Aug 3rd, 9:00 AM - 12:00 PM

Synthesis of novel aromatic quinols for colon and renal cancers

Bradley J. Davey
University of Nevada, Las Vegas

Tae Soo Jo
University of Nevada, Las Vegas

Pradip K. Bhowmik
University of Nevada, Las Vegas

Repository Citation
https://digitalscholarship.unlv.edu/cs_urop/2010/aug3/26

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Synthesis of Novel Aromatic Quinols for Colon and Renal Cancers
Bradley J. Davey, Tae Soo Jo and Pradip K. Bhowmik*
Department of Chemistry, University of Nevada Las Vegas, 4305 Maryland Parkway, Las Vegas, Nevada 89154

Introduction

 Colon Cancer
- The third most common cancer in the USA
- More than 1 million Americans currently living with colon cancer
- 148,810 new cases expected in 2010
- 50,000 deaths annually

 Renal Cancer
- Approximately 58,000 people diagnosed in USA annually
- Seventh most common cancer and tenth most common cause of cancer-related death in men
- A disease of the kidneys in which cells grow uncontrollably and form a tumor

 Risk Factors
- Smoking
- Gender, race, and age
- Nutrition and weight
- Hypertension
- Overuse of certain medications

 Application

 Aromatic quinols have demonstrated in vitro antitumor activity
- Abnormal tyrosine protein kinase (PTKs) cause many human cancers
- Aromatic quinols shown to be PTK inhibitors
- They have longer half-lives
- Rapid bioactivity

 Grignard Reaction
- The addition of an organomagnesium halide to a ketone or aldehyde to form a tertiary or secondary alcohol

 Examples of Aromatic Quinols

 Aromatic quinols have demonstrated GI50 values at 0.36 μM, 0.46 μM and 0.74 μM respectively
- GI50 values indicate 50% of cancerous cell growth inhibition at the specified concentrations

 Reaction Scheme

 Scheme 1. Preparation of 4,4-dimethoxy-2,5-cyclohexadien-1-one

 Scheme 2. Preparation of 4-hydroxy-4-phenyl-2,5-cyclohexadien-1-one

 NMR Spectroscopy of Quinone

 NMR Spectroscopy of Aromatic Quinol

 Proposed Mechanism

 FT-IR Spectroscopy

 Suggested Mechanism

 Future Work

 Future research should incorporate various protecting groups, such as cyclic ketals or thio-ketals, to avoid the directing effects of methoxy substituents which are known to result in syntheses of unexpected products.

 References

 Conclusion

 FT-IR, 1H, and 13C spectroscopic data indicate that the synthesized molecule didn't match the desired product
- The suggested mechanism is consistent with the data from spectroscopy and reported references
- Formation of the unexpected product may be due to the resulting thermodynamic stability of the aromatic α electron system over the diene product

 Acknowledgements

- This project was supported by NIH Grant Number P20 RR-016464 from the INBRE Program of the National Center for Research Resources.
- A very special thanks to Dr. Han and members of her lab: Alexi Nededichev, William McCurdy, Ondita Tadhmanathan, Jungtae Koh and Joe Wray for their wisdom and help with my project.

Figure 1. Facts related to colorectal and renal cancers

Figure 2. Three heteroaromatic quinols showing antitumor activity.