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Abstract
This paper presents a jeedback control design for isolated
ramp metering control. This feedback control design,
unlike the existing isoloted feedback ramp controllers,
also takes into account the ramp queue length. Using a
nonlinear He control design methodology, we formulate
che problem in the desired setting to be able to utilize the
results of the methodology.
i. Introduction
Ramp metering is a way to improve traffic flow by
regulating the ramp inflow to a freeway. By effectively
controlling the ramp flow, the traffic density on the
mainline freeway can be kept below critical level to
provide high throughput, which is congestion free. For
this type of operation, many factors have to be considered
such as:
o  The inflow at the mainline
o  The queue holding capacity of the ramp
o  Availability of sensors
o  The arterial system connected to the ramp system
In this paper we will use the theory of nonlinear H,,
control to design a ramp control law, which minimizes a
weighted function of the ramp queues and the difference
of the mainline density to the desired mainline density. In
order to design the controller, we need the system
dynamics equations. We present the system dynamics
next followed by the theory of nonlinear H. control,
which is then applied to the ramp control problem.

2. System Modelling [1]
The first step in the design of feedback controllers for
ramp metering is to model the system dynamics
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appropriately. Macroscopic model of the traffic can
effectively be used in this context. From the macroscopic
perspective, the traffic flow is considered analogous to a
fluid flow, which is a distributed parameter system
represented by partial differential equations.  Mass
conservation model of a highway, characterized by x <
[0, L], which is the position on the highway, is given by

M

where o(x,t) is the density of the traffic as a function of

] d
—p(x,t)=—q(x,1)
" p(x,1) P q(x,t

x, and time t, and g(x,¢) is the flow at given x, and t.
The flow ¢(x,7) is a function of p(x,#), and the velocity
v(x,t), as shown below:

q(x, 0)=p(x, v(x,1)
This model of a highway section is shown in Figure 3.

@

O

P
0 L

Figure 3. Segment of Highway Model
There are various static and dynamic models which have
been used to represent the relationship between v(x,t) and
p( X, t.) One of the simplest models is the one proposed

by Greenshield [2], which hypothesizes a linear
relationship between the two variables.
vy, (1-—£) 3

max

where V, is the free flow speed, and P, is the jam
density.
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2.1. Discretized System Dynamics

Many researchers have studied and designed optimal open
loop controllers utilizing space and time discretized
models of traffic flow. Some researchers have also
designed feedback control laws using similar models.
The reason for the popularity of these models is that there
are many techniques available to deal with discretized
systems. The same is also true for feedback control, and
hence, in order to utilize the various linear and nonlinear
control techniques available for lumped parameter
systems, the distributed parameter model is space
discretized. For this the highway is subdivided into
several sections as shown in Figure 4.

sensor

Py
Figure 4. Highway Divided into Sections

Space discretization is performed by dividing the
censidered highway links into segments. In general the
length of each segment is taken to be between .5 mile and
1 mile. This is an approximation that is quite realistic
since the traditional sensors like loop detectors along a
freeway are generally installed at least 1 mile apart.
Although a smaller step size for space dicretization will
undoubtedly improve the accuracy of the simulation, in
rezlity it is not possible to measure speed and flow
variables at smaller intervals due to limited availability of
sensors along freeways. Thus, [-mile segment length for
space discretization appears to be a realistic assumption.
On the other hand, the time discretization can be done
using very small time steps since traffic data can be
downloaded from sensors practically at every second. The
space discretized form of (1) produces the following n
continuous ODEs for the n sections of the highway.

d 1 .

= 055 004, O+ (=5, (O} =120 @
Here, r;(t)anddt) terms indicate the on-ramp and off-
ramp flows. The mathematical model for the highway
can be represented in a standard nonlinear state space
form for control design purposes.

yj:gj(pn Pareees p"),j=1,2,.‘.,p, (5)
The standard state space form is
d
—x(0) =1[x(r),u(t)]’
dt
y(#) =g[x(t),u(t)], (6)

x(0)=x,>
where x =[p,,p,,...,p,]" and u(t)=r(t).

There are various other proposed models, which are more
detailed in the description of the system dynamics. The
phenomenon of shock waves, which is very well
represented in the PDE representation of the system, is
modelled by expressing the traffic flow between two
contiguous sections of the highway, as the weighted sum
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of the traffic flows in those two sections, which
correspond to the densities in those two sections [3,4]. A
dynamic relationship instead of a static one like (3) has
also been proposed by [5] and used successfully.

The model thus obtained can also be time discretized to
transform the continuous time model into a discrete time
mode. A comprehensive model, which incorporates
shock waves, as well as represents the dynamic nature of
mean speed propagation, is shown in [6] and is
reproduced here for completion. The difference equations

B, (k+1)=p, (K110, (K) = ,(0)+7, () =5, ()

v, (k1) =, (0 + L [ (p, 00 =, )+ v, 0 ()= D)

vT

_vT p,(k+h-p,(k)
3,

[ p;(k)+%

]

with the relationships
g;(k)y=ap(ky,(+A-a)p,, kv, ()0<a <1,
Y )l s

output measurements of traffic flows q and time mean
speeds y, shown as

®

ve(p)=v,[1-(

v, (k) =y v, (k) + (1= v, (k)0 <y <1, ®)
and the boundary conditions
vo(k)=yo (K), (10)

P (k) =4, (k) y,(k),
gives the discrete system dynamics, which can be
represented in the standard nonlinear discrete time form
x(k +1) = f(x(k),u(k)),
y(k) = g(x(k),u(k), (an
x(0) = x,,
where control u(k) is the vector of ramp input flows.

If the control actuation is discrete, such as the ones
implemented by microprocessors and computers,
feedback control laws can be designed based on the
discrete model (11), or can be designed using (6) after
which the controller can be discretized.

The dynamics of the ramp queue are represented by the
conservation equation where the rate of change of the
number of vehicles in the queue is equal to the input flow
to the queue subtracted from the outflow as seen in (12).

3. Background (Nonlinear H. Control)
Consider the system

x = a(x) +b(x)u+g(x)d,a(0) =0
y=c(x)+d,c(0)=0

2= [h(x)], h(0)=0
u

(12)
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where X = (X,,...,X,) are local coordinates fora C~ state

space manifold M, ue R"
d, e R" and d, € R’ the exogenous inputs consisting of
ye R? the
measured outputs, and Z € R’ outputs to be controlled.
The system (12) is identified by G. For a full-state
measurement case y=x. The controller is identified by K.

The closed loop system in Figure 5 will be denoted by
QG/K)

are the control inputs,

reference and/or disturbance signals,

W,

—p z—->
y
[ ]

Figure 5 Block diagram for nonlinear Hoo formulation

Definition 1: The closed loop system { G / Kigsaid to
have Ly gain less than or equal to Y for some _> 0 if

13

T T
(o) de <y [[we) at + b(x,)

V T >0 and w(t) € L2[0, T], where b(X,) is a positive
constant depending on initial condition X .

Statz Feedback Heo Control Problem: Find a state
feedback controller K:u=u(x) if any, such that the closed
loop systeru Q(G/K) is asymptotically stable and has Lp-
gain< Y.

Solution: [7-11] If there exists a smooth function V(x)=0
which satisfies the Hamilton-Jacobi (HJ) inequalities

V. (0)a(x) + é v, (X)[;—z g(x)g’ (%)~ b(X)hT(X):IV,T(X)

+%h7(x)h(x) <0V (0)=0 (14)
and we set
u, =-b" (), (x) (15

then the closed loop system Q(G/u, ) has gain at most Y.

Moreover if V(x) has a strict local minimum at x=0 and
the system
* =a(x)

z=
br(x)I XT(X)

is zero-state detectable (i.e. x =a(x) and z(x(t)) =0 for

t20 = Limx(r) = 0), then x=0 is a locally asymptotically
=300

(16)

stable equilibrium of

% =a(x)—b(x)b” (X)V7 (x) 17
If additionally, V has a global strict minimum at x=0 and
V is proper (so the inverse image of a compact set under
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V is again compact), then x=0 is a globally asymptotically
stable equilibrium of (17).

For the finite-time horizon problem, where final time T is
finite, the solution is given by u=~b"(x)¥,(t,x), where
V(t,x)=0 satisfies the following HJ equation.
V,<r,x>+V.<x)a<x>+§VJx)[Yizg(x)g’(x)—b(x)b’(x) VI

. 18)
+Ehr(x)h(x) =0V (T, %)=V, (x)

The solution for the finite-time can be derived from a
min-max differential game perspective [12].

Measurement Feedback Heo Control Problem: Find a
dynamic feedback controller
.{n’ =km)+{m)y
1 ou=m®)
so that the closed loop system Q(G/K) is asymptotically
stable and has Lp-gain< Y.

(19)

Solution: [28,29,30, 32,34] A necessary condition for the
existence of solutions for which the closed loop system
has a smooth storage function is that there exists &
solution V(x)20 of (14) as well as a solution R(x)=0 of

R.(x)a(x) +2—Y‘7R,<x)g(x>g’<x>k,’ x)

1 1 20)
+ 5 h” (x)h(x} - Y 2T (x)e(x) < 0,R(0)=0

such that V(x) <R(x) for all x.

Conversely, conditions (14) and (20) are sufficient to
solve, at least locally, the measurement feedback-
problem. A more complicated version of equation (20),
involving an “information-state” in combination with
(14), leads to compensators that solve the problem.
However, these compensators are in general infinite-
dimensional. This is an ongoing area of research, which
is beyond the scope of this paper.

4 Ramp Control Design

We present two control laws for isolated ramp metering
control: one using space discretized dynamics and the
other one using space and time discretized dynamics.

4.1 Continuous-time Case

In order to illustrate the ideas discussed above, we have
designed a feedback control law for a space discretized
system. The isolated ramp metering problem area is
shown in Figure 5 below.
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Figure 5. Traffic Flow for an Isolated Ramp Metering
The dynamic equation for this problem is given by

p= 101~ 4 )+ (1)

dt

d
;;l—-qz(t)—r(t) 2n

g?r =u(t)

The symbols used in (21) are defined below:
p: Traffic density on the mainline
{: Number of vehicles (queue length) on the ramp
L: Length of the mainline section
r: Rate of flow of traffic into the mainline from
the ramp
qy: Traffic flow entering the mainline section
{rom the highway
g: Traffic flow entering the ramp
" (ou: Vraffic flow leaving the mainline section
Accerding to Greenshield formula we have

p
Qo ()= pr(l—p—) (22)
where
.. rreeflow speed on mainline
Pw: Jam density on the mainline
Therefore, we can replace 21 by
d 1.
= p=rla=v,ed —%) +r]
d
& =g, ~r (23)
d
—r=u
dt

Then defining the error e as P — P,, making the
substituticn of P =e+ O, into (23), and assuming L=1

the foliowing equations are obtained

} etp,
= P=a,—v, e+ pc{l- o ]+r
d
dig,r (23b)
—r=u
dt

We can now define the state vector x as x=[e, /, r}’. We
can now present the ramp metering system in the form
given by (12).

634

d " ‘
f=—|1|= -r + g, |+]0fu
@, 0 o] if @
The objective of the control can be taken as
e
z=|, (25)

Using this formulation, we can obtain the controller by
solving the Hamilton Jacobi equation like (18) associated
with this system.

4.1.1 Nonlinear H_ Solution for Twoe Cost
Functions
The two cost functions to be extremized are (26) and (27).
These equations are posed such that the disturbance q will
be maximized and the arguments of z and the control u
will be minimized.
J, = _H (sz +ut -y quq)dt
0
J, =I‘;(z’z+u2—yzqrq—.’czr2)dt @7
[\

The pre-Hamiltonian of (26) and (27) are (28) and (29),
respectively

(26)

Hpa=%(zrz+u2—y2q7q)+ iTf 28)

H, =@ z+u* —y2q'q-k*r* Jé' f 29
Ay

Where g — A, and are the Lagrange multipliers that
Ay

provide the constraints along with (24).
The stationarity conditions for the problem are

H, 30)
u

and
oH, o @31
oq

These conditions ensure that the control is minimized and
the disturbance is maximized.

4.1.1a Derivation of the Optimal Control for J,
For the cost function defined in (26) the following
demonstrates the method used to find the optimal control.

oH
aup=0=u+)\.3=>u=—)\.3 (B2
oH A A A
I :O: 2 + 1 = =—l-’ =—2 2
aq Y q |:}\'2:| q] Y 2 qz Y 2 (35)

Substituting (32) and (33) into (28) the following results
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2 2
=1 +12+)3—}7—5—)
Y

+M|-v, e+p, 1-&¥Pe +}”—‘2+r
P ¥

+A, k——r -\
¥

H,

(34

Another necessary condition that needs to be satisfied is
the costate equations

e+v]{2 B +e—1}\,
am, M| P ‘
x| 35
X M, @)
From the above costate equation it can be seen that
= —jldt (36)

This result can then be substituted into the A; equation
that results in
- Ky =+ [Ldt

Now recognizing the relationship between u and 7»3 the

(37)

following can be stated.

us--h, Dd=-h =¥ (38)
And A, can be solved for and A, can be found.
ho=i-fldt= K =ii-1 (39)

Then substituting these results into the A, equation the

iollowing equation, independent of A, , results

p.+e p.+e V. \
U=l-e-v,| < - —|/dt 40
[ P [ O né o, a0

From this a s:ate equation for the feedback system can be
written, the states for the system are as follows:
1=fi=i=1

s @n
Uy, =u,
iy =ii
Adding these states to the states already defined creates
the following state equations

i
o s ez
I @H-r
I3 _ u,
il ! (42)
2 U,
hy I—e—vf(ZM—)—]}uz——l)
i P J

4.1.1b Derivation of the Optimal Control for J,
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Following is the analysis used to find the optimal control
for (27)
The stationarity conditions for the problem are the same

2_0-
ou dq =0

For (27) this turns out to be the same also
oH »

= and
ou

==\,

H, M Mo
—2=0= 2 + =1 =2
g 0 [lz]:q' yrhTy

Substituting (32) and (33) into (29) the following results
Hﬂ

+A, -—vf(p‘_+e 1-—uE +—}L+ +A, )\——r -2
Pm ' Y

Another necessary condition that needs to be satisfied is
the resulting costate equations

p, +e
xl e+v/[27"——]},
=%, 1
X

SVERVCINY
@3)

0H,
ox

44)
A =N, -k (

From the aoove
A, =-[ldt

This result is the same as above alsn, and is substituted

costate equation it can be seen that

into the 7y ., equation yields a different result than above

=Ky =M+ [1di- k7 (45)
Then, as above we use the relationship of (38) to solve
for 7\] which in this case is

A =u—jldt+k2r (46)
And using the same argument as in (39)
Mzdi—l+k =i+ ki “7)

Now substituting (46) and (47) into the X‘ equation of
(44) the following results
_J2e+p)

Using the definitions in (41) the state equations utilizing
the control can be written as follows

[ en e,

q, =T

i=1-k —1+k2r) (48)

Comee Y. L B
=

! , (49)

=
+ =
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Where g, =Q4—I+k2r)'\(2 and ¢, =~1I/y?.

4.1.2 Discretization of the Resulting System
In discretizing the above equations it is important to
realize there are certain limits physically placed on the
system. The limits on this system are as follows
O0spsp,=-p.Sesp,—p.
0<q,<p,

0<gq,

0<!

0<r

(50)

ul.min < ul < ul,max
Since there are constraints on the controls and the states
the method chose for descretization of the system is the
Euler methed which is demonstrated by the following

dx _ _xl+h)-x() _ x(t+r)-x0)
a0 t+h)-t h
dax) _ ~_ xG+1)-x()
=== fli)= — 5H
xG+D)=xG)+h- f(x,0)
For (42) the discrete-time system appears as follows
(52)

eli+l)= e(i\r\- !1'{vf(e(i)+ pc{l - -eﬁ);i} q,(i)+ r(i‘)}

1+ 1)=10)+ -, O r0)
rli+1)=r@)+ i, G)
H+1)=16)+h-1G)
u,(i+1)= ut(:')+ /z»uz(i)

uz(fm:uz<r>-rh-(1(f)-e<i)- vf(z%&—x}um—mi))]

Where 4 is the size of the time step. The discrete time
system for (49) is very similar to (52) and will not be
shown here.

4.2 Discrete-time Case
The dynamic equation for the space and time discretized
form is
o + 1)=p (K~ [, ~v;p(1-2) 4 u]
L Pen *
atk + 1)=q(k) + T(f, —~w)
We can transform these equations also into a state space
form like (24) and use a similar technique for the discrete
time case as we used in the continuous time case.
However, this will not be shown in this paper mainly due
to space limitations.

5 Conclusions

A new design technique for isolated ramp metering
control was presented. This technique minimizes an
objective function which consists of weighted average of
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terms containing ramp queue length and the difference

between the mainline traffic density and the desired

mainline traffic density. The design is based on nonlinear

Hoo_control and requires solving a Hamilton Jacobi

inequality.
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