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Abstract 
This paper prcseirts aj'2edback contrd design for isolated 
ramp metering cmtrol. This feedback control design, 
i:nlike the existing isolated feedback ramp controllers, 
Glso ta1:es into account (he ramp queue length. Using a 
!ionlizmr Hm ;ontrol design methodology, we formulate 
ihe problem in the desired setting to be able to utilize the 
results of the methodolop. 
1. Introduction 
Ramp metering is a way to improve traffic flow by 
regulating the ramp inflow to a freeway. By effectively 
controlling the ramp flow, the traffic density on the 
mainline freeway can be kept below critical level to 
provide high throughput, which is congestion free. For 
this type of operation, many factors have to be considered 
such as: 

The inflow at the mainlina 
The queue holding capacity of the ramp 

0 Availability of sensors 
The arterial system connected to the ramp system 

In this paper we will use the theory of nonlinear H, 
control to design a ramp control law, which minimizes a 
weighted function of the ramp queues and the difference 
of the mainline density to the desired mainline density. In 
order to design the controller, we need the system 
dynamics equations. We present the system dynamics 
next followed by the theory of nonlinear H, control, 
which is then applied to the ramp control problem. 

2. System Modelling [l] 
The first step in the design of feedback controllers for 
ramp metering is to model the system dynamics 

appropriately. Macroscopic model of the traffic can 
effectively be used in this context. From the macroxopic 
perspective, the traffic flow is considered analo, =ous to a 
fluid flow, which is a distributed parameter system 
represented by partial differential equations. Mass 
conservation model of a highway, characterized by x 5 
[0, L], which is the position on the highway, is given by 

where p(x,t) is the density of the traffic as a function of 
x, and time t, and 9(x , t )  is ths flow at given x, and t. 
The flow q(x,t) is a knction of p(x,r) ,  and the vzlocity 
v(x,t), as shown below: 

This model of a highway section is shown in Figure 3. 
4 x 3  t)=p(x, t)v(x,t> (2) 

9(L) Y\" I  

0 L 

Figure 3. Segment of Highway Model 
There are various static and dynamic models which have 
been used to represent the relationship between v(x,t) and 
p( x , t .> One of the simplest models is the one proposed 
by Greenshield [2 ] ,  which hypothesizes a linear 
relationship between the two variables. 

(3) k=V,(l--) P 
Pmax 

where vf is the free flow speed, and p,,, is the jam 
density. 
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2.1. Discretized System Dynamics 
Many researchers have studied and designed optimal open 
loop controllers utilizing space and time discretized 
models of traffic flow. Some researchers have also 
designed feedback control laws using similar models. 
The reason for the popularity of these models is that there 
zre many techniques available to deal with discretized 
systems. The same is also true for feedback control, and 
hence, in order to utilize the various linear and nonlinear 
control techniques available for lumped parameter 
systems, the distributed parameter model is space 
discretized. For this the highway is subdivided into 
several sections as shown in Figure 4. 

p, sensor 

Figure 4. Highway Divided into Sections 
Space discretization is performed by dividing the 
ccnsidered highway links into segments. In general the 
length of each segment is taken to be between .5 mile and 
1 mile. This is an approximation that is quite realistic 
since the traditional sensors like loop detectors along a 
freeway are generally installed at least 1 mile apart. 
Although a smaller step size for space dicretization will 
undoubtedly improve the accuracy of the simulation, in 
reelity it is rLot possible to measure speed a1:d flow 
variables at snaller intervals due to limited availability of 
Sensois along freeways. Thus, I-mile segnent length for 
space discretization appears to be a realistic assumption. 
On the other hand, the time discretization can be done 
using very small time steps since traffic data can be 
downloaded from sensors practically at every second. The 
space discretized form of (1) produces the following n 
continuous ODES for the n sections of the highway. 

d 1  
- p,'i[q,(f)-q,,,(f)+r;(t)-s;(t)k'= 42, ...U . dt 5 ,  (4) 

Here, ri( t )andd t ) terms indicate the on-ramp and off- 
ramp flows. The mathematical model for the highway 
can be represented in a standard nonlinear state space 
form for control design pcrposes. 

The standard state space form is 
JJ,=g, (P, 7 PZ,..., P, )> j  = 1,2,..., p 

-x(t) =f[x(r),u(t)]' 

Y O )  = g[x(t),u(t)l1 (6) 
x(0) = xo, 

(5) 

d 
dt 

where x = [ pI,p *,..., pflir and u(t)=r(t>. 

There are various other proposed models, which are more 
detailed in the description of the system dynamics. The 
phenomenon of shock waves, which is very well 
represented in the PDE representation of the system, is 
modelled by expressing the traffic flow between two 
contiguous sections of the highway, as the weighted sum 

of the traffic flows in those two sections, which 
correspond to the densities in those two sections [3,4]. A 
dynamic relationship instead of a static one like (3) has 
also been proposed by [ 5 ]  and used successfully. 

The model thus obtained can also be time discretized to 
transform the continuous time model into a discrete time 
mode. A comprehensive model, which incorporates 
shock waves, as well as represents the dynamic nature of 
mean speed propagation, is shown in [6] and is 
reproduced here for completion. The difference equations 

T 
P, ( k  + I k P ,  ( k ) ,g [9 , - ,  ( k )  - 9, ( k )  + r, ( k )  - s, (k)l, 

1 

tJ" 
output measurements of traffic flows q and time mean 
speeds y, shown as 

(9) 
and the boundary conditions 

(10) 

Y ,  ( k )  = Y v, (k) + (1 -Y F,+I (k)>O 5 Y 5 1 ' 

vo ( k  )'JJO ( k  1. 
P"+,(k) = s , ( k ) / y , ( k ) ,  

x(k + 1) = f(x(k),u(k)), 

x(0) = xo, 

gives the discrete system dynamics, which can be 
represented in the standard nonlinear discrete time form 

Y(k) = g(x(k),u(k)), (1 1) 

where control u(k) is the vector of ramp input flows. 

If the control actuation is discrete, such as the ones 
implemented by microprocessors and computers, 
feedback control laws can be designed based on the 
discrete model (1 I), or can be designed using (6) after 
which the controller can be discretized. 

The dynamics of the ramp queue are represented by the 
conservation equation where the rate of change of the 
number of vehicles in the queue is equal to the input flow 
to the queue subtracted from the outflow as seen in (12). 

3. Background (Nonlinear H, Control) 
Consider the system 
x = a(x) + b(x)u + g(x)d,,a(O) = 0 
y = c(x)+ d2,c(0) = 0 

(12) 

Z =  [ h ' x ) ] ,  h(0) = 0 
L U J  
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where x = (x, ,..., x,,) are local coordinates for a c" state 

space manifold M, U E  R" are the control inputs, 
d, E R' and d, E RP the exogenous inputs consisting of 

reference andor disturbance signals, y E RP the 

measured outputs, and z 6 Rs outputs to be controlled. 
The system (12) is identified by G. For a full-state 
measurement case y x .  The controller is identified by K. 
The closed loop system in Figure 5 will be denoted by 
Q ( G I K )  

Figure 5 Block E5+ diagram for nonlinear H, formulation 

Definition 1 : The closed loop system Q( G / Ki4 said to 
have L2 gain less than or equal to y for some - > 0 if 
T T 
[jlZ(Ojl2dt SY 2JIIw(1)112df +b(x,)  (13) 
0 0 

k? T i 0 still w(t) E L2[0, TI, where b( x,) is a positive 

co1is!arlt depending on initial condition Xo . 
-- S tak  Fzedback H, - Control Problem: Find a state 
feedback controller K:u=u(x) if any, such !hat the closed 
loop system R(G/K) is asymptotically stable and has L2- 

- Solution: -- [7-1 I ]  If there exists a smooth function V(x)>O 
-hhic!i s;tisfies the Hamilton-Jacobi (HJ) inequalities 

F:(x)a(x)+:V, (x) -;g(x)gr(x) -b(x)h'(x) V,'Cx) 

gain 5 y . 

(14) 

I' Y -  I 
1 
2 

+ -hr(X)h(X) 5 O,V(O) = 0 

and we set 

then the closed loop system R(G/u,) has gain at most y . 
Moreover if V(x) has a strict local minimum at x=O and 
the system 
4 =; a(x) 

U. = -b'(x)V,(x) (15) 

.=[ h(x) ] 
- br (x)V,' (x) 

is zero-state detectable (i.e. i =a(x) and z(x(t)) 0 for 
t 2 0  +. Limx(t) = o), then x=O is a locally asymptotically 

stable equilibrium of 
(17) 

Ir" additionally, V has a global strict minimum at x=O and 
V is proper (so the inverse image of a compact set under 

I -i- 

t = a(x) - b( x)b (x)V: (x) 

V is again compact), then x=O is a globally asymptotically 
stable equilibrium of (1 7). 

For the finite-time horizon problem, where final time T is 
finite, the solution is given by U =-b'(x)V,(t,x), where 
V ( t , x )  2 0 satisfies the following HJ equation. 

+'h'(x)h(x) 2 =O,V(T,x) = V, (x )  

The solution for the finite-time can be derived from a 
min-max differential game perspective [ 121. 

Measurement Feedback H, Control Problem: 
dynamic feedback controller 

Find a 

.:(" =K(V)+m)Y (19) 
u = m h >  

so that the closed loop system R(G/K) is asymptotically 
stable and has L2-gain I 7 .  

Solution: [28,29,30, 32,341 A necessary condition for the 
existence of solutions for which the closed loop system 
has a smooth storage function is that there exists a 
solution V(x)LO of (14) as well as a solution K(x)>O of 

1 1 (20) 
+-h ' (~ )h(~ ) - -y  'c'(x)c(x) I O , X ( O )  = 0 

2 2 
such that V(x)<R(x) for all x. 

Conversely, conditions (14) and (20) are sufficient to 
solve, at least locally, the measurement feedback- 
problem. h more complicated version of equation (2O), 
involving an "information-state'' in combination with 
(14), leads to compensators that solve the problem. 
However, these compensators are in general infinite- 
dimensional. This is an ongoing area of research, which 
is beyond the scope of this paper. 

4 Ramp Control Design 
We present two control laws for isolated ramp metering 
control: one using space discretized dynamics and the 
other one using space and time discretized dynamics. 
4.1 Continuous-time Case 
In order to illustrate the ideas discussed above, we have 
designed a feedback control law for a space discretized 
system. The isolated ramp metering problem area is 
shown in Figure 5 below. 
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L 

I- 

Figure 5. Traffic Flow for an Isolated Ramp Metering 
The dynamic equation for this problem is given by 

d 1  
dt - P=y [41 ( t )  - 90ur  ( t )  $- r ( t ) l  
d 
- l = q 2 ( t ) - r ( t )  
dt 
d - r  = u( t )  
dt 

The symbols used in (21) are defined below: 
p: Traffic density on the mainline 
I :  Number of vehicles (queue length) on the ramp 
L :  Length of the mainline section 
r :  Rate of flow of traffic into the mainline from 
the ramp 
91: Traffic flow entering the mainline section 
?om the highway 
q 2 :  Traffic flow entering the ramp 
qOa: Treffc flow leaving the mainline section 

Azccrding to Greenshield formula we have 

wherc 
v!: Freeflow speed on mainline 
p,,,: dam density on the mainline 

Thersfxe: wc can replace 21 by 
- d p=-;ql 1 .  - v , p ( l  -P)+ Y] 

P 111 
dt L 
d 
dt 
- [ = g , - r  

d 
- r  = 11 
dt 
Then defining the error e as p - p,, making the 

substituticii of p = e + p, into (23), and assuming L=l 
the following equations are obtained 

n -l=q, - r  
df  
d 
- r  = U  
dt 
We can now define the state vector x as x=[e, 1, r ] ' .  We 
can now present the ramp metering system in the form 
given by (12). 

The objective of the control can be taken as 
r 7  

Using this formulation, we can obtain the controller by 
solving the Hamilton Jacobi equation like (1 8) associated 
with this system. 

4.1.1 Nonlinear H, Solution for Two Cost 
Functions 
The two cost functions to be extremized are (26) and (27). 
These equations are posed such that the disturbance q will 
be maximized and the arguments of z and the control U 

will be minimized. - 
J ,  = j i ( z T z + u 2  0 -y2qTq)t (26) 

J ,  = J + ( z T z + u 2  0 -y2qrq-!c2r2>t  (27) 

The pre-Hamiltonian of (26) and (27) aie (28) and (29), 
respectively 

H,, = 5 (z'z + U' - y 2qrq - k ' r  )t e ' f 
H,, = i ( z T z + u 2  -y 2q'q)t ET f (28:l 

(29) 

Where g = and are the Lagrange multipliers that 

provide the constraints along with (24). 
The stationarity conditions for the problem are 

JHP - 0  (30) 
-... au 
a H p = O  (31) 

and 

as 
These conditions ensure that the control is minimized and 
the disturbance is maximized. 

4.1.la Derivation of the Optimal Control for J,, 
For the cost function defined in (26) the following 
demonstrates the method used to find the optimal control. 

(32!) 

Substituting (32) and (33) into (28) the following results 
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Another necessary condition that needs to be satisfied is 
the costate equations 

e 
i 

I 

4 
- U 2  

i 

From the above costate equation it can be seen that 

h, = -11 dt (36) 

--& =h, + l l d t  (37) 

This result c m  then be substituted into the h, equation 
that results in 

Now recognizing the relationship between U and h, the 
' following can be stated. 

I (  z :  --A j = -1, = i: (38) 

And h, can be solved for and h, caii be found. 

A, = t i - I l d t + &  = U - 1  (39) 

'i-!ien substituting these results into the 

following equation, independent of h, , results 

equation the 

Fiom this a sa te  equation for the feedback system can be 
written, the states for the system are as follows: 

I = j i  si = I  

U? = U ,  

L i z  = U  

(41) 
U ,  = U  

Adding these states to the states already defined creates 
thc following state equations 

4.1.lb Derivation uf the Optimal Control for J,, 

Following is the analysis used to find the optimal control 
for (27) 
The stationarity conditions for the problem are the same 

as before,% = 0 and p = 0. 

For (27) this turns out to be the same also 

aH 

au aq 

and dH 
L = O = u + h ,  * u=-h ,  au 

Substituting (32) and (33) into (29) the following results 

(43) 

Another necessary condition that needs to be satisfied is 
the resulting costate equations 

Froin the above costate equation it can be seen that 
h, = -/Idt 
This result is the same as above also, a d  is sutatituted 

into the A, equation yields a different re, cult than above 

-i3 = A , + j l d t - k E r  (45) 

A, = i - l I d t + k 2 r  (46) 

Then. as above we use the re1at;onship of (38) tc! solve 
for h, which in this case is 

And using the same argument as in (39) 

Now substituting (46) and (47) into the A, equation of 
(44) the following results 

x, = U - I  .+ k2 i .  = U -1  + k 2 u  (47) 

Using the definitions in (41) the state equations utilizing 
the control can be written as follows 

U, 

I I (49) 
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Where q,  = 6 - I  + k2r)y and q2 = - I/Y 

4.1.2 Discretization of the Resulting System 
In discretizing the above equations it is important to 
realize there are certain limits physically placed on the 
system. The limits on this system are as follows 

0 5 p I p,, * -p, 5 e 5 p,, - p, 

0 2 41 2 P,, 
0 5 9 2  

0 1 1  (50) 
O < r  

Z‘l”” 5 UI I %nax 

Since there are constraints on the controls and the states 
the method chose for descretization of the system is the 
Euler method which is demonstrated by the following 

x(t + h)- ”(t) - x(t + h)- x(t) dx= f ( x ) =  - 
dt (t + h)-t  h 

dx (i ) “(i + 1)- x( i )  =9 - = . f (x , i )=  
dt h 

x(i + I ) =  x(i)+ h . j ( x , i )  
For (42) the discrete-time system appears as follows 

(52) 

Wherc A is the size of the time step. The discrete time 
system for (49) is very similar to (52) and will not be 
shown here. 

4.2 Discrete-time Case 
The dynamic equation for the space and time discretized 
form is 

T 
P(k +l)=p(k)+-[f, - ~ , p ( l - ~ ) . + u ]  

L P, 
q(k + l)=q(k) + T(f2 -U) 

We can transform these equations also into a state space 
fomi like (24) and use a similar technique for the discrete 
time case as we used in the continuous time case. 
However, this will not be shown in this paper mainly due 
to space limitations. 

5 Conclusions 
A new design technique for isolated ramp metering 
control was presented. This technique minimizes an 
objective function which consists of weighted average of 

terms containing ramp queue length and the difference 
between the mainline traffic density and the desired 
mainline traffic density. The design is based on nonlinear 
Hm-control and requires solving a Hamilton Jacobi 
inequality. 
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