

BSDT = T*BS.

(4.22)

(4.23)

133

BSDT stored the base coordinates which had been transformed. The Base coordinates

were multiplied by calling the subroutine MATBMUL, base matrix multiplication. This

routine multiplyed a (4x4) array by a (4x8x2) array. To accomplish this, a Do—Loop was used.

DO 11 I = 1,2

CALL MATBMUL(T,BS,BSDT,I)

11 CONTINUE

The Base was described by labeling the bottom as level # 1 and the top as level #2 . The

integer value I, then repersented the level of coordinates. The pins located on the base were

transformed by the call

CALL MAT2MUL(T,PB,PBDT,2).

The value two denoted that only two columns contained values.

4.43 Transform Segment #1 . Segment # 1 was the next link to be transformed. The

A matrix, A l, was composed of a rotation about the z—axis, a translation equal to the distance

Pin # 1 was located from the reference point (see figure 4.14) a scaling factor equal to one, and

no perspective transformation. The angle of rotation was stored in the variable ANG1CNT.

The translation, based on the location of pin #1 , was stored in the array locations (1,1), (2,1),

and (3,1) of the array PB. The values stored were those originally read from the parameter

file, PIN1X and PIN1Y. The z—component of the pin location was zero because the renter of

the pin was taken to be at z = 0 .0 .

Al =

cO80j s in ^ j 0.0 PB(1,1)

—s i n ^ cos<f>̂ 0.0 PB(2,1)

0 . 0 0 . 0 1.0 0.0

0 . 0 0 . 0 0.0 1.0

(4.24)

and in the program was:

Al(l,l)=COS(ANGlCNT)

A l(l,2)= —SIN(ANGICNT)

A1(2,1)=SIN(ANG1CNT)

134

A1(2,2)=C0S(ANG1CNT)

Al(3,3)=1.0

A1(1,4)=PB(1,1)

A1(2,4)=PB(2,1)

A1(3,4)=PB(3,1)

Al(4,4)=1.0.

The T matrix was then given by:

T = AWO*AO*A1. (4.45)

From the translation of the Base, the matrix T had previously been defined as:

T = AWO* AO. (4.26)

So, subsstituting equation 4.26 into 4.25 yielded

T = T*A1. (4.27)

The matrix multiplication routine would not allow the product to be stored in an array that

was also being used for the multiplication. Therefore, a temporary variable, TA was used.

TA = T*A1. (4.28)

Then,

T = TA. (4.29)

To transfer the contents of TA into T after the multiplication had taken place the matrix

routine MXTRAN (matrix transfer) was called. This routine transfered the contents of the

second array into the first.

CALL MAT2MUL(T,A1,TA,4)

CALL MXTRAN(T,TA).

To transform the vertices and pins to their new coordinates of Segment #1 , calls to

MATSMUL and MAT2MUL, respectivley were made. MATSMUL (matrix multiplicaton of

segments), multiplied arrays which were three-dimensional, (4x4100). Since the user could

divide the segment into smaller link segments, the index value of 1 0 0 allowed the user to

subdivide the segment into 99 sections. Each subsection was marked by a level. Then, each

135

level’s coordinate information was stored on the appropriate third dimension of the array. The

number of subsections or for Segment #1 was stored in the variable S1DIVN. Each level had

to be transformed. A Do—loop was called which was incremented from 1 to (S1DIVN+1). A

value of one waa added to S1DIVN because if the user divides the segment into five

subsections, there would be a total of six levels (see figure 4.10). MAT2MUL transformed the

pins into the reference coordinate system. There were a total of three pins on Segment #1,

stored as follows:

Column # 1 Pin # 2

Column # 2 Pin B

Column # 3 Pin D

The following FORTRAN staatements transformed the pins and vertices of Segment # 1 from

the their local coordinate system to the global coordinate system with its origin at the base of

the robot.

CALL MAT2MUL(T,P1D,P1DT,3)

S1J=S1DIVN+1

DO 1011=1,S1J

CALL MATSMUL(T,S1D,S1DT,I)

101 CONTINUE

4.44 Transform Segment #2 . Segment # 2 was the next to be transformed. There were

two parts of Segment # 2 , the actual beam, and the Wing (see figure 4.11). The coordinates of

the beam were stored in the array S2D and the coordinates of the Wing are stored in WINGD

and were all based on the local coordinate system origin at Pin # 2 . The local x—axis extended

along Segment # 2 ’s length and the z—axis was perpendicular to Pin #2 . A2 was composed of

a rotation about the z—axis by a value of ANG2CNT, a scaling factor of one, no perspective

transformation, and the translation. The translation was the coordinates of Pin # 2 (see figure

4.14) which were the deformed coordinates and were stored in the array P1D, first column.

*2 =

cos (^ 2 s i n ^ 0.0 P1D(1,1)

- s i n ^ c o s ^ 0.0 P1D(2,1)

0.G 0 . 0 1.0 0.0

0 .0 0 .0 0.0 1.0

136

(4.30)

which was programmed as:

A2(l,l)=COS(ANG2CNT)

A2(1,2)=—SIN (AN G2CNT)

A2(2,1)=SIN(ANG2CNT)

A2(2,2)=COS(ANG2CNT)

A2(3,3)=1.0

A2(1,4)=P1D(1,1)

A2(2,4)=P1D(2,1)

A2(3,4)=P1D(3,1)

A2(4,4)=1.0.

The beam coordinates could be transformed by T which was now

T = AWO*AO*A1*A2. (4.31)

Based on the substitution of equation 4.26 into 4.25

TA=T*A2 (4.32)

So,

CALL MAT2MUL(T,A2,TA,4)

Then, TA was substituted back into T

CALL MXTRAN(T.TA).

As with Segment #1 , the coordinates of Segment # 2 were multiplied by calling

MATSMUL and the pins were multiplied by calling MAT2MUL.

CALL MAT2MUL(T,P1D,P1DT,3)

Segment # 2 could also be subdivided based on the number of subsections the user selected.

S2DIVN contained the user defined number of subdivisions which meant there were S2DIVN+1

137

number of levels.

S2J=S2DIVN+1

DO 202 I=1,S2J

CALL MATSMUL(T,S2D,S2DT,I)

202 CONTINUE

4.45 Transform the Wing Segment. The Wing segment differed from Segment # 2 by

the angle gamma (see figure 4.12). There was no translational relationship between the Wing

Segment and the beam segment of Segment # 2 . Therefore, the matrix AW only contained a

rotation about the z—axis through the angle GAMMA and a scaling factor of one.

CO8 7 s in 7 0.0 0.0

-s in 7 cos 7 0 . 0 0 . 0

0 . 0 0 . 0 1.0 0.0

0 . 0 0 . 0 0.0 1.0

(4.33)

AW(l,l)=COS(GAMMA)

AW(1,2)=—SIN (GAMMA)

AW(2,1)=SIN(GAMMA)

AW(2,2)=COS(GAMMA)

AW(3,3)=1.0

AW(4,4)=1.0.

The T matrix should now have been

T = AWO*AO*A1*A2*AW

or

(4.34)

(4.35)TA=T*AW.

The multiplication was completed and then the TA into T transfer of,

CALL MAT2MUL(T,AW,TA,4)

CALL MXTRAN(T.TA).

Since the Wing was considered to be rigid, the user could not subdivide the segment.

138

Therefore, the coordinates of the Wing could be thought of as being in two levels. A Do—Loop

which was completed twice will be used to transform all of the Wing Segment. The Pin E

resides on the Wing Segment. MAT2MUL will be called to transform Pin E.

CALL MAT2MUL(T,PWD,PWDT, 1)

DO 201 1=1,2

CALL MATSMUL(T,WINGD,WINGDT,I)

201 CONTINUE

4.46 Transform Segment #3 . The final link was Segment #3. This link was connected

to the end of the beam of Segment #2, not the Wing. The A matrix for Sgment # 3 consisted

of a rotation about the local z—axis, a scaling factor of one, and a translation equal to the

coordinates of Pin # 3 (see figure 4.14).

cos(j) ̂ s i n ^ j 0 . 0 0 . 0

A3 = B i n <f)̂ cos 0.0 0.0

0 . 0 0 . 0 1.0 0.0

0 . 0 0 . 0 0.0 1.0

A3(l,l)=COS(ANG3CNT)

A3(l,2)=—SIN(ANG3CNT)

A3(2,1)=SIN(ANG3CNT)

A3(2,2)=COS(ANG3CNT)

A3(3,3)=1.0

A3(1,4)=P2D(1,1)

A3(2,4)=P2D(2,1)

A3(3,4)=P2D(3,1)

A3(4,4)=1.0.

The homogeneous transformation matrix, T, for Segment # 3 was

T = AWO*AO*A1*A2*A3.

(4.36)

(4.37)

139

But, a t the present time,

T = AWO*AO*A1*A2*AW. (4.38)

The new T could not be found by simply multiplying

TA = T*A3 (4.39)

because Segment # 3 was not related to the Wing Segment. Therefore, T had to be

reconstructed by the following commands

CALL MAT2MUL(AWO,AO,T,4)

CALL MAT2MUL(T,A1,TA,4)

CALL MXTRAN(T,TA).

CALL MAT2MUL(T,A2,TA,4)

CALL MXTRAN(T,TA).

CALL MAT2MUL(T,A3,TA,4)

CALL MXTRAN(T,TA).

Now, the coordinates of Segment # 3 could be transformed by

DO 3011=1,2

CALL MATSMUL(T,S3D,S3DT,I)

301 CONTINUE.

At the completion of the multiplication of Segment # 3 , the kinematics were completed

and the links were now ready to be drawn.

140

4.5 Static Analysis

Static analysis was controlled by the routine STATIC. The static conditions were

dependent upon the geometry of the robotic arm. The geometric configuration was dependent

upon the angles of the base and three segments which were altered by the user. The

interactive input from the user was obtained by turning the eight dials of the Dial Box, the

angles of the Base and three segments were adjusted either positively or negatively in

magnitude by the eight dials. Each link was given an initial angle in the parameter file so that

the analysis could be completed when the program was started. The static analysis was

completed through the following eight steps:

(1) Determine the Static Reactions (STAREAC)

(2) Determine the Differential Change in Angles and the Virtual

Displacement of the Actuators (DADJANG)

(3) Determine the Deflections, Torsional Twist, and Axial Extension

(4) Complete the Kinematic Analysis (SDEFLX, SDEFLY, SDEFLZ)

(5) Draw the Three-Dimensional Robotic Arm Image (SDRROB)

(6) Allow User Interaction (SUSR)

(7) Based on user interaction, stop or continue the model.

(8) If model is continued, Check Validity of the

Altered Angle (SANGLC)

The eight steps were in a pseudo Do—loop, 100. If the segment angle input by the user

exceeded the limits defined by the user in the parameter file, the user was instructed of the

error and asked for a new value. If the user decided to stop the program, the variable PNE

was then set equal to 999. The analysis was continued when the command

GO TO 100

was completed.

141

100 CALL STAREAC

CALL SADJANG

CALL SDEFLX

CALL SDEFLY

CALL SDEFLZ

CALL STFORM

CALL SDRROB

102 CALL SUSR

IF(PNE.EQ.999.0) GO TO 999 (Stop the program)

CALL SANGLC

IF(PNE.EQ.2.0)THEN

GO TO 1 0 2

ENDIF

GO TO 100

4.51 Determine the Static Reactions. The static reactions were determined through the

routine STAREAC (static reactions). All reactions were programmed based on equations 3.26

through 3.57 which were determined by Bannoura. The magnitudes of the static forces were

stored in the array RS and the magnitudes of the static moments were stored in the array MS.

Both arrays were declared as follows:

REAL* 8 RS(3,5), MS(3,5), FABS, FDES.

The three rows of the arrays stored the x, y, and z components of the force or moment

reactions a t pins # 0 , 1, 2, 3, and the the load, # 4 . The five columns represented the five pins.

As an example, the force in the y—direction at pin # 2 would have been stored in RS(2,3).

To conserve computation time and minimize the length of the subroutine, the moment

arms, see figures 3.17 through 3.21, weights, and the trigonometric functions were determined

in the beginning of the program.

Moment arms:

P01=PIN1Y

P12=PIN2X—S1P1X

P23=PIN3X—S2P2X

P34=S3LENG—S3P3X

P2E=PINEX

P1B=PINBX—S1P1X

PD1=PINDX—S1P1X

Centers of gravity moment arms:

P0G0=BASEHE*0.5

P1G1=S1CMAX—S1P1X

P2G2=S2CMAX—S2P2X

P3G3=P34

P4G4=S4CMAX

Weights:

WO=GRAVITY*BASMAS

W1=GRAVITY*S1MASS

W2=GRAVTTY*S2MASS

W3=GRAVITY*S3MASS

W4=GRAVITY*S4MASS

Trigonometric functions:

COO=COS(ANGOCNT)

SIO=SIN(ANGOCNT)

C 01=C 0S (AN G1CNT)

SI1=SIN(ANG1CNT)

The values stored in the variables ANG2CNT, ANG3CNT, and ANG 6 CNT were angles

with respect to the x—axis of the previous member. All analysis routines required that the

angles be measured with respect to the horizontal. To compensate, the correct angle of a given

segment was the sum of that angle and all previous angles.

C02=C0S(ANG 1CNT+ANG2CNT)

SI2=SIN(ANG1CNT+ANG2CNT)

C03=C0S(ANG1CNT+ANG2CNT+ANG3CNT)

SI3=SIN(ANG1CNT+ANG2CNT+ANG3CNT)

C04=C0S(ANG4CNT)

SI4=SIN(ANG4CNT)

C05=C0S(ANG5CNT)

SI5=SIN(ANG5CNT)

C06=C0S(ANGlCNT-f ANG6 CNT)

SI6=SIN(ANG1CNT+ANG6CNT)

backwards to Pin #3, Pin #2 , Pin # 1, and then, Pin #0.

The theoretical equations for the load were:

The program lines representing these equations for the load were:

^3 = + <f>2 + <Py

(4.40)

(4.41)

(4.42)

The reactions are solved by first determining the reactions of the load and working

Weight.

(4.43)

(4.48)

(4.45)

(4.49)

(4.47)

(4.44)

(4.46)

RS(2,5)=—W4

RS(3,5)=0.0

M S(l,5)=—P4G4*SI0*CO3*W4

MS(2,5)=0.0

MS(3,5)=—P4G4*CO0*CO3*W4

The theoretical equations for Pin # 3 were:

8 s
R =R

3x 4x
B s

R = -W +R
3y 3 4y
s s

R =R
3z 4z
8 s s

M = P sin 6 *R +M
3x 34 3 4z 4x
s s s

M = —P cos(b *R +M
3y 34 3 4z 4y
a 8 s

M = P cos<b*R - P sin (b *R -
3z 34 3 4y 34 3 4x

s
P cos<b *W +M

3g3 3 3 4z

The program lines reperesenting these equations at Pin # 3

RS(1,4)=RS(1,5)

RS(2,4)=RS(2,5)-W3

RS(3,4)=RS(3,5)

MS(1,4)=P34*SI3*RS(3,5)+MS(1,5)

MS(2,4)=—P34*C03*RS(3,5)+MS(2,5)

M4ZT1=P34*C03*RS(2,5)

M4ZT2=P34*SI3*RS(1,5)

M4ZT3=P34*C03*W3

MS(3,4)=M4ZT1—M4ZT2—M4ZT3+MS(3,5)

145

Theoretical equation for Actuator DE was:

8 8 8 8

F = (- P cosd> *R + P a i n S *R - P cos<b *W -M) /
d e 23 2 3y 23 2 3x 2g2 2 2 3z

(P a\n< b c o a d) —P cosd) sin$)
2e 6 5 2e 6 5

The program line respresenting this equation for Actuator force DE was:

FDET1=P23*(—C02*RS(2,4)+SI2*RS(1,4))

FDET2=P2G2*C02*W2-MS(3,4)

FDET3=P2E*(SI6*C05—SI5*C06)

FDES=(FDET1+FDET2)/FDET3

The theoretical equations for Pin # 2 were:

s s s
R = —F cos d) +R

2x de 5 3x
8 s s

R = - W +R - F sin d)
2y 2 3y de 5
B s

R =R
2 z 3z
s 8 s

M = P sin4 *R +M
2x 23 2 3z 3x
s s s

M = —P cos(b *R -fM
2y 23 2 3z 3y
8

M = 0 . 0

2z

The program lines representing these equations for Pin # 2 were:

RS(1,3)=-FDES*C05+RS(1,4)

RS(2,3)=—W2+RS(2,4)—FDES*SI5

RS(3,3)=RS(3,4)

MS(1,3)=P23*SI2*RS(3,4)+MS(1,4)

MS(2,3)=-P23*C02*RS(3,4)+MS(2,4)

MS(3,3)=0.0

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

146

The theory equations for Actuator AB was:

s s s
P = (P cosd) *F Bind) —P sin<j) *F cos<b —

a b Id 1 d e 5 Id 1 d e 5
s 8

P cos<j) *W + P cos(f> *R —P aind) *R) /
lg l 1 1 12 r l 2y 12 1 2x

(P cos(f) sin d> —P sin< ̂cos (f))
lb 1 4 lb 1 4

The program lines representing this equation for Actuator AB was:

FABT1=FDES*PD1*(C01*SI5—C05*SI1)

FABT2=-P1G1*C01*W1+P12*(RS(2,3)*C01-RS(1,3)*SI1)

FABT3=P1B*(C01*SI4—SI1*C04)

FABS=(FABT1+FABT2)/FABT3

The theoretical equations for Pin # 1 were:

s s s s
R =F cos <b —F cos (j> +R

lz d e 5 a b 4 2x
s s s

R = F 8 awd) —W —F sin 0 +R
ly d e 5 1 a b 4 2y
s s

R =R
lz 2z
s a s

M = P aind) *R +M
lz 12 1 2Z 2x
s s s

M = —P cosd) *R +M
ly 12 1 2z 2y
s

M =0.0
lz

The program lines representing these equations for Pin # 1 were:

RS(1,2)=FDES*C05—FABS*C04+RS(1,3)

RS(2,2)=FDES*SI5—W l—FABS*SI4+RS(2,3)

RS(3,2)=RS(3,3)

MS(112)=P12*SI1*RS(3I3)+MS(1,3)

MS(2,2)=-P12*C01*RS(3,3)+MS(2,3)

The theoretical equations for Pin # 0 were:

R 8 = R 8 ox 4x

R8 = -W -W -W -W +R 8

Oy 0 1 2 3 4y

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

The program lines representing these equations for Pin # 0 were:

RS(1,1)=RS(1,5)

RS(2,1)=RS(2,5)—WO—W l—W 2 —W3

RS(3,1)=RS(3,5)

MS(1,1)=(P01+P12*SI1+P23*SI2+P34*SI3)*RS(3,5)+MS(1,5)

MS(2,1)=—(P12*C01+P23*C02+P34*C03)*RS(3,5)+MS(2,5)

MOZT1=-P1G1*C01*W1

M0ZT2=—(P12*C01+P2G2*C02)*W2

M0ZT3=—(P12*C01+P23*C02+P3G3*C03)*W3

M0ZT4=(P12*COl+P23*CO2+P34*CO3)*RS(2,5)

M0ZT5=-(P01+P12*SIH-P23*SI2+P34*SI3)*RS(1,5)+MS(3,5)

MS(3,1)=MOZT1+MOZT2+MOZT3+MOZT4+MOZT5

4.52 Determine the Differential Change in the Angles and Virtual Displacements of the

Actuators. The virtual displacements of the actuators were found in the routine SADJANG

(static model, adjust angles). The program was based on equations 3.61 and 3.70. First, the

differential change due to actuator AB was determined. The length of the actuator was

required.

148

BETA = 1.5706+ANG1CNT

H1A1=PIN1Y—PINAY

H1B1=PINBX—S1P1X

H1D1=H1A1+H1B1*SIN(ANG1CNT)

H1E1=H1B1*C0S(ANG1CNT)

H1C12=H1A1**2+H1B1**2—(2*H1A1*H1B1*C0S(BETA))

H1LENG=SQRT(H1C12)

From the length of the actuator AB, the angle of the actuator, (j)^ could be determined.

ANG4CNT=ASIN(H1D1/H1LENG)

Based on equation 3.61, the differential change DPHI1, based on axial compression

was calculated.

DPHI1T1=H1C12*FABS

DPHI1T2=H1A1*H1B1*SIN(BETA)*H1A*H1E

DPHI1=DPHI1T1/(DPHI1T2*57.3)

The differential change affected <f)̂ so, <j>̂ had to be adjusted by the magnitude DPHI1.

ANG1CNT=ANG1CNT+DPHI1

Next, the length of Actuator DE was determined.

KAPPA=3.1459—ANG1CNT

ALPHA=6.28318—(ANG1CNT+ANG6CNT)—KAPPA

H2A2=PINEX

H2B2=PIN2X—PINDX

H2C22=H2A2**2+H2B2**2—2*H2A2*H2B2*COS(KAPPA)

H2LENG=SQRT(H2C22)

The differential change of <j)^, DPHI2, based on equation 3.70, was then a function of the axial

compression of Actuator DE.

SIGMA=ACOS((H2A2**2—H2B2**2—H2C22)/(2*H2B2*H2LENG))

AN G5CNT=SIGM A+AN G1CNT

DPHI2T1=H2C22*FDES

DPHI2T2=H2A2*H2B2*H2A*H2E*SIN(ALPHA)

DPHI2=DPHI2T1/(DPHI2T2*57.3)

Both (^ 2 and (f>̂ were effected by the S(j)^.

ANG2CNT=ANG2CNT+DPHI2

ANG6CNT=ANG6CNT+DPHI2

At this point, the angles, considered to be true to the given conditions, and the force and

moment reactions were known.

4.53 Determine the Deflections. Torsional Twist, and Axial Extension. The torsional

twist, axial extension, and deflections could now be determined. The arrays which stored the

deformation effects were:

SIDE — Segment #1 , deformations

S2DE — Segment # 2 , deformations

S1SL — Segment # 1 , slopes of deformations

S2SL — Segment # 2 , slopes of deformations.

As with the arrays which held the magnitudes of the reactions, the four deformation arrays are

also declared as (3,100). The three rows are for the x, y, and z deflection components. Since

segments # 1 and # 2 could be divided into subsections, the deformation was determined at

each level between the lower and upper pin locations of the segment. The 100 columns acted

as storage for each level. The location S2DE(2,70), for example, stored the deflection of

segment # 2 in the y direction at level #70.

The torsional twist and axial extension were considered only to act in the x direction.

The magnitudes of these deformations were determined in the routine SDEFLX (static model, x

deflection). The cosine and sine of the angles were found initially to save space and

computation time. Again, all angles were measured with respect to the horizontal.

C01=COS(ANG 1CNT)

SI1=SIN(ANG1CNT)

C02=C0S(ANG 1CNT+ANG2CNT)

SI2=SIN(ANG1CNT+ANG2CNT)

XTEMP was a variable used to store XI, the value of the x distance, from the last round of

computations. DEFL was a variable used to store the deflection determined in the last round.

The variable DELTA stored the change in length due to torsional twist, U1X stored the axial

extension, P2XD stored the deformation at the location of Pin # 2 , and P3XD stored the

deformation a t the location of Pin # 3 . Initially, all variables were zero.

XTEMP=0.0

DEFL=0.0

DELTA=0.0

U1X=0.0

P2XD=0.0

P3XD=0.0

Do—loop 100 was responsible for determining the deformation along Segment #1 . The

deformations were calculated at each level number, so the limits of the Do—loop were from 1 to

(SIDIVN-fl), the last level. Once Pin # 2 was reached, I was set equal to (S1DIVN+1) so that

the deformation calculations were stopped for Segment #1.

DO 100 I=1,(S1DIVN+1)

The x—distance, which was incremented to equal the distance of each level number, was

determined. The deflection and slope were calculated at each level

XI=(S1LENG/S1DIVN)*(I—1)

The first calculation was performed at the location of Pin #1 , so, if the x—distance was less

than the distance of pin # 1 , the calculations were not completed and the loop was

incremented.

IF(XI.LT.SIPIX) GO TO 199

First, the axial extension was determined.

1 1 1

The programmed equations were:

U1XT1=(RS(1,3)*C0H-RS(2,3)*SI1)*XI

U1XT2=P1(1,1)*S1A*S1E

U1X=U1XT1/U1XT2

The torsional twist was determined based on the equation from Bannoura of

M 8 c o s (j) + M S s i n ^
6 = 2 x 1 2 y 1 (x) (4.77)
x l --l v '

L J G
1 1 x l

which became

TH1XT1=(MS(1,3)*C01+MS(2,3)*SI1)*XI

TH1XT2=(P1(1,1)*S1J0*S1G)

TH1X=TH1XT1/(TH1XT2*57.3)

in the program. Based on the torsional twist, there was a change in the x—components of the

segment. But, if the torsional twist angle is too small, then the change was considered equal to

zero.

DELTA=XI*(1—COS(THIX))

The next section determined the deflection associated with the pins on Segment # 1 . If a pin

was located between the present x location, XI, and the previous x location, XTEMP the

deflection was interpolated for that pin. First, Pin # 2 was considered. If the location of Pin

2 was reached, then the deformation of the pin was stored in the variables P2XD so that

segments # 2 , # 3 , and the wing would be adjusted.

The value S1DM was a multiplier defined by the user so that the deflection values could be

exaggerated for graphical presentation purposes. The multiplier was not used in the storage of

analytical information.

152

IF(P1(1,1).EQ.XI) THEN

P1D(1,1)=P1(1,1)+(DELTA+U1X)*S1DM

P2XD=(DELTA+U1X)*S 1 DM

ENDIF

IF(P1(1,1).GT.XTEMP.AND.P1(1,1).LT.XI) THEN

DEFLT=((DELTA+U1X—DEFL)/(XI—XTEMP))*(P1(1,1)—XTEMP)

P1D(1,1)=P1(1,1)+(DEFLT*S1DM)

P2XD=DEFLT*S 1DM

ENDIF

Determine if pin B lies within the range.

IF(P1(1,2).EQ.XI) P1D(1,2)=P1(1,2)+(DELTA+U1X)*S1DM

IF(P1(1,2).GT.XTEMP.AND.P1(1,2).LT.XI) THEN

DEFLT=((DELTA+U1X—DEFL)/(XI—XTEMP))*(P1(1,2)—XTEMP)

P1D(1,2)=P1(1,2)+(DEFLT*S1DM)

ENDIF

Determine if pin D lies within the range.

IF(P1(1,3).EQ.XI) P1D(1,3)=P1(1,3)+(DELTA+U1X)*S1DM

IF(P1(1,3).GT.XTEMP.AND.P1(1,3).LT.XI) THEN

DEFLT=((DELTA+U1X—DEFL)/(XI—XTEMP))*(P1(1,3)—XTEMP)

P1D(1,3)=P1(1,3)+(DEFLT*S1DM)

ENDIF

The slope, deflection, and x coordinate were now ready to be stored in the proper array and/or

temporary variables.

S1SL(1,I)=TH1X

S1DE(1,I)=DELTA+U1X

199 XTEMP=XI

DEFL=DELTA+U1X

153

Next, the vertices of segment # 1 were adjusted through Do—loop 101.

DO 101 J= l,4

S1D(1,J,II)=S1(1,J,II)+((DELTA+U1X)*S1DM)

101 CONTINUE

If Pin # 2 was reached on the last calculation, then that was the last calculation. At this point

though, the remaining level coordinates needed to be transferred to the array SID. To

accomplished this, the level number, I, was incremented. This was the first level of coordinates

which were not deformed. The last level was still (S1DIVN+1).

IF(XI.GE.P1(1,1)) THEN

Transfer the coordinates of any level after Pin #2 to the array SID.

DO 198 II=(I+1),(S1DIVN+1)

DO 198 J= l,4

S1D(1,J,II)=S1(1,J,II)+((DELTA+U1X)*S1DM)

198 CONTINUE

I=S1DIVN+1

ENDIF

Next, the deformation for Segment # 2 was determined. Do—loop 200 completed the

calculations for every level number between Pin # 2 and Pin # 3 . The algorithm was the same

as that for Segment #1 . First, the temporary variables were reset to zero.

XTEMP=0.0

DEFL=0.0

DO 200 I=1,(S2DIVN+1)

XI=(S2LENG/S2DIVN)*(I—1)

IF(XI.LT.S2P2X) GO TO 299

XI2=XI*XI

The axial extension, U2X, was determined. The equation from Bannoura was:

2 2 2
The programmed equation was:

U2XT1=(RS(1,4)*C02+RS(2,4)*SI2)*XI

U2XT2=(P2(1,1)*S2A*S2E)

U2X=(U2XT1/U2XT2)

The torsional twist, TH2X, was determined based on the equation

M 8 c o s d) +M 8 s i n <f>
e = 3 x 2 3 y 2 (X)

1 2 2

L J G
2 2 x 2

from Bannoura which became

TH2XT1=(MS(1,4)*C02+MS(2,4)*SI2)*XI

TH2XT2=(P2(l,l)*S2JO*S2G)

TH2X=TH2XT1/(TH2XT2*57.3)

in the program. The axial deformation due to the torsional twist was determined.

DELTA=XI*(1—(C0S(TH2X))

The vertices of Segment # 2 were adjusted.

DO 201 J= l,4

S2D(1,J,I)=S2(1,J,I)+(DELTA+U2X)*S2DM + P2XD

201 CONTINUE

Only one pin was located on Segment #2, Pin #3 . Once the deformation for Pin

determined, the value of the deformation was stored in P3XD.

(4.79)

3 was

155

IF(P2(1,1).EQ.XI) THEN

P2D(1,1)=P2(1,1)+(DELTA+U2X)*S2DM+P2XD

P3XD=(DELTA+U2X)*S2DM+P2XD

ENDIF

IF(P2(1,1).GT.XTEMP.AND.P2(1,1).LT.XI) THEN

DEFLT=((DELTA+U2X—DEFL)/(XI—XTEMP))*(P2(1,1)—XTEMP)

P2D(1,1)=P2(1,1)+(DEFLT*S2DM)+P2XD

P3XD=DEFLT*S2DM+P2XD

ENDIF

The values for the slope and deflection were stored in the proper arrays. The present deflection

value and x—coordinate were also stored in the temporary variables.

S2SL(1,I)=TH2X

S2DE(1,I)=DELTA+U2X

299 XTEMP=XI

DEFL=DELTA+U2X

If Pin # 3 was reached on the last calculation, then that was the last calculation. At this point

though, the remaining level coordinates must be transferred to the array S2D. To

accomplished this, the level number, I, was incremented. This was the first level of coordinates

which were not deformed. The last level was still (S2DIVN+1).

IF(XI.GE.P2(1,1)) THEN

Transfer the coordinates of any level after Pin # 3 to the array S2D.

DO 298 II=(H-1),(S2DIVN+1)

DO 298 J= l,4

156

S2D(1,J,II)=S2(1,J,II)+((DELTA+U2X)*S2DM)

298 CONTINUE

I=S2DIVN+1

ENDIF

200 CONTINUE

Segment # 3 and the Wing segment were adjusted.

DO 300 1=1,2

DO 300 J= l,4

S3D(1,J,I)=S3(1,J,I)

300 CONTINUE

DO 400 1=1,2

DO 400 J= l,4

WINGD(1,J,I)=WING(1,J,I)

400 CONTINUE

The x coordinate of Pin E was adjusted.

PWD(1,1)=PW(1,1)

This concluded the calculations of deformation in the x direction.

The deflection in the y direction was determined in the routine SDEFLY. This routine

followed the same basic algorithm as SDEFLX. The differences layed in the deformation

equations. RL1 and RL2 were the force reactions in the local y—axis.

The theoretical equations of these forces were:

R(.+1)y . — is the force reaction in the local yj—axis.

R(V ,)y " R(i*.)„“ , , ,V <4-80)

The program lineB representing these equations were:

RL1=RS(2,3)*C01-RS(1,3)*SI1

RL2=RS(2,4)*C02—RS(1,4)*SI2

157

The theoretical equations for the deformation in the y direction were:

\ . m ! . + .
V.= (1 1 } y V3L x 2 - x3) + ___(1 l) z l x 2 (4.81)

1 i i i i
6 E I 2 E I

i z i i z i
R l (+ . m ! 4 .

0 . = 11 V e L x - S x 2! - U l) z i x 14.821
" 6 e . i . * 1 1 ~ : 1i z i E l

i z i
The program lines representing these equations for the deformation in the y direction for

Segment # 1 were:

V1T1=RL1/(6*S1E*S1IZ)

V1T2=3*P1(1,1)*XI2—XI3

V1=V1T1*V1T2

TH1ZT1=RL1/(6*S1E*S1IZ)

TH1ZT2=6*P1(1,1)*XI—3*XI2

TH1Z=TH1ZT1*TH1ZT2

The programmed equations for the deformation in the y direction of Segment # 2 were:

V2T1=RL2/(6*S2E*S2IZ)

V2T2=3*P2(1,1)*XI2—XI3

V2T3=(MS(3,4)*XI2)/(2*S2E*S2IZ)

V2=V2T1*V2T2+V2T3

TH2ZT1=RL2/(6*S2E*S2IZ)

TH2ZT2=6*P 2(1,1) *XI—3 *XI2

TH2ZT3=(MS(3,4)*XI)/(S2E*S2IZ)

TH2Z=TH2ZT1*TH2ZT2—TH2ZT3

The deflection in the z direction was determined in the routine SDEFLZ. This routine

alBo followed the basic algorithm presented in the routine DEFLFX. The difference in the

routines was in the equations of deformation. ML1 and ML2 were the moment reactions in the

local y — axis. From theory, the equations were:

M(’+ i) y _ * 8 raoment reacti°n *n the local yj—axis.

m ! + . = M? * . sinii + + > c o 8<6
(i +l)yi (i l)y i (i l)x i

The programmed equations were:

ML1=MS(2,3)*SI1+MS(1,3)*C01

ML2=MS(2,4)*SI2+MS(1,4)*C02

The theoretical equations for the deformation in the z direction were:

R? • + ̂ \ •
W .= 1 ' Z1 (3L x 2 — x 3) — (» l) y i x2

1 i i i i
6 E I 2 E I

i y i i y i

R ? . + t • M* . .e .= l J z i (6Lx —3x2) - ___ (1 ^ y 1 x
yI 6 E . I . i i i E I 1

i y i i y i
The programmed equations for Segment #1 were:

W1T1=RS(3,3)/(6*S1E*S1IY)

W1T2=3*P1(1,1)*XI2-XI3

W1T3=(ML1*XI2)/(2*S1E*S1IY)

W1=W1T1*W1T2—W1T3

TH1YT1=RS(3,3)/(6*S1E*S1IY)

TH1YT2=6*P1(1,1)*XI—3*XI2

TH1YT3=(ML1*XI)/(S1E*S1IZ)

TH1Y=TH1YT1*TH1YT2—TH1YT3

For Segment # 2 , the programmed equations were:

W2T1=RS(3,4)/(6*S2E*S2IY)

W2T2=3*P2(1,1)*XI2-XI3

W2T3=(ML2*XI2)/(2*S2E*S2IY)

W2=W2T1 * W 2T2—W 2T3

TH2YT1=RS(3,4)/(6*S2E*S2IY)

TH2YT2=6*P2(1,1)*XI—3*XI2

158

(4.83)

(4.84)

(4.85)

TH2YT3=(ML2*XI)/(S2E*S2IZ)

TH2Y=TH2YT 1*TH2YT2—TH2YT3

4.54 Complete the Kinematic Analysis. At this point, all of the deformed coordinates

have been stored in the arrays SID, S2D, S3D, WINGD, P1D, P2D, and PWD. The next step

was to transform the coordinates to their respective location based on the angles of the

segments and the location of the connecting pins. The routine STFORM completed the

kinematic analysis. Section 4.3 Kinematics, gave a full explanation of the program.

4.55 Draw the Three-Dimensional Robotic Arm Image. The output of the routine

STFORM contained the transformed coordinates. The segments could now be drawn on the

screen. All of the drawing tasks were completed through the routine SDRROB (static model,

draw robot). This routine simply acted as a manager for controlling when each drawing

routines were called. As discussed in Section 4.4 Three—Dimensional Graphics, there were

specific drawing routines for each link.

4.56 Allow User Interaction. After the image was completely drawn on the screen, the

user was allowed to interact with the model. The routine SUSR (static model user interaction)

completed different actions which were dependent upon which dial, button, or key the user

selected. Section 4.2 User Interaction discussed the user capabilities.

4.57 Check the Validity of the Altered Angle. If the user decided to change the angle of

one of the segments through the dials, the new angle was checked before any calculations were

completed again. This check of validity was based on the limits of the allowable angles the

user had specified in the parameter file. The user was allowed to specify the maximum and

minimum angles of each segment as well as the maximum and minimum lengths of the

actuators. The routine SANGLC (static model) angle check, then compared the possible new

angle with the user defined limits. The computed GO TO statement allows the checking to be

kept to a minimum. If only Segment # 3 has been altered, then the angles of Segments # 1 and

2 were still valid. The varible AD contained the number of the segment which has just been

altered.

160

GO TO (100, 200, 300, 400) AD

The variable PNE was a flag which determined if the change was a increment or a decrement

of the angle. If AD was equal to zero, then the control of the routine went to the next line

after the GO TO and the base was altered.

IF(PNE.EQ.l.O) THEN

ANG0CNT=AN G 0CNT+AN GINC

ELSE

ANG0CNT=ANG0CNT-ANGINC

ENDIF

The base is allowed to rotate 360°. Therefore, the only check is to keep the angle under 360°.

IF(ANG0CNT.GT.6.2832) ANG0CNT=ANG0CNT-6.2832

IF(ANGOCNT.LT.O.O) ANG0CNT=ANG0CNT+6.2832

If the base was altered, no other angle needed to be adjusted. The program control then

returned to the routine STATIC.

GO TO 999

The next angle that was checked was that of Segment # 1 , ANG1CNT. First, the angle

was altered and the new value was temporarily stored. Since an alteration of Segment # 1 also

altered Segment # 2 and Segment # 3 , the validity of both actuators as well as the validity of

all the angles had to be checked. If one was determined to be invalid, then, the temporary

values were not passed back into the angle variables.

100 IF(PNE.EQ.l.O) THEN

ANG 1T=ANG 1CNT+ANGINC

ELSE

ANG1T=ANG1CNT—ANGINC

ENDIF

The length of Actuator AB was determined and compared with its allowable limits.

161

BETA = 1.5706+ANG1T

HI A1=PIN 1Y—PIN AY

H1B1=PINBX—S1P1X

H1D1=H1A1+H1B1*SIN(ANG1T)

H1E1=H1B1*C0S(ANG1T)

H1C1=SQRT(H1E1**2+H1D1**2)

H1LENG=H1C1

IF(HILENG.LT.HIMINL.AND.HILENG.GT.HIMAXL) THEN

PNE=2.0

W R IT E (V)’ ACTUATOR 1 AT LIMIT’, H1LENG

If the length was out of bounds, then, this routine was terminated and the control returned to

the STATIC routine which then returned to allow the user to interact again.

GO TO 999

ENDIP

If the actuator AB length was within allowable limits, then, the new angle of Segment # 1 was

checked.

IF(ANGIT.LT.ANGIMX) GO TO 101

PNE=2.0

WRITE(*,*)> ANGLE ONE AT LIMIT: ’, (ANG1T*57.3)

GO TO 999

101 IF(ANGIT.GT.ANGIMN) GO TO 1 0 2

PNE=2.0

W R IT E (V)' ANGLE ONE AT LIMIT: ’, (ANG1T*57.3)

GO TO 999

If the length of Actuator AB and the temporary value of the angle of Segment # 1 were within

the limitB, then, the temporary variable for <fî could be determined.

ANG4T=ASIN(H1D11/H1LENG)

162

Next, the angle of Segment # 2 was checked. If Segment # 2 had been the segment

originally altered, this would have been the first group of commands altered. As with <j>̂, if

Segment # 2 was the one adjusted, the angles <f)̂ and (f)̂ were adjusted and those values were

stored in a temporary variables.

200 IF(PNE.EQ.l.O) THEN

ANG2T=ANG2CNT+ANGINC

AN G 6 T=AN G 6 CN T+AN GINC

ELSE

ANG2T=ANG2CNT—ANGINC

ANG6 T=ANG 6 CNT—ANGINC

ENDIF

Next, the length of Actuator DE was computed. As with Actuator AB, if the length was out of

range, then no values were changed and the program returned to the user interaction

subroutine.

KAPPA=1.5706—ANG1CNT

ALPHA=6.28318—ANG6T—KAPPA

H2A2=PINEX

H2B2=PIN2X—PINDX

H2C22=H2A2**2+H2B2**2—2*H2A2*H2B2*COS(KAPPA)

H2LENG=SQRT(H2C22)

IF(H2LENG.LT.H2MINL.AND.H2LENG.GT.H2MAXL) THEN

WRITE(*,*)’ ACTUATOR 2 AT LIMIT', H2LENG

PNE=2.0

GO TO 999

ENDIF

Next, the new value of Segment # 2 was checked.

163

IF(ANG2T.LT.ANG2MX) GO TO 201

PNE=2.0

WRITE(*,*)' ANGLE TWO AT LIMIT: >, (ANG2T*57.3)

GO TO 999

201 IF(ANG2T.GT.ANG2MN) GO TO 202

PNE=2.0

WRITE(V)> ANGLE TWO AT LIMIT: (ANG2T*57.3)

GO TO 999

202

Finally, Segment # 3 was altered and checked.

300 IF(PNE.EQ.l.O) THEN

ANG3CNT=ANG3CNT+ANGINC

ELSE

ANG3CNT=ANG3CNT—ANGINC

ENDIF

IF(ANG3CNT.LT.ANG3MX) GO TO 301

PNE=2.0

ANG3CNT=ANG3CNT—ANGINC

GO TO 999

301 IF(ANG3CNT.GT.ANG3MN) THEN

PNE=2.0

ANG3CNT=ANG3CNT+AN GINC

If <̂ ,j had been determined to be valid, then all temporary variables were passed to the angle

variables. If the user altered the world view of the robot, then, the magnitude of the angles

were checked to stay below 360°.

400 IF(ANGX.GT.6.283)ANGX=ANGX—6.283

IF(ANGY.GT.6.283)ANGY=ANGY—6.283

IF(ANGZ.GT.6.283)ANGZ=ANGZ—6.283

At the completion of the routine SANGLC, the entire static analysis had been

completed. The next step would be to either return to the user interaction routine or return to

the top of the routine STATIC to start the static analysis process for the new configuration.

165

4.6 Dynamic Analysis

The dynamic analysis was controlled by the routine DYNAMIC. The conditions were

dependent upon the geometry of the arm. But, the geometry of the arm was dependent upon

the forces of the actuators which the user had input through the dynamic input file, dynin.dat.

There were a total of twelve steps required to complete the dynamic analysis, to allow user

interaction, and to produce a three-dimensional graphics image:

(1) Determine the Static Reactions (DSTREAC)

(2) Determine the Applied and Dynamic Actuator Forces (DACTFOR)

(3) Determine the Inertial Reactions (DYNINER)

(4) Determine the Velocities and Accelerations (DVELAC)

(5) Determine the New Angles Based on the New Time Step (DADJANG)

(6) Determine the new Static Reactions (DSTREAC)

(7) Determine the Dynamic Reactions (DYNREAC)

(8) Determine the Deformation (DDEFLX, DDEFLY, DDEFLZ)

(9) Complete the Kinematic Analysis (DTFORM)

(1 0) Draw the Three-Dimensional Robotic Arm Image (DDRROB)

(1 1) Allow User Interactions. (DUSR)

(1 2) Based on the number of input actuator forces or the user interaction,

continue or stop the model.

The twelve steps were placed in a Do—loop in the routine DYNAMIC:

CALL DSTREAC

DO 100 NF=1,NFACT

CALL DACTFOR

CALL DYNINER

CALL DVELAC

CALL DADJANG

166

IF(PNE.EQ.2.0) THEN

WRITEf*,*)’ RETURNING TO CALCULATE THE NEXT

ACTUATOR FORCE’

GO TO 100

ENDIF

CALL DSTREAC

CALL DYNREAC

CALL DDEFLX

CALL DDEFLY

CALL DDEFLZ

CALL DTFORM

CALL DDRROB

CALL DUSR

IF(PNE.EQ.999.0) GO TO 999 (Stop the model)

100 CONTINUE

The number of times the Do—loop was completed was based on the number of entries in the

dynamic input file, dynin.dat. This value was stored in the variable NFACT. If the new

angles were not within the limits or the length of the actuators based on the new angles were

not within the limits, then the analysis was not completed for the given applied actuator forces.

The control returns to determine the next pair of applied and dynamic actuator forces.

4.61 Determine the Static Reactions. The static reactions were determined in the

routine DSTREAC (dynamic model, static reactions). This routine was based on the static

reactions of equations 3.99 through 3.100 which were also used in the routine STAREAC. The

routine is basically the same as STAREAC. The only difference was that STAREAC was

called in the static model and referenced the common block, SCOMMON, and the routine

DSTREAC was called in the dynamic model and referenced the dynamic common block,

DCOMMON.

4.62 Determine the Applied and Dynamic Actuator Forces. After the static reactions

had been determined, the routine DACTFOR (dynamic model actuator forces) could determine

the applied and dynamic forces of the actuators. The applied forces were the actuator forces

from the input file dynin.dat. The dynamic forces were, based on equation , the difference

of the applied and static forces:

FABD = FACTI(1,NF) - FABS

FDED = FACTI(2,NF) - FDES

The variable NF was the number the Do—loop of the DYNAMIC routine was equal to at that

time. NF could then be used to access the array FACTI which held the actuator forceB the

user had specified in the dynamic input file.

4.63 Determine the Inertial Reactions. Based on the new dynamic actuator forces, the

inertial reactions, C$ = ma and = l a could now be determined by the routine DYNINER

(dynamic model, inertial reactions). The reactions were determined by solving Bannoura’s

dynamic reaction equations for the inertial terms, QD and TD. QD and Td were both real

arrays used to store the magnitudes of the inertial reactions. QD stored the forces while TD

stored the moments. Both were declared to be (3,4) arrays where the three rows stored the

(x,y,z) components of the reactions and the columns were each a different pin location. As an

example, TD(2,3) would have stored the inertial torque in the y direction at Pin # 2 . The

reactions were determined First at Pin #3 , then Pin #2 , # 1 and finally # 0 . The routine

DYNINER followed the same basic outline as the static reaction routines. First, the cosine and

sine of the angles, weights, and moment arms were determined. The theoretical equations for

Pin # 3 were:

d j s
Q = R - R

g3z 3z 4z
d , s s

T = M - P sin0 *R -M -
g3x 3x 34 3 4z 4x

d
P sin^ * Q

3g3 3 g3z
■ , s s d

T . = M + P cosij> *R -M +P cobA * Q
g3 y 3y 34 3 4z 4y 3g3 3 g3z

s s
Td„ = Md —P cos A *R +P sin^ *R +

g3z 3z 34 3 4y 34 3 4x
s d

P coad) *W —M —P cos A * Q +
3g3 3 3 4z 3g3 3 g3y

d
P sin A * Q

3g3 3 g3x

The program equivalent was:

QD(1,4)=RD(1,4)—RS(1,5)

QD(2,4)=RD(2,4)+W3-RS(2,5)

QD(3,4)=RD(3,4)-RS(3,5)

TD(1,4)=MD(1,4)—{P34*RS(3,5)+P3G3*QD(3,4))*SI3—MS(1,5)

TD(2,4)=MD(2,4)+(P34*RS(315)+P3G3*QD(3,4))*C03—MS(2,5)

M3ZT1=(P34*RS(2,5)—P3G3*W3+P3G3*QD(2,4))*C03

M3ZT2=(P34*RS(1,5)+P3G3*QD(1,4))*SI3

TD(3,4)=MD(3,4)—M3ZT1+M3ZT2—MS(3,5)

The theoretical equations for Pin # 2 were:

d , s s , d
Q = R + F cos A — R + F coaA — R

g2x 2x de 5 3x de 5 3x
d , s s

Q = R + W - R + F sin A +
g2y 2y 2 3y d e 5

d dF sin^ — R
d e 5 3y

d , s d
Q = R - R - R

g2z 2z 3z 3z
d , s s d

T = M - P ainA *R - M - P ainA *Q -
g2x 2x 23 2 3z 3x 2g2 2 g2z

d d
P ainA *R — M

23 2 3z 3 x

168

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

d , s s d
T = M + P cos6 *R - M - P coad) * Q +

g2y 2y 23 2 3z 3y 2g2 2 g2z
d d

P cos0 * R - M
23 2 3z 3y

Td = 0.0
82z

The progTam lines representing the equations were:

QD(113)=RD(1,3)+(FDES+FDED)*C05—RS(1,4)-RD(1,4)

QD(2,3)=RD(2,3)+(FDES+FDED)*SI5+W2—RS(2,4)—RD(2,4)

QD(3,3)=RD(3,3)—RS(3,4)—RD(3,4)

M2XT1=(P23*RS(3,4)+P2G2*QD(3,3)+P23*RD(3,4))*SI2

TD(1,3)=MD(1,3)—M2XT1—MS(1,4)—MD(1,4)

M2YT1=(—P23*RS(3,4)+P2G2*QD(3,3)—P23*RD(3,4))*C02

TD(2,3)=MD(2,3)—M2YT1—MS(2,4)—MD(2,4)

TD(3,3)=0.0

The theoretical equations for Pin #1 were:

d d 8 8 8 d
Q = R — F cos (b + F cos (b — R — F cos d) +

glx lx de 5 a b 4 2x de 6
d dF cos d) — R
ab 4 2x

d , s s
Q = R - F S sind) + W + F sind) - R -

gly ly de 5 1 ab 4 2y
d d d

F aiad) + F sin^ — R
de 6 ab 4 2y

(4.99)

d d 8 ^
Q = R - R - R

g lz lz 2z 2 z
d , s s d

T =M — P eind) *R — M — P aind) *Q —
g lx lx 12 1 2Z 2x lg l l g lz

d .
P sin0 *R — M„

12 l 2Z 2x
d , s s d

T = M + P cos<b *R — M -1- P cos d> *Q 4-
g ly ly 12 1 2z 2y lg l 1 g lz

d d
P cos(f) *R — M

12 l 2 z 2 y

T d . = 0 .0glz

169

(4.96)

(4.97)

(4.98)

(4.100)

(4.101)

(4.102)

(4.103)

170

The program equivalent was:

R1XT1=—(FABS+FABD)*C04+FDES*C05+FDED*C06

QD(1,2)=RD(1,2)—R1XT1—RS(1,3)—RD(1,3)

R1YT1=FDES*SI5+FDED*SI6—(FABS+FABD)*SI4—W1

QD(2,2)=RD(2,2)—R1YT1—RS(2,3)—RD(2,3)

QD(3,2)=RD(3I2)-RS(3,3)-RD(3,3)

M1XT1=((RS(3,3)+RD(3,3))*P12+P1G1*QD(3,2))*SI1

TD(1,2)=MD(1,2)—M1XT1—MS(1,3)—MD(1,3)

M1YT1=—((RS(3,3)+RD(3,3))*P12+P1G1*QD(3,2))*C01

TD(2,2)=MD(2,2)—M1YT1—MS(2,3)—MD(2,3)

TD(3,2)=0.0

The theoretical equations for Pin # 0 were:

Qd = r J x - R b — Qd — Qd — Qd
gOx 4x g lx g2x g3x

Qd = R d + W + W + W + W - R S -
gOy Oy 0 1 2 3 4y

Qd — Qd — Qd
g iy g2y g3y

Qd = Rd — R 8 — Qd — Qd - Qd
gOz Qz 4z g lz g2z g3z

Td = M — (P +P sin^ +P sin^ + P Bind))R 8 — MS -
gOx Ox 01 12 1 23 2 34 3 4z 4*

P *Qd - (P +P sin<b)Qd -
OgO gOx 01 lg l 1 g lz

(P +P sind) +P sxnd))Qd —
01 12 1 2g 2 2 g 2z

(P +P Bind) +P sin d) +P sin d))Qd —
01 12 1 23 2 3g3 3 g3z

 Td t ^
g lx g 2x g3x

Td = Md + (P cos d) +P cos d> + P cos d))R 8 — M8 +
gOy Oy 12 1 23 2 34 3 4z 4y

P coB(b * Qd + (P cos<b + P cos(b)Qd +
lg l 1 g lz 12 1 2g 2 2 g 2zJ J

(P cosd) +P cos (b +P cos <{))Q — T —
12 1 23 2 3g3 3 g3z g ly

T d - T d
g2y g3y

Td = Md + P cos(b *W + (P cosd) + P cos(b)W +
gOz Oz lg l 1 1 12 2 2g2 2 2

(P cos<f> +P cosd) +P cos d))W —
12 1 23 2 3g3 3 3

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)

g l z g 2 z g 3 z

p r o g r a m e q u i v a l e n t w a s :

QD(1,1)=RD(1,1)—RS(1,5)—QD(1,2)—QD(1,3)—QD(1,4)

QD(2,1)=RD(2,1)+(W0+W1+W2+W3)—RS(2,5)—QD(2,2)—QD(2,3)—QD(2,4)

Q D ^ s R D ^ ^ - R S ^ ^ - Q D ^ - Q D ^ .S H W ^)

M0XT1=(P01+P12*SI1+P23*SI2+P34*SI3)*RS(3,5)

M0XT2=(P01+P1G1*SI1)*QD(3,2)

M0XT3=(P01+P12*SI1+P2G2*SI2)*QD(3,3)

M0XT4=(P01+P12*SI1+P23*SI2+P3G3*SI3)*QD(3,4)

M0XT5=TD(1,2)+TD(1,3)+TD(1,4)

M0XT6=P0G0*QD(1,1)+MS(1,5)

TD(1,1)=MD(1,1)—M0XT1—M0XT2—-M0XT3—M0XT4—M0XT5—M0XT6

M0YT1=—(P12*C01+P23*C02+P34*C03)*RS(3,5)

M0YT2=—(P12*C01+P2G2*C02)*QD(3,3)

M0YT3=—(P12*C01+P23*C02+P3G3*C03)*QD(3,4)

M0YT4=TD(2,2)+TD(2,3)+TD(2,4)

M0YT5=MS(2,5)+P1G1*QD(3,2)

TD(2,1)=MD(2,1)—M0YT1—M0YT2—M0YT3—M0YT4—M0YT5

MOZTl=—P1G1*C01*W1—(P12+P2G2)*C02*W2

M0ZT2=-{P12*COH-P23*CO2+P3G3*CO3)*W3

M0ZT3=(P12*COl+P23*CO2+P34*CO3)*RS(2,5)

M0ZT4=—{P01+P12*SI1+P23*SI2+P34*SI3)*RS(1,5)

MOZT5=POGO*QD(1,1)

MOZT6=P1G1*C01*QD(2,2)—(P01+P1G1*SI1)*QD(1,2)

M0ZT7=(P12*COH-P2G2’l'CO2)*QD(2l3)

M0ZT8=—(P01+P12*SI1+P2G2*SI2)*QD(1,3)

M0ZT9=(P12*COl+P23*CO2+P3G3*CO3)*QD(2,4)

MOZT10=(P01+P12*SI1+P23*SI2+P3G3*SI3)*QD(1,4)

M0ZT11=MS(3,5)+TD(3,2)+TD(3,3)+TD(3,4)

MOZT12=MOZT1+MOZT2+MOZT3+MOZT4+MOZT5+MOZT6

MOZT13=MOZT7+MOZT8+MOZT9+MOZT10+MOZT11

TD(3,1)=MD(3,1)-M0ZT12—M0ZT13 .

4.64 Determine the Velocities and Accelerations. The velocities and accelerations of the

Segments # 1 and # 2 were determined next. The inertial torques were a product of the

moment of inertia tensor and the angular acceleration of the segment. Angular accelerations

could be extracted from the inertial torques:

T d = I * a n gOx xx Ox Td = I * a n gOy yy Oy T d = I * a n gOz zz Oz (4.110)

T di = Ig l x XX lx Td = 1 *a , glx yy ly Td = f * a . gOz zz lz (4.111)

T d = 1 *a„ g2 x xx 2 x T d = I * a 0
g2 y yy 2 y

T d = I g2 z zz 2 z (4.112)

The angular velocities were then determined based on the equation

173

The angular accelerations were stored in the array ALPHA and the angular velocities were

stored in the array OMEGA. Both arrays were (3,3) where the three rows stored the (x,y,z)

components of the terms and the three rows were for the base, Segment #1 , and Segment #2.

The equations of the program were:

For the base:

ALPHA(1,1)=TD(1,1)/BIX

ALPHA(2,1)=TD(2,1)/BIY

ALPHA(3,1)=TD(3,1)/BIZ

OM EGA(l,l)=ALPHA(l,l)*DT + OMEGA(l.l)

OMEGA(2,l)=ALPHA(2,l)*DT + 0MEGA(2,1)

OMEGA(3,l)=ALPHA(3,l)*DT + OMEGA(3,l)

For Segment #1 :

ALPHA(1,2)=TD(1,2)/S1IX

ALPHA(2,2)=TD(2,2)/S 1IY

ALPHA(3,2)=TD(3,2)/S 1IZ

OMEGA(l,2)=ALPHA(l,2)*DT + OMEGA(l,2)

OMEGA(2,2)=ALPHA(2,2)*DT + OMEGA(2,2)

OMEGA(3,2)=ALPHA(3,2)*DT + OMEGA(3,2)

For Segment # 2

ALPHA(1,3)=TD(1,3)/S2IX

ALPHA(2,3)=TD(2,3)/S2IY

ALPHA(3,3)=TD(3,3)/S2IZ

OMEGA(l,3)=ALPHA(l,3)*DT + OMEGA(l,3)

OMEGA(2,3)=ALPHA(2,3)*DT + OMEGA(2,3)

OMEGA(3,3)=ALPHA(3,3)*DT + OMEGA(3,3)

For Segment # 1 , the velocity was based on equation 3.131:

174

^ 1 = ^ 0 x r 2 / l + W1 x r 2 / l ‘ (4-117)

The vector *2/ \ was a variable based on the deformation of Segment #1 . Since the velocity

and acceleration were only determined over the distance form Pin # 1 to Pin # 2 on Segment

#1, *2/1 was ^rs*' se ̂ e<lual to the deformed location of Pin #1:

R21X=PBDT(1,1)

R21Y=PBDT(2,1)

R21Z=PBDT(3,1)

The velocity and acceleration were then determined at each level between the two pins. The

vector *2/1 was then a function of the level number, I:

R21X=S1DT(1,1,I)

R21Y=S1DT(2,1,I)

R21Z=S1DT(3,1,I)

The final calculations on Segment #1 were at the location of Pin #2 . At this point, the vector

*2/ i was 8et equal to the deformed coordinates of Pin #2:

R21X=P1DT(1,1)

R21Y=P1DT(2,1)

R21Z=P1DT(3,1)

Two cross-products required for Segment #1 were determined next. In theory,

‘5 l x ' 2 / l = (r2 / l , *wl y " r 2 / i y*wl .)i +

(r2/ l X*Wl Z - r2/ l Z’,'Wlx)j +

(r2/ l y*Wl x ~ r2/ l X* V k- (4,118)
The program lines were:

WlR21X=R21Z*OMEGA(2,2)-R21Y*OMEGA(3,2)

WlR21Y=R21X*OMEGA(3,2)-R21Z*OMEGA(l,2)

WlR21Z=R21Y*OMEGA(l,2)-R21X*OMEGA(2,2)

The second cross-product in theory was:

0 2/1 " v‘2 / r Oy' ^ v 2/1 Oy'

In the program, the equations were:

WOR21X=R21Z*OMEGA(2,1)

WOR21Z=-R21X*OMEGA(2,1)

The velocity of Segment # 1 a t a given distance along Segment # 1 was the sum of the two

cross-products. In theory:

?1 = (r2/ 1s*O>0y + r2/1* % ~ r2/ l y+Wlz ^ +

<t 2 / l x*Wl . - r2 / l B*Wl*)i +

<--*2/lX* % + r 2 / l y+Wlx " r 2 / l X+Wly^k- (4-120>

In the program, the velocity of Segment #1 was stored in the array VE. The three rows stored

the (x,y,z) components while the columns each held a different pin or level:

VE1(1,J)=W0R21X+W1R21X

VE1(2,J)=W1R21Y

VE1(3,J)=W0R21Z+W1R21Z

The acceleration of Segment # 1 was based on the equation

a l = X r 2 /l-^ + X X r 2 / l ^ + X r l / 0 ̂ +

{a^ x Wj x " r ^ } + {Q-j x r 2^ } (4.121)

The cross-products were:

In analytical theory:

{S0 X X2/l> = r2 / lZ"a 0y 1 " r2 / lX* V k (4,122)

In the program:

A0R21X=R21Z*ALPHA(2,1)

A0R21Z=—R21X*ALPHA(2,1)

2 /r "Oy J“ ' v r 2 / l * ’ W0 yjfc (4,123J

In the program:

W0W0R1X=—R21X*OMEGA(2,l)**2

W0W0R1Z=—R21Z*OMEGA(2,l)**2

In theory:

-*

{2"ox 'i/o}=s

2* % (r2/ l y^ l x “ r2/ l X* V i +

2* % (r2/lZ*Wly “ r2/ly*"l»)k (4J24)
In the program:

W02R10X=2*OMEGA(2,1)*(R21Y*OMEGA(1,2)—R21X*OMEGA(2,2))

W02R10Z=2*OMEGA(2,1)*(R21Z*OMEGA(2,2)—R21Y*OMEGA(3,2))

In theory:

{ v v V s
{Wly (r2 / l y*WlX - r 2 / l X+Wl y) -

Wl.^r2/lx*Wl , - " r2/l”* V }i

<W1 / r 2 / l 1 *Wl y - r 2 / l y*t,,l .) -

V r2 / ly*Wl x - r2 / lx*Wly)}j

{Wl* (r2 / l x*Wl . “ r 2 / l “*&,lx) -

V r2 / l Z*Wl y “ r2 / ly*Wlz)}k (4-125)

In the program:

W1W1R1X=0MEGA(2,2)*(R21Y*0MEGA(1,2)-R21X*0MEGA(2,2))-

+OMEGA(3,2)*(R21X*OMEGA(3l2)-R21Z*OMEGA(l,2))

WlWlRlY=OMEGA(3,2)*(R21Z*OMEGA(2,2)-R21Y*OMEGA(3,2))-

+OMEGA(l,2)*(R21Y*OMEGA(l,2)-R21X*OMEGA(2,2))

177

W1W1R1Z=0MEGA(1,2)*(R21X*0MEGA(3,2)-R21Z*0MEGA(1,2))-

+OMEGA(2,2)*(R21Z*OMEGA(2,2)-R21Y*OMEGA(3,2))

In theory:

{“i xV }=
{t2 / i z*a i y " r 2 / i y*a iz>; +

<r2/ l X*a i Z - r2/ l z*a ix>j +

{r2 / l y*a i x - r2 / l x* V k (4‘126)
In the program:

A1R21X=R21Z*ALPHA(2,2)-R21Y*ALPHA(3,2)

A1R21Y=R21X*ALPHA(3,2)—R21Z*ALPHA(1,2)

A1R21Z=R21Y*ALPHA(1,2)—R21X*ALPHA(2,2).

C

C Sum up the acceleration terms

C

AC1(1,J)=A0R21X+W0W0R1X+W02R21X+W1W1R1X+A1R21X

AC1(2,J)=W1W1R1Y+A1R21Y

AC1(3,J)=A0R21Z+W0W0R1Z+W02R21Z+W1W1R1Z+A1R21Z

The velocity of Segment # 2 was described by the equation

^2 = ^1 + ^xyz x x3/2 + h X '3 /2 - (4' 12?)

The vector r ^ ^ was similar to that of r2/ l ôr ca ĉu â*;*ons °f Segment #1 . The first

calculation was at the location of Pin #2 . The vector was:

R32X=P1DT(1,1)

R32Y=P1DT(2,1)

R32Z=P1DT(3,1)

The next calculations for Segment # 2 were at the different levels of Segment #2 . The vector
•4

w a 8 '•ben a function of the level number:

178

R32X=S2DT(1,1,J)

R32Y=S2DT(2,1,J)

R32Z=S2DT(3,1, J)

The final calculation was at the location of Pin #3:

R32X=P2DT(1,1)

R32Y=P2DT(2,1)

R32Z=P2DT(3,1)

m theory was given by:

fl = W i + W j + W k (4.128)xyz x yJ z ' '

Where:

", = "i, <4129>
u) = w -f it). (4.130)y oy ly ' '

« = WlB (4.131)

In the program, these became:

WXYZX=OMEGA(l,2)

WXYZY=OMEGA(2,l)+OMEGA(2,2)

WXYZZ=OMEGA(3,2)

To complete the calculation for the velocity of Segment # 1 , the two cross-products were

determined:

In theory:

fl x ?„ , = xyz 3/2

<r3/2Z*Wy - r3/2y*Wz>; +

(r3/ 2X̂ z - r3/ 2Ẑ x)j +

(4>132)

179

In the program:

WXYZR2X=R32Z*WXYZY-R32Y*WXYZZ

WXYZR2Y=R32X* WX YZZ—R32Z* WXYZX

WXYZR2Z=R32Y*WXYZX—R32X*WXYZY

In theory:

W2 X r 3/2 =

r̂3/ 2X+W2z - r3/ 2Z+W2x)j +

(4-133)

In the program:

W2R21X=R32Z*OMEGA(2,3)-R32Y*OMEGA(3,3)

W2R21Y=R32X*OMEGA(3,3)-R32Z*OMEGA(l,3)

W2R21Z=R32Y*OMEGA(l,3)-R32X*OMEGA(2,3)

The velocity of Segment # 2 then, a t a given distance along Segment # 2 was the sum of the

two cross products. It was stored in the array VE2 which has defined the same as VE1:

In theory:

^ 2 = (r2 / l Z* % + r 2 / l z*wly - T2 /l* * Ulz +

r3/2Z*Wy “ r3/2y*Wz + * 3 /2 * * % ~ +

<r2 / lx*£,,l . - r2 / l z*Wlx + r3/2x*W» -

r3/2Z*Wx + r 3 / 2 X+W2 z ~ r3/2z+W2x)j +

<-*2 / l * W0 y + r 2 / l y+Wlx ~ r 2 / l x+Wly +

r3/ 2y*Wx - r3/ 2X*Wy +

r3/2y*W2x ~ r3/2X*W2y^k‘ (4.134)

In the program:

VE2(1,I)=VE1(1,P2J)+WXYZR2X+W2R21X

VE2(2,I)=VE1(2,P2J)+WXYZR2Y+W2R21Y

VE2(3,I)=VE1(3,P2J)+WXYZR2Z+W2R21Z

The acceleration of Segment # 2 was based on the equation

-♦
a = a + {ft x r \ ,/0} + {d x (d x i \ , /0)} + {2 fl x2 1 1 xyz 3/2J 1 xyz v xyz 3/2/J 1 xyz

2 x U2 x r 3/2^ + t a 2 x r 3/2^

The cross producst were:

-»
First, ^ Xyg was determined. In theory,

Cl = a „ + d x U)n andxyz 2 xyz 2

d x u)„ = (v u)n —u)U)n)\ xyz 2 ' y 2 z z 2 y'

(W - W)j' y 2 z z 2 y'

(LJ O L - W U.) k v y 2 z z 2 y'

In the program:

AXYZX=OMEGA(3,3)*(OMEGA(2,l)+OMEGA(2,2))

+-OMEGA(3,2)*OMEGA(2,3)+ALPHA(l,3)

AXYZY=OMEGA(3,2)*OMEGA(l,3)—OMEGA(3,3)*OMEGA(l,2)

++ALPHA(2,3)

AXYZZ=OMEGA(2,3)*OMEGA(l,2)—OMEGA(l,3)*(OMEGA(2,l)

++OMEGA(2,2))+ALPHA(3,3)

In theory:

^ x y z X *3/2> =

(r3/2Z* ^ “ r3/2X*fV i +

(r3/2X̂ z “ r3/2z* ^ j +

(r3/2y*n x “ r3/2x* ^ k

In the program:

AXYZR2X=R21Z*AXYZY—R21Y*AXYZZ

AXYZR2Y=R21X*AXYZZ—R21Z*AXYZX

AXYZR2Z=R21Y* AXYZX—R2IX* AXYZ Y

181

In theory:

{rt*y* X (f1 *yZ X ' 3 / 2)} =

{wy*(r3 / 2 y*a;x - r3 / 2 x ^ y) -

V (r3/2X*Wz - r3/2Z*Wx)> i +

K * (r3/2Z*Wy - r3/2y*Wz) “

Wx ^ r3/2y*a;x - t 3/2X+a,y)>j +

Wx(r3/2X*Wz ~ r3/2Z*£<x) “

V (r3/2Z"Wy - r3/2y^ z) > k

In the program:

WXYZ2RX=WXYZR3Z*WXYZY-WXYZR3Y*WXYZZ

WXYZ2RY=WXYZR3X*WXYZZ—WXYZR3Z*WXYZX

WXYZ2RZ=WXYZR3Y*WXYZX—WXYZR3X*WXYZY

In theory:

{2 rtx y zX ; 3/2> =

2 *{V (r3/2y*W2 x “ r3/2x* V _

a;z*^r3/2X*£i;2z ~ r3/2Z*W2 x ^ ‘

2 ^ Wz ^ r3/2Z+W2 y - r3/2y+W2 z) -

Wx*^r3/2y*W2x ~ r3 /2X+W2 y ^ j

2 *^Wx^r3/2x*W2z " r3/2Z*W2x) ~

In the program:

W2XYZRX=2*(WXYZY*W2R32Z—WXYZZ*W2R32Y)

W2XYZRY=2*(WXYZZ*W2R32X-WXYZX*W2R32Z)

W2XYZRZ=2*(WXYZX*W2R32Y—WXYZY*W2R32X)

(4.138)

(4.139)

V r3/2Z*W2y “ r3/2y*W2z)>k (4-140)
In the program:

W2W2R3X=W2R32Z*OMEGA(2,3)-W2R32Y*OMEGA(3,3)

W2W2R3Y=W2R32X*OMEGA(3,3)-W2R32Z*OMEGA(l,3)

W2 W2R3Z=W2R32Y*OMEG A(1,3)-W2R32X*OMEG A(2,3)

In theory:

{V " 2/ i } =

{r3/ 2Z*a 2y - r3/ 2y*a 2z>i +

{r3/ 23C*a 2z - r3/ 2Z+a2x>j +

{r3/2y*a 2x“ r3/2X* V k (4‘141)
A2R32X=R32Z*ALPHA(2,3)-R32Y*ALPHA(3,3)

A2R32Y=R32X*ALPHA(3,3)-R32Z*ALPHA(1,3)

A2R32Z=R32Y*ALPHA(1,3)—R32X*ALPHA(2,3)

The acceleration of Segment # 2 a t a given location was then the sum of the cross-products.

The acceleration was stored in the array AC2. This array was declared in the same manner as

that of VE1.

AC2(1,I)=AC1(1,IP2)+AXYZR2X+WXYZ2RX+W2XYZRX+A2R21X+W2W2R2X

AC2(2,I)=AC1(2,IP2)+AXYZR2Y+WXYZ2RY+W2XYZRY+A2R21Y+W2W2R2Y

AC2(3,I)=AC1(3,IP2)+AXYZR2Z+WXYZ2RZ+W2XYZRZ+A2R21Z+W2W2R2Z.

183

4.65 Determine the New AneleB Based on the New Time Step. The angles of Segments

1 and # 2 have been altered based on the forces in the actuators, the angular velocities and

the angular accelerations. To calculate the degree of change, the routine DAD JANG, dynamic

model, adjust angles, was called. The routine determined the differential change of the angleB

due to the actuator forces and also the new angleB based on the differential change, time step,

acceleration and velocity of that segment. The length of the actuators and the differentials

change in lengths were determined in the same manner as in the static model. For Segment

1 , the equations in theory were:

+ 6<px + + O ^ V ^ A 2. (4.142)

= U)u (4.143)

Vj = a lz (4.144)

In the program, the equations were:

ANG1T=ANG1CNT+DPHI1+OMEGA(3,2)*DT+0.5*ALPHA(3,2)*DT**2

Similarly, for Segment #2 ,

<f> 2~<l>2 + ^2 + °2*& + °-5*V &2, (4,145)
n 2 = W2 s (4-146)

V 2 = <*2 z <4-147)

In the program, the equations were:

ANG2T=ANG2CNT+DPHI2+OMEGA(3,3)*DT+0.5*ALPHA(3,3)*DT**2

If the length of the actuators or the new angles were not within the limits of the system, then

an error code was sent back to the routine DYNAMIC. This routine was very similar to the

two routines SANGLC and SADJANG in the static model.

4.66 Determine the Dynamic Reactions. The dynamic reactions were determined based

on the dynamic reactions equations of Bannoura. The routine DYNREAC, dynamic reactions,

followed the same general format as DYNINER and DSTREAC. The difference was only in

the equations. The magnitudes of the reactions were stored in the arrays RD for the forces and

MD for the moments. As with all other reaction arrays, these were also declared to be real and

of size (3,4). The reactions were first determined at Pin # 3 , then Pin # 2 , Pin #1 , and then

Pin #0 . The equations for Pin # 3 in th eo ry are:

, s d
R = R +Q (4.148)

3x 4x g3x
, s d

R = -W +R +Q (4.149)
3y 3 4y g3y
, s d

R = R +Q (4.150)
3z 4z g3z
, s s d d

M = P sin6 *R +M +P aind) * Q + T (4.151)
3x 34 3 4z 4x 3g3 3 g3z g3x
, s s d d

M = - P coad) *R +M - P cos<f) * Q + T (4.152)
3y 34 3 4z 4y 3g3 3 g3z g3y
, s s a

M = P cos<b *R - P sin d> *R - P cos 0 *W +M +
3z 34 3 4y 34 3 4x 3g3 3 3 4z

d d d
P cosd) * Q — P sin^ * Q + T (4.153)

3g3 3 g3y 3g3 3 g3x g3z

The programlines were:

RD(1I4)=RS(1,5)+QD(1,4)

RD(2,4)=-W3+RS(2,5)+QD(2,4)

RD(3,4)=RS(3,5)+QD(3,4)

MD(114)=(P34*RS(3,5)+P3G3*QD(3I4))*SI3+MS(1,5)+TD(114)

MD(2,4)=—(P34*RS(3I5)+P3G3*QD(3,4))*C03+MS(2,5)+TD(2I4)

M3ZT1=(P34*RS(2,5)-P3G3*W3+P3G3*QD(2,4))*C03

M3ZT2=(P34*RS(1,5)+P3G3*QD(1,4))*SI3

MD(3,4)=M3ZT1-M3ZT2+MS(3,5)+TD(3I4)

The theoretical equations for Pin # 2 were:

, s s d
M = —P cobS *R +M +P coed) * Q —

2y 23 2 3z 3y 2g2 2 g2z
d d d

P cos<b * R + T +M
23 2 3z g2y 3y

Md = 0 .0
2 z

The program lines were:

RD(1,3)=—<FDES+FDED)*C05 +RS(1,4)+QD(1I3)+RD(1,4)

RD(2,3)=—(FDES+FDED)*SI5—W2+RS(2,4)+QD(2,3)+RD(2,4)

RD(3,3)=RS(3,4)+QD(3,3)+RD(3,4)

M2XT1=(P23*RS(3,4)+P2G2*QD(3,3)+P23*RD(3,4))*SI2

MD(1>3)=M2XT1+MS(1I4)+TD(1,3)+MD(1,4)

M2YT1=(—P23*RS(3,4)+P2G2*QD(3,3)—P23*RD(3,4))*C02

MD(2I3)=M2YTH-MS(2,4)+TD(2,3)+MD(2,4)

MD(3,3)=0.0

The theoretical equations for Pin # 1 were:

, o a a *
R = F cos d> —F cos <b +R +F cob6 +

lx d e 5 a b 4 2x d e 6
d , d

Q — F cos0 + R
glx a b 4 2x

, s s
R = F S sind) —W —F sin< 6 + R +

ly de 5 1 a b 4 2y

d d d d
F sin^ + Q — F sin^ + R

d e 6 g ly a b 4 2y
, s d d

R = R +Q + R
lz 2z g lz 2 z
d s s d

M = P sin<b *R +M + P aiad) *Q +
lx 12 1 2 Z 2x lg l 1 g lz

d d d
P sind) *R + T +M

12 l 2 Z g lx 2 x
, S B d

M = —P sind> *R +M —P cosd) *Q —
ly 12 l 2z 2y lg l 1 g lz

d d d
P cos(b *R + T + M

12 1 2 z g ly 2 y

Md = 0 .0
lz

185

(4.158)

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)

(4.165)

186

The program lines were:

R1XT1=-(FABS+FABD)*C04+FDES*C05+FDED*C06

RD(1,2)=R1XT1+RS(1,3)+RD(1,3)+QD(1,2)

R1YT1=FDES*SI5+FDED*SI6—(FABS+FABD)*SI4-W1

RD(2,2)=R1YT1+RS(2,3)+QD(2,2)+RD(2,3)

RD(3,2)=RS(3,3)+QD(3,2)+RD(3,3)

M1XT1=((RS(3,3)+RD(3,3))*P12+P1G1*QD(3I2))*SI1

MD(1I2)=M1XT1+MS(113)+MD(1,3)+TD(1,2)

M1YT1=—((RS(3)3)+RD(3,3))*P12+P1G1*QD(3,2))*C01

MD(2,2)=M1YT1+MS(2)3)+MD(2,3)+TD(2,2)

MD(3,2)=0.0

The theoretical equations for Pin # 0 were:

Rox=R! +Qdn +Qd. +Qd +Qd4x gOx g lx g2x g3x

Rd = —w -W -W -W +R 8 +Qd +Qd +Qd +Q d
0y 0 1 2 3 4y gOy g ly g2y g3y

Rd = R 8 +Qd +Qd +Qd +Qd
Oz 4z gOz g lz g2z g3z

Md =(P +P sin^ + P sin^ + P sindJ)RS +M S + P *Qd +
OX 01 12 1 23 2 34 r 3 4z 4X OgO gOx

(P +P ain^i)Qd +
01 lg l 1 g lz

(P + P sin(b +P sin^)Qd +
01 12 1 2g2 2 g2z

(P +P sin (b +P sin (b + P sin<f>)Qd +
01 12 1 23 2 3g3 3 g3z

T d + T d + T d + T d
gOx g lx g2x g3x

Md = —{P cos d) +P cos (b +P cos <j))RS +M a —
0y 12 1 23 2 34 3 4z 4yJ J

P cos<f> * Q —(P cos<b + P cos(b)Q —
lg l 1 g lz 12 1 2g2 2 g2z

(P cos<f> +P cos (b +P coad))Qd + T d + T d +
12 1 23 2 3e3 3 g3z gOy g ly

Md = —P coad) *W —(P cosd) + P cosd))W —
Oz lg l 1 1 12 2 2g2 2 2

(P cosd) +P cos d) +P cosd))W +
12 1 23 2 3g3 3 3

3g3 3 g3z gOy g ly

Td + T d
g2 y g3y

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

RD(1,1)=RS(1,5)+QD(1,1)+QD(1,2)+QD(1I3)+QD(1I4)

RD(2,1)=—(W0+W1+W2+W3)+RS(2,5)+QD(2,1)+QD(2,2)+QD(2,3)+QD(2,4)

RD(3,1)=RS(3,5)+QD(3,1)+QD(3,2)+QD(3,3)+QD(3,4)

M0XT1=(P01+P12*SIH-P23*SI2+P34*SI3)*RS(3,5)

M0XT2=(P01+P1G1*SI1)*QD(3,2)

M0XT3=(P01+P12*SI1+P2G2*SI2)*QD(3,3)

M0XT4=(P01+P12*SI1+P23*SI2+P3G3*SI3)*QD(3,4)

M0XT5=TD(1,1)+TD(1,2)+TD(1)3)+TD(1,4)

M0XT6=P0G0*QD(1,1)+MS(1,5)

MD(1,1)=MOXT1+MOXT2+MOXT3+MOXT4+MOXT5+MOXT6

M0YT1=—<P12*C01+P23*C02+P34*C03)*RS(3,5)

M0YT2=—{P12*C01+P2G2*C02)*QD(3,3)

M0YT3=-{P12*COl+P23*CO2+P3G3*CO3)*QD(3,4)

M0YT4=TD(2,1)+TD(2,2)+TD(2,3)+TD(2,4)

M0YT5=MS(2,5)+P1G1*QD(3,2)

188

MD(2,1)=M0YT1+M0YT2+M0YT3+M0YT4+M0YT5

M0ZT1=—P1G1*C01*W1—{P12+P2G2)*C02*W2

M0ZT2=—(P12*C0H-P23Z*C02+P3G3*C03)*W3

M0ZT3=(P12*COH-P23*CO2+P34*CO3)*RS(2,5)

M0ZT4=—(P01+P12*SI1+P23*SI2+P34*SI3)*RS(1,5)

M0ZT5=P0G0*QD(1,1)

MOZT6=P1G1*C01*QD(2,2HP01+P1G1*SI1)*QD(1,2)

M0ZT7=(P12*COH-P2G2*CO2)*QD(2,3)

M0ZT8=-(P0H-P12*SIH-P2G2*SI2)*QD(1,3)

M0ZT9=(P12*COl+P23*CO2+P3G3*CO3)*QD(2,4)

MOZT10=(P01+P12*SI1+P23*SI2+P3G3*SI3)*QD(1,4)

M0ZT11=MS(3,5)+TD(3,1)+TD(3,2)+TD(3,3)+TD(3,4)

MOZT12=MOZTH-MOZT2+MOZT3+MOZT4+MOZT5+MOZT6

MOZT13=M0ZT7+M0ZT8+M0ZT9+M0ZT10+M0ZTll

MD(3,1)=M0ZT12+M0ZT13

4.67 Determine the Deformation. The final caluclations are to determine the

deformation of Segments # 1 and #2. The routines DDEFLX, DDEFLY, and DDEFLZ

calculate the deformatin in the x, y, and z directions, respectively. Each of the dynamic

deflection routines are based on their static model counterparts, SDELFX, SDEFLY, and

SDEFLZ. The differences between each pair of routines lie within the equations. In the static

models, the deformation equations were simplified based on only static loading conditions. But,

the dynamic model’s deformation equations cannot be simplified.

The equations of theory for axial extension in the x direction and torsional twist for

Segment # 1 were:

Q c o s ^ + Q s i n<^ x
u = 6 l x 1 ‘ f L x - 1)+

xl -- 1 l — 5 -----
L A E

1 1 1

c o s d) + R^ s i n (b
2X 1 2 y 1 f , ^

L A E
1 1 1

T c o s d) + T s i n d) x 2

(? = 8 U 1 ‘ (L x - 1)+
xl " 1 l „

L J G 1
l l x l

M c o s <b +M ^ s i n<b
2 * r 1 2 y r 1 (x)

 1

L J G
1 1 x 1

The program lines representing the equations were:

U1XT1=(QD(1,2)*C01+QD(2,2)*SI1)*(P1(11 1)*XI—0.5*XI)

U1XT2=(RD(1,3)*C01+RD(2,3)*SI1)*XI

U1XT3=(P1(1,1)*S1A*S1E)

U1X=(U1XT1+U1XT2)/U1XT3

TH1XT1=(TD(1,2)*C01+TD(2,2)*SI1)*(P1(1,1)*XI—0.5*XI2)

TH1XT2=(MD(113)*C01+MD(2,3)*SI1)*XI

TH1XT3=(P1(1,1)*S1J0*S1G)

TH1X=(TH1XT1+TH1XT2)/(TH1XT3*57.3)

For Segment # 2 , the equations of theory for axial extension and torsional twist were:

Q c o s ^ + Q s i n <b x
u = 6 2 x 2 S 2 y 2 fL x — 2 1+

x2 -- 2 2 — 5 -----
L A E z

2 2 2

R c o a d) + R ^ s i n d)
Z x 2 3 y 2 (x i

L A E
2 2 2

T c o s ^ - f T a i n d) x
e = e 2x 2 e 2 y 2fL X - 2 l +
x2 -- ' 2 2 —5—'

L J G *
2 2 x 2

M** c o s d> + M^ s i n ^
3 * 2 ___ 3 y_____1 (x)

L J G
2 2 x 2

The program lines were:

189

(4.172)

(4.173)

(4.174)

(4.175)

U2XT1=(QD(1,3)*C02+QD(2,3)*SI2)*(P2(1,1)*XI—0.5*XI)

U2XT2=(RD(1,4)*C02+RD(2,4)*SI2)*XI

U2XT3=(P2(1,1)*S2A*S2E)

U2X=((U2XT1+U2XT2)/U2XT3)

TH2XT1=(TD(1,3)*C02+TD(2,3)*SI2)*(P2(1,1)*XI—0.5*XI2)

TH2XT2=(MD(1,4)*C02+MD(2,4)*SI2)*XI

TH2XT3=(P2(l,l)*S2JO*S2G)

TH2X=(TH2XT1+TH2XT2)/(TH2XT3*57.3)

The equations of theory for deflection in the y direction, V. and the slope of the

deflection were:

2 4 E . I

1 2 0 E . I L.

(4.176)

2 4 E . I

2 0 E . I L
1 z i i

6 E . I .
(4.177)

l 1 1 E
z i

The equations for R in theory were:

6 T
q° _ g 2 z

2 y2 ---------- --------
L 2

2
Q c o s <b — Q s i n <b W

q = E l y 1 g l * 1 — 1 coad)
lyl L T 1

1 1

Q c o a d) — Q s i n ^ W
q = S 2 7 2 S 2 * 2 - 2 cos <b

2 y2 -----------------------1------------------------- “ ------- 2

2 2

The program lines were:

Q0D1Y=(6*TD(3,2))/S1L2

QOD2Y=(6*TD(3,3))/S2L2

QD1Y=(QD(2,2)*C01—QD(1,2)*SI1—W1*G01)/S1LENG

QD2Y=(QD(2,3)*C02—QD(1,3)*SI2—W2*C02)/S2LENG

RL1=RD(2,3)*C01—RD(1,3)*SI1

RL2=RD(2,4)*C02—RD(1,4)*SI2

The program lineB representing the equations for the deflection and slope in the y direction for

Segment # 1 were:

V1T1=QD1Y/(24*S1E*S1IZ)

V1T2=XI4—4*P1(1,1)*XI3+6*S1L2*XI2

V1T3=QOD1Y/(120*S1E*S1IZ*P1(1,1))

V1T4=2*XI5—5*P1(1,1)*XI4+12*S1L3*XI2

V1T5=RL1/(6*S1E*S1IZ)

V1T6=3*P1(1,1)*XI2—XI3

V1T7=(MD(3,3)*XI2)/(2*S1E*S1IZ)

V1=V1T1*V1T2+V1T3*V1T4+V1T5*V1T6+V1T7

TH1ZT1=QD1Y/(24*S1E*S1IZ)

TH1ZT2=4*XI3-12*P1(1,1)*XI2+12*P1(1,1)*XI

TH1ZT3=QOD1Y/(120*S1E*S1IZ*P1(1,1))

TH1ZT4=10*XI4—20*P1(1,1)*XI3+12*S1L3*XI

191

(4.179)

(4.180)

(4.181)

THlZT5=(RLl*(6*pl(l,l)*XI—3*XI2))/(6*S1E*S1IZ)

TH1ZT6=(MD(3,3)*XI)/(S1E*S1IZ)

TH1Z=TH1ZT1*TH1ZT2+TH1ZT3*TH1ZT4+TH1ZT5+TH1ZT6

The program line representing equations for the deflection and slope in the y direction for

Segment # 2 were:

V2T1=QD2Y/(24*S2E*S2IZ)

V2T2=XI4—4*P2(1, 1) *XI3+6*S2L2*XI

V2T3=QOD2Y/(120*S2E*S2IZ*P2(1,1))

V2T4=2*XI5-5*p2(l,l)*XI4+12*S2L3*XI2

V2T5=RL2/(6*S2E*S2IZ)

V2T6=3*P2(1,1)*X12—XI3

V2T7=(MD(3,4)*XI2)/(2*S2E*S2IZ)

V2=V2T1*V2T2+V2T3*V2T4+V2T5*V2T6+V2T7+P2YD

TH2ZT1=QD2Y/(24*S2E*S2IZ)

TH2ZT2=4*XI3—12*P2(1,1)*XI2+12*P2(1,1)*XI

TH2ZT3=QOD2Y/(120*S2E*S2IZ*P2(1,1))

TH2ZT4=10*XI4—20*P2(1,1)*XI3+12*S2L3*XI

TH2ZT5=(RL2*(6*P2(1,1)*XI—3*XI2))/(6*S2E*S2IZ)

TH2ZT6=(MD(3,4)*XI)/(S2E*S2IZ)

TH2Z=TH2ZT1*TH2ZT2+TH2ZT3*TH2ZT4+TH2ZT5+TH2ZT6

The equations of theory for deflection in the z direction, W., and the slope of defelction were:

R ? * \ M }
l i l i i l 1 (3L x 2 - x 3) - (1 * l } y 1 x 2

i i i i
6 E I 2 E I

i y i i y i

0 .= - 1 “ 1 r4x?-12L.x?+12L?x.l +y, -------------- L 1 1 1 1 lj
2 4 E . I

1 yi
q°

1 “ * FlOxf—20L.x?+24L?x.l
 L i 1 * 1

1 2 0 E . I L
1 y i i

d I

l J z i (6 L x —3x2)— ___^ y 1 x
6 E I 1 1 1 E I 1

i y i i y i
The equations for q.^., q?^. in theory were:

q° = -----! _ (T c o s ^ - T s in 0)
lzl L i gly 1 glx 1

1

q° = d (T cos <b — T sin«i 1
2 z 2 L l g 2y 2 g 2* V

2

Q g l z
q. = glzl L

i

a = S 2z
2 z2 --------------L

2

The program lines were:

ML1=MD(2I3)*SI1+MD(1,3)*C01

ML2=MD(2,4)*SI2+MD(1,4)*C02

Q0D1Z=(6/S1L2)*(TD(2,2)*C01—TD(1,2)*SI1)

Q0D2Z=(6/S2L2)*(TD(2,3)*C02—TD(1,3)*SI2)

QD1Z=QD(3,2)/S1LENG

QD2Z=QD(3,3)/S2LEN G

The program lines representing the equations for the deflection and slope in the i

Segment # 1 were:

W1T1=QD1Z/(24*S1E*S1IY)

193

(4.182)

(4.183)

(4.184)

(4.185)

(4.186)

(4.187)

direction for

W1T2=XI4—4*P1 (1,1)*XI3+6*S1L2*XI2

W1T3=QOD1Z/(120*S1E*S1IY*P1(1,1))

W1T4=2*XI5—5*P 1(1,1)*XI4+ 12*S 1L3*XI2

W1T5=RD(3,3)/(6*S1E*SHY)

W1T6=3*P1(1,1)*XI2—XI3

W1T7=(ML1*XI2)/(2*S1E*S1IY)

W1=W1T1*W1T2+W1T3*W1T4+W1T5*W1T6+W1T7

TH1YT1=QD1Z/(24*S1E*S1IY)

TH1YT2=(4*XI3—12*P1(1,1)*XI2+12*S1L2*XI)

TH1YT3=QOD1Y/(120*S1E*S1IY*P1(1,1)

TH1YT4=10*XI4—20*P1(1,1)*XI3+24*S1L3*XI

TH1YT5=RD(3,3)/(6*S1E*SHY)

TH1YT6=6*P 1(1, 1)*XI—3*XI2

TH1YT7=(ML1*XI)/(S1E*S1IY)

TH1Y=TH1YT1*TH1YT2+TH1YT3*TH1YT4

+TH 1 YT5*TH 1YT 6 +TH 1YT7

The program lines representing equations for the deflection and slope in the z direction for

Segment # 2 were:

W2T1=QD2Z/(24*S2E*S2IY)

W2T2=XI4—4*P2(1,1)*XI3+6*S2L2*XI2

W2T3=QOD2Z/(120*S2E*S2IY*P2(1,1))

W2T4=2*XI5—5*P 2(1,1)*XI4+12*S2L3 *XI2

W2T5=RD(3,4)/(6*S2E*S2IY)

W2T6=3*P2(1,1)*XI2-XI3

W2T7=(ML2*XI2)/(2*S2E*S2IY)

W2=W2T1*W2T2+W2T3*W2T4+W2T5*W2T6+W2T7+P2ZD

TH2YT1=QD2Z/(24*S2E*S2IY)

195

TH2YT2=4*XI3-12*P2(1,1)*XI2+12*S2L2*XI

TH2YT3=QOD2Y/(120*S2E*S2IY*P2(1,1))

TH2YT4=10*XI4—20*P2(1,1)*XI3+24*S2L3*XI

TH2YT5=RD(3,4)/(6*S2E*S2IY)

TH2YT6=6*P2(1,1)*XI—3*XI2

TH2YT7=(ML2*XI)/(S2E*S2IY)

TH2Y=TH2YT1*TH2YT2+TH2YT3*TH2YT4

+TH2YT5 *TH2 YT6+TH2YT7

At this point, the deformed coordinates have been stored in the arrays SID, S2D, S3D,

WINGD, P1D, P2D, and PWD.

4.68 Complete the Kinematic Analysis. The next step was to transform the coordinates

through the kinematic analysis. This kinematic analysis was completed through the routine

DTFORM, dynamic model, transformations. Section 4.3 Kinematics gave a full explanation.

The output of this routine were the transformed deformed coordinates which could be used to

draw the robot image.

4.69 Draw the Three-Dimensional Robotic Arm Image. The robot image was drawn

through the control of the routine DDRROB, dynamic model, draw robot. From this routine,

all the routines which drew the links were called. As explained in Seciton 4.4

Three-Dimensional Graphics, there were specific routines responsible for drawing each

component of the robot.

4.610 Allow User Interactions. Once the user was given the graphics output of the

program, the routine DUSR, dynamic model, user interaction, was called to allow analytical

information to be extracted at the user’s request. This routine was described in Section 4.2

User Interactions.

196

CHAPTER 5

USER DIRECTIONS

The first step in using either of the models is to move to the correct subdirectory. The

directory where the models are is

\usr\aro\solid .

To move to that subdirectory type

cd \usr\aro\solid .

5.1 Static Model

1. Edit input parameter file in the vi editor by the command:

vi robots.dat

Follow the vi commands to complete the editing.

2. Initiate the Static Model through the command:

./smodel

3. When a session is complete, preserve the output file for that session

by using the command:

copy Bout.dat filename

5.2 Dynamic Model

1. Edit input parameter file in the vi editor by the command:

vi robots.dat

Follow the vi commands to complete the editing.

2. Initiate the Dynamic Model through the command:

./dmodel

3. When a session is complete, preserve the output file for that

by using the command:

copy dout.dat filename

5.3 VI Editor Commands

Arrow Keys * f «- j — Move the cursor to the desired location

’x’ — deletes the character the cursor is positioned over

■a’ — adds or appends after the position of the cursor

’I' — inserts after the position of the cursor

’esc’ — ends the appending or inserting mode

’:x’ — saves the changes in the file and ends the session with vi

5.4 User Interaction Capabilities

5.41 Angle Interaction

DIAL #1 — Rotate Base Positively

DIAL # 2 — Rotate Base Negatively

DIAL # 3 — Rotate Segment # 1 Positively

DIAL # 4 — Rotate Segment # 1 Negatively

DIAL # 5 — Rotate Segment # 2 Positively

DIAL # 6 — Rotate Segment # 2 Negatively

DIAL # 7 — Rotate Segment # 3 Positively

DIAL # 8 — Rotate Segment # 3 Negatively

Mouse # 1 — Rotate World about X-Axis

Mouse # 2 — Rotate World about Y—AxiB

Mouse # 3 — Rotate World about Z—Axis

Switch # 1 — Angle of Actuator AB

Switch # 5 — Angle of Base

Switch # 6 — Angle of Actuator DE

Switch #11 — Angle of Segment # 1

Switch #12 — Angle of Wing Segment

Switch #16 — All angles written to an output file

Switch #17 — Angle of Segment # 2

Switch #18 — Angle of World View

Switch #23 — Angle of Segment # 3

Switch #24 — Differential change in the angles of

the actuators

5.42 Deformation

Switch # 4 — Segment # 1 : Deflection and Slope

Switch # 9 — Segment #2 : Deflection and Slope

Switch #15 — Deflection of Pin # 2

Switch #21 — Deflection of Pin # 3

Switch #26 — Segment # 1 : Deflection and Slope

written to an output file

Switch #27 — Segment #2 : Deflection and Slope

written to an output file

5.43 Forces and Moments

Switch # 7 — Dynamic Forces and Moments

Switch # 2 — Static Forces and Moments

Switch #10 — Static Forces and Moments written

to an output file

Switch #13 — Inertial Forces find Torques

Switch #19 — Force of Actuator AB

Switch #25 — Force of Actuator DE

Numeric Pad # 0 — Represents Pin # 0

Numeric Pad # 1 — Represents Pin # 1

Numeric Pad # 2 — Represents Pin # 2

Numeric Pad # 3 — Represents Pin # 3

Numeric Pad # 4 — Represents Pin # 4 , or Load

5.44 Segment Levels

Switch #29 — Level Number of Segment #1

Switch #30 — Level Number of Segment # 2

Switch #31 — Increment Level Number

Switch #32 — Decrement Level Number

5.45 Program Control

'N ' — Starts the dynamic analysis on the next pair of

actuator forces

’Q’ — Stops the model

5.46 Velocities and Accelerations

Switch # 3 — Angular Velocities and Accelerations

of Segment #1

Switch # 8 — Translational Velocity and Acceleration

of Segment #1

Switch #14 — Angular Velocity and Acceleration

of Segment # 2

Switch #20 — Translational Velocity and Acceleration

of Segment # 2

Switch #22 — Velocities and Accelerations of Segment # 1

written to an output file

Switch #28 — Velocities and Accelerations of Segment # 2

written to an output file

201

5.5 Input Parameter File ROBOTS.DAT

ROBOT PARAMETER FILE - ROBOTS.DAT
ROBOT ARM SPECIFICATIONS

A. ARM DIMENSIONS (Angles - Degrees, Units - SI)
1. Base Dimensions(all meas’ts w.r.t. center bottom of base)

a. Base Diameter 0.36
b. Base Height 2.198
c. Position of Pin # 1 on the Base (X) 0 . 0

d.
0 0

2.149
e. Mass 252.30
f. Center of Mass, (X) 0 . 0

g- (Y) 0.75
h. Mass Moment of Inertia about X—Axis 0 . 2 2 1

i. Mass Moment of Inertia about Y—Axis 0.44
j- Mass Moment of Inertia about Z—Axis 0 . 2 2 1

Segment
a.

#1 Dimensions (all measurements w.r.t. pin #1)
Thickness 0.038

b. Length 1.78
c. Position of Pin #1 on Segment 1 (X) 0 . 1 0

d. (Y) 0 . 0

e. Mass 72.66
f. Minimum Angle w.r.t. Horizontal -30.0
g- Maximum Angle w.r.t. Horizontal 30.0
h. Center of Mass, (X) 0.887
i. (Y) 0 . 0 0 2 1

j- Position of Pin # 2 , (X) 1 . 6

k. (Y) 0 . 0

1. Number of Divisions 1 0 . 0

m. Modulus of Elasticity (in G Pa) 192.05
n. Modulus of Rigidity (in G Pa) 8 6 . 0

o. Deflection Multiplier 1 . 0

P- Cross—Sectional Area 0.0087
q- Mass Moment of Inertia about X—Axis 0.7166
r. Mass Moment of Inertia about Y—Axis 29.43
s. Mass Moment of Inertia about Z—Axis 29.21
t. Area Moment of Inertia about Y—Axis 1.4E—7
u. Area Moment of Inertia about Z—Axis 1.4E—7
V. Area Polar Moment of Inertia 2.8E—7

Segment
a.

2 Dimensions (all measurements w.r.t. pin #2)
Thickness 0.038

b. Length 0.9144
c. Position of Pin # 2 on Segment 2 (X) 0 . 1 0

d. (Y) 0 . 0

e. Mass 11.9
f. Minimum Angle w.r.t. Segment #1 -90.0
g- Maximum Angle w.r.t. Segment #1 7.0
h. Center of Mass, (X) 0.375
i. (Y) 0 . 0

j- Position of Pin # 3 , (X) 0.821
k. (Y) 0 . 0

1. Number of Divisions 1 0 . 0

m. Modulus of Elasticity (in G Pa) 192.05

202

n. Modulus of Rigidity (in G Pa) 8 6 . 0

o. Deflection Multiplier 1 . 0

P- Cross-Sectional Area 0.0087
q- Mass Moment of Inertia about X—Axis 0.0008
r. Mass Moment of Inertia about Y—Axis 1.681
s. Mass Moment of Inertia about Z—Axis 1.681
t. Area Moment of Inertia about Y—Axis 1.4E—7
u. Area Moment of Inertia about Z—Axis 1.4E—7
V. Area Polar Moment of Inertia 2.8E—7

4. Wing Segment Dimensions (all measurements w.r.t. pin #2)
a. Angle of Wing Segment w.r.t. Segment # 2 1 2 0 . 0

b. Wing Length 0.4191
5. End Effector, Segment # 3 (all measurements w.r.t. pin #3)

a. Thickness 0 . 1

b. Length 0.104
c. Mass 4.55
d. Center of Mass, (X) 0 . 0

e. (Y) 0 . 0

f. Minimum Angle w.r.t. Segment # 2 -90.0
g- Maximum Angle w.r.t. Segment # 2 90.0
h. Position of Pin # 3 on Segment 3 (X) 0 . 0 1

i. (Y) 0 . 0

6 . Object, Segment # 4
a. Thickness 0.15
b. Length 0.944
c. Mass 28.56
d. Center of Mass, (X) 0.4572
e. (Y) 0.0

7. Hydraulic Cylinder # 1 Dimensions
a. Thickness 0.0762
b. Maximum Length 1.9144
c. Minimum Length 0.4572
d. Position of Pin #A on Base, (X) 0.178
e. (Y) 1.464
f. Position of Pin #B on Segment #1 , (X) 0.333
g- (Y) 0 . 0

h. Mass 1.3
i. Cross-Sectional Area 0.005
j- Modulus of Elasticity 2 0 0 . 0

8 . Hydraulic Cylinder # 2 Dimensions
a. Thickness 0.076
b. Maximum Length 1.829
c. Minimum Length 0.915
d. Position of Pin # D on Segment # 1 , (X) 0.108
e. (Y) 0 . 0

f. Position of Pin # E on Wing Segment, (X) 0.3875
g- (Y) 0 . 0

h. Mass 1 . 2

i. Cross-Sectional Area 0.005
j- Modulus of Elasticity 2 0 0 . 0

203

B. PROGRAM INITIAL VALUES
1. Initial Display Parameters

a. Angle Increment 5.0
b. Time Step 0 . 0 1

c. Initial value of Base 0 . 0

d. Initial angle of Segment #1 0 . 0

e. Initial angle of Segment # 2 0 . 0

f. Initial angle of Segment # 3 0 . 0

All distances are in terms of local ditances measured from
the reference or the reference pin of each segment. All
angles are in degrees. The suggested unit system is SI.

5.6 Dynamic Input Pile, DYNIN.DAT

ARO DYNAMIC INPUT FILE

I FAB (N) FDE (N)

1 -6841.18 964.92

2 -6841.18 964.92

3 -6841.18 964.92

4 -6841.18 964.92

5 -6841.18 0 . 0

6 -6841.18 0 . 0

7 -6841.18 0 . 0

8 -6841.18 0 . 0

999

x!23 1234567890.12 1234567890.12

205

CHAPTER 6

RESULTS

The results of the modeling system were classified in the four areas of research:

Three-Dimensional Graphics, Kinematics, User—Interaction, and Deformation Analysis.

Results were compiled in both analytical and graphic forms.

6.1 Three—Dimensional Graphics

A three-dimensional image was created on the screen through the Silicon Graphics IRIS

3130 Graphics Workstation. The image, (See Figure 6.1) was based on the dimensions specified

in the parameter file, robots.dat. As an example of the graphic capabilities, the color of the

base was changed to white. This produced the image in Figure 6.2.

6.2 Kinematics

The kinematic analysis resulted in a discrete configuration of the arm. The configuration

of the arm would change based on the angles of the links and also the dimensions of each link.

Figure 6.3 shows a configuration consisting of the following angles:

0 O = 0° = 30°

<(>2 = -6 0 ° <p3 = 0 °

7 = 120°

FIGURE 6.1

THREE DIMENSIONAL COMPUTERIZED IMAGE ON THE IRIS 3130

FIGURE 6.2

WHITE COMPUTERIZED IMAGE ON THE IRIS 3130

207

*

--W j

FIGURE 6.3

ARM WITH 0 O=O, <^=30, ^ = - 6 0 , ^ = 0 , ^ = 1 2 0

6.3 User Interaction

The small blue window at the bottom of the screen was a text window. The user could

extract information regarding the given configuration of the arm or the results of the analysis of

the arm. For example, given the configuration in Figure 6.3, by selecting Switches # 5 , 11,

and 17 the angles for Segments # 1 and # 2 would be written to the screen. Another mode of

user interaction would be changing the the World Perspective by selecting the one or a

combination of the Mouse Keys. Figure 6.4 shows a change in World Perspective with the

angleB written to the text window through selecting Switch #18.

The third example of results of user interaction is through the input parameter file, (See

Figure 6.5). In Figure 6 . 6 the height of the Base was 2.198m and the thickness was 0.36 m.

208

I 1 (x k

FIGURE 6.4

CHANGE OF WORLD PERSPECTIVE
p| tMl I! i '»>’l ! M 1 i " ! ’ E JN'i

;INV ..NU * f>l (*" > ' -Ni

• • . l l - H . »
< ■ . «1 M ii; 1
I , . l l . IMl t

I . » n m i s t*

Si** | im *n • 1 < X I
i r)

mI |)IV.
rV.M.r. u< lit

i t M(ir . / u n t i l) -- A
r I H u f i . • m i t cl 1 -------------- --- ‘ t t t H
X -------------------------- - ----------h.HH.'
r--- --- h .'w ." i
»i;\ x •--------—------------------------- \y --------------------------------------a H

. t i l I t y I I II (i l»i, J - —rV),*.,!,,-. •)« Ri.p.hty (,,, () |'i,| ------------------------------ OG.H
o »*i I.*, t . o n rki i t . I ii .-i --- l a
(i **•.'»—**••< t i t m a l ftr » s » ------—— ----- — —---------------- -— ------------------------------a AAH.'
Ma s s Moment i>(I i M ' f t m n l x j u t X - A * i s ---------------- -------- ---------- -- H . / J B b
M. i ss Moment o f liM»r t i .i i i l x i ut Y - A x i s --
f l i t s s Mnmen t n (Lni'f t i n iil>ihj t / —f i x i s -- M ? \
Ac «*n Moment » f I n o r l i ; , . rt xiut Y - A x . s -- 1 . 1 1 - . '
fw . s i Moment ti I I m - i t u , n i x m t I ' - f l xi *. -- 1 1 * ” '’
ft* '*ii P u l m Moment i) I i n e r t t o — ----- . ' - I l f - . ’

M VT " ! M< i men •, 11) n «, Ej i l l m e u s u r o m e n t s w. f - t - p m •
i i i " t -- o

FIGURE 6.5

INPUT PARAMETER FILE ROBOTS.DAT

FIGURE 6.6

BASE WITH DIMENSIONS OF HEIGHT=2.198m AND WIDTH=0.36m

u !Jr't :•»
01 I i H ! I Ofc »VN3 s i < * ' i * i

‘J CJV. K 1 « ! i « | l » <’

• f t iJ ? - - I w S s O M S a /
» i'S'-i 1 tJjJfttWHXwO ifteWWte****

.« I - M t 4CSN UNO 51 O R < •> - **».• t«I» m 1
...r. >̂s J;}J1 tM

FIGURE 6.7

BASE WITH DIMENSIONS OF HEIGHT=1.25m AND WIDTH=0.75m

210

By changing the height to 1.25m and the thickness to 0.75m a new robotic arm image is

obtained. Figure 6.7 will show the new arm.

Analytical information such as the reactions at each of the pins can also be extracted.

By -selecting Pin # and the numeric keypad number 4, the reactions of the load were written

to the screen (see Figure 6 .6).

6.4 Deformation Analysis

The static deflection results predicted by the program smodelT were compared with the

measured deflections from experimental conditions of the robot arm shown in Figure 6.1. The

configuration of the arm is based on the following angles:

^ 0 = °° * i = °°

* 2 = 0 ° *3 = 0 °

7 = 120°

The experiment was conducted by placing two micrometers under the beams of Segments

1 and # 2 as shown in Figure 6 .8 . To similate the load, small steel plates of the dimension

(6x4x3/4)in or (0.15x0.10x0.02)m weighing an average of 2.41 kg were placed in the bucket. A

zero load was considered to be based on the mass of Segment #3 , the rope, and the bucket.

The load was then increased and decreased by adding or removing the steel plates. Each plate

was numbered so that the exact mass was calculated (See Table 6.1).

2.
17

5
211

l -
bJ
V
obj

CL CQa
'O'

n<c
a_j
LTJ

a

FIGURE 6 . 8

EXPERIMENTAL SETUP FOR MEASURING STATIC DEFLECTION

212

TABLE 6.1 MASS OP OBJECTS FOR EXPERIMENTAL
MEASUREMENTS OF STATIC DEFLECTION

ITEM MASS (KG! LOAD

SEG'T # 3 4.55 44.620
ROPE 0.63 6.178
BUCKET 0.887 8.698
PLATE #10 2.254 22.104
PLATE # 9 2.271 22.271
PLATE # 8 2.275 22.310
PLATE # 7 2.241 21.977
PLATE # 6 2.256 22.124
PLATE # 5 2.194 21.516
PLATE # 4 2.258 22.143
PLATE # 3 2.238 21.947
PLATE # 2 2.268 22.241
PLATE #1 2.236 21.928

The first micrometer gave the deflection measurement associated with Segment # 1 located just

to the left of Pin # 2 . Micrometer # 2 measured the deflection associated with Segment # 2

located just to the left of Pin #3 , (see Figure 6 .8). The measurements taken are summarized

in Table 6.2.

TABLE 6.2 EXPERIMENTAL MEASUREMENTS OF
STATIC DEFLECTIONS

DEFLECTION DEFLECTION TIME
SEGMENT #1 SEGMENT #2 (SEC) LOAI
(mm) (mm)

** Constant Loading
Conditions (Drift)

1.44 0.56 0 59.5
1.55 0.71 30 59.5
1.63 0.84 60 59.5

** Increase in Loading
2.59 2.87 108 81.6
3.46 4.87 131 103.9
4.32 6.83 150 126.2
5.21 8.78 165 148.2
6.07 10.74 181 170.3
6.91 12.62 195 191.8
7.80 14.55 2 1 0 213.9
8 . 6 8 16.56 225 235.9
9.54 18.54 240 258.1

10.44 20.55 259 280.1

213
** Constant Loading

Conditions (Drift)
10.54 20.70 270 280.1
10.67 21.00 300 280.1
10.81 21.25 330 280.1

** Decrease in Loading
10.61 19.74 345 258.1
9.45 18.10 360 235.9
8.75 16.50 380 213.9
8.02 14.78 400 191.8
7.32 13.17 415 170.3
6.57 11.46 435 148.2
5.80 9.65 450 126.2
5.06 7.92 480 103.9
4.29 6.14 500 81.6
3.54 4.34 525 59.5

** Constant Loading
Conditions (Drift)

3.56 4.39 540 59.5
3.63 4.51 570 59.5
3.71 4.62 600 59.5
3.80 4.75 630 59.5

The calculations from the static model were tabulated in Table 6.3:

TABLE 6.3 STATIC DEFLECTIONS PREDICTED FROM
STATIC MODEL SMODEL.F

DEFLECTION DEFLECTION
LOAD SEGMENT # 1 SEGMENT # 2
(N) (mm) (mm)

59.5 1 2 . 1 17.7
81.6 13.8 2 1 . 8

103.9 15.6 26.0
126.2 17.3 30.2
148.2 19.0 34.3
170.3 20.7 38.5
191.8 22.4 42.5
213.9 24.1 46.6
235.9 25.8 50.8
258.1 27.5 54.9
280.1 29.2 59.1

Relative deflections for both the experimental data and the calculated data were then compared

in Table 6.4.

214

TABLE 6.4 CHANGES IS EXPERIMENTAL DEFLECTIONS VS.
CHANGES IN CALCULATED DEFLECTIONS

EXPERIMENTAL CALCULATED
CHANGE DEFLECTION DEFLECTION DEFLECTION DEFLECTION
LOAD SEGMENT # 1 SEGMENT # 2 SEGMENT # 1 SEGMENT # 2

(mm) (mm) (mm) (mm)

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

2 2 . 0 0 . 8 6 2.03 1.7 4.1
22.3 0.96 2 . 0 0 1.7 4.2
22.3 0.87 1.96 1.7 4.2
2 2 . 0 0.87 1.95 1.7 4.1
21.5 0 . 8 6 1.97 1.7 4.2
21.5 0.84 1.87 1.7 4.0
2 2 . 1 0.89 1.94 1.7 4.1
2 2 . 0 0.89 2 . 0 1 1.7 4.2
2 2 . 2 0 . 8 6 1.98 1.7 4.1
2 2 . 0 0.90 2 . 0 1 1.7 4.2

The relative deflections for Segment# 2 that were measured from the experiment are very

close to those calculated from the model. However, the experimentally measured deflections for

Segment #1 do not coincide with those calculated from the model. The slight deviation in the

two sets can be explained through four points:

(1) Drift
(2) Change of reactions at end of cantilever beam
(3) Change in lengths in cantilever beam
(4) Percent of beam which is considered to be elastic

The drift of the beam is associated with due to the load on the beam as a function of

time. As can be see in Table 6.2, there were three periods of constant load where drift was

recorded. The change in reactions is based on the fact that in the experiment the two

segments, Segment # 1 and Segment # 2 were considered to be a cantilever beam, (See Figure

6.9) with one set of reactions effecting the entire beam. But, in the model, the equations

215

FIGURE 6.9

SEGMENTS #1 AND # 2 AS ONE CANTILEVER BEAM

of deflections were based on each segment being a seperate cantilever beam with different

reactions at the end of the beam, (See Figure 6.10).

PIN #3PIN #2

FIGURE 6.10

SEGMENTS # 1 AND # 2 AS TWO CANTILEVER BEAMS

This created a change in the measured and calculated values based on the change in reactions.

The difference in configuration also changed the lengths of the cantilever beams as well as the

216

location of the calculated deflection. This in turn also altered the measured and calculated

values.

The percentage of the beams which were considered to be elastic also effected the

deflections. The experimental beam contained a lower percentage of elasticity than the

calculated value.

For a graphical interpretation of Bevere deflection see figure 6.11 inwhich the modulus of

elasticity was considerably less than that of either steel or aluminum.

FIGURE 6.11

ROBOTIC ARM WITH SEVERE DEFLECTION

6.5 Dynamic Analysis

As an example of the output from the dynamic robot simulation program, DMODEL,

the file DYNIN.DAT was supplied with actuator forces adequate to maintain the robot near

static equilibrium. In this configuration, link #1 and link # 2 were both horizontal. The time

model.

217

ras set to 0.01 seconds. At time t = 0.04 seconds, the force in hydraulic actuator DE was

sd to zero causing the second link to fall. The program calculated the resulting angular

ration of both links, computed the deflections, velocities, and resulting positions, and

(red all of this information on the computer screen through the robot

In the example executed on the IRIS workstation, the elastic robot described in table 5.5

led with an applied load of 250 N. Data acquired during this simulation was as follows:

During static equilibrium, t = 0.03 seconds:

Applied force in actuator AB (N) —6841.2

Applied force in actuator DE (N) 964.9

Resulting dynamic moment about pin #1 (N—m) —546.0

Resulting dynamic moment about pin # 2 (N—m) —30.7

Angular velocity of link #1 (rad/s) —0.76

Angular velocity of link # 2 (rad/s) —0.79

Angular acceleration of link # 1 (rad/s'2) —18.69

Angular acceleration of link # 2 (rad/sA2) —18.28

Total vertical deflection of link # 1 (mm)

Total vertical deflection of link # 2 (mm)

-194.3

-6.52

After the force in actuator DE becomes zero, t = 0.04 seconds:

218

Applied force in actuator AB (N) —6841.2

Applied force in actuator DE (N) 0.0

Resulting dynamic moment about pin # 1 (N—m) —639.5

Resulting dynamic moment about pin # 2 (N—m) —392.2

Angular velocity of link # 1 (rad/s) —0.94

Angular velocity of link # 2 (rad/s) —3.12

Angular acceleration of link #1 (rad/s"2) —18.47

Angular acceleration of link # 2 (rad /s '2) —233.35

Total vertical deflection of link #1 (mm) —196.7

Total vertical deflection of link # 2 (mm) —6.13

219

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Four major areas of study have been investigated in this project. Each area has been

successfully completed through the use of the programming language FORTRAN77 and the

Silicon Graphics IRIS 3130 Computer Graphics Workstation. The success of this project was

dependent upon the programming organization of the tasks associated with each area. As work

is continued on this topic, the framework of the organization as well as the prefix labels of

subroutines and variables should be kept in mind. This will be the key to keeping the models

uniform.

In the area of three-dimensional graphics, it is suggested that future work be in the area

of shading, user—controlled scaling, and hidden line removal. In the area of user interaction, it

is suggested that the user be allowed to change the shape of the segments and vary the number

of segments. Additional analytical information could alBo be extracted to the screen or output

file. In the area deflection analysis, future work is suggested in the areas of real-tim e analysis

and also the use of feedback information from such sensors as strain gauges or lasers.

220

BIBILOGRAPHY

1. Dave, R. N., and A. Jana. Development of A PC—Based Robotic Simulation Package.
Proceedings of the 1987 ASME International Computers in Engineering Conference and
Exhibition. August 9—13, 1987. New York: ASME, 1987.

2. Derby, S. J.. Computer Graphics Robot Simulation Programs: A Comparasion.
Robotics Research and Advanced Applications. (Presented at the Winter
Annual Meeting of the American Society of Mechanical Engineers.) November
14—19, 1982. New York: ASME, Dynamic Systems and Controls Division, 1982.

3. Derby, Stephen James. Kinematic Elasto—Dynamic Analysis and Computer Graphics
Simulation of General Purpose Robot M anipulators. Disseration, Rensselaer
Polytechnic Institute 1981. New York: Troy, 1981.

4. Fu, K. S., R. C. Gonzalez, and C. S. G. Lee. ROBOTICS: Control. Sensing.
Vision, and Intelligence. New York: McGraw Hill, 1987.

5. Gannon, Kevin P.. "Modeling and Experimental Validation of a Single—Link Flexible
Manipulator." Thesis, Naval Postgraduate School, Monterey, California, 1986.

6 . Gere, James, M. and Stephen P. Timoshenko. Mechanics of Materials. 2ed.
Belmont: Wadsworth, 1984.

7. Herbert, Martial and Regis Hoffman. Real-Time Graphic Simulation of Robotic
Manipulation Using Solid Models. Proceedings — Trends and Applications, 1985:
Utilizing Computer Graphics. May 20—22, 1985. Washington D.C.: IEEE, 1985.

8 . Imam, I.,L. W. Sweet, J. E. Davis, M. C. Good, and K. L. Strobel. Simulation and
Display of Dynamic Path Errors for Robotic Motion Off-Line Programming.
Robots 8 , Conference Proceedings. (Volume 1; Applications for Today.)
June 4—7, 1984. Michigan: SME, 1984.

9. IRIS User’s Guide Volume I Graphics Programming. Mountain View: Silicon
Graphics, 1986.

10. IRIS User’s Guide Volume II Graphics Programming. Mountain View: Silicon
Graphics, 1986.

11. Magnenat—Thalmann, N. and D. Thalmann. Animated Types and Actor TypeB in
Computer Simulation and Animation. Simulation in Strongly Typed Languages: ADA,
PASCAL,SIMULA, Proceedings of the Conference. February 2—4, 1984. California:
Society forComputer Simulation, Simulation Series 13 (1984) 51—56.

12. Nickel, Randy. "The IRIS Workstation." IEEE Computer Graphics and Applications. 4
(1984) 30-34.

221

13. Norton, R. L.. Graphic Simulation of Puma Robot Motions On The Apple Computer.
Computers in Engineering 1983, Proceedings of the 1983 International Conference and
Exhibit. (Volume 2: Robotics Theory and Applications; Computers in Education.)
August 7-11, 1983. New York: ASME, 1983.

14. Okino, Norio. New Geometric Modeller TIPS/GS For Geometric Simulation.
KnowledgeEngineering and Computer Modelling in CAD, Proceedings of CAD8 6 :
Seventhlnternational Conference on the Computer as a Design Tool.
September 2—5, 1986.London: Butterworths, 1986.

15. Parker, J. R.. "A Graphics Based Robot Simulation." Transactions of the Society for
Computer Simulation. 3 (1986), 125—134.

16. Parker, James R.. "Simulating A Robot Arm Using Graphics and Animation."
AI. Graphics and Simulation, (published by Society for Computer Simulation),
(1985) 58-61.

17. Petroka, Robert P.. "Computer Simulation and Experimental Validation of a Dynamic
Model(Equivalent Rigid Link System) on a Single—Link Flexible Manipulator." Thesis,
Naval Postgraduate School Monterey, California, 1986.

18. Sweet, Larry W., J. E. Davis, M. C. Good, I. Imam, and K. L. Strobel. Simulation of
Off—Line—Programmed Robot Motions. 2nd Biennial International Machine Tool
Technical Conference. September 5—13, 1984. Virginia: National Machine Tool
Builders’ Association, 1984.

19. Tabani, Iqbal and Akbar Montaser. "Robot Motion and Task Planning: Simulation and
Programming of a Robot Arm." Analytical Instrumentation. 16 (1987), 385—398.

20. Thomas, Bradley S.. Graphic 3—D Simulation of Robot Workcells. 2nd Biennial
International Machine Tool Technical Conference. September 5—13, 1984. Virginia:
National Machine Tool Builders’ Association, 1984.

21. Tsujido, Yoshinori, Norio Kodaira, and Michitaka Oshima. Realtime Motion Simulator
of Robots. Proceedings of "83 International Conference on Advanced Robotics.
September 12—13, 1983. Tokyo, Japan: Japan Industrial Robot Association, 1983.

222

APPENDIX A

NOMENCLATURE

The following variables are listed in the order in which they appear in the dynamic com

It was chosen to reference the dynamic common block because it contains all variables reference

common block plus variables which are unique to the dynamic model.

COMMON /BASE/ BASEDI, BASEHE, PIN1X, PIN1Y, BASMAS,

+BCMASX, BCMASY, BMIX, BMIY, BMIZ, BS, BSDT, PB, PBDT

BASEDI = BASE Diameter

BASEHE = BASE HEight

PIN1X = PIN # 1 , X-coordinate

PIN1Y = PIN # 1 , Y-coordinate

BASMAS = BASe MASs

BCMASX = Base Center of MASs, X—coordinate

BCMASY = Base Center of MASs, Y—coordinate

BMIX = Base mass moment of inertia about the X—axis

BMIY = Base mass moment of inertia about the Y—axis

BMIZ = Base mass moment of inertia about the Z—axis

BS = BaSe

BSDT = BaSe Deformed and Transformed

PB = Pins on Base

223

PBDT = Pins on Base Deformed and Transformed

a. Base Diameter

b. Base Height

Position of Pin #1 on the Basec.

d.

e.

f.

g-

h.

Mass

Center of Mass, (X)

Mass Moment of Inertia about X—Axis

i. Mass Moment of Inertia about Y—Axis

j. Mass Moment of Inertia about Z—Axis

k. 3—D (4,8,100) Array holds 3—D coordinate information

of the eight base vertices

1. 3—D (4,8,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix AO, BSDT = BS*A0

m. 2—D (4,4) Array holds coordinate information

of the location of each pin on the base.

Pins included are Pin #1 in column

1 and Pin A in column # 2

n. 2—D (4,4) Array holds coordinate information which

has been transformed using the D—H transformation

matrix AO, PBDT= PB*A0

(X)

00

(Y)

BASEDI

BASEHE

PIN IX

PIN1Y

BASMAS

BCMASX

BCMASY

BMX

BMIY

BMIZ

BS

BSDT

PB

PBDT

COMMON /SEG 1/ S1THIC, S1LENG, S1P1X, S1P1Y, S1MASS,

+ANG1MN, ANG1MX, S1CMAX, S1CMAY, PIN2X, PIN2Y, S1DIVN,

+S1E, S1G, S1A, S1MIX, S1MIY, S1MIZ, S1IY, S1IZ, S1JO,

+S1, SID, S1DT, S1RF, P I, P1D, P1DT

S1THIC = Segment #1 THICknesa

S1LENG = Segment # 1 LENGth

S1P1X = Pin # 1 on Segment #1 , X—coordinate

S1P1Y = Pin # 1 on Segment #1, Y—coordinate

S1MASS = Segment # 1 MASS

ANG1MN = ANGle # 1 MiNimum value

ANG1MX = ANGle # 1 MaXimum value

S1CMAX = Segment # 1 Center of MAss, X—coordinate

S1CMAY = Segment # 1 Center of MAss, Y—coordinate

PIN2X = Pin # 2 on Segment #1 , X—coordinate

PIN2Y = Pin # 2 on Segment #1 , Y—coordinate

S1DIVN = Number of DIVisionB Segment # 1 is partitioned into

S1E = Segment # 1 modulus of Elasticity

S1G = Segment # 1 modulus of rigidity

S1A = Segment # 1 cross-sectional Area

SI MIX = Segment #1 mass moment of inertia about the X—axis

S1MIY = Segment # 1 mass moment of inertia about the Y—axis

S1MIZ = Segment # 1 masB moment of inertia about the Z—axis

S1IY = Segment # 1 area moment of inertia about the Y—axis

S1IZ = Segment # 1 area moment of inertia about the Z—axis

S1JO = Segment # 1 polar moment of inertia

225

SI = Segment #1

SID = Segment # 1 Deformed

S1DT = Segment # 1 Deformed and Transformed

S1RF = Segment #1 Undeformed and Transformed

P I = Pins on Segment # 1

P1D = Pins on Segment #1 Deformed

P1DT = Pins on Segment # 1 Deformed and Transformed

a. Thickness S1THIC

b. Length S1LENG

c. Position of Pin #1 on Segment 1 (X) S1P1X

d. (Y) S1P1Y

e. Mass SIM ASS

f. Minimum Angle w.r.t. Horizontal ANG1MN

g- Maximum Angle w.r.t. Horizontal ANG1MX

h. Center of Mass, (X) S1CMAX

i. (Y) S1CMAY

j- Position of Pin #2, (X) PIN2X

k. (Y) PIN2Y

1. Number of Divisions S1DIVN

m. Modulus of Elasticity (in G Pa) S1E

n. Modulus of Rigidity (in G Pa) S1G

o. Cross-Sectional Area S1A

P- Mass Moment of Inertia about X—Axis S1MIX

q- Mass Moment of Inertia about Y—Axis S1MIY

r. Mass Moment of Inertia about Z—Axis S1MIZ

s. Area Moment of Inertia about Y—Axis SHY

Area Moment of Inertia about Z—Axis

Polar Moment of Inertia

3—D (4,4,100) Array holds 3—D coordinate information

of the four vertices of Segment #1

3—D (4,4,100) Array holds 3—D coordinate information

which has been altered due to deformation effects

on Segment # 1

3—D (4,4,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1),

S1RF = S1*(A0*A1)

3—D (4,4,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1),

S1DT = S1D*(A0*A1)

2—D (4,4) Array holds coordinate information of the

location of each pin on Segment #1 . Pins included

are Pin # 2 in column # 1 Pin B in column #2,

and Pin D in column # 3

2—D (4,4) Array holds coordinate information of pins

which has been altered due to deformation effects

on Segment # 1

2—D (4,4) Array holds coordinate information which

has been transformed using the D—H transformation

matrix (A0*A1), P1DT= P1D*(A0*A1)

S1IZ

S1JO

SI

SID

S1RF

S1DT

PI

P1D

P1DT

COMMON /SE G 2/ S2THIC, S2LENG, S2P2X, S2P2Y, S2MASS,

+ANG2MN, ANG2MX, S2CMAX, S2CMAY PIN3X, PIN3Y, S2DIVN,

+S2E, S2G, S2A, S2MIX, S2MIY, S2MIZ, S2IY, S2IZ, S2JO,

+S2, S2D, S2DT, S2RF, P2, P2D, P2DT

S2THIC = Segment # 2 THICkness

S2LENG = Segment # 2 LENGth

S2P2X = Pin # 2 on Segment #2 , X—coordinate

S2P2Y = Pin # 2 on Segment # 2 , Y—coordinate

S2MASS = Segment # 2 MASS

ANG2MN = ANGle # 2 MiNimum value

ANG2MX = ANGle # 2 MaXimum value

S2CMAX = Segment # 2 Center of MAss, X—coordinate

S2CMAY = Segment # 2 Center of MAss, Y—coordinate

PIN3X = Pin # 3 on Segment # 2 , X—coordinate

PIN3Y = Pin # 3 on Segment #2 , Y—coordinate

S2DIVN = Number of Divisions Segment # 2 is partitioned into

S2E = Segment # 2 modulus of Elasticity

S2G = Segment # 2 modulus of rigidity

S2A = Segment # 2 cross-sectional Area

S2MIX = Segment # 2 mass moment of inertia about the X—axis

S2MIY = Segment # 2 mass moment of inertia about the Y—axis

S2MIZ = Segment # 2 mass moment of inertia about the Z—axis

S2IY = Segment # 2 area moment of inertia about the Y—axis

S2IZ = Segment # 2 area moment of inertia about the Z—axis

S2J0 = Segment # 2 polar moment of inertia

S2 — Segment # 2

228

S2D = Segment # 2 Deformed

S2DT = Segment # 2 Deformed and Transformed

S2RF = Segment # 2 Undeformed and Transformed

P2 = Pins on Segment #2

P2D = PinB on Segment # 2 Deformed

P2DT = Pins on Segment # 2 Deformed and Transformed

a. Thickness S2THIC

b. Length S2LENG

c. Position of Pin # 2 on Segment # 2 (X) S2P2X

d. (Y) S2P2Y

e. Mass S2MASS

f. Minimum Angle w.r.t. Segment # 1 ANG2MN

g- Maximum Angle w.r.t. Segment # 1 ANG2MX

h. Center of Mass, (X) S2CMAX

i. (Y) S2CMAY

j- Position of Pin #3, (X) PIN3X

k. (Y) PIN3Y

1. Number of Divisions S2DIVN

m. Modulus of Elasticity (in M Pa) S2E

n. Modulus of Rigidity (in M Pa) S2G

o. Cross-Sectional Area S2A

P- Mass Moment of Inertia about X—Axis S2MIX

q- Mass Moment of Inertia about Y—Axis S2MIY

r. Mass Moment of Inertia about Z—Axis S2MIZ

s. Area Moment of Inertia about Y—Axis

t. Area Moment of Inertia about Z—Axis

u. Polar Moment of Inertia

v. 3—D (4,4,100) Array holds 3—D coordinate information

of the four vertices of Segment # 2

w. 3—D (4,4,100) Array holds 3—D coordinate information

which has been altered due to deformation effects

on Segment # 1 and Segment # 2

x. 3—D (4,4,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1*A2),

S2DT = S2D*(A0*A1*A2)

y- 3—D (4,4,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1*A2),

S2RF = S2*(A0*A1*A2)

z. 2—D (4,4) Array holds coordinate information of the

location of each pin on Segment #2 . Pins included

are Pin # 3 in column #1

aa. 2—D (4,4) Array holds coordinate information of pins

which has been altered due to deformation effects

on Segment # 1 and Segment # 2

ab. 2—D (4,4) Array holds coordinate information which

has been transformed using the D—H transformation

matrix (A0*A1*A2), P2DT= P2D*(A0*A1*A2)

229

S2IY

S2IZ

S2JO

S2

S2D

S2DT

S2DT

P2

P2D

P2DT

230

COMMON /WINGS/WLENG, WING, WINGD, WINGDT, WINGRF, PW, PWD,

+PW DT

WLENG = LENGth of Wing segment

WING = Wing segment

WINGD = Wing segment Deformed

WINGDT = Wing segment Deformed and Transformed

WINGRF = Wing Segment Undeformed and Transformed

PW = Pins on Wing segment

PWD = Pins on Wing segment Deformed

PW DT = PinB on Wing segment Deformed and Transformed

a. Wing Length

b. 3—D (4,4,100) Array holds 3—D coordinate information

of the four vertices of Wing segment

c. 3—D (4,4,100) Array holds 3—D coordinate information

which has been altered due to deformation effects

on Segment # 1 and Segment # 2

d. 3—D (4,4,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1*A2*AW),

WINGDT = WINGD*(A0*A1*A2*AW)

e. 3—D (4,4,100) Array holdB 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1*A2*AW),

WINGRF = WING*(A0*A1*A2*AW)

WLENG

WING

WINGD

WINGDT

WINGRF

231

f. 2—D (4,4) Array holds coordinate information of the

location of each pin on Wing segment. Pins included

are Pin E in column #1

g. 2—D (4,4) Array holds coordinate information of pins • —

which has been altered due to deformation effects

on Segment # 1 and Segment # 2

h. 2—D (4,4) Array holdB coordinate information which

has been transformed using the D—H transformation matrix

(A0*A1*A2*AW), WINGDT= WINGD*(A0*A1*A2*AW)

PW

PWD

PWDT

232

COMMON /SE G 3/ S3THIC, S3LENG S3P3X, S3P3Y, S3MASS,

+ANG3MN, ANG3MX, S3CMAX, S3CMAY, S3, S3D, S3DT, S3RF

S3THIC = Segment # 3 THICkness

S3LENG = Segment # 3 LENGth

S3P3X = Pin # 3 on Segment # 3 , X—coordinate

S3P3Y = Pin # 3 on Segment # 3 , Y—coordinate

S3MASS = Segment # 3 MASS

ANG3MN = ANGle # 3 MiNimum value

ANG3MX = ANGle # 3 MaXimum value

S3CMAX = Segment # 3 Center of MAss, X—coordinate

S3CMAY = Segment # 3 Center of MAss, Y—coordinate

S3 = Segment 3 #

S3D = Segment # 3 Deformed

S3DT = Segment # 3 Deformed and Transformed

S3RF = Segment # 3 Undeformed and Transformed

a. Thickness

b. Length

c. Position of Pin #3 on Segment 3 (X)

d. (Y)

e. Mass

f. Minimum Angle w.r.t. Segment # 2

g. Maximum Angle w.r.t. Segment # 2

h. Center of Mass, (X)

i. (Y)

S3THIC

S3LENG

S3P3X

S3P3Y

S3MASS

ANG3MN

ANG3MX

S3CMAX

S3CMAY

233

j. 3—D (4,4,100) Array holds 3—D coordinate information

of the four vertices of Segment #3

k. 3—D (4,4,100) Array holds 3—D coordinate information

which has been altered due to deformation effects

on Segment # 1 and Segment # 2

1. 3—D (4,4,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1*A2*A3),

S3DT = S3D*(A0*A1*A2*A3)

m. 3—D (4,4,100) Array holds 3—D coordinate information

which has been transformed using the D—H

transformation matrix product of (A0*A1*A2*A3),

S3RF = S3*(A0*A1*A2*A3)

S3D

S3DT

S3RF

234

COMMON /SE G 4/ S4THIC, S4LENG, S4MASS, S4CMAX, S4CMAY

S4THIC = Segment # 4 (load) THICkness

S4LENG = Segment # 4 (load) LENGth

S4MASS = Segment # 4 (load) MASS

S4CMAX = Segment # 4 (load) Center of MAbb, X—coordinate

S4CMAY = Segment # 4 (load) Center of MAss, Y—coordinate

S4THIC

S4LENG

S4MASS

S4CMAX

S4CMAY

a. Thickness

b. Length

c. Mass

d. Center of Mass, (X)

(Y)

235

COMMON /HYD1/ H1THIC, H1MAXL, H1MINL, PINAX,

+PINAY, PINBX, PINBY, H1MASS, H1A, HIE, H1LENG

H1THIC = Hydraulic actuator # 1 THICkness

H1MAXL = Hydraulic actuator # 1 MAXimum Length

H1MINL = Hydraulic actuator # 1 MINimum Length

PINAX = PIN A on the base, X—coordinate

PINAY = PIN A on the base, Y—coordinate

PINBX = PIN B on segment # 1 , X—coordinate

PINBY = PIN B on segment #1 , Y—coordinate

H1MASS = Hydraulic actuator # 1 MASS

H1A = Hydraulic actuator # 1 cross-sectional area

HIE = Hydraulic actuator # 1 modulus of Elasticity

H1LENG = Hydraulic actuator # 1 LENGth

a. Thickness H1THIC

b. Maximum Length H1MAXL

c. Minimum Length H1MINL

d. Position of Pin # A on Base, (X) PINAX

e. (Y) PINAY

f. Position of Pin # B on Segment #1 , (X) PINBX

g. (Y) PINBY

h. Mass H1MASS

i. Cross-Sectional Area H1A

j. Modulus of Elasticity HIE

k. Length of actuator H1LENG

236

COMMON /HYD2/ H2THIC, H2MAXL, H2MINL, PINDX,

+PINDY, PINEX, PINEY, H2MASS, H2LENG, H2A, H2E

H2THIC = Hydraulic actuator # 2 THICkness

H2MAXL = Hydraulic actuator # 2 MAXimum Length

H2MINL = Hydraulic actuator # 2 MINimum Length

PINDX = PIN D on segment # 1 , X—coordinate

PINDY = PIN D on segment #1 , Y—coordinate

PINEX = PIN E on the wing segment, X—coordinate

PINEY = PIN E on the wing segment, Y—coordinate

H2MASS = Hydraulic actuator # 2 MASS

H2A = Hydraulic actuator # 2 cross-sectional area

H2E = Hydraulic actuator # 2 modulus of Elasticity

H2LENG = Hydraulic actuator # 2 LENGth

a. Thickness H2THIC

b. Maximum Length H2MAXL

c. Minimum Length H2MINL

d. Position of Pin #D on Segment #1 , (X) PINDX

e. (Y) PINDY

f. Position of Pin # E on Wing Segment, (X) PINEX

g- (Y) PINEY

h. Mass H2MASS

i. Cross-Sectional Area H2A

j- Modulus of Elasticity H2E

k. Length of actuator H2LENG

237

COMMON /FORCES/ FABD, FABS, FDES, FDED, FACTI, MD, MS, NFACT,

+NF, QD, RD, RS, TD

FABD = Force of actuator AB, Dynamic

FABS = Force of actuator AB, Static

FDED = Force of actuator DE, Dynamic

FDES = Force of actuator DE, Static

FACTI = Forces of ACTuators from Input

MD = Moments, Dynamic

MS = Moments, Static

NFACT = Number of current dynamic entry of Forces of ACTuators

NF = Number of input Forces

QD = Dynamic forces, f=ma

RD = forces, Dynamic Reactions

RS = forces, Static Reactions

TD = Dynamic Torques, T=I*alpha

FABD

FABS

FDED

FDES

FACTI

a. Dynamic force of actuator AB

b. Static force of actuator AB

c. Dynamic force of actuator DE

d. Static force of actuator DE

e. 2—D, (2,100), Array holds the values of the forces in

the actuators that the user may input in using the

model. Row 1 will contain forces for AB and Row 2

will contain forces for DE

238

2—D (3,5), Array holds the dynamic moment reactions at

pins # 0 , 1, 2, 3, and the load (4). Rows one thru

three hold the x, y, and z moments respectively.

Pin # 0 moments are stored in column # 1, Pin # 1 in

column # 2 , and so on. MD

2—D (3,5), Array holds the static moment reactions at

#0 , 1, 2, 3, and the load (4). Rows one thru three

hold the x, y, and z moments respectively. Pin # 0

moments are stored in column # 1 , Pin # 1 in column

#2 , and so on MS

Number of dynamic force entries the dynamic input

file contained. NFACT

The current dynamic force entry analysis

is based on NF

2—D (3,5), Holds the dynamic force values, where in

dynamics, sum of the forces = ma, of pins # 0 , 1 , 2 ,

and 3. Rows one thru three hold the x, y, and z

forces respectively. Pin # 0 forces are stored in

column # 1 , Pin #1 in column #2, and so on. QD

2—D (3,5), Holds the dynamic force reactions at pins

#0, 1, 2, 3, and the load (4). Rows one thru three

hold the x, y, and z forces respectively. Pin # 0

forces are stored in column #1, Pin # 1 in column

#2, and so on. RD

2—D (3,5), Holds the static force reactions at pins

#0 , 1, 2, 3, and the load (4). Rows one thru three

hold the x, y, and z forces respectively. Pin #0

forces are stored in column #1 , Pin # 1 in column

2 , and so on.

2—D, (3,5), Holds the dynamic torques, where sum of

the moments = I*alpha, at pins # 0 , 1, 2, and 3.

Rows one thru three hold the x, y, and z torques

respectively. Pin # 0 torques are stored in column

#1, Pin # 1 in column # 2 , and so on

COMMON /VELACC/DT, OMEGA, ALPHA, VE1, VE2, AC1, AC2

240

AC1 = Accelerations of partitions of segment #1

AC2 = Accelerations of partitions of segment # 2

ALPHA = angular accelerations

DT = Differential Time step

OMEGA = angular velocities

VE1 = VElocities of partitions of segment #1

VE2 = VElocities of partitions of segment # 2

a. 2—D, (3,100), Array holds the x, y, and z accelerations

found at each partition starting from the location

of pin # 1 and continuing through each partition of

segment # 1 until pin # 2 is reached.

R o w b one thru three hold the x, y, and z

accelerations respectively

b. 2—D, (3,100), Array holds the x, y, and z accelerations

found at each partition starting from the location

of pin # 2 and continuing through each partition of

segment # 2 until pin # 3 is reached.

Rows one thru three hold the x, y, and z

accelerations respectively

c. 2—D, (3,3), Array holds the x, y, and z angular

accelerations of the base, segment # 1 and segment

2 . Rows one thru three hold the x, y, and z

accelerations respectively and column # 1 contains

AC1

AC2

base information, column # 2 segment # 1 information

and column # 3 segment # 2 information

differential time step

2—D, (3,3), Array holds the x, y, and z angular

velocities of the base, segment # 1 and segment # 2 .

Rows one thru three hold the x, y, and z

velocities respectively and column # 1 contains base

information, column # 2 segment # 1 information and

column # 3 segment # 2 information

2—D, (3,100), Array holdB the x, y, and z velocities

found at each partition starting from the location

of pin # 1 and continuing through each partition of

segment # 1 until pin # 2 is reached.

Rows one thru three hold the x, y, and z

velocities respectively

2—D, (3,100), Array holds the x, y, and z velocities

found at each partition starting from the location

of pin # 2 and continuing through each partition of

segment # 2 until pin # 3 is reached.

Rows one thru three hold the x, y, and z

velocities respectively

ALPHA

DT

OMEGA

VE1

VE2

242

COMMON /SLDEFL/S1SL, SIDE, S2SL, S2DE, S1DM, S2DM

S1DM = Segment # 1 Deflection Multiplier

SIDE = Segment # 1 DEflection

S1SL = Segment # 1 SLope of deflection

S2DM = Segment # 2 Deflection Multiplier

S2DE = Segment # 2 DEflection

S2SL = Segment # 2 SLope of deflection

a. A multiplier uBed for graphic display purposes

to enhance the acquired deflection of

segment # 1

b. 2—D, (3,100), Array holds the deflection in the x, y,

and z directions found at each partition; Rows one

thru three hold the x, y, and z deflection and each

column stores the information for each partition of

segment # 1

c. 2—D, (3,100), Array holds the slope of the deflection

in the x, y, and z directions found at each

partition; Rows one thru three hold the x, y, and

z deflection and each column stores the information

for each partition of segment #1

d. A multiplier used for graphic display purposes

to enhance the acquired deflection of

segment # 2

S1DM

SIDE

S1SL

S2DM

243

e- 2—D, (3,100), Array holds the deflection in the x, y,

and z directions found at each partition; Rows one

thru three hold the x, y, and z deflection and each

column Btores the information for each partition of

segment # 2

f- 2—D, (3,100), Array holds the slope of the deflection

in the x, y, and z directions found at each

partition; Rows one thru three hold the x, y, and

z deflection and each column stores the information

for each partition of segment # 2

S2DE

S2SL

COMMON /TRANS/AD, PNE

AD = ADjust a certain segment

PNE = adjustment is Postive, Negative, or an Error

a. A flag used to signal which element of the robotic

system the user has rotated

b. A flag used to specify if the rotation is positive or

negative or if the alteration would be past the

limits of the segment the error flag is set

245

COMMON /ANGINF/ ANGINC, ANGX, ANGY, ANGZ, ANGOCNT,

+ANG1CNT, ANG2CNT, ANG3CNT, ANG4CNT, ANG5CNT, ANG6CNT,

+DPHI1, DPHI2, GAMMA

ANGINC = INCremental value for ANGles

ANGX = ANGle of rotation of the world about X—axis

ANGY = ANGle of rotation of the world about Y—axis

ANGZ = ANGle of rotation of the world about Z—axis

ANGOCNT = ANGle CouNT of the base

ANG1CNT = ANGle CouNT of segment #1

ANG2CNT = ANGle CouNT of segment #2

ANG3CNT = ANGle CouNT of segment #3

ANG4CNT = ANGle CouNT of actuator ab

ANG5CNT = ANGle CouNT of actuator de

ANG6CNT = ANGle CouNT of wing segment

DPHI1 = differential change in angle one

DPHI2 = differential change in angle two

GAMMA = angle between segment # 2 and wing

ANGINC

ANGX

ANGY

ANGZ

ANGOCNT

ANG1CNT

a. Incremental value to be used for altering angles of

rotation

b. Angle of world rotation about the X—axis

c. Angle of world rotation about the Y—axis

d. Angle of world rotation about the Z—axis

e. Angle of rotation of base about the Y—axiB

f. Angle of rotat’n of Seg # 1 about the Z—axis

Angle of rotat’n of Seg # 2 about the Z—axis

Angle of rotat’n of Seg # 3 about the Z—axis

Angle of rotat’n of Act AB about the Z—axis

Angle of ro tat’n of Act DE about the Z—axis

Angle of rotation of Wing about the Z—axis

Differential change in angle of segment # 1 due to

material parameters and applied forces

Differential change in angle of segment # 2 due to ..

material parameters and applied forces

Angle of Wing Segment w.r.t. Segment # 2

ANG2CNT

ANG3CNT

ANG4CNT

ANG5CNT

ANG6CNT

DPHI1

DPHI2

GAMMA

	Three-dimensional computerized model of an elastic robotic arm
	Repository Citation

	00001.tif

