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The Mediating Effects of Product Returns on the 
Relationship between Green Capabilities and Closed-Loop 

Supply Chain Adoption 

 

Abstract 

This research explores the mediating effects of product returns on the relationship between a 

firm’s green capabilities and its adoption of closed-loop supply chain. Green capability is 

characterized in terms of product recovery, supply chain integration, and environmentally 

friendly manufacturing. A structural equation model using survey data drawn from ISO 14001 

certified manufacturers in Malaysia is used to test the research hypotheses. The results reveal 

that recovery and integration capabilities positively influence product returns, while 

manufacturing and integration capabilities and product returns influence closed loop supply 

chain adoption. The results also indicate that the volume, type, timing, and quality of product 

returns partially mediate relationships between recovery and integration capabilities and 

closed-loop supply chain adoption. The findings highlight the importance of taking into 

account the complexities of product returns as part of efforts to increase the effects of green 

capabilities on closed-loop supply chain adoption.  

Keywords: Green Capabilities, Product Returns, Closed-Loop Supply Chain, Environmental, 

Mediator 
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1. Introduction 

Over the last decade, manufacturers have paid increasing attention to product returns and 

recovery management, recognizing that these provide economic, social, and environmental 

benefits. Related initiatives have been implemented with the primary objective of reducing 

operating costs while simultaneously raising profits (Rogers and Tibben-Lembke, 2001). 

Recognizing the value of products post-use and having to meet rigid environmental regulations, 

many organizations have begun to expand product return programs to include recovery 

activities that include rework, refurbishing, recycling, remanufacturing, and remarketing 

(Gobbi, 2011). The desire to reduce production costs, shorten product life cycles, influence 

consumer preferences, and respond to legislation related to end-of-life products have led to 

accelerating growth in product return programs. Effective programs and environmentally 

responsible practices stimulate innovations in sustainability that can help firms be more 

competitive (Jack et al., 2010). 

With increasing consumption of manufactured products in developing economies, the 

question of how to manage product returns takes on greater significance (Shaharudin et al., 

2015a). Rapid industrialization and environmental degradation over the last two decades led 

the Malaysian government in particular to make sustainable production and consumption a key 

agenda item in its Eleventh Malaysia Plan (2016-2020). The intent was to promote sustainable 

business models that stressed the creation of green markets, renewable energy, demand side 

management, low carbon emissions, and waste reduction. Doing so creates eco-friendly 

businesses and sustainability practices that reduce firms’ dependence on natural resources (Bell 

and Mollenkopf, 2013). To accomplish its objectives, the government is encouraging the 

private sector, and in particular manufacturers, to develop effective waste management 

practices by establishing an industrial ecology system to support environmental sustainability 

(Economic Planning Unit, 2015).   

Sustainability policies in developing countries tend to motivate solutions that focus on the 

disposal of used goods rather than on preventing waste and emissions at the source. At present, 

there is no proactive effort to recover or recycle end-of-life products in Malaysia let alone 

returned products with significant residual value. The current waste treatment system is 

unsustainable, and may create serious environmental problems including illegal dumping and 

the increased use of landfills that adversely affect human and environmental health (Mohamed, 

2009). It is thus vital that Malaysia and other developing countries with similar challenges 
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develop clean production systems and embrace closed-loop supply chains (CLSC) that 

effectively manage both forward and reverse flows of goods and materials.    

Given the increasing scope of product returns among Malaysian firms, solutions need to 

be found in the reverse logistics segment of the CLSC that reflect the timing, quality, quantity, 

and variety of returns. Past research has shown that high volumes of product returns inspire 

firms to adopt CLSC as they recognize the importance of reverse logistics (Mondragon et al., 

2011), profitability (Guide Jr. and Van Wassenhove, 2009), competitive advantage and 

sustainability (Erol et al., 2010), and increased customer service and retention (Srivastava and 

Srivastava, 2006). However, these efforts can be adversely impacted by uncertainties in the 

timing, volume, and quality of returns, and where in the supply chain the return occurs (Krapp 

et al., 2013). These uncertainties present operational challenges to CLSC adoption (Pereira, 

2018), making it imperative for manufacturers to consider them and to formulate corresponding 

strategies and actions (Zeballos et al., 2018).  

The literature also supports the view that green capability that responds to customers’ and 

other stakeholders’ environmental concerns is the crucial enabler of a CLSC (Robotis et al., 

2012). Few studies have examined green capabilities in a CLSC. For example, there is a  lack 

of studies of firm-specific capabilities that can induce the adoption of environmental activities 

(Hofmann et al., 2012). Green capabilities cannot be deployed in isolation since the successful 

implementation of a CLSC depends on the quantity, timing, and quality of product returns in 

the reverse supply chain (Guide Jr. and Van Wassenhove, 2009; Mitra, 2012). Shaharudin et 

al., (2017) highlighted the influence of product return volume on the adoption of CLSC 

activities, yet despite this relationship, there is a dearth of literature discussing the mediating 

effects of product return volumes on CLSC adoption. Indeed, data from developing countries 

such as Malaysia that has been specifically retained by manufacturers for internal use only has 

left the field unexplored (Shaharudin et al., 2015a). Moreover, recent evidence of the 

contribution of product returns to environmental practices is limited (Krikke et al., 2013) 

despite this being vital in demonstrating the prospective value to business operations (Guide 

and Van Wassenhove, 2006).  

This study draws on three theoretical lenses, the Resource Based View of the Firm (RBV), 

Natural Resource Based View (NRBV) theory, and Institutional Theory to examine whether 

product returns mediates the effects of green capabilities on CLSC adoption. This has important 

implications in motivating the development of infrastructure that can reduce material use and 

facilitate more environmentally friendly production. It is of particular significance in the 
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context of developing economics that face the challenge of reconciling economic growth, 

increasing prosperity and thus consumption, and investing in environmentally sensitive 

production activity. Understanding the dynamics of CLSC can help mitigate the challenges 

associated with growth outpacing investment in basic infrastructure as is often the case in 

developing countries. The remainder of the article is organized as follows. The next section 

describes the literature related to green capabilities and closed loop supply chains and is 

followed by the theoretical development of the research model and details of the research 

method. Results and implications are then presented followed by discussion of the study’s 

limitations and directions for future research. 

2. Literature Review 

2.1 Theoretical Lenses 

According to RBV theory (Wernerfelt, 1984), a firm can create sustainable competitive 

advantage by developing and leveraging existing resources in unique ways (Barney, 1991). It 

suggests that resources and capabilities are critical factors in performing activities and work in 

the organization (Grant, 1991). Moreover, a firm’s ability to execute certain activities, routines, 

or business processes is a function of the resources and capabilities under their control (Ray et 

al., 2004). A firm’s green capabilities can be such a source of inimitable value if leveraged, for 

example, to perform value added tasks such as those in a CLSC. This can simultaneously 

increase value to the firm and lower cost. Successful product return management can, for 

example, be a precursor to effective CLSC adoption (Shaharudin et al., 2015b).  

The NRBV theory (Hart, 1995) complements the RBV by considering environmental 

perspectives. It suggests that the prevention of pollution, product stewardship, and sustainable 

development can lower costs while increasing productivity and efficiency, and minimizing the 

life cycle environmental costs of products. A strategy founded on sustainable development may 

in turn raise expectations of future earnings relative to those of competitors. As such, it can 

motivate the development of green capabilities and the adoption of CLSCs and product return 

management (Robotis et al., 2012).  

While both the NRBV and RBV suggest that organizational capabilities originate from 

resources and significantly impact competitive advantage, a key distinction is that the RBV 

does not consider limitations a firm may encounter in dealing with the environment (Hart, 

1995). Moreover, it does not take into account how capabilities such as waste reduction and 

eco-design can be a source of future advantage. Firms with key green resources tend to have 
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organizational capabilities that enable them to effectively deal with environmental issues using 

strategic processes (Judge and Douglas, 1998). Different resources contribute to the 

development of distinct organizational capabilities (Russo and Fouts, 1997). For example, 

firms with technical resources can restructure manufacturing processes to minimize 

environmental pollution, while those with financial resources can develop and install advanced 

pollution control equipment (Bae, 2017). Firms may also cultivate green capabilities such as 

recovery, integration, and manufacturing capabilities to counter uncertainties in the flows of 

product returns which can affect successful CLSC adoption. In this context, the NRBV 

provides a basis for  understanding these capabilities relative to product stewardship (Hart and 

Dowell, 2011), and how managing returns/CLSC adoption can improve  product life cycle 

costs, value chain systems, and market repositioning (Miemczyk et al., 2016).  

The effects of green capabilities on CLSC adoption may, however, depend on institutional 

pressures originating from the government, customers, and competitors in the form of coercive, 

normative, and cultural-cognitive isomorphism as articulated by Institutional Theory 

(DiMaggio and Powell, 1983; Scott, 2001). These can manifest in the need to comply with 

regulatory requirements (coercive) or environmental standards required of certifications such 

as ISO 14001 (normative), or the desire to serve customers while securing sales in the 

secondary market and protecting the environment (cultural-cognitive). These pressures may 

motivate firms to manage the returns process to increase profit and reduce cost by adopting 

environmental initiatives including CLSC adoption (Shi et al., 2012). Institutional theory thus 

provides a basis for explaining the effects of external forces such as global competition, short 

product life cycles, increased environmental regulations, and retailers’ liberal return policies 

on product returns (Guide Jr. et al., 2003b, Ye et al., 2013) and CLSC adoption.  

As the three theoretical lenses suggest, the development and implementation of green 

capabilities motivates the need to effectively manage product returns and thus CLSC adoption. 

In particular, green capabilities can influence the volume and variability of product returns 

which can in turn influence the viability and extent of CLSC adoption. The relationships 

between green capabilities, product returns, and CLSC adoption, and how the three theoretical 

lenses frame the current study are summarized in Figure 1.    
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2.2 Green Capabilities 

Lee and Klassen (2008) used the terms green capabilities and environmental capabilities 

interchangeably, defining them as the assets, technologies, and expertise that firms can exploit 

to manage the diverse environmental needs of customers and other stakeholders. Chen and 

Chang (2013) argued that a firm’s green dynamic capabilities are derived from their inimitable 

resources and knowledge in response to product returns in the fast changing marketplace. 

Shang et al. (2010) examined the green capabilities of Taiwanese electronics firms in terms of 

environmental participation, manufacturing and packaging, marketing, supply, inventory, and 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1:  Research Model 

 

eco-design. They showed that firms with green capabilities are well positioned to achieve high 

levels of performance. While advocating for the identification of other green capabilities and 

their relationships with firm performance, the study has become the basis upon which 

subsequent research has defined the scope of green capabilities. It should be noted that there is 

little evidence in the literature about which green capabilities are effective in processing 

product returns in a CLSC. 
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resources and capabilities  
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Green process capability promotes the efficient use of energy and fuel that can help firms 

offer competitive products in the market (Hassini et al., 2012). The green capabilities of supply 

chains relate to internal functional flows (finance, logistics and information), integration, 

relationships, and environmental management that are imperative for a firm’s competitive 

advantage (Shang et al., 2010). Facets such as green manufacturing, packing, supply, 

marketing, and eco-design, and environmental participation are all part of the green capabilities 

of the supply chain which can contribute significantly to firm performance (Shang et al., 2010). 

These have triggered the notion that green capabilities can serve as a catalyst for the adoption 

of green practices such as product return management and CLSCs in the organizations.  

Although numerous facets of green capabilities have been identified in prior literature, 

three in particular have been discussed extensively, recovery, integration, and manufacturing 

capability (Table 1). These also emerged from in-depth interviews with five manufacturers 

during the preliminary stages of this study and have been used to operationalize green 

capabilities in this study.  

 

Table 1. Green Capabilities 
Capability Implications Author 
Recovery  Fast, efficient product returns 

Accuracy of recovery rates 
Jack et al. (2010) 
Metta and Badurdeen (2013) 

Integration  Effective external integration contingent 
upon internal integration 

High volume and diverse quality of returns 

Rizzi et al., (2013) 
 
Hartmann and Germain (2015) 

Manufacturing  Effective utilization of energy and material  
Limited/zero waste in production ecosystem 

Sarkis (2001) 

 
 

Recovery capability is the ability to reclaim or reprocess returned products into 

remanufactured or new goods or useable component parts (Hassini et al., 2012). It includes the 

ability to provide the infrastructure needed to promptly handle product returns in the reverse 

supply chain (Jack et al., 2010). Companies need to build recovery capabilities using 

appropriate methods in CLSCs to achieve productive processes (Unruh, 2008). This involves 

using appropriate technology and leveraging cooperation from all parties across the supply 

chain (Jack et al., 2010; Tibben-Lembke and Rogers, 2002). It also includes the use of facilities 

with adequate storage capabilities for returned items (Akçalı et al., 2009). Huang and Wang 

(2016) showed that recovery capabilities can increase acquisition price, returns volume, and 

revenue to third parties or distributors of returned products. 
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Integration capability consists of internal and external integration capability. Internal 

integration capability focuses on the ability to merge the forward supply chain with reverse 

logistics within a firm (Bernon et al., 2013; Defee et al., 2009), whereas external integration 

capability reflects inter-organizational coordination (Huo, 2012). Rizzi et al., (2013) argued 

that the success of external integration depends largely on the performance of internal 

integration. The return process can be enhanced by managing high volumes and a diverse 

quality of returns through the integration capabilities of sub-processes such as return demand, 

return avoidance and networking (Hartmann and Germain, 2015).  

Manufacturing capability reflects the use of new manufacturing technologies, the 

improvement of process flows, and the reduction of production and material costs and energy 

usage (Talbot et al., 2007). It encompasses the use of industrial ecology systems that convert 

product returns and waste into usable recycled materials or components (Sarkis, 2001). It also 

includes the ability to use manufacturing functions that can deal with variability in product 

returns and the adoption of CLSCs. In this context, concepts such as clean production, green 

design, remanufacturing, and lean manufacturing have been proposed as being part of the 

production ecosystem (Rao and Holt, 2005). It is this capability that converts end-of-use 

products into new products from the product returns and recoveries of effective CLSC 

processes (Hassini et al., 2012). 

 

2.3 Product Returns 

Product returns occur due to commercial returns, end-of-use, end-of-life, repair, and 

warranty conditions (Guide and Van Wassenhove, 2009). With commercial returns, customers 

normally return products to retailers within a fixed time following purchase depending on store 

return policy. End-of-use returns occur when customers upgrade existing equipment or goods 

due to technological advances. End-of-life returns are of obsolete goods that have exhausted 

their useful lives. Rogers and Tibben-Lembke (2001) proposed that the reverse logistics 

systems needed to absorb returns involve reverse flow products and reverse flow packaging. 

From an organizational perspective, the goal of the former is to recover costs through 

remanufacturing, refurbishing, recycling, or other reverse logistics activities. Reverse flow 

packaging involves the return of items such as empty soft drink bottles for recycling or reuse. 

Customers return products for a variety of reasons (Mannella, 2003; Rogers and Tibben-

Lembke, 2001), although the actual reasons are not always easy to determine (Prahinski and 
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Kocabasoglu, 2006). Customer behavior depends on the demand requirements of the return 

process (Shaharudin et al., 2015a) and differs from one customer to another. This makes it 

difficult for manufacturers to decide whether to recycle, remanufacture, or dispose of products 

or salvage parts, especially when the magnitude of returns is uncertain. Moshtagh and 

Taleizadeh (2017) showed that the volume of product returns depends on return quality, the 

majority of returns being of adequate quality for sale to the secondary market. However, a 

return strategy that streamlines reverse logistics in a CLSC can contribute significantly to a 

firm’s economic, environmental, and social sustainability through reductions in raw materials 

use (White et al., 2003).  

In some markets, retailers’ liberal return policies, legislation on product disposal, changes 

in consumer preferences and market dynamics, and shorter product life cycles have rapidly 

fueled the volume and type of returns in the reverse logistics system (Daugherty et al., 2001; 

Hsiao, 2010). This has put increasing pressure on firms to embrace reverse logistics and adopt 

CLSCs. Indeed, many manufacturers have adopted product return management initiatives 

specifically to reduce waste and reverse logistics cost (Hsiao, 2010). As product life cycles 

shrink and consumption increases, the volume and types of product returns will continue to 

increase, forcing firms to incorporate reverse logistics in their CLSCs (Jayaraman and Luo, 

2007). However, there must be sufficient volume of returns in a CLSC for firms to justify 

investing in green capabilities to process returns. The quantity, timing, and quality of returns 

also affect the cost and needed capabilities of reverse logistics system (Guide Jr. and Van 

Wassenhove, 2009; Mitra, 2012). Mollenkopf et al. (2007) suggested that a firm’s marketing 

strategy and green policies affect the type and timing of product returns, and that this ultimately 

defines the extent of its involvement in the reverse logistics system. Shaharudin et al., (2015a, 

b) argued that green capabilities in a CLSC are required to process high volumes of product 

returns. 

  

2.4 Closed-Loop Supply Chain (CLSC) 

Wells and Seitz (2005) defined a CLSC as “consisting of two supply chains: a forward and 

a reverse chain; whereby, a recovered product re-enters the traditional forward chain”, thereby 

creating a continuous loop (Andiç et al., 2012). Fleischmann et al. (2001), Guide Jr. et al. 

(2003a, 2003b), and Blackburn et al. (2004) described the major activities in a CLSC as 

• product acquisition to repossess used items (product, part, material) from end-users 
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• reverse logistics to move used items from end-of-use point to disposition point 

• inspection and disposition of used items to identify their condition so that the reuse 

option that maximizes residual value can be determined 

• deploying the best reuse option through direct reuse, repair, remanufacture, recycle, or 

disposal, and 

• remarketing by creating and exploiting markets for refurbished goods. 

 

A closed-loop supply chain processes all types of returns, from discarded products to end-

of-life products (Morana  and Seuring, 2011). Manufacturers can benefit from the return of 

both defective and end of use products (Turki et al., 2017), the benefits being economic and 

environmental (Huang and Wang, 2016). Returns may occur at any stage of the forward supply 

chain including purchasing, manufacturing, delivery, and final consumption by end users. 

Moreover, substantial volume is required to sustain a viable CLSC and serve secondary market 

demand (Trebilcock, 2002).  Reverse logistics has been widely recognized in the literature as 

being the key component in managing product recovery, returns, or excessive stock in a CLSC 

(Jayant et al., 2012). The reverse logistics component is used for part/material reclamation, 

remanufacturing, or disposal. Recovered products are then reinserted into the forward supply 

chain to feed secondary market demand (Saibani, 2010). 

The type and volume of product returns in a CLSC affect the activities needed to reclaim 

or remanufacture returned items into useful parts or saleable goods. They also affect a firm’s 

product acquisition strategies, reverse distribution, testing, sorting and grading, reconditioning, 

and remarketing (Guide Jr. and Van Wassenhove, 2001), and the life cycles of component parts 

(Tibben-Lembke, 2002). For example, surplus products require redistribution and reselling, 

whereas end-of-life products need refurbishment before their return to the forward supply 

chain. Different types of returns also call for different reverse logistics processes, and reclaimed 

goods re-enter the forward supply chain in different ways (Guide Jr. et al., 2003b). 

In summary, green capabilities are a key dimension in managing the volume and 

variability of product returns. Manufacturers need to incorporate long term green capacity 

planning into managing CLSCs to determine when, where, and by how much product 

disposition options (reuse, recycle, remanufacture) need to be established or expanded 

(Georgiadis and Athanasiou, 2013). They also need to coordinate effective forecasting and 

return policies with investment decisions to ensure that adequate CLSC capacity exists. By 

having appropriate recovery capabilities, reliable inspection mechanisms can be provided to 
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support the product return process (Robotis et al., 2012). Integration with suppliers to reduce 

variability in the sources of returns and to design processes with suppliers and customers in 

mind can also increase CLSC adoption among manufacturing firms (Bell and Mollenkopf, 

2013). For effective CLSC adoption it is thus essential for firms to harness green capabilities 

to support the diversity of inbound product return flows from reverse supply chains.  

 

3. Research Hypotheses  

   The reverse supply chain is a complex entity (Srivastava and Srivastava, 2006), and to 

overcome this complexity, firms must possess recovery capabilities in rework, repair and 

refurbish, and remanufacture sites (Krikke et al., 2013). Technical expertise in reverse 

operations also affects the volume of product returns. A firm’s recovery capability in terms of 

the acquisition of essential technology, recovery equipment, and skilled workers to process 

waste thus affects the volume of product returns (Lau and Wang, 2009).  This suggests 

H1a:  Recovery capability positively affects the volume of product returns. 

Firms that integrate their internal strategies and operations functions are more effective in 

handling product returns than those that do not (Mollenkopf et al. (2007). The effectiveness of 

returns was measured in terms of a firm’s ability to handle returns regardless of their volume, 

timing, type, and quality. A firm’s external integration capabilities also affect the volume of 

product returns because an effective reverse logistics system is the key to motivating product 

returns from customers (Diabat et al., 2013). The breaking down of departmental silos is thus 

key to facilitating the flow of product returns in the reverse supply chain (Mollenkopf et al., 

2007) leading to the hypothesis 

H1b: Integration capability positively affects the volume of product returns. 

Manufacturing capability is needed to handle a wide variety of product returns in a CLSC. 

For example, the production process must be able to respond effectively to the uncertain timing 

and volume of product returns, and be able to dismantle products, recover materials, coordinate 

new material needs, and fulfil demand (Guide Jr. et al., 2003b). A highly flexible or capable 

manufacturing system in the forward chain supply must be able to support product returns 

without sacrificing the overall production goals of the CLSC. This leads to 

H1c: Manufacturing capability positively affects the volume of product returns. 
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Miemczyk (2008) identified thirteen unique recovery capabilities for EoL product 

recovery, categorizing them as either routine, technical, or revenue improving. Routine 

recovery capability refers to a firm’s ability to influence its institutional structure through 

selling and its impact on present and future legislation. Technical recovery capability comprises 

aspects of the assessment, technology, and management of the supply chain.  Revenue recovery 

capability relates to direct-to-customer sales programs and cost reduction activities such as 

revenue sharing from the sale of salvaged parts. These capabilities are important in facilitating 

EoL product recovery operations in CLSCs such as ensuring an adequate supply of EoL 

products as well as reducing reverse supply chain costs (Miemczyk, 2008). Other recovery 

capabilities such as inspection mechanisms (Robotis et al., 2012), recovery technology (Jack 

et al., 2010; Tibben-Lembke and Rogers, 2002), and reverse logistics infrastructure (Jack et 

al., 2010) can also support product recovery operations in CLSCs. Remanufacturing is another 

component of CLSC recovery activities and requires distinct capabilities from those of the 

forward supply chain (Ferguson and Souza, 2010). We therefore hypothesize 

H2a: Recovery capability positively affects the extent of CLSC adoption. 

Integrated supply chains are needed to handle a dynamic environment that affects product 

returns and the recycling process (Mollenkopf et al., 2007). Firm-specific capabilities including 

possessing expert knowledge, leveraging inter-department communication, and using 

environmental management systems enable firms to adopt green practices (Wu et al., 2012). 

Integration capabilities related to technology adoption, collaboration with customers and 

suppliers, and innovation help firms embrace environmental management practices (Hofmann 

et al., 2012). Miemczyk et al. (2016) argued that integration capability is particularly important 

with respect to sharing skills and knowledgeable employees when developing and 

implementing CLSC processes. This takes on particular significance when manufacturers and 

suppliers work together to develop CLSC processes (Defee and Fugate, 2010). These 

observations lead to  

H2b: Integration capability positively affects the extent of CLSC adoption. 

An important consideration in process capability is the adoption of environmentally 

responsible approaches such as the use of energy efficient equipment, fuel-saving 

transportation, and eco-friendly raw materials and component parts to produce low cost, high 

quality products. In other words, manufacturers should have appropriate manufacturing 

capabilities to support their green objectives (Hassini et al., 2012). Firms with such capabilities 



14 

will likely be more advanced in their CLSC deployments than those that are less 

environmentally focused. Manufacturing capability includes the ability to turn end-of-use 

products into new or remanufactured products, and to salvage recyclable parts in the CLSC. 

Clean production, green design, remanufacturing, reuse, and lean manufacturing all help firms 

reduce waste and support environmental sustainability (Rao and Holt, 2005). This suggests 

H2c:  Manufacturing capability positively affects the extent of CLSC adoption. 

The volume of product returns affects the reverse supply chain component of a CLSC 

(Guide Jr. and Van Wassenhove, 2009; Krapp et al., 2013; Mondragon et al., 2011). A high 

volume of product returns is the basis for adopting CLSC (Trebilcock, 2002, Shaharudin et al., 

2017). Guide Jr. and Van Wassenhove (2009) concluded that in addition to technical recovery, 

marketing, and sales issues, the lack of used products was a major impediment to CLSC 

adoption. This suggests  

H3:  The extent of product returns positively affects the extent of CLSC adoption. 

 Talbot et al. (2007) concluded that firms that focused on both the forward and reverse 

supply chains in a CLSC tended to excel in their operations and were better positioned to adopt 

remanufacturing or CLSC activities than those focused solely on the forward supply chain. By 

being proactive in managing the quality, volume, and timing of product returns, firms are able 

to achieve a more efficient and responsive product return and recovery process (Guide Jr., 

2000, Guide Jr. et al., 2001). This in turn translates to a higher degree of CLSC adoption. 

Miemczyk et al. (2016) argued that the diversity of volume and quality in EoL returns has 

created a challenge for firms in obtaining an adequate supply of sources to carry out CLSC 

activities. They also suggested that many firms are unable to deal with returns, which impedes 

their recovery capability and thus their ability to meet demand for recyclable and recycled 

products. We hypothesize 

H4a: The volume, timing, quality and type of product returns mediates the relationship 

between recovery capability and the extent of CLSC adoption. 

Krikke et al. (2013) found that commercial and warranty returns are market driven but 

end-of-use and end-of-life returns are regulation driven. As a result, most businesses receive 

their commercial and warranty returns during the early stages of a product’s life whereas end-

of-use and end-of-life returns are received mostly at the end of a product’s life. Given the 

diverse characteristics of returns, sound integration capability must be deployed to manage 
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product returns (Bernon et al., 2013) and increase the recovery value from adopting CLSC 

(Krikke et al., 2013). This includes a long-term commitment to collaboration with supply chain 

partners to develop processes and expand networks for mutual benefit in the CLSC system 

(Miemczyk et al., 2016). Increases in product returns are thus expected to increase the impact 

of integration capability on CLSC adoption leading to  

H4b: The volume, timing, quality and type of product returns mediates the relationship 

between integration capability and the extent of CLSC adoption. 

To improve manufacturing capability in a CLSC, firms must invest in advanced production 

technologies, improve work conditions, reduce waste, promote the use of recovered materials 

and component parts, and reduce energy consumption (Talbot et al., 2007). Green concepts 

including clean production, green design, remanufacturing, and lean manufacturing with its 

focus on waste reduction have been used successfully (Rao and Holt, 2005). However, 

successful CLSC adoption is also contingent on the variety and volume of product returns. A 

CLSC is of limited value absent a sufficient volume of returns. This suggests that firms are 

motivated to improve their manufacturing capabilities to support a high level of returns. We 

therefore hypothesize 

H4c: The volume, timing, quality and type of product returns mediate the relationship 

between manufacturing capability and the extent of CLSC adoption. 

4. Methodology 

Data to test the hypotheses was collected using a survey instrument. Indicator variables 

were developed based on the literature review and interviews with industry professionals 

(Appendix). Five point Likert scales were used for all items. The instrument was pre-tested by 

academics and an industry professional familiar with the domain of the study. Based on their 

feedback, the instrument was revised to improve clarity and readability. A pilot study was then 

conducted using twenty supply chain professionals. Responses were received from fourteen of 

the twenty and suggested that the instrument was appropriate and item scales reliable.  

The sampling frame consisted of all ISO 14001 certified (Environmental Management 

System, EMS) manufacturers in Malaysia. Malaysia is consistently among the most 

competitive countries according to the World Economic Forum’s Global Competitiveness 

Index. It continues to move away from a focus on agriculture to becoming a modern 

manufacturing and services-based economy. The rapid industrialization Malaysia has 

experienced has forced it to evaluate not only its economic progress but issues of social and 
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environmental sustainability that threaten its economic sustainability. While the firms in the 

sampling are more likely to embark on CLSC initiatives than others (Zhu et al., 2008), they 

can offer insights into the relationships being examined. The sampling frame was developed 

from the directories of the Malaysian Investment Development Authority (MIDA), the 

Standards and Industrial Research Institute of Malaysia (SIRIM), and the Federation of 

Malaysian Manufacturers (FMM). These yielded 465, 690, and 468 firms respectively. After 

removing duplicate listings, 600 firms remained. This was further reduced to 581 after 

removing companies that participated in the pilot or exploratory phases of the study. Given the 

size of the sampling frame and concern about obtaining only a small sample, census sampling 

was used, responses being sought from the entire sampling frame (Harding, 2006). 

  Target respondents were Supply Chain, Quality, Logistics, or Production Managers 

considered likely to have knowledge of issues related to CLSCs and the supply chain more 

broadly. An original and two follow-up surveys administered two weeks apart yielded 150 

useable responses, a response rate of 25.8%. Not surprisingly, more than half of the respondents 

came from the electrical and electronics sector, the largest industry sector in Malaysia and the 

one with the most ISO 14001 certified firms (Table 2).  

 

                                  Table 2. Demographic Profile 
Items Survey Responses % of Responses 

Job Title 
     Senior Manager  
     Manager  
     Assistant Manager  
     Section Head  
     Other  
     No-response  

 
12 
74 
26 
19 
13 
6 

 
8.0 

49.3 
17.3 
12.7 
8.7 
4.0 

Department   
     Production 41 27.3 
     Quality 32 21.3 
     Supply Chain 16 10.7 
     Logistics 33 22.0 
     Other 22 14.7 
     No-response 6 4.0 
Primary Business 
     Electrical and Electronics Products 
     Basic Metals, Metal Products, Machinery 
     Rubber and Plastic Products 
     Wood Products and Furniture 
     Chemical and Chemical Products 
     Other Manufacturing Sector 

 
96 
13 
7 
3 
1 

30 

 
64.0 
8.7 
4.6 
2.0 
0.7 

20.0 



17 

Items Survey Responses % of Responses 

Number of Employees 
     Less than 100 
     100-250 
     251-500 
     501-1000 
     More than 1000 

 
18 
36 
46 
25 
25 

 
12.0 
24.0 
30.7 
16.7 
16.7 

Years in Business Operation 
     < 6  
     6-10  
     11-15  
     > 15 

 
2 
8 

31 
109 

 
1.3 
5.3 

20.7 
72.7 

Ownership 
     Malaysian  
     Joint ventures 
     Foreign 
     Other 

 
38 
31 
74 
7 

 
25.3 
20.7 
49.4 
4.7 

 

To test for the presence of common method variance, Harman’s one-factor test was 

performed using principal components factor analysis (Harman, 1976, Podsakoff and Organ, 

1986). This identified eleven distinct factors with eigenvalues greater than 1.0, and which 

explained 69.4 percent of total variance. The first factor explained 25.86 percent of the 

variance. Since this does not represent a majority of the variance, it can be concluded that 

common method variance is absent.  

 

5. Statistical Analysis 

The two-step structural equation modeling approach was used to test each measurement 

model prior to testing the structural model (Anderson and Gerbing, 1988). The measurement 

models were assessed to evaluate the individual loadings of each item, composite reliability, 

average variance extracted (AVE), and discriminant validity. The structural model was then 

evaluated to determine the significance of the causal paths corresponding to the hypotheses. 

Sobel’s Z test was used to assess the mediating effects of product returns on relationships 

between green capabilities (independent variables) and CLSC adoption (dependent variable, 

Iacobucci et al., 200). Mediation effects exist if path coefficients from the independent variable 

to the mediator and from the mediator to the dependent variable are statistically significant. No 

mediation exists if a path coefficient from an independent variable to the mediator and/or from 

the mediator variable to the dependent variable is insignificant. Furthermore, if the path 

coefficient from an independent variable to a dependent variable is 

a. insignificant but the value of Z is significant, complete mediation exists 
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b. significant and the value of Z is significant, partial mediation exists 

c. significant but the value of Z is insignificant, partial mediation in the presence of a 

direct effect exists 

d. insignificant and the value of Z is insignificant, partial mediation in the absence of a 

direct effect exists 

LISREL 8.70 was used to carry out the analysis. 

 

5.1 Measurement Models 

Values of Cronbach’s α and composite reliability were all greater than 0.84 (Table 3), 

exceeding the value of 0.6 indicative of adequate reliability (Hair et al., 2010). Values of 

average variance extracted (AVE) were all greater than 0.51, exceeding the value of 0.50 that 

represents evidence of convergent validity (Hair et al., 2010). To test for discriminant validity, 

the square root of the AVE for each construct was compared to the correlations between pairs 

of constructs (Hair et al., 2010). Results indicated that in each case the values exceeded the 

correlations among the constructs, providing evidence of discriminant validity (Table 4). 

To test for overall model fit, several fit indices including those that are insensitive to 

sample size (GFI, AGFI, CFI, and RMSEA) were examined (Jöreskog and Sörbom, 1993). 

Values of all indices suggested that the measurement and structural models fit the data well 

(Table 5) and, in particular, met requirements for absolute, incremental, and parsimonious fit 

(Hair et al., 2010, Hu and Bentler, 1999).  

 

5.2 Structural Model 

Path coefficients indicate that recovery capability (β = 0.26, p < 0.05) and integration 

capability (β = 0.49, p < 0.01) but not manufacturing capability (β = -0.19, p > 0.05) positively 

influence product returns (Figure 2). This provides support for hypotheses H1a and H1b. but not 

H1c. Integration capability (β = 0.34, p < 0.01) and manufacturing capability (β = 0.32, p < 0.01) 

both influence CLSC adoption providing support for hypotheses H2b and H2c, but there is 

insufficient evidence to support hypothesis H2a  regarding the influence of recovery capability 

on CLSC adoption (β = -0.08, p > 0.05). Product returns positively affect CLSC adoption (β = 

0.29, p < 0.01), providing support for hypothesis H3. 
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Table 3:  Reliability Measures 

Constructs/Measured Variables Factor 
Loadings 

Standardized 
Cronbach’s α 

Composite 
Reliability 

(CR) 

Average 
Variance 
Extracted 

(AVE) 

Recovery Capability (RC)     
1. Rebuilding a product where some of the parts or 

components are recovered or replaced 
0.76 0.845 0.842 0.517 

2. Introduce measures and technologies to support 
product recovery 

0.72    

3. Build up recovery processes over time 0.72    
4. Quality of re-work or repair 0.70    
5. Timeliness of re-work or repair 0.68    

Integration Capability (IC) 
1. Receive information from suppliers 0.70 0.869 0.868 0.524 
2. Collaborate with suppliers for cleaner processes 0.79    
3. Collaborate with suppliers to substitute materials 0.75    
4. Receive information from customers 0.69    
5. Collaborate with customers to substitute materials 0.68    
6. Management works together well on all important 

decisions 
0.73    

Manufacturing Capability (MC) 
1. Production processes are designed to reduce 

consumption of resources in operations 
0.61 0.849 0.840 0.515 

2. Substitution of polluting and hazardous 
materials/parts 

0.76    

3. Production planning and control focused on 
reducing waste and optimizing materials 
exploitation 

0.84    

4. Components come from environmentally or 
ethically sound sources 

0.65    

5. Process design focused on reducing energy and 
natural resources consumption in operations 

0.68    

Product Returns (PR) 
1. Products/materials/components return volume 0.82 0.892 0.895 0.632 
2. Products/materials/components return timing 0.78    
3. Products/materials/components return quality 0.85    
4. Products/materials/components return evaluation  0.72    
5. Products/materials/components type 0.78    

The Adoption of CLSC Activities (CLSC) 
1. Acquisition of used and discarded products, 

components and materials  
0.81 0.893 0.889 0.535 

2. The condition and packaging of each return are 
always inspected 

0.84    

3. Test, sort, and store used items 0.69    
4. Recycle or reuse materials from used products and 

components 
0.66    

5. Repair faults in a product 0.74    
6. Recondition to extend the functional use of products 0.68    
7. Sales and marketing of reusable items 0.67    
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Table 4:  Discriminant Validity 
Indicator RC IN MC PR CLSC 

RC 0.719 
    

IN .315* 0.724 
   

MC .497* .581* 0.718 
  

PR .338* .412* .270* 0.795 
 

CL .328* .558* .509* .477* 0.731 
* Correlation is significant at α = 0.01 (2-tailed) 
Bold numbers are square root of AVE, non-bold numbers are inter-construct correlations 
RC = Recovery Capability, IN = Integration Capability, MC = Manufacturing Capability, 
PR = Product Returns, CLSC = Adoption of CLSC 

 
 

Table 5:  Goodness of Fit Indices 

Goodness of Fit 
Statistic 

Acceptable 
Levels 

Measurement Model Structural 
Model 

RC IN MC PR CLSC All 

χ2/df ≤ 3.0 1.063 0.963 1.10 1.014 1.657 1.249 

p-values for χ2 > 0.05 0.373 0.468 0.355 0.407 0.084 0.001 
RMSEA < 0.08 0.020 0.000 0.026 0.010 0.066 0.041 
GFI > 0.80 0.99 0.98 0.98 0.99 0.97 0.83 
RMR < 0.05 0.01 0.02 0.02 0.01 0.024 0.047 
SRMR < 0.08 0.01 0.02 0.02 0.02 0.033 0.068 
CFI > 0.90 1.00 1.00 1.00 1.00 0.99 0.98 
NNFI > 0.90 1.00 1.00 1.00 1.00 0.98 0.98 
NFI > 0.90 0.99 0.99 0.99 0.99 0.98 0.93 
IFI > 0.90 1.00 1.00 1.00 1.00 0.99 0.98 
RFI > 0.90 0.97 0.98 0.98 0.97 0.96 0.92 

AGFI > 0.80 0.96 0.96 0.96 0.96 0.91 0.80 

RC = Recovery Capability, IN = Integration Capability, MC = Manufacturing Capability, 
PR = Product Returns, CLSC = Adoption of CLSC 
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Figure 2:  Structural Equation Model 
 

5.3 Mediating Effects 

Path coefficients from recovery capability to product returns (β = 0.26, p < 0.05) and from 

product returns to CSLC adoption (β = 0.29, p < 0.01) are statistically significant (Figure 3). 

However, the value of Sobel’s Z statistic (1.709) and the coefficient of the path from recovery 

capability to CLSC are not significant. This suggests that product returns only partially mediate 

the relationship between recovery capability and CLSC adoption. Both the direct (β IC → PR 

= 0.49, p < 0.01, β PR → CLSC = 0.29, p < 0.01) and indirect (β = 0.34, p < 0.01) relationships 

between integration capability and CLSC are significant as is the value of the z-statistic (2.583). 

This implies that product returns partially mediates the relationship between integration 

capability and CLSC adoption. The insignificant path coefficient from manufacturing 

capability to product returns (β = - 0.19, p > 0.05) indicates that product returns does not 

mediate the relationship between manufacturing capability and CLSC adoption. 

 

 

 

Product Returns Integration 
Capability 

Manufacturing 
Capability 

Recovery 
Capability 

Closed-Loop Supply 
Chain Adoption 

0.26** 

Green Capabilities 

0.49*** 

-0.19 

0.29*** 

0.32*** 

-0.08 

0.34**
* 

Mediator Output 

              **Significant path at α = 5% 
              *** Significant at α = 1% 
              Insignificant path at α = 5% 
χ2/df = 1.2677, RMSEA = .042, NFI = .92, NNFI = .97 
CFI = .98, IFI = .98, RFI = .91, PGFI = .68 
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 Sobel’s z-test *      (HO: a = 0  HA: a ≠ 0) 
2-tailed z-value = 1.960 (α = 0.05) 
Proportion of mediation = (a×b)/(a×b+c) 

 Sobel’s z-statistic = 1.709  
Proportion of mediation = .480 
 
Conclusion 
Insignificant direct effect (RC→CLSC) and Sobel’s z-
statistic implies partial mediation in absence of a direct 
effect 

 Sobel’s z-statistic = 2.583 
Proportion of mediation = .303 
 
Conclusion 
Significant IC→CLSC and Sobel’s z-statistic 
implies partial mediation 

 Sobel’s z-statistic = -1.187  
Proportion of mediation = -.213 
 
Conclusion 
Insignificant MC→PR implies no mediation 

* Based on procedure suggested by Iacobucci et al. (2007) 
RC = Recovery Capability, IN = Integration Capability, MC = Manufacturing Capability, 
PR = Product Returns, CLSC = Adoption of CLSC 

Figure 3:  Mediating Effects 
 

6. Discussion 

Recovery and integration capability but not manufacturing capability positively influence 

product returns. Manufacturing companies with recovery capability are in a position to extract 

additional value that comes from material recovery and the conversion of products for 

secondary use. This may reflect a recognition of the value associated with recovery and which 

may have motivated corresponding investments. These factors can influence product design, 

promotion, and customer service strategies that motivate product returns. Recovery capabilities 

and cost savings in remanufacturing have important environmental implications as they reduce 

the consumption of new stock and reduce the burden on landfills (Choi and Li, 2015). 

Integration with suppliers enables the effective design and production of items with returns 

in mind. Alignment may also be an indicator of firms being more proactive and innovative in 

developing supply chain strategies than more firm centric organizations. This is consistent with 

the sample consisting of ISO 14001 certified firms. It also suggests that they may be more 

cognizant of the opportunities and potential value of the effective management of returns. 

               **Significant path at α = 5% 
               ***Significant path at α = 1% 
               Insignificant path at α = 5% 

PR 

.26** .29*** 

CLSC RC -.08 

PR 

.49*** .29*** 

CLSC IC .34*** 

PR 

-.19 
.29*** 

CLSC MC .32*** 
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Firms that respond to customer needs and market trends can modify products and otherwise 

respond in ways that reflect changing attitudes, of which environmental considerations are one 

dimension. Seeking input from customers may also reflect customer-focused sales and service 

strategies. This may be a precursor of more liberal return policies. The observation that 

manufacturing capability is not a driver of product returns is somewhat surprising. Firms’ 

manufacturing capabilities are generally designed to support the forward supply chain rather 

than for remanufacturing or recycling, especially in a developing economy such as Malaysia.  

However, it may be that firms are not making decisions in this domain with environmental 

considerations in mind. In other words, manufacturing processes may already be in place and 

execution occurring irrespective of goals related to product returns.  

Three factors motivate closed loop supply chain adoption, manufacturing capability, 

integration capability, and product returns. This suggests that the underlying supply chain 

system motivates CLSC adoption rather than unique capabilities associated with the recovery 

system. In the Malaysian context, the infrastructure limits a firm’s ability to manage recovery 

activities and CLSC adoption (Shaharudin et al., 2015b). This is consistent with the assertion 

that firms with functional and departmental integration are more competent and 

accommodating in handling the return variances that affect CLSC adoption (Rizzi et al., 2013). 

Supply chain members must collaborate with external partners to design a complete CLSC and 

meet joint green and sustainability objectives (Govindan et al., 2015). Firms also need to build 

relationships with NGOs, institutions, and even competitors in managing product lifecycles in 

a CLSC (Seitz and Peattie, 2004).  

The relationship between product returns and CLSC adoption is consistent with prior 

results (e.g., Guide Jr. and Van Wassenhove, 2009, Krikke et al., 2013). It may reflect ISO 

14001 certified firms with mature supply chains recognizing the value associated with CLSC 

adoption and having the systems to exploit them. For electronic products and others with short 

life spans, the ability to quickly recapture value from returned products is of particular 

importance (Blackburn et al., 2004; Guide Jr. and Van Wassenhove, 2001). Given consumption 

patterns, failure to adopt CLSC can result in the proliferation of waste and the depletion of 

natural resources (Giri and Sharma, 2015). As noted earlier, electronic and electrical products 

producers were well represented in the sample. The results also suggest that green capabilities 

facilitate product returns and thus CLSC adoption. For example, effective forecasting can help 

reduce variation in the volume of product returns, a driver of CLSC adoption (Pereira et al., 

2018).  
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The finding that product returns partially mediates the relationship between recovery 

capability and CLSC adoption absent a direct effect between the two highlights the importance 

of manufacturers motivating product returns. Without an adequate volume of returns, firms 

may not be inclined to make new investments or redeploy resources away from activities 

perceived to generate greater or better understood benefits. It also illustrates, as suggested by 

institutional theory, how regulation such as through takeback laws that increase product 

returns, can motivate CLSC adoption. As observed in developed countries, sensitivity to 

environmental concerns has led to regulation and investment in recovery infrastructure. 

However, developing countries such as Malaysia tend to have few such regulations. 

Organizations participating in takeback programs largely do so on a voluntary basis (Agamuthu 

and Victor, 2011), and are typically multinational firms for whom takebacks are part of 

corporate social responsibility initiatives. That being said, government as well as peer pressure 

may create a sense of urgency for firms to increase their efforts. 

Social norms and attitudes also affect product return rates yet tend to change slowly. 

However, high levels of product returns are likely to boost recovery capability and improve 

CLSC adoption (Shaharudin et al., 2015a). In addition to the direct effect described earlier, the 

partial mediating role of product returns highlights the indirect influence of integration 

capability on CLSC adoption. Firms with this capability are in a position to adopt return and 

warranty policies as well as processes and policies related to product design, manufacture, and 

quality that can influence the volume and timing of returns that drive CLSC adoption. 

The finding that product return volume does not mediate the relationship between 

manufacturing capability and CLSC adoption implies that manufacturing capability affects 

CLSC adoption directly. There is a lack of incentive for manufacturers in Malaysia to invest in 

manufacturing capabilities to handle the product returns that might motivate CLSC adoption. 

They will thus continue to rely on new materials with little consideration for recycling, 

remanufacturing, or recapturing of used parts.  

 

6.1 Implications for Theory and Practice 

The results provide support for the contention of RBV, and in particular NRBV theory, 

that natural resources are drivers of a firm’s competitiveness. Prior studies have explored 

internal capabilities such as green proactivity, leadership, and innovation (Hart and Dowell, 

2011) and external technical capabilities (Seuring and Mueller, 2008) in the context of 
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environmental management and firm competitiveness. The current study however adds 

recovery, integration, and manufacturing capabilities to the discussion, as well as drawing 

connections between green capabilities and CLSC adoption. These capabilities provide context 

for understanding the dynamic nature of CLSC drivers (Klassen, 2009). The results also 

highlight how institutional theory, as manifested through regulatory action and social and 

cultural norms, can be used to understand the role of product returns on CLSC adoption.  

A second theoretical contribution the work makes is in providing empirical evidence of 

the mediating influence of product returns on relationships between recovery and integration 

capabilities and CLSC adoption. Prior research has highlighted relationships between both 

capability and product return volume on CLSC adoption. The present study provides further, 

more nuanced insight into the role and importance of product returns on CLSC adoption and 

how it can motivate capability development.  

From a practical standpoint, the results highlight the importance of effectively leveraging 

green capabilities and of having high volume/low variability in product returns in motivating 

CLSC adoption. Managerial awareness of the underlying dynamics and impact of green supply 

chains can lead to planning and decision making that more effectively manages returns, and 

makes it possible to develop and implement green capabilities that motivate CLSC adoption. 

For example, by using 30% recycled plastic in its computer monitors since 2015, Samsung has 

significantly advanced its CLSC adoption. Leveraging integration capabilities with supply 

chain entities including customers, eco-label certifying companies, and recovery ecosystem 

and environmental firms, it has increased innovation in its CLSC activity. The Galaxy S7/S7 

Edge phones were produced using 60% recycled plastic in their earphone cases, 30% percent 

in their inner trays, and 20% in their chargers (Khalamayzer, 2016).   

7. Conclusions and Future Research 

This study demonstrates that consistent with the underlying premise of RBV and NRBV 

theories, a firm’s recovery, integration, and manufacturing capabilities can be sources of 

competitive advantage. Moreover, combined with efforts to motivate product returns, they can 

provide an economic basis for adopting CLSC that provides further provide competitive 

benefit. While responsibility for the development of capabilities lies with the firm, external 

factors that might motivate this, such as regulation that increases volumes of returned parts and 

products, also have a role to play as suggested by Institutional Theory.  
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A challenge faced by developing countries such as Malaysia is that the lack of institutional 

infrastructure for part/product recovery serves as an obstacle to the growth in the volume of 

recovered materials needed to justify firm level investments in recovery capability. While 

CLSC adoption can still result from investments targeted more broadly at manufacturing and 

integration capability, an opportunity exists if societal norms can be reframed as they relate to 

environmental stewardship. As consumer demand increases, developing countries will be 

under increasing pressure to find environmentally sound ways to manage returns and dispose 

of end of life products. The literature however suggests that economic benefits also accrue from 

the adoption of appropriate green strategies. It is thus crucial for manufacturers in these 

countries to recognize the importance of recovery capabilities in both influencing product 

returns and motivating the development of the CLSC systems that can further reduce their 

environmental footprint. At present, manufacturers in Malaysia largely rely on conventional 

manufacturing techniques, focusing exclusively on the forward supply chain. They continue to 

use new materials with little consideration for recycling, remanufacturing, or the recapturing 

of used parts that can reduce their environmental impact, reduce resource needs, or create new 

sources of value to the customer. There is no incentive for them to invest in new capabilities 

that would enable them to handle product returns or adopt CLSC, and thus enhance their 

competitiveness. 

The study is not without its limitations. The sampling frame consisted of ISO 14001 

certified firms in Malaysia meaning that the results, while significant, cannot be generalized 

across manufacturing sectors or geography. Certified organizations are more likely to have 

adopted CLSC than those that are not certified. Moreover, the sample was dominated by firms 

from the electrical and electronic products sector in which the value of product returns and thus 

of CLSC adoption may be higher than in other sectors. Further research is needed to examine 

whether the relationships identified in this study extend to other manufacturing firms, 

particularly those with significant environmental impact such as producers of textiles and/or 

products with short useful lives such as toys. Similarly, it is appropriate to establish whether 

they extend to developed economies in which recycling is an established practice, and policies, 

regulation, and social norms influence recycling behavior. Additional research is also needed 

to explore the impact of specific characteristics of product returns such as volume, variability, 

and timing, and to enable contingent analysis of factors such as a firm’s position in the supply 

chain, the types of materials used in its products, and the maturity of its recycling infrastructure. 
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One cannot discount the possibility that cultural norms regarding communication and having 

to respond to questions about one’s organization and strategies influenced the responses.  

The study focused only on product returns as a mediating factor in the relationship between 

green capability and CLSC adoption. Future research should examine the influence of other 

mediators of relationships between green capabilities and CSLC adoption/activity including 

the impact of specific characteristics of product returns to the reverse flow operations. Other 

authors have suggested that return processing (Stock et al., 2006), strategic and operation 

practices (Mollenkopf et al., 2007), regulations, incentives, contracts, monitoring, and 

prediction (Pokharel and Mutha, 2009), and regulatory enforcement, economic considerations, 

and firms’ commitment (Rizzi et al., 2013) may also be pertinent variables.  
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Appendix: Measurement Items* 

Recovery Capability: Likert Scale, 1= Not Capable 5= Extremely Capable 
Item Source 
1. Rebuilding a product where some parts or components are recovered or 

replaced Montabon et al., (2007) 

2. Introduce measures and technologies to support product recovery Miemczyk (2008) 3. Build up recovery processes over time 
4. Quality of re-work or repair Richey et al. (2005) 5. Timeliness of re-work or repair 

 

Integration Capability: Likert Scale, 1= Not Capable 5= Extremely Capable 
Item Source 
1. Receive information from suppliers 

Hofmann et al. (2012) 
2. Collaborate with suppliers for cleaner processes 
3. Collaborate with suppliers to substitute materials 
4. Receive information from customers 
5. Collaborate with customers to substitute materials 
6. Management works together well on all important decisions Lai et al., (2012) 

 

Manufacturing Capability: Likert Scale, 1= Not Capable 5= Extremely Capable 
Item Source 
1. Production processes are designed to reduce consumption of resources 

in operations Wong et al. (2012) 

2. Substitution of polluting and hazardous materials/parts 
Shang et al. (2010) 3. Production planning and control are focused on reducing waste and 

optimizing the use of materials 
4. Components come from environmentally or ethically sound sources Holt and Ghobadian (2009) 
5. Process design is focused on reducing energy and natural resource 

consumption in operations Shang et al. (2010) 

 

Volume of Product Returns: Likert Scale, 1= Very Low Volume, 5= Very High Volume 
Item Source 
1. Volume of returned products/materials/parts/components  

Guide Jr. et al. (2003b) 2. Timing of returned products/materials/parts/components  
3. Quality of returned products/materials/parts/components  
4. Evaluation of returned products/materials/parts/components  Mollenkopf et al. (2007) 5. Type of returned products/materials/parts/components  

 

Extent of CLSC Adoption Activities: Likert Scale, 1= Very Low Extent, 5= Very High Extent 
Item Source 
1. Acquire used and discarded products, components, and materials  Jayaraman (2006) 
2. The condition and packaging of each return is always inspected Genchev et al. (2011) 
3. Testing, sorting, and storage of used items Varnavas, (2011) 
4. Recycle to reuse materials from used products and components. 

Khor and Mohamed Udin (2012) 5. Repair to correct defects in a product 
6. Recondition to extend the functional use of products. 
7. Sale and marketing of reusable items Varnavas, (2011) 

 


	The Mediating Effects of Product Returns on the Relationship between Green Capabilities and Closed-loop Supply Chain Adoption
	Repository Citation

	1. Introduction
	2. Literature Review
	2.2 Green Capabilities
	2.3 Product Returns
	2.4 Closed-Loop Supply Chain (CLSC)

	3. Research Hypotheses
	4. Methodology
	7. Conclusions and Future Research

