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A B S T R A C T

Background: Center of pressure (COP) trajectory during treadmill walking have been commonly presented using
the butterfly diagram to describe gait characteristics in neurologically intact and impaired individuals. However,
due to the large amount of displayed information, the butterfly diagram is not an efficient solution to visualize
locomotor variability.
Purpose: The purpose of this study was to evaluate post-stroke locomotor variability by applying Kernel density
estimation (KDE) on the intersections of the butterfly diagram, and to compare KDE derived metrics with
conventional metrics of gait symmetry and variability.
Methods: Bilateral toe-off (TO) and initial contact (IC) points of the butterfly diagram were determined to cal-
culate the COP symmetry index and the intersections of bilateral TOeIC. Subsequently, the intersections during
the walking window were used to evaluate its density and variability by Kernel density estimation. Standard
deviations of step width and step length were compared between groups.
Results: Using the KDE surface plots we observed 4 characteristically different patterns with individuals post-
stroke, which were associated with functional status quantified using walking speed and lower extremity Fugl-
Meyer scores. However, locomotor variability quantified using standard deviations of step width and lengths did
not differ between groups.

Significance & Novelty: This paper presents a novel approach of using KDE analysis as a better and more
sensitive method to characterize locomotor COP variability in individuals with post-stroke hemiparesis, com-
pared to conventional metrics of gait symmetry and variability.

1. Introduction

Gait variability and symmetry are commonly used as quantifiable
measures of mobility, in the non-neurologically impaired elderly or
neurologically-impaired individuals [1–4]. Distinctive gait variabilities
have been reported for different neurological conditions [2,5–7]. Ear-
lier studies examining post-stroke locomotor control have reported
significant asymmetry and variability in all aspects of neuromuscular
control during locomotion, including step length asymmetry, step width
asymmetry, activation and coordination of lower extremity muscles and
foot-force regulation, [2,3,6,8,9]. These are associated with activity and
mobility restrictions, and increased risk for falls [4,10,11]. Reliable
techniques to characterize variability in gait parameters are clinically
important for assessing fall risks, or used as performance measures for
evaluating responses to interventions, as well as for the design and

follow-up of rehabilitative programs [12].
Center of pressure (COP) trajectory during walking is commonly

represented using the butterfly diagram. Previous research used the
butterfly diagram to present essential gait characteristics, such as
variability, stride width, and symmetry between legs [13,14]. Fur-
thermore, the butterfly diagram showed high repeatability of spatio-
temporal parameters during treadmill walking and running [15]. In the
lab, walking on an instrumented treadmill could overcome dis-
advantages of overground walking, such as long distance or walking
period. It creates a characteristic feature as an intersection of the but-
terfly diagram, which is defined as the point determined by two diag-
onal COP displacement from initial contact (IC) to the consecutive
contralateral toe off (TO), and is indicative of the temporal and spatial
components of gait variability with the locations of bilateral feet posi-
tions. The standard deviations of the intersection points in the anterior/
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posterior and lateral directions have been associated with gait varia-
bility [14]. However, this approach was disregarding the relationship
between the intersection and feet positions, and potentially under-
estimates the effects of asymmetric gait pattern, particularly in in-
dividuals with post-stroke hemiparesis.

Using binary regression analysis on the butterfly diagram, it is
possible to distinguish lower anterior-posterior (AP) and medial-lateral
(ML) variability in individuals with very mild Expanded Disability
Status Score (EDSS) from the rest of the EDSS levels [14]. However,
there still remain limitations in distinguishing locomotor variability
within the neurologically-impaired population, for instance, gait defi-
cits due to weakness in multiple sclerosis [4,16] have different char-
acteristics compared to that in individuals with post-stroke hemiparesis.

Kernel Density Estimation (KDE) is a well-established statistical
approach often used to estimate the probability density of datasets in
geometric features, econometrics and pattern recognition [17–19]. KDE
applied in point pattern analysis, was used to evaluate spatial dis-
tributions of diseases in epidemiology [20,21] and traffic accidents in a
network space [22]. A smooth density surface was used to represent
point events over studying area and the occurrence rate. Additionally,
KDE was used with a diffusion process and outperformed its accuracy
and reliability in two-dimensional cases [23]. Similarly, KDE can be
used to determine the spatial probability distribution of the intersec-
tions in the butterfly diagram. To date, the KDE approach has not been
applied to evaluate gait performances to distinguish variability between
individuals with and without neurologic impairments. Since the KDE
approach is used to calculate the occurrence and distribution of events
of interest within the target area, when applied to butterfly diagrams,
the intersections are comparable with the events of interest, and the
four points of bilateral IC and TO referred to the target area. Therefore,
the KDE approach could potentially reveal gait variability and provide
quantitative values for better understanding of neurologically-impaired
gait patterns.

This study aimed to evaluate walking variability in individuals with
chronic post-stroke hemiparesis by applying KDE on the intersections of
the conventional butterfly diagram. Our primary objective was to use
KDE analysis to explore characterization of the spatial probability dis-
tribution of intersections in the butterfly diagram during walking in
individuals with post-stroke hemiparesis and non-neurologically im-
paired controls. Additionally, we sought to compare the metrics derived
from KDE analysis with conventional metrics of gait symmetry and
variability.

2. Methods

2.1. Participants

Ten individuals (4 females, 6 males; 72.4 ± 7.9(mean ± SD)years
old), who have sustained a single, unilateral cortical or subcortical
stroke, more than 6 months (8.3 ± 9.0years) before the study, and had
residual lower limb hemiparesis on the left side, participated in this
study. Ten age-similar non-neurologically impaired individuals (6 fe-
males, 4 males; 59.36 ± 11.45 years old) were recruited as controls.

Individuals post-stroke were recruited only if they were able to walk
on the treadmill independently without assistive devices. Participants
were excluded if they had other neurological conditions, orthopedic
conditions affecting walking, or history of hip or knee replacement.
Each participant received written and verbal information about the
experiment procedures before giving written consent. The protocol was
approved by the Institutional Review Board at the University of
Nevada, Las Vegas.

2.2. Experimental protocol

Participants wore a safety harness attached to an overhead support,
and walked on a dual belt instrumented treadmill (Bertec Corp,
Columbus OH). The safety harness was attached to the overhead sup-
port with some slack, serving as a safety mechanism in case of a fall and
did not support any body weight during walking. Body weight was
recorded during static standing on the dual belt treadmill. We first
determined each individual’s self-selected walking speed on the in-
strumented treadmill. Once the self-selected walking speed was de-
termined, each individual walked for 60 s. Ground reaction forces were
sampled at 2000 Hz.

2.3. Data processing

All ground reaction forces (GRF), moments and COP data were
processed and analyzed offline using custom MATLAB programs
(Mathworks, Natick, MA). GRFs were filtered with a 30 Hz low-pass, 4th

order, zero-lag Butterworth filter. Xleft and Yleft represented the COP
trajectory on the left belt; Xright and Yright represented the COP trajec-
tory on the right belt. Subsequently, COPx and COPy were calculated
from the force plates of the left and right belts by weighting average:
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Fig. 1. The COP trajectories during treadmill walking from a representative non-neurologically impaired individual, presented as (a) a typical Butterfly diagram, and
(b) density distribution.
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COP trajectory during walking was generated as a graphic pattern of
“butterfly” (Fig. 1). Four key points of paretic and nonparetic IC and TO
were determined(Fig. 2D), which were corresponding to the left and
right sides in the control group, for the COP symmetry index calculation
[13].

=
−

+

paretic COP length nonparetic COP length
paretic COP length nonparetic COP length

COP symmetry index

where paretic and non-paretic COP lengths were calculated as the ab-
solute AP distance. The paretic COP length was between paretic TO
(pTO) and consecutive nonparetic IC (npIC) while nonparetic COP
length was between nonparetic TO (npTO) and consecutive paretic IC
(pIC). In addition, the distances from pTO to npIC and npTO to pIC as
well as the intersection between two lines of pTO-npIC and npTO-pIC
were determined.

Standard deviations (SD) of step width, paretic step length, and non-
paretic step length were used to represent variability of step width and
lengths. The mean of step width, paretic step length, and non-paretic
step length were also calculated.

For evaluation of variability, KDE was applied and calculated using
the kde2d function from Botev et al. [23] in MATLAB. Coordinates,
numbers of gait cycle, and maximum AP and ML range were used as
inputs of the kde2d function. For each trial, the first and last three steps
were removed to avoid the acceleration and deceleration effects in
walking. In general, over 45 intersections were used for the calculation.
The computation area was constructed within the maximum and
minimum values of TO and IC for each participant. The maximum
density was calculated and compared between groups.

Fig. 1 illustrates a typical butterfly diagram (Fig. 1a) and density
distribution(Fig. 1b) from a non-impaired individual. The density dis-
tribution plot provides four pieces of information. First, the black box in
Fig. 1b corresponds to the area of the COP trajectory, which is the area
of the butterfly diagram in Fig. 1a. Second, the yellow region represents
the highest density of intersection distribution and the location of COP
trajectory area. Third, the red area immediately external to the yellow
region represents how other intersections deviated from the point of
highest density. Fourth, the vertical oval shape indicated that the

distribution of intersections was mainly in the AP direction, versus the
ML direction.

All parameters were averaged across all gait cycles for each parti-
cipant for statistical comparisons. Using independent t-tests, we com-
pared the COP symmetry index, the distances of pTO-npIC and npTO-
pIC, highest density values, and mean and SD of step width, paretic step
length and non-paretic step length between stroke-impaired and non-
neurologically impaired groups. P values less than or equal to 0.05 were
considered statistically significant.

3. Results

On average, self-selected walking speed for individuals post-stroke
was 0.5 ± 0.26m/s, which was significantly slower than that for non-
impaired individuals (1.09 ± 0.25m/s). Independent t-tests revealed
that COP symmetry index and the distances of pTO-npIC and npTO-pIC
were not significantly different between stroke-impaired and non-im-
paired groups. The COP symmetry index was -0.55 ± 0.94 in the
stroke-impaired group versus -0.28 ± 0.10 in the non-impaired group
(t(18)= 0.917, p= 0.371). Additionally, in the stroke-impaired group,
distance of pTO-npIC was 0.38 ± 0.17m, which was comparable to the
distance from left TO to right IC (0.38 ± 0.04m) in the non-impaired
(t(18)=-0.062, p= 0.951). Similarly, the distance of npTO-pIC was
0.34 ± 0.09m in the stroke-impaired and 0.35 ± 0.05m (right TO to
left IC) in the non-impaired (t(18)= 0.149, p= 0.883).

Independent t-tests revealed that mean step width, paretic step
length, and non-paretic step length were different between groups, but
not for SD of these variables (Table 1). The step width mean was sig-
nificantly larger in the stroke-impaired compared to the non-impaired.
Both means of paretic step length and non-paretic step length were
significantly shorter compared to the left and right step length in the
non-impaired. Additionally, the left and right step length in the non-
impaired were evaluated by paired sample t-tests and showed no sig-
nificant difference (t(9)= 1.817, p=0.103). In the stroke-impaired,
the paretic step length was significantly different and shorter compared
to the non-paretic step length (t(9)= 8.132, p < 0.001).

The maximum value of the highest density was
275.33 ± 54.41m−2 in the non-impaired, which was significantly
larger than that in the stroke-impaired (96.11 ± 17.78m−2; t
(18)= 3.313, p=0.006). The AP and ML range as well as the location

Fig. 2. The COP trajectories during treadmill walking from representative individuals with post-stroke hemiparesis, presented as typical Butterfly diagrams (a) and
density distributions (b). (A) Pattern A; Participant_06. (B) Pattern B; Participant_01. (C) Pattern C; Participant_07. (D) Pattern D; Participant_08. pIC: paretic initial
contact; pTO: paretic toe off; npIC: nonparetic initial contatc; npTO: nonparetic toe off.
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of intersection were used to categized patterns for neurological im-
paired individuals. Four different types of density distribution were
categorized: Pattern A: similar AP and ML range (the intersection
moved around the center) in Fig. 2A; Pattern B: larger ML than AP
range (the intersection moved horizontally) in Fig. 2B; Pattern C: larger
AP than ML range (the intersection moved vertically) in Fig. 2C; and
Pattern D: larger AP than ML range (the intersection moved away from
the center and skewed towards the paretic side) in Fig. 2D. The COP
trajectory area and the location of the yellow region indicative of
highest probability density of stroke-impaired Participant_06 (Fig. 2A,
Pattern A) were comparable to that observed in the non-impaired
group, but a broader yellow region indicative of highest probability
density and red regions indicative of lower density was observed. In
addition, the COP trajectory of stroke-impaired Participant_01 (Fig. 2B,
Pattern B) was distributed more in the ML direction and stroke-im-
paired Participant_07 (Fig. 2C, Pattern C) in the AP direction. Ad-
ditionally, the density of stroke-impaired Participant_07 (Pattern C) was
lower and the intersections were distributed extensively around the
COP trajectory area. Contrarily, the butterfly diagram of stroke-im-
paired Participant_08 (Fig. 2D) presented more consistent COP trajec-
tory with higher maximum density compared to the other stroke-im-
paired participants. However, the COP trajectory area was also broader
in both directions and the location of the yellow region indicative of
highest probability density was away from the center and positioned
towards the upper left corner (Fig. 2D, Pattern D).

Table 2 summarized the KDE patterns and highest density values for
individuals with post-stroke hemiparesis. The average highest density
value was 154.63 (45.53) m−2 for Pattern A, 108.85 (29.09) m−2 for
Pattern B; 49.73 (14.02) m−2 for Pattern C, and 126.36m−2 for Pattern
D

4. Discussion

This study used a novel approach to evaluate locomotor variability
in individuals with chronic post-stroke hemiparesis. Individuals with
post-stroke hemiparesis presented comparable COP symmetry index
and distances to non-impaired individuals. The density calculated using
KDE was significantly smaller in the stroke-impaired versus the non-
impaired group. KDE analysis not only provided the location and dis-
tribution field of intersections that differentiates between stroke- versus
non-impaired walking, but also presented characteristically

distinguishable patterns within the stroke-impaired group. In contrast,
standard deviations of step width and step length did not differ between
groups.

The butterfly diagram of the non-neurologically impaired in-
dividuals ranged from -0.1∼0.1m in the ML direction and from
-0.2∼0.2 m in the AP direction (Fig. 1), which were comparable with
that reported previously [13]. In individuals post-stroke, symmetric
butterfly diagrams have also been previously reported, consistent with
our observations (Fig. 2A) [24]. The high variability in the stroke-im-
paired COP profiles may explain the lack of differences in the COP
symmetry index and distances observed between stroke-impaired and
non-impaired individuals.

Standard deviations of step width and step length have been used to
represent locomotor variability [12,25,26]. This was supported in older
adults with falls risks [26], but did not support that in individuals with
post-stroke hemiparesis, where only a “trend towards significance” was
reported by Balasurbramanian et al. [12]. In the current study, the SD
values of step width and step length representing step width and length
variability were not different between the non-impaired and stroke-
impaired. Although step width variability was a more sensitive dis-
criminating factor between older and young adults [25], it has also
been reported that to accurately estimate step width variability (eva-
luation of standard deviation), at least 400 consecutive steps are re-
quired [27,28]. Together, this suggests that conventional measures of
locomotor variability using standard deviation of step width and step
length with smaller number of steps were not adequate in distin-
guishing locomotor variability between non-impaired and neurologi-
cally-impaired individuals.

To the best of our knowledge, this is the first study to apply KDE to
evaluate locomotor variability on intersections of butterfly diagram in
non-impaired gait, and furthermore, stroke-impaired gait. The primary
outcome of KDE density was the distinctly smaller density in the stroke-
impaired group compared to controls. Additionally, the smooth surface
plots of KDE analysis highlighted the area of butterfly diagram, location
of the highest density, distribution range, and distribution pattern. KDE
revealed a highly consistent locomotor pattern in the non-impaired, in
line with previous literature [14,16]. Individual KDE patterns and
functional status for the stroke-impaired group are summarized in
Table 2. Out of the 10 individuals with post-stroke hemiparesis, two
presented Pattern A, with high variability of intersections; three parti-
cipants presented Pattern B, likely due to poor lower extremity control

Table 1
Means and standard deviations (SD) of step width, paretic step length, and non-paretic step length for both groups.

Step width Paretic step length (Left) Non-paretic step length (Right)

(cm) Mean SD Mean SD Mean SD
Stroke-Impaired 28.02 (8.68) 2.22 (1.25) 28.02 (8.68) 14.37 (7.30) 76.34 (21.14) 13.51 (6.79)
Non-Impaired 20.55 (3.08) 2.25 (0.75) 121.02 (23.30) 18.34 (8.19) 113.78 (12.34) 15.86 (6.31)
t 2.564 −0.051 −11.827 −1.145 −4.836 −0.801
p 0.020 0.960 <0.001 0.267 <0.001 0.434

Bolded p values denote statistically significant difference between groups (p < 0.05).

Table 2
KDE patterns and functional status for participants with post-stroke hemiparesis.

Participant ID Age (y) Time post stroke (y) Paretic leg Self-selected walking speed (m/s) L/E FM score (/34) Highest density (1/m2) KDE pattern type

01 69.02 7.99 Left 0.85 30 152.82 B
02 63.05 1.45 Left 0.60 30 200.16 A
03 63.04 7.96 Left 0.70 27 53.87 B
04 85.24 11.59 Left 0.23 25 119.85 B
05 77.15 0.67 Left 0.40 29 28.96 C
06 67.29 0.50 Left 0.70 30 109.11 A
07 77.02 29.12 Left 0.35 29 22.18 C
08 66.93 1.59 Left 1.10 30 126.36 D
09 83.14 5.43 Left 0.40 30 72.85 C
10 72.31 16.48 Left 0.55 24 74.92 C
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resulting in foot landing positions biased towards ML direction; four
participants presented Pattern C, likely due to poor lower extremity
control resulting in foot landing positions biased towards AP direction,
and one participant presented Pattern D, associated with low variability
despite significant asymmetry between the paretic and non-paretic legs.
Interestingly, although all individuals post-stroke exhibited hemipar-
esis, only Pattern D showed significant asymmetry between the paretic
and non-paretic legs compared to the other patterns. Furthermore,
these 4 characteristically different patterns within the stroke-impaired
group are potentially associated with their functional capabilities or
impairment levels, as suggested by their individual self-selected
walking speeds and lower extremity Fugl-Meyer (L/E FM) scores sum-
marized in Table 2. Specifically, individuals presenting with KDE Pat-
tern A, which was similar to non-impaired but with lower density, and
Pattern D, which had lower variability compared to other post-stroke
patterns, both had higher self-selected walking speeds and L/E FM
scores compared to individuals with KDE Pattern C. This supports our
argument that distance comparisons would not adequately identify
hemiparetic gait characteristics since there are considerable vari-
abilities within the stroke-impaired population. A larger sample size
will be needed for establishing the relationship between patterns and
functional status of individuals post-stroke. Specifically, due to the
large variability of stroke lesions, future studies will examine the dif-
ferent types of COP trajectories in participants across a wide spectrum
of different functional levels.

5. Conclusions

Conventional presentations of locomotor COP trajectories using the
butterfly diagram have limitations in describing variability post-stroke
gait. This paper presents a novel approach of using KDE analysis as a
better and more sensitive measure to characterize locomotor COP
variability in individuals with post-stroke hemiparesis, compared to
conventional measures.
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