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Abstract 

OPC production accounts for 5 to 7% of the global carbon dioxide (CO2) emissions, 

contributing to global warming.  The desire to reduce CO2 emissions and produce more durable 

concrete has given impetus to search for new binders.  It is suggested that alkali-activated natural 

pozzolans have the potential for use as a sustainable replacement for OPC in concrete.  

 The current study presented herein evaluated fresh, mechanical, and transport properties 

of alkali-activated natural pozzolan mortars containing various concentrations of sodium 

hydroxide solutions as an alkaline activator.  To this aim, alkali-activated natural pozzolan 

mortars were made with concentrations of sodium hydroxide (NaOH) of 2.5, 5, 7.5, 10 and 12.5 

molar (M) and by using various solution-to-binder ratios (s/b ratios) of 0.50, 0.54, and 0.58 with 

a fine aggregate-to-binder ratio of 2.  

  The produced mortar samples were sealed-cured for 3 hours at 60°C, and then de-molded 

and cured at 80°C until testing at different ages of 1, 3, and 7 days.  Another group of samples 

were cured in a curing room for 28 days.  Various tests were conducted on the alkali-activated 

natural pozzolan mortar samples including flow spread, compressive strength, flexural strength, 

absorption, void content, and rapid chloride migration.  

  The 12.5 M 0.58 s/b ratio mixture achieved the highest overall compressive strength after 

seven days of sealed curing.  The sealed curing environment was found to be most conducive to 

strength gain, as the exposed condition led to dehydration within the samples and the moisture 

condition did not allow for full removal of excess water, reducing bond formation.  As the NaOH 

concentration increased, the compressive and flexural strengths increased, while the flow, void 

content, and chloride migration decreased.  Increasing the s/b ratio reduced compressive and 

flexural strengths and increased flow, void content, and chloride migration. 



	   ii	  

Acknowledgments 

 I would like to thank Dr. Ghafoori for offering me the opportunity to perform this 

research and for all of his support and guidance throughout the study.  I also have to thank the 

members of Dr. Ghafoori’s research team and the facility managers within the Howard R. 

Hughes College of Engineering for all of their assistance through the experimentation and 

writing of this thesis.  I could not have done it without their instrumental help.  I would also like 

to acknowledge Dr. Hanson and Dr. Kaseko for taking time to review my thesis and act as 

members of my thesis committee.  I have learned a great deal from all of my committee members 

and I am thankful for the opportunity I had to work with each of them.  The Nevada Cement 

Company generously donated the natural pozzolans for this study, so I would like to thank them 

for all of their support.  This research was partially funded by NSF Grant # EPS-0814372 

“Nevada Infrastructure for Climate Change Science, Education, and Outreach,” so I would like 

to thank the National Science Foundation for their support as well. 

 I also need to acknowledge my friends and family that have supported me throughout this 

journey.  Without their encouragement, I would not have been able to complete this project. 



	   iii	  

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my late grandmother, Rose Ihlenfeld.  From a young age, she  

taught me that, “it’s a small world after all,” and that nothing is impossible.   

I would not be the person I am today without her.



	   iv	  

 

Table	  of	  Contents	  

List	  of	  Tables	  .........................................................................................................................................	  vi	  

List	  of	  Figures	  ......................................................................................................................................	  vii	  

Introduction	  ............................................................................................................................................1	  
1.	  Literature	  Review	  .............................................................................................................................1	  
1.1	  Sustainability	  ..................................................................................................................................................	  1	  
1.2	  Durability	  .........................................................................................................................................................	  2	  
1.3	  History	  of	  Pozzolanic	  Materials	  ................................................................................................................	  3	  
1.4	  Chemistry	  of	  Pozzolanic	  Materials	  ..........................................................................................................	  4	  
1.5	  Effect	  of	  Temperature	  ..................................................................................................................................	  6	  
1.6	  Mechanical	  Strength	  .....................................................................................................................................	  7	  
1.7	  Transport	  Properties	  ...................................................................................................................................	  9	  

2.	  Research	  Objectives	  ......................................................................................................................	  10	  

3.	  Materials	  and	  Experimental	  Program	  ....................................................................................	  10	  
3.1	  Materials	  .......................................................................................................................................................	  11	  
3.2	  Mortar	  Preparation	  	  ..................................................................................................................................	  13	  
3.3	  Flow	  .................................................................................................................................................................	  14	  
3.4	  Compressive	  and	  Flexural	  Strengths	  ...................................................................................................	  14	  
3.5	  Density/Absorption/Voids	  .....................................................................................................................	  16	  
3.6	  Rapid	  Chloride	  Penetration	  Test	  ..........................................................................................................	  18	  
3.7	  Rapid	  Migration	  Test	  .................................................................................................................................	  19	  

4.	  Results	  and	  Discussion	  ................................................................................................................	  21	  
4.1	  Fresh	  Properties	  –	  Flow	  and	  Density	  ...................................................................................................	  21	  
4.2	  Compressive	  Strength	  	  ..............................................................................................................................	  23	  
4.2.1	  Effect	  of	  Curing	  .........................................................................................................................................	  25	  
	   4.2.2	  Effect	  of	  NaOH	  Concentration	  ................................................................................................................	  34	  

4.2.3	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  ........................................................................................................	  42	  
4.2.4	  Curing	  Room	  Samples	  ................................................................................................................................	  52	  

4.3	  Flexural	  Strength	  ........................................................................................................................................	  54	  
4.4	  Density/Absorption/Voids	  .....................................................................................................................	  57	  
4.5	  Rapid	  Chloride	  Penetration	  Test	  ..........................................................................................................	  60	  
4.6	  Rapid	  Migration	  Test	  .................................................................................................................................	  64	  

5.	  Conclusion	  and	  Recommendations	  .........................................................................................	  67	  
5.1	  Fresh	  Properties	  –	  Flow	  and	  Density	  ...................................................................................................	  68	  
5.2	  Compressive	  Strength	  	  ..............................................................................................................................	  68	  
5.3	  Flexural	  Strength	  ........................................................................................................................................	  69	  
5.4	  Density/Absorption/Voids	  .....................................................................................................................	  69	  
5.5	  Rapid	  Chloride	  Penetration	  Test	  ..........................................................................................................	  69	  
5.6	  Rapid	  Migration	  Test	  .................................................................................................................................	  70	  
5.7	  Recommendations	  .....................................................................................................................................	  70	  

	  



	   v	  

6.	  Appendices	  .......................................................................................................................................	  72	  
Appendix	  A:	  References	  ..................................................................................................................................	  72	  
Appendix	  B:	  Flow	  Data	  .....................................................................................................................................	  75	  
Appendix	  C:	  Compressive	  Strength	  Data	  ...................................................................................................	  76	  
Appendix	  D:	  Density/Absorption/Void	  Data	  ...........................................................................................	  81	  
Appendix	  E:	  RCPT	  Data	  ....................................................................................................................................	  84	  
Appendix	  F:	  RMT	  Data	  .....................................................................................................................................	  85	  
	  
	  
	  
	  
	  
	  
  



	   vi	  

List	  of	  Tables	  	  
Table	  1:	  Chemical	  Composition	  (oxide	  percent)	  of	  the	  Materials	  Used	  in	  this	  Study 	  ...............	  12	  
Table	  2:	  Amount	  Finer	  Than	  Each	  Laboratory	  Sieve,	  Mass	  Percent	  .................................................	  13	  
Table	  3:	  Average	  Compressive	  Strengths	  ..................................................................................................	  24	  
Table	  4:	  Curing	  Room	  Average	  Compressive	  Strengths	  .......................................................................	  53	  
Table	  5:	  Flexure	  Properties	  ...........................................................................................................................	  54	  
Table	  6:	  Average	  Density,	  Absorption,	  and	  Void	  Results	  .....................................................................	  57	  
Table	  7:	  Average	  RCPT	  Results	  .....................................................................................................................	  61	  
Table	  8:	  Average	  RMT	  Results	  ......................................................................................................................	  64	  
Table	  9:	  Flow	  Results	  	  ......................................................................................................................................	  75	  
Table	  10:	  2.5	  M	  Compressive	  Strength	  Data	  .............................................................................................	  76	  
Table	  11:	  5.0	  M	  Compressive	  Strength	  Data	  .............................................................................................	  77	  
Table	  12:	  7.5	  M	  Compressive	  Strength	  Data	  .............................................................................................	  78	  
Table	  13:	  10.0	  M	  Compressive	  Strength	  Data	  ..........................................................................................	  79	  
Table	  14:	  12.5	  M	  Compressive	  Strength	  Data	  ..........................................................................................	  80	  
Table	  15:	  0.50	  S/B	  Ratio	  Density/Absorption/Void	  Data	  ....................................................................	  81	  
Table	  16:	  0.54	  S/B	  Ratio	  Density/Absorption/Void	  Data	  	  ...................................................................	  82	  
Table	  17:	  0.58	  S/B	  Ratio	  Density/Absorption/Void	  Data	  ....................................................................	  83	  
Table	  18:	  RCPT	  Data	  .........................................................................................................................................	  84	  
Table	  19:	  2.5	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  .......................................................................	  85	  
Table	  20:	  5.0	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  	  ......................................................................	  85	  
Table	  21:	  7.5	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  	  ......................................................................	  86	  
Table	  22:	  10.0	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  	  ....................................................................	  86	  
Table	  23:	  12.5	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  	  ....................................................................	  86	  
Table	  24:	  2.5	  M	  Rates	  of	  Chloride	  Penetration	  Data	  	  .............................................................................	  87	  
Table	  25:	  5.0	  M	  Rates	  of	  Chloride	  Penetration	  Data	  	  .............................................................................	  87	  
Table	  26:	  7.5	  M	  Rates	  of	  Chloride	  Penetration	  Data	  	  .............................................................................	  88	  
Table	  27:	  10.0	  M	  Rates	  of	  Chloride	  Penetration	  Data	  	  ..........................................................................	  88	  
Table	  28:	  12.5	  M	  Rates	  of	  Chloride	  Penetration	  Data	  	  ..........................................................................	  89	  
  



	   vii	  

List	  of	  Figures	  	  
Figure	  1:	  Effect	  of	  NaOH	  Concentration	  on	  Flow	  of	  Mortar 	  ................................................................	  22	  
Figure	  2:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Flow	  of	  Mortar	  	  ........................................................	  22	  
Figure	  3:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  2.5	  M	  0.50	  S/B	  Ratio	  	  ...................................	  26	  
Figure	  4:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  2.5	  M	  0.54	  S/B	  Ratio	  	  ...................................	  27	  
Figure	  5:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  2.5	  M	  0.58	  S/B	  Ratio	  	  ...................................	  27	  
Figure	  6:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  5.0	  M	  0.50	  S/B	  Ratio	  	  ...................................	  28	  
Figure	  7:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  5.0	  M	  0.54	  S/B	  Ratio	  	  ...................................	  28	  
Figure	  8:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  5.0	  M	  0.58	  S/B	  Ratio	  	  ...................................	  29	  
Figure	  9:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  7.5	  M	  0.50	  S/B	  Ratio	  	  ...................................	  29	  
Figure	  10:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  7.5	  M	  0.54	  S/B	  Ratio	  	  .................................	  30	  
Figure	  11:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  7.5	  M	  0.58	  S/B	  Ratio	  	  .................................	  30	  
Figure	  12:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  10.0	  M	  0.50	  S/B	  Ratio	  	  ..............................	  31	  
Figure	  13:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  10.0	  M	  0.54	  S/B	  Ratio	  	  ..............................	  31	  
Figure	  14:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  10.0	  M	  0.58	  S/B	  Ratio	  	  ..............................	  32	  
Figure	  15:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  12.5	  M	  0.54	  S/B	  Ratio	  	  ..............................	  32	  
Figure	  16:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  12.5	  M	  0.58	  S/B	  Ratio	  	  ..............................	  33	  
Figure	  17:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.50	  S/B	  Ratio	  	  
Exposed	  Curing	  	  ..................................................................................................................................................	  36	  
Figure	  18:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.54	  S/B	  Ratio	  	  
Exposed	  Curing	  	  ..................................................................................................................................................	  36	  
Figure	  19:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.58	  S/B	  Ratio	  
	  Exposed	  Curing	  	  .................................................................................................................................................	  37	  
Figure	  20:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.50	  S/B	  Ratio	  	  
Moisture	  Curing	  	  ................................................................................................................................................	  37	  
Figure	  21:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.54	  S/B	  Ratio	  	  
Moisture	  Curing	  	  ................................................................................................................................................	  38	  
Figure	  22:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.58	  S/B	  Ratio	  	  
Moisture	  Curing	  	  ................................................................................................................................................	  38	  
Figure	  23:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.50	  S/B	  Ratio	  	  
Sealed	  Curing	  	  .....................................................................................................................................................	  39	  
Figure	  24:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.54	  S/B	  Ratio	  	  
Sealed	  Curing	  	  .....................................................................................................................................................	  39	  
Figure	  25:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.58	  S/B	  Ratio	  	  
Sealed	  Curing	  	  .....................................................................................................................................................	  40	  
Figure	  26:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  2.5	  M	  Exposed	  	  
Curing	  	  ...................................................................................................................................................................	  44	  
Figure	  27:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  2.5	  M	  Moisture	  	  
Curing	  	  ...................................................................................................................................................................	  44	  
Figure	  28:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  2.5	  M	  Sealed	  	  
Curing	  	  ...................................................................................................................................................................	  45	  
Figure	  29:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  5.0	  M	  Exposed	  	  
Curing 	  ...................................................................................................................................................................	  45	  
Figure	  30:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  5.0	  M	  Moisture	  	  
Curing	  	  ...................................................................................................................................................................	  46	  
Figure	  31:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  5.0	  M	  Sealed	  	  
Curing	  	  ...................................................................................................................................................................	  46	  
Figure	  32:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  7.5	  M	  Exposed	  	  
Curing	  	  ...................................................................................................................................................................	  47	  



	   viii	  

Figure	  33:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  7.5	  M	  Moisture	  	  
Curing	  	  ...................................................................................................................................................................	  47	  
Figure	  34:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  7.5	  M	  Sealed	  	  
Curing	  	  ...................................................................................................................................................................	  48	  
Figure	  35:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  10.0	  M	  Exposed	  	  
Curing	  	  ...................................................................................................................................................................	  48	  
Figure	  36:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  10.0	  M	  Moisture	  	  
Curing	  	  ...................................................................................................................................................................	  49	  
Figure	  37:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  10.0	  M	  Sealed	  	  
Curing	  	  ...................................................................................................................................................................	  49	  
Figure	  38:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  12.5	  M	  Exposed	  	  
Curing	  	  ...................................................................................................................................................................	  50	  
Figure	  39:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  12.5	  M	  Moisture	  	  
Curing	  	  ...................................................................................................................................................................	  50	  
Figure	  40:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  12.5	  M	  Sealed	  	  
Curing	  	  ...................................................................................................................................................................	  51	  
Figure	  41:	  Effect	  of	  NaOH	  Concentration	  on	  7-‐Day	  Void	  Content	  	  .....................................................	  59	  
Figure	  42:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  7-‐Day	  Void	  Content	  	  .............................................	  59	  
Figure	  43:	  Effect	  of	  NaOH	  Concentration	  on	  7-‐Day	  RMT	  Migration	  Coefficient	  	  ..........................	  66	  
Figure	  44:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  7-‐Day	  RMT	  Migration	  Coefficient	  	  ..................	  66	  

	  
 

  



	   1	  

 

Introduction 

Concrete is the predominant material used for construction, with over 7 billion tons 

produced each year.  Ordinary Portland cement (OPC) is the main binding material used in 

concrete.  OPC production accounts for a significant amount of CO2 emissions, raising an issue 

regarding the sustainability of the construction industry.  Another concern is the inability of OPC 

to maintain physico-chemical long-term durability in adverse environmental and climatic 

conditions.  Current research has shown that alkali-activated natural pozzolans may be able to 

address these two concerns.  What follows is a literature review summarizing the sustainability 

and durability of OPC and alkali-activated natural pozzolans, the background of pozzolanic 

materials, and previous studies dealing with the activation of natural pozzolans.  The need for 

future research into alkali-activated natural pozzolans is also described. 

 

1. Literature Review 

1.1 Sustainability 

Huntzinger and Eatmon (2009) [1] addressed the life-cycle assessment of OPC 

manufacturing.  Concrete is the most widely used man-made construction material with 

approximately 1 ton produced per person every year [1].  OPC production accounts for nearly 

5% of the world’s total CO2 emissions, with half of the CO2 emissions produced as calcium 

carbonate (CaCO3) is transformed to calcium oxide (CaO) in the kiln and the other half of the 

emissions resulting from energy usage [1].  The OPC production process is energy intensive 

because it requires treating the raw materials in a kiln at temperatures greater than 1400°C [1].   

Similarly, Roy (1999) [2] found that concrete is the most widely produced manufactured material 
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by volume in the world.  Its use has contributed a sizeable amount of CO2 to the atmosphere due 

to the high-energy demand of OPC production to heat the kiln as well as creating CO2 as a by-

product of the decarbonation of limestone.   

 

Equation	  1:	  Decarbonation	  of	  Limestone	  

	  
5CaCO3 + 2SiO2 à 3CaO�SiO2 + 2CaO�SiO2 + 5CO2 

 

Pacheco-Torgal et al. (2012) [3] provided another assessment of the global CO2 

emissions due to OPC production, finding an estimate around 7%.  In the next forty years, the 

predicted demand for OPC will double, reaching 6 billion tons per year [3].  Given this growth 

rate, the replacement of OPC with alkali-activated binders may significantly reduce the amount 

of CO2 emitted into the atmosphere.  In the view of this research, the term “sustainable” refers to 

the preservation of the environment through the reduction of CO2 emitted into the atmosphere 

due to OPC production.  Additionally, natural pozzolans are not only a sustainable option for an 

OPC replacement, but they also offer economic benefits.  Using natural pozzolans can save 

contractors up to 25% when compared to using OPC due to reduced material expenses during the 

production process [1].    

 

1.2 Durability 

Pacheco-Torgal et al. (2008) [4] discussed the limitations of OPC in terms of durability.  

One study found that 40% of the 600,000 bridges in the United States are affected by corrosion 

problems, summing up to a total cost of $50 billion in repairs [4].  These bridges are constructed 

from OPC, thus suggesting that finding an alternative binder with improved permeability 
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resistance could substantially reduce future construction repair costs.  Research into alkali-

activated binders as a replacement of OPC has shown favorable results with respect to durability.  

Alkali-activated binders have the potential to provide multiple benefits including increased 

chemical resistance, increased freeze-thaw resistance, and greater stability in high temperatures 

[3]. 

Another aspect of durability under question is why the 2000-year old ancient Greek and 

Roman concrete structures have been able to resist decay while the structures of today display a 

need for repair after only a decade of use.  Jackson et al. [5] studied these Ancient Roman 

monuments and found that they consisted of brick and volcanic tuff clasts bonded together by 

pozzolan mortars.  The pozzolan used during this time period was the alkali-rich Pozzolane 

Rosse ash, which has proven extremely durable over millennia [5].  This indicates that alkali-

activated pozzolanic materials may prove to be a viable solution to modern concrete durability 

concerns. 

 

1.3 History of Pozzolanic Materials 
 

Ancient mortars were made from both alkali-rich volcanic ash aggregate and calcium-

alumina-silicate hydrate cements [5].  The ACI Committee 232 (2001) [6] reported that the first 

examples of pozzolanic binders were found near the Persian Gulf, dating back to 5000-4000 B.C. 

and consisting of a mixture of lime and natural pozzolan.  The Greeks began using lime-pozzolan 

mixtures around 700 B.C., and the Romans followed them in 150 B.C. [6].  In the 2nd century 

B.C., Roman builders began experimenting with various concrete materials, and by the Augustan 

Era (27 B.C. to A.D. 14), builders identified the Pozzolane Rosse ignimbrite ash aggregate as 

one of the most suitable in terms of strength and durability [5].  This alkali-containing ash 
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produced calcium-silicate hydrate (CSH) gel cements, indicating a strong reaction between this 

ash and the hydrated lime [5].   

Studies of ancient concrete structures in Italy, Greece, Cyprus, and Egypt found that these 

concretes have survived corrosive conditions for over 2000 years whereas Portland cement 

exposed to the same environment needed to be repaired after 10 years [2].  The long-term 

durability of these structures indicated that the reactions between the ash and hydrated lime 

might have increased the sorption and binding of the materials [5].  Winter explains that the 

alkali-silica reaction in pozzolanic materials occurs when the materials are initially mixed, 

causing no expansion [7].  In contrast, OPC is typically used with low alkali aggregates due to an 

increased likelihood of failure and cracking [5].  Alkali aggregates in concrete made with OPC 

experience alkali-silica reactions.  This reaction with calcium to produce CSH gel occurs after 

the concrete has been cured, leading to expansion and crack formation within the concrete [7].  

 

1.4 Chemistry of Pozzolanic Materials 

Pozzolans are defined as inorganic materials containing aluminates and silicates that form 

hydrates when mixed with lime and water [5].  Research into alkali-activated cements began in 

the 1940s predominantly with the work of Glukhovsky who focused on explaining the difference 

between the compositions of OPC and other minerals found in the earth’s crust [2].  He found 

that OPC forms calcium silicate hydrate (CSH) and portlandite (Ca(OH)2) as hydration products, 

whereas the other minerals predominantly form zeolites, also called aluminum silicate hydrates, 

that lead to enhanced durability [2].  Glukhovsky (1959) [8] also investigated the binders used in 

ancient Roman and Egyptian structures.  He found that these ancient concretes were made of 

aluminosilicate calcium hydrates, similar to the ones in OPC, but they also contained a natural 
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mineral called analcite [8].  Glukhovsky called these binders “soil-cement” and they were 

produced from aluminosilicate mixed with alkali-rich industrial wastes [8].  

Khale and Chaudhary (2007) [9] explain that OPC is classified as a cementitious 

material, having a calcium oxide (CaO) to total mass ratio greater than 20%.  Kosmatka et al. 

(2002) [10] say this allows hydration of OPC to occur naturally as the tricalcium silicate 

(3CaO�SiO2) and dicalcium silicate (2CaO�SiO2) interact with water to form calcium hydroxide 

(CaOH) and CSH.  For pozzolans, materials with a CaO to total mass ratio less than 20%, 

hydration does not occur naturally; there needs to be some catalyst to begin the reaction since 

these materials are not cementitious on their own [4].  Alkali-activators, such as sodium 

hydroxide (NaOH), are used to initiate the reaction.   

Glukhovsky et al. (1980) [11] identified the reaction mechanism for alkali-activated 

binders as consisting of the breakdown of covalent Si-O-Si and Al-O-Si bonds when the pH 

increases, transforming these groups into a colloidal phase.  The destroyed products then 

accumulate into a coagulated arrangement, thus generating a condensed structure [11].  Other 

authors are in agreement with Glukhovsky that the activation process consists of three phases: 

silica dissolution, transportation, and polycondensation.  Purdon (1940) [12] also worked with 

slag and sodium hydroxide in the 1940s.  He found that the activation process occurred in two 

steps: silica aluminum and calcium hydroxide were liberated and then silica and alumina 

hydrates were formed as the alkali solution was regenerated [12].  Although the number of steps 

of the alkali-activator and pozzolan reaction is debatable, it is evident that the alkali-activator is 

essential to breaking down silica and aluminum bonds so that hydrates can form. 

Alkali concentration plays a significant role in the geopolymerization process.  As the 

hydroxide ion concentration is increased, there is also an increase in aluminosilicate solubility, 
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leading to an increase in compressive strength [9].  As more aluminosilicate bonds are broken 

down, there are further opportunities for hydrates to be formed that account for the majority of 

the mixture’s strength.  As the silica content available for reaction increases, there is more alkali 

aluminosilicate gel formed, leading to increased compressive strengths [9].  Furthermore, under 

hydrothermal curing, higher temperatures lead to the formation of more aluminosilicate gel [13].  

This produces a molecular structure with improved orientation that enhances strength properties 

[13]. 

 

1.5 Effect of Temperature 

In addition to alkali concentration, temperature is another contributing factor to pozzolan 

strength development.  Unlike OPC that achieves high compressive strengths when cured in high 

humidity environments, pozzolans do not perform well when cured at high humidity and ambient 

temperatures [9]. Instead, research shows that curing in the temperature range of 30°C to 90°C 

has a positive effect on the pozzolan’s strength characteristics [9].  Lemougna et al. (2011) [14] 

found that compressive strength increases as the curing temperature increases from 40°C to 

90°C.  Additionally, Lemougna et al. found that in this temperature range, samples cured for 7 

days in dry conditions achieved significantly higher compressive strengths than those cured in 

wet conditions [14].  Bondar et al. (2011) [15] found that the temperature allows the excess water 

to evaporate, forming a monolithic geopolymer that is able to achieve full strength as the 

network of hydrates develop.  Bondar et al. report that mixtures with a higher viscosity due to 

increased alkali concentration may need longer curing times and/or higher temperatures to 

remove this water to allow for proper bonding [15]. 
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Research has shown that curing pozzolanic mixtures at ambient temperatures does not 

allow for adequate strength development because the beginning of setting is delayed [9].  This 

was remedied by short-term curing at 75°C for four hours with no further high temperature 

curing, ultimately achieving desired strength performance [9].  Khale and Chaudhary further 

state that the strength development did not significantly improve after 48 hours of elevated 

temperature curing [9].  In fact, curing at increased temperatures for longer periods of time may 

cause compressive strength to decrease as the gel dehydrates and begins to shrink, breaking the 

mixture’s granular structure [9].   

Lemougna et al. further studied of the effect of heat on geopolymers by exposing samples 

to temperatures up to 900°C.  At 90°C, the highest compressive strength was achieved; however, 

beyond that temperature, the compressive strength significantly decreased [14].  As the 

temperature rose to 250°C, the strength was nearly halved as a result of the loss of structural 

water [14].  This severely weakened the structural geopolymer matrix as well as contributed to 

the formation of micro cracks [14].  The strength remained constant until 750°C at which the 

strength began to slightly increase as the temperature rose to 900°C [14].   

 

1.6 Mechanical Strength 

Bondar et al. conducted the majority of the experimental research into the alkali-

activation of natural pozzolans.  Bondar et al. (2011) [15] found that KOH added to natural 

pozzolans in concentrations of 5-7.5 M produced the highest compressive strength mortar after 

28 days of curing.  Additionally, Bondar et al. (2011) [16] tested the mechanical strength, 

consisting of the compressive and tensile strengths, of concrete produced with Taftan Andesite 

natural pozzolan at varying water to binder ratios (w/b ratio) and curing conditions.  Results 
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revealed that the sealed curing condition produced samples with the highest compressive 

strengths.  Furthermore, the 0.45 w/b ratio samples achieved greater compressive strengths than 

samples made with a 0.55 w/b ratio [16].  The splitting tensile tests showed that the short-term 

28-day tensile strengths of alkali-activated natural pozzolan concrete are greater than that of the 

OPC control mixture at a w/b ratio of 0.45, while the converse is true at a w/b ratio of 0.55.  The 

long-term 180-day tensile strengths of alkali-activated natural pozzolan concrete are larger than 

those of OPC control mixes at both w/b ratios.  The 0.45 w/b ratio samples achieved greater 

tensile strengths at both ages of testing than the 0.55 w/b ratio samples.  Additionally, the alkali-

activated natural pozzolan concretes showed less drying shrinkage than that of the normal 

Portland cement concrete at the same w/b ratios.      

In summary, the mechanical strength results show that natural pozzolans are able to act as 

a potential replacement for OPC with alkali activation.  Most of the samples tested were able to 

exceed the required compressive strength for structural concrete, 3000 psi or 20.7 MPa.  

Additionally, these results indicate the role of the natural pozzolan’s chemical composition on 

the achieved mechanical strength.  The natural pozzolans had chemical compositions that only 

varied by a couple of percent with regards to the amount of SiO2, Al2O3, and CaO present; 

however, the compressive strength results showed a wide range of variation.  This indicates that 

natural pozzolans coming from different sources will have unique reactions upon activation, so 

each source should be tested to determine which alkali activator, concentration, and heat 

treatment is best suited to reach desired results.     
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1.7 Transport Properties 

Bondar et al. also studied the transport properties, such as the oxygen and chloride 

permeability, of concrete made with natural pozzolans [17].  The results showed that the natural 

pozzolans had an oxygen permeability 10-35% lower than that of similar OPC samples tested at 

90 days.  Additionally, oxygen permeability was reduced as the w/b was reduced.  Overall, 

alkali-activated natural pozzolan concrete has increased resistance to oxygen permeability when 

compared to OPC concrete.   

In addition to oxygen permeability, the concrete samples were also tested for chloride 

permeability using two methods.  The rapid chloride penetration test (RCPT) was used to 

measure the short-term chloride permeability of the samples.  RCPT results revealed that the 

chloride permeability increased with higher w/b ratios [17].  The second method used to measure 

chloride permeability was the bulk diffusion test.  This specifically measures the long-term 

chloride permeability, testing samples after one side of the sealed sample has been exposed to a 

2.8 M NaCl solution for 90 days.  These results show that the percentage of chloride ion 

penetration was generally lower in samples with lower w/b due to the tighter pore structure [17].  

The transport property results show that alkali-activated natural pozzolans do have 

potential to increase the durability of concrete mixtures in comparison to OPC.  The natural 

pozzolans were able to achieve significantly lower oxygen permeability values than OPC.  

Additionally, chloride permeability is affected by the w/b ratio, with a lower ratio having a lower 

percentage of chloride ion penetration.  When compared to OPC concrete, alkali-activated 

natural pozzolan concrete was shown to have lower chloride permeability in higher strength 

mixtures achieving a compressive strength greater than 33 MPa. 
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2. Research Objectives 

To address the modern concern of global climate change, ways to reduce the worldwide 

CO2 emissions must be studied.  One way to lessen these emissions within the construction 

industry is to find a new binder that can replace OPC without compromising concrete’s 

properties. Studies have indicated that natural pozzolans activated with alkalis show promise as a 

substitute for OPC because they reduce the environmental impacts, lower overall costs, and 

achieve higher durability than concrete produced solely with OPC.  However the literature is 

limited in this area and comprehensive studies are required.  This study focused on the properties 

of mortars produced with alkali-activated natural pozzolans as their primary binder. 

The objectives of this study included 1) activation of natural pozzolans with various 

alkalis to determine the optimal activation concentrations and curing conditions; 2) assessment of 

the strength performance of mortars made with alkali-activated natural pozzolans and 3) 

evaluation of the mortar’s transport properties including chloride ion penetration and absorption. 

 

	  
3. Materials and Experimental Program 

Previous investigations revealed that under suitable activation and curing conditions, 

production of alkali-activated natural pozzolans with superior or similar performance to that of 

OPC is possible.  The type of activator, which can be in different concentrations and 

combinations of sodium hydroxide (NaOH), potassium hydroxide (KOH) and sodium silicate 

(Na2SiO3), plays an important role in the performance of these newly developed binders.  The 

curing temperature was also found as an important factor.  Accordingly, the plan for this research 

was to activate natural pozzolans using different activators and under different curing conditions.  

Mixtures were prepared using NaOH in concentrations of 2.5, 5, 7.5, 10, and 12.5 M and s/b 
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ratios of 0.50, 0.54, and 0.58.  Each mix underwent four different curing conditions: curing room 

(sealed, 7 and 28 days), oven (exposed, 7 days), oven (sealed, 7 days), and oven (moisture, 7 

days).  The curing room samples were wrapped in plastic wrap three times and placed in a curing 

room at ambient temperatures with constant moisture produced by misters.  The rest of the 

samples were cured in an oven maintained at 80°C.  The exposed curing samples were placed 

directly on the oven racks, completely exposed to the oven environment.  The sealed curing 

samples were wrapped three times in plastic to retain moisture within the sample and then placed 

on the oven racks.  The moisture curing samples were placed on a rack inside of a turkey pot that 

had 1-2 inches of water contained beneath the rack the samples rested on.  This water was 

maintained at a constant level throughout the testing period.   

 

3.1 Materials 

Natural pozzolans obtained from the Nevada Cement Company in Fernley, Nevada were 

used for all mixtures in this study.  These pozzolans were selected because they come from the 

closest source of natural pozzolans in relation to the university where the study was performed.  

The chemical composition of the natural pozzolans was analyzed by Francis and is reported in 

Table 1 [18].   
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Table	  1:	  Chemical	  Composition	  (oxide	  percent)	  of	  the	  Materials	  Used	  in	  this	  Study	  

Natural	  Pozzolan	  
LOI	   3.7	  

SiO2	   68.8	  

Al2O3	   8.5	  

Fe2O3	   1.1	  
CaO	   3.2	  

SO3	   0.1	  

K2O	   3.9	  

Na2O	   2.6	  
 

 

The natural pozzolan has a total silica, aluminum, and iron content of 78.4%.  The 

calcium oxide content (3.2%) is low, indicating that this material is not cementitious on its own.  

The particle size is such that 9.4% is retained on the 325 (45 µm), indicating the fineness of the 

natural pozzolans. 

The mortar samples incorporated fine aggregates from Aggregate Industries, Inc. from 

Sloan, Nevada.  The sieve analysis was performed by Concrete-Material Consultants, LLC and is 

shown in Table 2 [19].  The aggregate had an oven-dry specific gravity of 2.755 and absorption 

of 0.81.  The aggregate was added in a fine aggregate-to-binder ratio of 2:1 ratio.  Samples were 

prepared with a Hobart AS 200T industrial mixer. 
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Table	  2:	  Amount	  Finer	  Than	  Each	  Laboratory	  Sieve,	  Mass	  Percent	  

Sieve	  Size	   Results	  
3/8	  in.	   100	  
#4	   100	  
#8	   95	  
#16	   65	  
#30	   43	  
#50	   24	  
#100	   9	  
#200	   2.7	  

Fineness	  
Modulus	   2.64	  

 

NaOH pellets from Duda Energy were dissolved in distilled water to create the alkali-

activating NaOH solution in concentrations of 2.5, 5.0, 7.5, 10.0, and 12.5 M. 

 

3.2 Mortar Preparation 

Mortar samples were prepared by adding one-half of the NaOH solution in the mixing 

bowl of the Hobart AS 200T industrial mixer, followed by carefully adding in the natural 

pozzolans and sand.  It was found that adding the NaOH solution first allowed for easier and 

more thorough mixing.  The sand, natural pozzolans, and NaOH solution were mixed for two 

minutes on the slow speed.  The remaining one-half of the NaOH solution was added and the 

mortar was mixed on the slow speed for an additional two minutes.  To ensure that all of the 

natural pozzolans had been exposed to the NaOH solution, hand mixing was incorporated for a 

minute.  Additional water was then added and the mortar was mixed on the medium speed for 

thirty seconds.  The mortar was checked to ensure that mixing was complete.  If needed, 

additional hand mixing was incorporated.  
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3.3 Flow 

The flow of each sample was measured according to ASTM C1437 [22] to determine the 

differences in the fresh properties of the mortars.  The test procedure was as follows: 

a. Immediately after mixing, mortar was placed into the flow mold to an approximate 

height of 1 inch.   

b. The mortar was tamped 20 times with tamper. 

c. The remaining volume of the flow mold was loaded with a second layer of mortar.  

d.  This layer was tamped 20 times and then made flush with the surface of the mold.   

e. The mold was lifted away from the mortar followed by immediately dropping the flow 

table 25 times in 15 seconds.   

f. The diameter of the mortar on the flow table was measured three times to achieve an 

average value indicating the amount of flow. 

 

3.4 Compressive and Flexural Strengths 

The compressive test is an indication of the concrete’s strength.  Compressive tests were 

performed on 2-inch cube samples in a procedure similar to ASTM C109 using a Tinius Olsen 

testing machine [21].  Four samples of each mixture were tested in a compressive machine by 

applying a constant load until the cube cracked and experienced failure.  The load was applied at 

a 0.05 in/min. loading rate.  The load at failure was divided by the area of the cube’s face to 

determine the compressive strength.  The following equation was used: 

Equation	  2:	  Compressive	  Strength	  

𝑓𝑚 = !
!
         

where: 



	   15	  

fm = compressive strength in MPa or [psi] 

P = total maximum load in N or [lbf] 

A = area of loaded surface mm2 or [in2] 

The flexural test determined the flexural strength of a beam experiencing a load.  The 

result is reported as the modulus of rupture.  The test was performed in accordance with ASTM 

C78 [20] for a simple beam using third-point loading.  Beams were made for each sample and 

cured in the oven at 80°C for 7 days prior to testing.  Four beams were tested for each sample.  

One beam in each mixture had a 1-inch Vishay Precision Group strain gage attached to it 

according to Vishay’s application note TT-611 for strain gage installations for concrete 

structures to measure the strain experienced by the beam under loading.   The load was applied 

continuously by the compressive machine at a rate of 0.03 in/min. until the beam was fractured 

and unable to support any load.  The modulus of rupture was calculated using the following 

equation: 

Equation	  3:	  Modulus	  of	  Rupture	  

𝑅 =
𝑃𝐿
𝑏𝑑! 

where: 

R = modulus of rupture in MPa or [in] 

P = maximum applied load indicated by the testing machine in N or [lbf] 

L = span length in mm or [in.] 

b = average width of specimen at the fracture in mm or [in.] 

d = average depth of specimen at the fracture in mm or [in.] 
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3.5 Density/Absorption/Voids 

The absorption test provided an indication of the mortar’s ability to take in water.  The 

testing procedure followed ASTM C642 [23] and used a balance sensitive to 0.025% of the 

specimen’s mass.  Samples were tested for each mixture after 7 days of sealed curing in the oven 

and 28 days in the curing room.  The test was performed according to the procedure below: 

a. The original mass was reported as X. 

b. The sample was dried in an oven at 100-110°C for at least 24 hours and then removed 

to measure the mass.  The sample was considered dry when the difference between 

the two successive masses was less than 0.5% of the lesser value.  The dry mass was 

recorded as A. 

c. After drying, the sample was immersed in tap water for at least 48 hours and then the 

mass was measured.  The sample was saturated surface-dried by removing any excess 

moisture from the sample with a towel.  When the differences in the sample’s 

saturated surface-dried masses were less than 0.5% of the larger value at intervals of 

24 hours, the saturated surface-dried mass was recorded as B. 

d. The sample was submerged in tap water and boiled for 5 hours.  After boiling, the 

sample was allowed to cool in tap water for not less than 14 hours to a final 

temperature between 20-25°C.  The sample was saturated surface-dried before the 

mass was measured.  This soaked, boiled, and surface-dried mass was recorded as C. 

e. After immersion and boiling, the mass was suspended by a wire to determine the 

apparent mass in water.  This was denoted as D. 

f. The absorption after immersion was found using the following equation: 
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Equation	  4:	  Absorption	  After	  Immersion	  

% =
𝐵 − 𝐴
𝐴 ×100 

g. The absorption after immersion and boiling was determined by: 

Equation	  5:	  Absorption	  After	  Immersion	  and	  Boiling	  

% =
𝐶 − 𝐴
𝐴 ×100 

h. The dry bulk density was calculated as follows and was denoted by g1: 

Equation	  6:	  Dry	  Bulk	  Density	  

𝑔! =
𝐴

𝐶 − 𝐷×𝜌 

Note: ρ = 1g/cm3  

i. The bulk density after immersion was found using the following equation: 

Equation	  7:	  Bulk	  Density	  After	  Immersion	  

=
𝐵

𝐶 − 𝐷×𝜌 

j. The bulk density after immersion and boiling was found as follows: 

Equation	  8:	  Bulk	  Density	  After	  Immersion	  and	  Boiling	  

=
𝐶

𝐶 − 𝐷×𝜌 

k. The apparent density was determined using the following equation and was denoted 

as g2. 

Equation	  9:	  Apparent	  Density	  

𝑔! =
𝐴

𝐴 − 𝐷×𝜌 

l. The volume of permeable pore space, otherwise known as the voids, was found as 

follows: 
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Equation	  10:	  Volume	  of	  Permeable	  Pore	  Space	  

% =
𝑔! − 𝑔!
𝑔!

×100 

 

3.6 Rapid Chloride Penetration Test 

The rapid chloride penetration test (RCPT) was used to determine the electrical 

conductance of concrete that indicates the concrete’s ability to resist chloride ion penetration.  

This test followed the standards set forth by ASTM C 1202 [24] “Electrical Indication of 

Concrete’s Ability to Resist Chloride Ion Penetration”.  A vacuum desiccator, pump, specimen-

cell sealant, beaker, power supply, and distilled water were used to complete the test.  The mortar 

samples were cast in 100 mm (4 in.) diameter and 50 mm (2 in.) height molds.  The test 

procedure was as follows: 

a. The specimens were air dried for at least 1 hour and the sides were coated with a 

plastic dip and allowed to dry.   

b. The specimens were placed in the desiccator with the pump operating for 3 hours.  

The pressure of the desiccator was maintained at less than 1 mm Hg (133 Pa). 

c. Distilled water was added to the desiccator with the pump running.  Water was 

added in the desiccator until the specimens were fully immersed.   

d. The pump ran for an additional hour.  

e. The pump was turned off and air was allowed to re-enter the desiccator.  The 

specimens were left in the desiccator for 18 ± 2 hours.  

f. The specimens were removed and any excess water was wiped off.   The 

specimens were placed in the cells with rubber gaskets to maintain the specimens 

at a relative humidity of 95% or higher.   
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g. The testing cells were filled with either a 3.0% NaCl solution (side connected to 

negative terminal of power supply) or a 0.3 M NaOH solution (side connected to 

positive terminal of the power supply).  

h. Lead wires were attached to the cell banana posts.  The computer program 

“Proove-It” was used at 60.0 volts initially with a testing time of 6 hours.  If 60 

volts caused the program to overload, the voltage was reduced to 10 volts.  The 

initial current reading was recorded.  

i. After 6 hours, the equipment calculated the charge passed through the mortar 

samples.    

 

3.7 Rapid Migration Test 

The rapid migration test (RMT) was also used to provide information about the 

concrete’s ability to resist chloride ion penetration.  This test followed the standards set forth by 

NT Build 492 “Chloride Migration Coefficient from Non-Steady-State Migration Experiments” 

[25].  The equipment used to perform this test was a vacuum desiccator, a pump, beaker, splitting 

device, ruler, and a migration apparatus.  The migration apparatus consisted of a silicone rubber 

sleeve, clamp, catholyte reservoir, plastic support, cathode, and anode.   Reagents included 

calcium hydroxide, sodium chloride, sodium hydroxide, and silver nitrate.   The test specimens 

were 100 mm (4 in.) in diameter and 50 mm (2 in.) in height.  The RMT procedure consisted of 

the following steps: 

a. The mortar specimens were air dried and then placed in the desiccator with the pump 

operating for 3 hours.  The pressure of the desiccator was maintained at 1-5 kPa.  
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b. After 3 hours, a calcium hydroxide solution was allowed to enter the desiccator while 

the pump was still running.  The solution completely immersed the samples.   

c. The pump ran for an additional hour and then it was turned off.  Air re-entered the 

desiccator and the samples remained submerged for 18 ± 2 hours. 

d. The specimens were removed and any remaining moisture was wiped off. 

e. The catholyte reservoir was filled with approximately 12 liters of 10% NaCl solution 

made with 100 grams of NaCl dissolved in 900 grams of tap water.    

f. The specimen was put inside the rubber sleeve and the clamps were applied around 

the specimens, securing them as tightly as possible.   

g. The specimens were placed on the plastic support in the catholyte support.   

h. The sleeve was filled with the anolyte solution (0.3 M NaOH).  The anode was then 

placed in the anolyte solution. 

i.  The cathode was connected to the negative pole and the anode to the positive pole of 

the power supply.  

j.  The power supply was turned on to an initial voltage of 30 volts and the initial 

temperature and current were recorded.  Based on the initial current, the voltage and 

the testing duration were adjusted.   

k.  The final current and temperature were recorded before testing termination.   

l. After testing, the specimens were removed from the sleeves, rinsed, and wiped dry. 

m. The specimens were split in half axially and then sprayed with a 0.5 M silver nitrate 

solution. 
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n. The solution reacted with the chloride ions and changed to a white color due to 

precipitate formation.  This color change indicated the depth of chloride ion 

penetration. 

o.  Seven depths of the mortar specimen’s chloride ion penetration were measured using 

calipers.   

p. The rapid migration was measured by dividing the penetration depth by the applied 

voltage and test duration time in hours.   

 

4. Results and Discussion 

4.1 Fresh Properties – Flow and Density 

The fresh densities of the mortars ranged from 2190 – 2525 kg/m3.  The flow of mortar 

was affected by both the concentration of NaOH and s/b ratio.  As the concentration of NaOH 

increased, the flow decreased.  The flow was also reduced when lower s/b ratios were used in the 

mixture.  Figures 1 and 2 show these trends. 
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Figure	  1:	  Effect	  of	  NaOH	  Concentration	  on	  Flow	  of	  Mortar	  

	  

	  
	  

Figure	  2:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Flow	  of	  Mortar	  
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As reported by Kosmatka et al., concrete made with OPC typically shows that when less 

water is added to a mixture, the concrete will become less plastic and workable, resulting in a 

stiffer mixture [26].  The results found for mortar made with alkali-activated natural pozzolans 

also followed this trend.  Increasing the s/b ratio allowed for greater workability and ease of 

mixing.  

 

4.2 Compressive Strength 

The average compressive strengths are reported in Table 3.  Fourteen mixtures were 

prepared and cured in three different curing conditions: exposed, moisture, and sealed.  Within 

each curing environment, three different s/b ratios were selected for each of five NaOH 

concentrations.  The 12.5 M 0.50 s/b ratio mixture was not used as there would not have been 

enough water available to create a workable mortar mixture.  Compressive tests were conducted 

on the samples at one, three, and seven days.    
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Table	  3:	  Average	  Compressive	  Strengths	  

 

 

 

S/B$Ratio NaOH$Concentration Days Exposed$(MPa) Moisture$(MPa) Sealed$(MPa)
1 3.775 4.159 4.584
3 5.201 6.179 5.433
7 4.614 9.974 5.869
1 7.193 4.788 5.396
3 8.995 7.466 9.680
7 8.842 11.210 12.463
1 10.441 6.638 7.387
3 14.496 11.167 16.529
7 15.271 17.339 20.548
1 13.550 8.686 9.444
3 27.687 15.926 22.267
7 26.169 22.866 31.913
1 3.545 4.226 4.499
3 4.981 5.886 5.691
7 4.573 9.513 5.749
1 6.043 4.111 4.361
3 6.637 6.826 8.428
7 6.802 10.476 11.372
1 9.806 5.320 5.841
3 10.986 9.235 14.751
7 11.526 13.675 17.908
1 12.797 6.706 7.894
3 25.292 13.485 21.581
7 24.190 21.122 28.216
1 15.693 7.275 10.363
3 30.798 16.271 24.086
7 27.589 25.656 30.827
1 2.386 2.649 2.861
3 2.961 3.879 3.394
7 2.960 6.075 3.883
1 4.738 2.450 3.018
3 5.516 4.562 6.751
7 5.086 6.956 8.434
1 8.113 3.252 3.458
3 10.073 6.486 12.581
7 8.577 8.549 14.876
1 11.890 4.993 5.697
3 21.940 8.897 17.533
7 21.579 15.003 27.095
1 14.040 5.703 7.387
3 32.386 17.354 23.310
7 31.781 26.621 37.696

7.5,M

10.0,M

12.5,M

0.50

0.54

0.58

5.0,M

7.5,M

10.0,M

12.5,M

2.5,M

5.0,M

2.5,M

5.0,M

7.5,M

10.0,M

2.5,M
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4.2.1 Effect of Curing 

From Figures 3-16, it is evident that curing conditions affected the compressive strengths 

achieved by samples.  In general, the exposed samples reached their highest compressive 

strengths after three days of curing.  The moisture and sealed samples continuously gained 

strength, reaching their ultimate strengths at seven days. 

After one day of curing, the 2.5 M, 5.0 M, and 7.5 M samples in the exposed curing 

condition gained most of their compressive strength, obtaining values ranging from 68% to 89% 

of their maximum strengths.  These samples experienced small increases in strength from one to 

three days.  In contrast, the 10.0 M and 12.5 M samples gained 43% to 54% of their maximum 

compressive strengths after one day of exposed curing.  This led to a larger increase in strength 

between one and three days of curing.  From three to seven days, most samples experienced a 

decrease in compressive strength. 

The moisture curing samples showed a different trend than the exposed curing samples.  

After one day of curing, samples of all molarities achieved 21% to 44% of their ultimate 

strengths, indicating that moisture curing allowed for slower strength development than exposed 

curing.  At three days, the samples reached 59% to 76% of their maximum strengths. 

The sealed curing samples exhibited a trend that combined the trends shown for exposed 

and moisture curing conditions.  The 2.5 M samples followed a trend similar to that of the 

exposed curing samples.  They achieved most of their maximum strength (74% to 78%) after one 

day of curing.  At three days, the samples gained strength, reaching 87% to 99% of their final 

strengths.  The remaining 5.0 M, 7.5 M, 10.0 M, and 12.5 M samples followed a trend more  
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similar to that of the moisture curing samples.  At one day, the samples attained 20% to 43% of 

their final strengths.  When tested at three days, the samples gained strengths to now account for 

62% to 85% of their ultimate strengths. 

 

 

Figure	  3:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  2.5	  M	  0.50	  S/B	  Ratio	  
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Figure	  4:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  2.5	  M	  0.54	  S/B	  Ratio	  

	  

	  
	  

Figure	  5:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  2.5	  M	  0.58	  S/B	  Ratio	  
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Figure	  6:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  5.0	  M	  0.50	  S/B	  Ratio	  

	  

	  
	  

Figure	  7:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  5.0	  M	  0.54	  S/B	  Ratio	  
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Figure	  8:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  5.0	  M	  0.58	  S/B	  Ratio	  

	  

	  
	  

Figure	  9:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  7.5	  M	  0.50	  S/B	  Ratio	  
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Figure	  10:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  7.5	  M	  0.54	  S/B	  Ratio	  

	  

	  
	  

Figure	  11:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  7.5	  M	  0.58	  S/B	  Ratio	  
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Figure	  12:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  10.0	  M	  0.50	  S/B	  Ratio	  

	  

	  
	  

Figure	  13:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  10.0	  M	  0.54	  S/B	  Ratio	  
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Figure	  14:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  10.0	  M	  0.58	  S/B	  Ratio	  

	  

	  
	  

Figure	  15:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  12.5	  M	  0.54	  S/B	  Ratio	  
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Figure	  16:	  Effect	  of	  Curing	  on	  Compressive	  Strength,	  12.5	  M	  0.58	  S/B	  Ratio	  
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much slower rate.  The extra water within the samples took longer to remove in a high humidity 

environment, causing fewer bonds to form at a slower rate. 

The sealed curing samples achieved the largest overall compressive strengths.  Strength 

development occurred at a slower rate than the exposed curing samples due to the moisture 

present within the samples.  The plastic wrap protected the samples from the dry oven 

environment, allowing some moisture to be retained within the samples.  In contrast to the 

exposed curing samples, the sealed curing samples did not experience dehydration.  The samples 

continued to gain strength over time.  This shows that in order to achieve the greatest 

compressive strengths, some moisture must be retained within the samples [9]. 

	  
	  

4.2.2 Effect of NaOH Concentration 

An increase in NaOH concentration led to an increase in compressive strength.  The 2.5 

M samples attained the lowest compressive strengths, while the 12.5 M samples achieved the 

highest compressive strengths.  The percent increases in strength between samples of 

consecutive NaOH concentrations were not consistent. 

In the exposed curing condition, the largest increase in strength after one day of curing 

occurred when the concentration was raised from 2.5 M to 5.0 M.  This percent of increase 

ranged from 70% to 99%.  As seen in Figures 17-19, after three days of curing, there was a large 

increase in strength between the 7.5 M and 10.0 M samples.  This percent increase ranged from 

91% to 130%.  After seven days of curing, the large increase in compressive strengths between 

the 7.5 M and 10.0 M samples continued, spanning from 71% to 152%.              

Figures 20-22 display the effect of NaOH concentration on the compressive strengths 

achieved by the samples in the moisture curing condition.  The trends shown as the concentration 
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increased vary greatly from those trends identified for the exposed curing samples.  At one day 

of curing, there is little difference in compressive strength between samples of variable 

concentration.  Over the entire testing period, there is less than a 21% difference in compressive 

strengths between the 2.5 M and 5.0 M samples.  At three days of curing, the compressive 

strengths began to differentiate themselves from one another, showing greater distinction 

between strength values achieved by each NaOH concentration.  For the 0.50 s/b ratio samples, 

the largest percent increase occurred between the 5.0 M and 7.5 M samples.  The 0.54 and 0.58 

s/b ratio mixtures also showed large increases in compressive strength between molarities, but 

these increases occurred between the 7.5 M and 10.0 M samples and 10.0 M and 12.5 M samples 

respectively.  These percent increases were 46% for the 0.54 s/b and 95% for the 0.58 s/b.  After 

seven days of curing, the percent increases between these samples continued to widen. 

The sealed curing condition exhibited trends similar to those found in the moisture curing 

condition.  The results are shown in Figures 23-25.  Initially when tested at one day, the samples 

showed little difference in strength due to concentration.  Also similar to the moisture curing 

samples, the sealed curing samples began to show differences between compressive strengths 

due to concentration at three days.  These differences continued to expand up to seven days.  

Unlike the moisture curing samples, the largest percent increase due to concentration was seen 

between the 2.5 M and 5.0 M samples.  This increase ranged from 98% to 117% after seven days 

of curing. 
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Figure	  17:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.50	  S/B	  Ratio	  Exposed	  Curing	  

	  

	  

Figure	  18:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.54	  S/B	  Ratio	  Exposed	  Curing 
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Figure	  19:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.58	  S/B	  Ratio	  Exposed	  Curing	  

	  

	  

Figure	  20:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.50	  S/B	  Ratio	  Moisture	  Curing	  

	  

	  

0"

5"

10"

15"

20"

25"

30"

35"

40"

0" 1" 2" 3" 4" 5" 6" 7"

A
ve
ra
ge
'C
om

pr
es
si
ve
'S
tr
en

gt
h'
(M

Pa
)'

Age'(days)'

2.5"M"

5"M"

7.5"M"

10"M"

12.5"M"

0"

5"

10"

15"

20"

25"

30"

35"

40"

0" 1" 2" 3" 4" 5" 6" 7"

Av
er
ag
e'
Co

m
pr
es
siv

e'
St
re
ng
th
'(M

Pa
)'

Age'(days)'

2.5"M"

5"M"

7.5"M"

10"M"



	   38	  

	  

Figure	  21:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.54	  S/B	  Ratio	  Moisture	  Curing	  

	  

	  

Figure	  22:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.58	  S/B	  Ratio	  Moisture	  Curing	  
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Figure	  23:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.50	  S/B	  Ratio	  Sealed	  Curing	  

	  

Figure	  24:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.54	  S/B	  Ratio	  Sealed	  Curing	  
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Figure	  25:	  Effect	  of	  NaOH	  Concentration	  on	  Compressive	  Strength,	  0.58	  S/B	  Ratio	  Sealed	  Curing	  

	  
As the NaOH concentration increased, the compressive strength also increased.  This 
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time, the 10.0 M samples experienced adequate excess water evaporation, leading to greater 

bond formation and compressive strength. 

The large increase in strength at three days between the 5.0 M and 7.5 M samples with 

the 0.50 s/b ratio in the moisture curing condition suggests that at this s/b ratio, the 7.5 M 

solution allowed for more activation to occur.  This was noticed at three days due to the 7.5 M 

solution requiring a longer time for the excess water to evaporate.  As the s/b ratio increased, the 

significant increases in strength occurred between different samples.  The 0.54 s/b ratio samples 

saw a large increase in strength between 7.5 M and 10.0 M, while the 0.58 s/b ratio samples 

experienced a large increase in strength between 10.0 M and 12.5 M.  This most likely occurred 

due to the reduction of natural pozzolans available for reaction.  As the s/b ratio increased, there 

were fewer pozzolans included in the mixture, creating less opportunities for activation.  

Therefore, a higher concentration solution was required to increase the activation and bond 

formation.  The 10.0 M solution was able to achieve more activation than the 7.5 M solution at 

the 0.54 s/b ratio, while the 12.5 M solution was required to significantly increase the activation 

of the 0.58 s/b ratio mixture.   

The sealed curing samples showed growth trends similar to the moisture curing samples.  

Initially after one day of curing, there was little difference between the compressive strengths.  In 

fact, as the concentrations increased, the percent of ultimate strength achieved after one day of 

curing tended to decrease.  This supports the idea that high viscosity mixtures require more time 

for excess water evaporation and bond formation [15].  Additionally, from one to three days, the 

higher viscosity mixtures have had adequate time for bond formation, showing a larger increase 

in strength gain than samples made with lower viscosity solutions.  Overall, the 10.0 M and 12.5 

M samples in all curing conditions took longer to gain strength due to their increased viscosities.   
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4.2.3 Effect of Solution-to-Binder Ratio 

The three s/b ratios tested were 0.50, 0.54, and 0.58.  In general, the mixtures made with 

lower s/b ratios reached higher compressive strengths.  The 12.5 M mixtures were the exception 

to this trend. 

In the 2.5 M series of mixtures (Figure 26-28), there was little difference between the 

performances of the 0.50 and 0.54 s/b ratio mixtures.  The largest increase due to reducing the 

s/b ratio from 0.54 to 0.50 was only 7%.  In contrast, there was a sizable increase in compressive 

strength when the s/b ratio was reduced from 0.58 to 0.54.  The percent increases in strength 

ranged from 48% to 68%. 

The 5.0 M, 7.5 M, and 10.0 M samples exhibited a similar trend.  The largest percent 

increases in strength due to s/b ratio resulted from the reduction of 0.58 to 0.54, comparable to 

what was shown in the 2.5 M series.  The difference between the 2.5 M series and these mixtures 

is the percent increase in strength caused by reducing the s/b ratio from 0.54 to 0.50.  For the 5.0 

M, 7.5 M, and 10.0 M mixtures, there was a larger increase in strength than there was for the 2.5 

M mixtures. 

The 5.0 M and 7.5 M series showed increases in compressive strength resulting from 

reducing s/b ratios from 0.58 to 0.54 that ranged from 9% to 34% for the exposed curing 

condition and 42% to 68% for the moisture curing condition.  Figures 29-31 show the trends for 

the 5.0 M series and Figures 32-34 display the results for the 7.5 M mixtures.  The sealed curing 

condition displayed a wider range of compressive strength increases as a result of the same 

reduction in s/b ratio, ranging from 17% to 69%.  The 69% increase in strength occurred for the 

reduction of s/b ratio from 0.58 to 0.54 for the 7.5 M samples after one day of curing.  Mixtures 
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made from these concentrations (5.0 M and 7.5 M) showed anywhere from 7% to 36% increases 

in strength when going from s/b ratios of 0.54 to 0.50. 

The 10.0 M series is shown in Figures 35-37.  These samples increased by 8% to 15% in 

compressive strength when reducing the s/b ratio from 0.58 to 0.54 in the exposed curing 

condition.  For comparison, the percent increase in strength was only 6% to 10% when going 

from s/b ratios of 0.54 to 0.50 in the exposed curing condition.  The moisture curing samples 

showed larger increases in strength than the exposed curing samples.  The range spanned from 

34% to 52% larger strengths due to the reduction of s/b ratio from 0.58 to 0.54.  The range when 

reducing the s/b ratio from 0.54 to 0.50 in moisture curing was 8% to 30%.  The sealed curing 

samples also showed greater strength gain than the exposed curing samples when the s/b ratio 

was reduced from 0.58 to 0.54.  This range spanned from 23% to 39% for one and three days of 

curing.  At seven days, the largest strength gain was found when the s/b ratio was lowered to 

0.50 from 0.54, achieving an improvement of 13%. 

The 12.5 M samples showed a different trend than all of the other samples (Figures 38-

40).  After one day of curing, the 0.54 s/b ratio samples had higher compressive strengths than 

the 0.58 s/b ratios.  The increases in compressive strengths ranged from 12% to 40% due to the 

reduction in s/b ratio from 0.58 to 0.54.  At three days of curing, the trend began to switch.  The 

sealed curing samples made with the 0.54 s/b ratio maintained higher compressive strengths than 

the 0.58 s/b ratio samples, however the moisture and sealed curing 0.58 s/b ratio samples 

exceeded the strengths achieved by the 0.54 s/b ratio samples.  At seven days, all of the 0.58 s/b 

ratio samples were stronger than the 0.54 s/b ratio samples.  These percent increases ranged from 

4% to 22%. 
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Figure	  26:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  2.5	  M	  Exposed	  Curing	  

	  
	  

	  
	  

Figure	  27:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  2.5	  M	  Moisture	  Curing	  
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Figure	  28:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  2.5	  M	  Sealed	  Curing	  

	  
	  

	  
	  

Figure	  29:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  5.0	  M	  Exposed	  Curing	  
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Figure	  30:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  5.0	  M	  Moisture	  Curing	  

	  
	  

	  
	  

Figure	  31:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  5.0	  M	  Sealed	  Curing	  
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Figure	  32:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  7.5	  M	  Exposed	  Curing	  

	  
	  

	  
	  

Figure	  33:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  7.5	  M	  Moisture	  Curing	  
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Figure	  34:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  7.5	  M	  Sealed	  Curing	  

	  
	  

	  
	  

Figure	  35:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  10.0	  M	  Exposed	  Curing	  
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Figure	  36:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  10.0	  M	  Moisture	  Curing	  

	  
	  

	  
	  

Figure	  37:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  10.0	  M	  Sealed	  Curing	  
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Figure	  38:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  12.5	  M	  Exposed	  Curing	  

	  
	  

	  
	  

Figure	  39:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  12.5	  M	  Moisture	  Curing	  
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Figure	  40:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  Compressive	  Strength,	  12.5	  M	  Sealed	  Curing	  
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12.5 M samples.  This shows that with the higher concentration NaOH samples, the s/b ratio is a 

secondary factor with regards to compressive strength.  

The 12.5 M samples exhibited a unique trend from the other samples.  After one day of 

curing, the 0.54 s/b ratio samples performed better than the 0.58 s/b ratio samples due to the 

addition of less water to the mixture.  Therefore, evaporation of excess water was able to occur 

more quickly, contributing to the higher compressive strength.  At three days, the 0.58 s/b ratio 

samples performed better for the exposed and moisture curing conditions.  The 0.54 s/b ratio 

sealed curing samples only performed 3% better than the 0.58 s/b ratio samples, so these samples 

were also nearing the transition phase at three days where the 0.58 s/b ratio samples achieved 

more strength.  At seven days, all of the 0.58 s/b ratio samples reached higher compressive 

strengths.  This may be due to the reduced workability of the 0.54 s/b ratio mixtures when 

creating the samples. 

 

4.2.4 Curing Room Samples 

 
The samples cured in the curing room for 7 and 28 days did not show any significant 

strength gain.  There is no common trend amongst the samples other than an increase in strength 

from 7 to 28 days as well as an increase in compressive strength with reduced s/b ratio.  The only 

sample that differed from these trends was the 2.5 M 0.54 s/b ratio mixture.  This mixture 

actually achieved higher compressive strengths than the 0.50 s/b ratio samples. 

Overall, the largest 7-day compressive strength was attained by the 10.0 M 0.50 s/b ratio 

samples and the lowest compressive strength was achieved by the 7.5 M 0.54 s/b ratio samples.  

These values were 3.815 and 2.893 MPa, respectively.  Additionally, the 10 M 0.50 s/b ratio 

samples achieved the largest 28-day compressive strength with 5.582 MPa and the lowest 



	   53	  

strength was reached by the 12.5 M 0.58 samples with 2.406 MPa.  These results are much 

different than those achieved by the oven curing samples.  The results are reported in Table 4. 

Table	  4:	  Curing	  Room	  Average	  Compressive	  Strengths	  

 

The samples in the curing room showed little strength gain after 28 days of curing.  This 

confirms that an oven curing environment ranging in temperature from 30°C to 90°C is most 

conducive to strength development [9].  Furthermore, higher temperature is needed to allow the 

formation for the monolithic geopolymer layer as was found by Bondar et al. [15].  This helps 

form a strong network of hydrates, improving the mortar’s overall performance.  Since the curing 

room does not allow for evaporation of the excess water, little monolithic geopolymer is formed 

producing samples with low compressive strengths. 

As the NaOH concentration was increased, there was not always an increase in 

compressive strength as was the case for the oven curing samples.  In fact, the 12.5 M series of 

mixtures achieved the lowest 28-day compressive strengths.  These results show the negative 

effect the curing room has on the strength development process for alkali-activated natural 

NaOH%Concentration S/B%Ratio 73Day%(MPa) 283Day%(MPa)
0.50 2.815 3.850
0.54 3.365 5.105
0.58 1.977 2.873
0.50 3.225 5.283
0.54 2.194 3.649
0.58 1.596 3.021
0.50 3.214 5.568
0.54 2.893 4.785
0.58 1.484 3.027
0.50 3.815 5.582
0.54 2.740 4.421
0.58 1.618 3.571
0.54 2.465 3.394
0.58 1.587 2.406

2.5,M

5.0,M

7.5,M

10.0,M

12.5,M
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pozzolans.  In this environment, the additional activation provided by the higher concentration 

solutions does not improve the overall performance of samples. 

Due to the low compressive strengths achieved by the samples in the curing room, no 

further testing was completed on these samples.  There would be little practical application of 

these materials in the construction industry as they provide inadequate structural strength. 

 

4.3 Flexural Strength 

The ultimate strains, modulus of rupture, and 40% modulus of elasticity (stiffness) values 

are shown in Table 5.  Overall, the modulus of rupture values increased with increasing NaOH 

concentration.  Additionally, these values decreased with increasing s/b ratio.  This trend was 

similar to that shown by the compressive strength results.  The amount of strain varied amongst 

the samples, with no trend relative to NaOH concentration or s/b ratio. 

Table	  5:	  Flexure	  Properties	  

 

NaOH%
Concentration S/B%Ratio Strain%(μe)

Modulus%of%
Rupture%
(MPa)

40%%Modulus%
of%Elasticity%

(MPa)
0.50 533 1.329 4330
0.54 353 1.135 3616
0.58 200 0.732 3481
0.50 270 2.766 13431
0.54 795 2.783 9307
0.58 335 2.524 8750
0.50 392 6.174 18155
0.54 507 5.740 14694
0.58 594 5.476 14018
0.50 385 7.074 19146
0.54 458 6.562 17251
0.58 431 6.665 16789
0.54 386 8.490 21554
0.58 273 6.040 21137

5.0

7.5

10.0

12.5

2.5
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The modulus of elasticity, or stiffness values, were reported at the 40% values of strain 

and modulus of rupture.  This 40% value was selected as the cutoff point as it provided a clear 

representation of the impact NaOH concentration had on the stress-strain relationship of the 

mortars.   

As the concentration increased, so too did the stiffness.  The largest stiffness was 

exhibited by the 12.5 M sample with 0.54 s/b ratio and the smallest stiffness was shown by the 

2.5 M 0.58 s/b ratio sample.  The largest increase in stiffness was achieved when increasing the 

NaOH concentration from 2.5 M to 5.0 M.  This change in molarity increased the stiffness by 

151% to 210% for all of the s/b ratios.  The subsequent increases in concentration up to 10.0 M 

exhibited smaller percent increases in stiffness between samples.  The adjustment of 

concentration from 5.0 M to 7.5 M saw percent increases of 35% to 62%.  When going from 7.5 

M to 10.0 M, the percent increases reduced to 6% to 20%.  When the concentrations were 

increased from 10.0 M to 12.5 M, the percent increases in stiffness were approximately 25%.   

It should be noted that the lower NaOH concentration samples did not break quickly 

when the samples were loaded in the compressive machine.  As the crack formed, the low 

concentration sample continued to bend without breaking fully apart.  In contrast, the high 

concentration samples, such as those made with 10.0 M and 12.5 M NaOH, broke quickly and 

rigidly with little bending.  This trend in breaking showed that the lower concentration solutions 

produced concrete with more flexibility whereas the higher concentrations produced samples that 

were more brittle in nature. 

Lower s/b ratios corresponded with larger stiffness values.  For all molarities, the lowest 

s/b ratio achieved the highest stiffness, while the 0.58 s/b ratios achieved the lowest stiffness 

values.  The increase is stiffness when reducing the s/b ratio from 0.58 to 0.54 was negligible, 
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ranging from 2% to 7%.  There was a larger increase as a result of reducing the s/b ratio from 

0.54 to 0.50.  These percent increases ranged from 11% to 44%.  In general, the 2.5 M, 5.0 M, 

and 7.5 M samples showed larger percent increases in stiffness as a result of reducing the s/b 

ratio.  The largest percent increase resulting from the reduction in s/b ratio occurred for the 5.0 

M samples when decreasing the ratio from 0.54 to 0.50.  

The flexural strength experienced by the samples followed a trend similar to the sealed 

curing samples.  The largest stiffness was achieved by the 0.54 s/b ratio 12.5 M samples, which 

also attained the largest compressive strengths.  Similarly, the lowest stiffness value was 

obtained by the 0.58 s/b ratio 2.5 M samples.  This shows that compressive strength is an 

indicator of flexural strength.   

As the NaOH concentration increased, more bonds were formed, producing samples with 

less flexibility.  Samples with lower s/b ratios also exhibited greater bond formation and less 

flexibility.  This resulted in the high concentration and low s/b ratio samples experiencing well-

defined, rigid breaks.   

The 2.5 M, 5.0 M, and 7.5 M samples also showed greater differences in stiffness due to 

s/b ratios.  This is similar to the trend experienced by the samples for compressive strength 

results.  In contrast to the compressive strength results, the largest percent increase in stiffness 

occurred when the s/b ratio was reduced from 0.54 to 0.50 instead of from 0.58 to 0.54.  

Although the reduction in s/b ratio from 0.58 to 0.54 resulted in a greater increase in compressive 

strength, the reduction in s/b ratio from 0.54 to 0.50 had a larger impact on the strain experienced 

by each sample.  Thus, the reduction in s/b ratio from 0.54 to 0.50 resulted in a larger increase in 

stiffness. 
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4.4 Density/Absorption/Voids 

After seven days of sealed curing, the samples were examined for density, absorption, 

and void content.  The results are summarized in Table 6 below.    

Table	  6:	  Average	  Density,	  Absorption,	  and	  Void	  Results	  

 

The sample with the lowest dry bulk density (1.840) was the 2.5 M 0.58 s/b ratio mixture 

and the sample with the highest dry bulk density (2.100) was the 10.0 M 0.50 s/b ratio mixture.  

The dry bulk density was shown to decrease with increasing s/b ratio, however there was a 

diverse range of variation between samples.  The NaOH concentration also affected the dry bulk 

density, indicating that increasing the concentration also increased the bulk density.  The bulk 

density after immersion increased from the dry bulk density.  Similarly, the bulk density after 

immersion and boiling further increased in value.  These increases in bulk density were 

inconsistent, with no observable trend.  In regards to the apparent density, the highest NaOH 

concentrations were shown to have smaller values than the lower NaOH concentrations. 

NaOH%
Concentration

S/B%
Ratio

Abs.%after%
immers.%
(%)

Abs.%after%
immers%and%
boiling%(%)

Bulk%
density%,%

dry

Bulk%
density%
after%

immers.

Bulk%density%
after%

immers.%and%
boiling

App.%
Density%

Volume%of%
Perm.%Pore%
space,%voids%

0.50 12.40% 13.62% 1.898 2.133 2.156 2.559 25.84%
0.54 13.41% 15.28% 1.877 2.129 2.164 2.632 28.68%
0.58 13.82% 15.66% 1.840 2.095 2.129 2.586 28.83%
0.50 10.33% 11.82% 1.943 2.144 2.172 2.522 22.95%
0.54 11.26% 12.88% 1.903 2.094 2.124 2.484 24.25%
0.58 11.52% 13.17% 1.907 2.130 2.161 2.552 25.16%
0.50 7.70% 8.42% 2.074 2.234 2.249 2.513 17.47%
0.54 8.42% 9.38% 1.962 2.106 2.125 2.389 18.22%
0.58 9.92% 12.17% 1.961 2.168 2.213 2.550 24.01%
0.50 3.94% 4.66% 2.100 2.180 2.195 2.332 9.54%
0.54 5.47% 7.33% 2.038 2.149 2.187 2.374 14.94%
0.58 6.41% 9.14% 1.961 2.087 2.140 2.390 17.93%
0.54 2.38% 4.36% 2.071 2.120 2.161 2.278 9.01%
0.58 2.41% 5.70% 2.069 2.119 2.187 2.345 11.78%

2.5-M

5-M

7.5-M

10-M

12.5-M
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The absorption of the samples after immersion and boiling were also investigated.  The 

2.5 M series of mixtures had the greatest absorptions after immersion ranging from 12.4% to 

13.8%, while the 12.5 M series of mixtures had the lowest absorption after immersion values, 

around 2.4%.  The mortar mixtures in between showed decreasing absorption after immersion 

values with increasing concentration.  Absorption values for all of the concentrations increased 

after the samples were boiled.  The 2.5 M series attained absorption values ranging from 13.6% 

to 15.7% while the 12.5 M series reached values of 4.4% to 5.7%.  The absorption values also 

increased with increasing s/b ratios.  It should be noted that the 0.58 s/b ratio series of mixtures 

experienced the most significant increases in absorption values after boiling compared to the 

values solely after immersion.  These increases ranged from 1.7% to 3.3%.  In comparison, the 

0.54 s/b ratio series showed increases of 1.0% to 2.0% and the 0.50 s/b ratio series displayed 

increases of 0.7% to 1.5%. 

The volume of void content showed a comparable trend to the absorption values.  As the 

s/b ratio increased, the percentage of voids also increased.  Additionally, the void content was 

reduced as the NaOH concentration increased.  The sample with the largest void content (28.8%) 

was the 2.5 M 0.58 s/b ratio mixture while the sample with the lowest void content (9.0%) was 

the 12.5 M 0.54 s/b ratio mixture.  Figures 41 and 42 display the trends present in the void 

content of the samples.  
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Figure	  41:	  Effect	  of	  NaOH	  Concentration	  on	  7-‐Day	  Void	  Content	  

	  
	  

	  
	  

Figure	  42:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  7-‐Day	  Void	  Content	  
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The bulk densities of the samples increased with increasing NaOH concentration.  This 

supports the results obtained for the compressive strengths of the samples.  Larger hydroxide 

concentrations produced greater alkali activation, leading to more bond formation and strength 

gain [15].  With more bonds forming within the mortar, there is less room for voids within the 

samples.  This correlates directly with the results achieved for absorption.  The most absorption 

occurred within the 2.5 M series of samples, while the least absorption occurred within the 12.5 

M samples.   

Raising the s/b ratio also increased the amount of absorption experienced by the samples.  

With larger s/b ratios, there was a reduction in compressive strength as seen in this study.  

Smaller compressive strengths indicate that there have been fewer bonds forming within the 

mortar.  This leads to more void content within the samples.  Overall, samples cured in elevated 

temperature conditions show that compressive strength has an inverse relationship with 

absorption and void content.  Samples with larger compressive strengths typically have smaller 

absorption and void content.  There is a direct relationship between compressive strength and 

density.  With greater bond formation, there is less empty space contained within the given 

volume of a sample, leading to higher densities.   

 

4.5 Rapid Chloride Penetration Test 

The sealed curing samples tested at seven days showed the following results summarized 

in Table 7. 
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Table	  7:	  Average	  RCPT	  Results	  

 

  --- refers to samples that exceeded the testing equipment’s capacity 

 

With increasing s/b ratio, the amount of charge passed also increased.  The amount of 

increase varied with the concentration.  The 10.0 M concentration mixture showed the largest 

increase in charge passed resulting from increasing the s/b ratio.  As the s/b ratio was raised from 

0.50 to 0.54, the amount of charge passed increased by 43.9%.  The increase was even larger 

when the s/b ratio was raised from 0.54 to 0.58, increasing the charge passed by 84.7%. 

In the 0.50 s/b ratio series of mixtures, the 5.0 M samples passed the highest number of 

coulombs.  The 7.5 M reported the highest charge passed for the 0.54 s/b series of mixtures, 

however it should be noted that the 5.0 M samples overflowed the testing apparatus at this s/b 

ratio so no data was obtained.  In the 0.58 s/b ratio mixtures, the 7.5 M samples passed the most 

charge.  Overall, the 7.5 M 0.58 s/b ratio samples passed the greatest amount of charge with 

NaOH%
Concentration S/B%Ratio

73Day%Adjusted%
Charge%Passed%
(Coulombs)

Initial%
Current%at%
10%V%(mA)

0.50 6118 270.3
0.54 6308 299.1
0.58 6800 356.8
0.50 6625 374.6
0.54 ,,, ,,,
0.58 6776 481.8
0.50 6239 334.5
0.54 6433 331.2
0.58 7080 439.0
0.50 2407 124.4
0.54 3463 182.4
0.58 6397 311.7
0.54 1054 55.5
0.58 1064 62.3

2.5-M

5.0-M

7.5-M

10.0-M

12.5-M
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7,080 coulombs.  The least amount of charge was passed by the 12.5 M 0.54 s/b ratio samples 

with 1,054 coulombs.   

The initial current flowing through the samples was also reported.  Overall, the largest 

current was experienced by the 5.0 M NaOH concentration mixtures followed by the 7.5 M, 2.5 

M, 10.0 M, and 12.5 M concentrations.  Within the 0.50 s/b ratio samples, the 5.0 M mixture 

attained the highest initial current of 374.6 mA.  The 0.54 s/b ratio series of mixtures displayed 

the highest current of 331.2 mA in the 7.5 M samples.  In the 0.58 s/b ratio series, the 5.0 M 

samples experienced the highest current of 481.8 mA. 

Similar to the amount of charge passed through these samples, the initial current flowing 

through these samples increased with increasing s/b ratios.  The 10.0 M samples also showed the 

largest increases in current due to an increase in s/b ratio.  When the s/b ratio was increased from 

0.50 to 0.54, the current increased by 46.6%.  When the s/b ratio was increased again from 0.54 

to 0.58, the increase in current was 70.9%.  

A consistent trend was recognized showing that with increasing s/b ratio, the amount of 

charge passed also increased.  This trend matched what was experienced in Bondar et al.’s study.  

The alkali-activated natural pozzolan mixture made with a s/b ratio of 0.55 passed more charge 

than the mixture made with a 0.45 s/b ratio [17].  This indicates that s/b ratio affects the chloride 

ion penetration.  Lower s/b ratios result in tighter pore structure, which is one of the most 

significant parameters involved in chloride penetration [17]. 

The NaOH concentration also affected the chloride penetration, however it did not follow 

a typical trend.  The largest amount of charge was passed by the 7.5 M 0.58 s/b ratio samples, 

while the lowest charge passed was by the 12.5 M 0.54 s/b ratio samples.  This trend is not 

related to those shown for compressive strength or absorption.  It appears that the 5.0 M and 7.5 
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M samples pass the greatest amount of charge.  At the lowest s/b ratio, the 5.0 M samples passed 

the greatest amount of charge, but as the s/b ratio increased, the 7.5 M samples surpassed the 5.0 

M samples in terms of charge passed.  This shows that as the s/b ratio increased, the mixture 

produced with more alkalis passed more charge.  This trend did not continue to the 10.0 M and 

12.5 M samples, most likely due to the level of bond formation experienced at those 

concentrations.  Those samples achieved the largest compressive strengths, signifying the high 

level of activation.  Furthermore, these samples had the smallest amount of voids, which may 

also prevent charge from passing through. 

It should be noted that the RPCT measures the total electrical conductivity of the 

samples, which is dependent on the chemistry of the pore solution as well as the pore structure 

[17].  Any conducting ions present in the pore solution can increase the amount of charge passed 

through the sample [17].  This may have been responsible for the high charge passed through the 

5.0 M and 7.5 M samples.  These samples have greater alkali concentration than the 2.5 M 

samples, yet they do not provide as much activation as the 10.0 M and 12.5 M samples.  This 

may lead to greater alkali presence within the pore solution, thus increasing the overall charge 

passed.  

Bondar et al. also noted that the initial current can be used as a measure of the electrical 

conductivity of a sample [17].  The initial currents recorded show the largest values for the 5.0 M 

samples followed by the 7.5 M samples.  This is related to the results shown for the amount of 

charge passed through the samples, indicating that these two mixtures have the highest electrical 

conductivity after 7 days of sealed curing. 
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4.6 Rapid Migration Test 

The RMT test examined the physical chloride penetration depth of each sample.  The 

migration coefficient, referred to as the DNSSM, is related to the rate of chloride penetration and 

chloride penetration depth.  All three of the measurements exhibit the same trend so the focus of 

these results will be on the DNSSM.  The results are summarized in Table 8 below. 

Table	  8:	  Average	  RMT	  Results	  

 

    

Overall, the 2.5 M samples obtained the largest migration coefficients while the 12.5 M 

samples obtained the lowest migration coefficients.  The 2.5 M 0.58 s/b ratio samples had a 

migration coefficient of 285.21 x 10-12 m2/s which relates to a chloride penetration depth of 

45.62 mm.  The 12.5 M 0.54 s/b ratio samples had the greatest resistance to chloride, only 

attaining a migration coefficient of 15.63 x 10-12 m2/s and a chloride penetration depth of 4.23 

mm. 

NaOH%
Concentration S/B%Ratio

DNSSM,%x10812%
(m2/s)

Rate%of%Chloride%
Penetration%(mm/Vh)

Chloride%Penetration%
Depth%(mm)

0.50 194.77 0.538 32.29
0.54 214.57 0.587 35.19
0.58 285.21 0.760 45.62
0.50 112.56 0.331 19.88
0.54 121.01 0.352 21.09
0.58 181.20 0.503 30.17
0.50 41.33 0.144 8.63
0.54 64.55 0.206 12.38
0.58 71.65 0.225 13.48
0.50 21.38 0.088 5.75
0.54 21.80 0.089 5.33
0.58 23.10 0.092 5.53
0.54 15.63 0.071 4.23
0.58 17.08 0.075 4.49

2.5,M

5.0,M

7.5,M

10.0,M

12.5,M
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As the concentration was increased for each of the s/b ratios, the migration coefficient 

decreased.  The greatest changes due to concentration for the 0.54 and 0.58 s/b ratio series 

occurred when the NaOH concentration was reduced from 10.0 M to 7.5 M.  This increased the 

migration coefficients by 196% and 210% respectively.  For the 0.50 s/b ratio series, the 

reduction in concentration from 7.5 M to 5.0 M led to the largest increase in migration 

coefficient, increasing the value by 172%.  The effect of NaOH concentration on migration 

coefficient is seen in Figure 43. 

The 10.0 M and 12.5 M samples showed little variation in migration coefficients due to 

increases in s/b ratios.  The percent increases remained below 10% between consecutive s/b 

ratios.   In contrast, the 2.5 M, 5.0 M, and 7.5 M samples showed much more significant 

increases in migration coefficients due to s/b ratio.  The effect of s/b ratio on the migration 

coefficient is shown in Figure 44.  The largest percent increase between samples was 56.2% due 

to the increase of s/b ratio from 0.50 to 0.54 for the 7.5 M samples.    
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Figure	  43:	  Effect	  of	  NaOH	  Concentration	  on	  7-‐Day	  RMT	  Migration	  Coefficient	  

	  
	  

	  
	  

Figure	  44:	  Effect	  of	  Solution-‐to-‐Binder	  Ratio	  on	  7-‐Day	  RMT	  Migration	  Coefficient	  
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The RMT is another method used to measure chloride penetration within a sample.  The 

difference between this test and the RCPT is that the RMT provides results based on visual 

examination of the chloride penetration within the sample.  The results achieved for the 7-day 

sealed curing samples showed different trends than the RCPT test results.  The RMT results 

correspond well with the results seen for the compressive strengths of the samples.  Increasing 

the NaOH concentration reduced the overall chloride penetration, as high concentrations allow 

for greater strength development.  Additionally, reducing the s/b ratio also decreased the chloride 

penetration as lower s/b ratios create a tighter pore structure within the samples, reducing 

permeability [17].  This trend regarding the s/b ratios matches the trend seen in the RCPT results.   

 

5. Conclusion and Recommendations 

The mechanical strength performance and transport properties of alkali-activated natural 

pozzolans were evaluated for fourteen different mixtures.  This study investigated the effects of 

curing environment, NaOH concentration, and s/b ratio on the flow; compressive and flexural 

strengths; density, absorption, and void content; and chloride penetration of natural pozzolans.  

Overall, natural pozzolans do have potential to act as OPC replacement materials in mortar and 

concrete.  Based on this study, the most desirable mixture in terms of strength was the 12.5 M 

0.58 s/b ratio mixture.  After seven days of curing in the sealed condition, this mixture was able 

to exceed the structural compressive strength requirement of 20.7 MPa (3000 psi).  The only 

drawback to this mixture is that it did not also achieve the lowest values for void content and 

chloride penetration.  The 12.5 M mixture made with the lower s/b ratio of 0.54 had the lowest 

values for these conditions.  However, the 12.5 M 0.58 s/b ratio mixture had much greater 

workability than the 0.54 s/b ratio mixture, making the former mixture easier to mix.   
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5.1 Fresh Properties – Flow and Density 

The fresh densities for all mortar samples ranged from 2190 – 2525 kg/m3.  The flow of 

mortar had an inverse relationship with NaOH concentration, while it had a direct relationship 

with s/b ratio.   

 

5.2 Compressive Strength 

The exposed curing environment allowed for the quickest strength gain due to the lack of 

humidity.  After three days of curing, the exposed curing samples achieved their maximum 

compressive strengths.  The sealed and moisture curing environments required longer curing 

times for samples to gain strength due to the presence of humidity.  The moisture curing samples 

attained 59% to 76% of their ultimate compressive strengths after three days of curing while the 

sealed curing samples, with NaOH concentrations from 5.0 M to 12.5 M, attained 62% to 85% of 

their ultimate strengths.  Overall, the sealed curing samples achieved the highest compressive 

strengths after seven days.   

Increases in NaOH concentration produced samples with greater compressive strengths.  

These higher concentrations allowed for more aluminosilicate dissolution, resulting in improved 

performance.   

S/b ratio had an inverse relationship on compressive strength.  As the s/b ratio was 

increased, the compressive strength decreased, with the exception of the 12.5 M series of 

samples.  The 12.5 M series performed better with the 0.58 s/b ratio because of the increased 

workability provided by the larger ratio.   
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Samples placed in the curing room for 7 and 28 days showed no significant strength gain.  

These samples would have little practical application within the construction industry due to the 

low compressive strengths achieved. 

 

5.3 Flexural Strength 

The flexural strength properties showed similar results to the compressive strength 

samples due to NaOH concentration and s/b ratio.  Higher NaOH concentrations and lower s/b 

ratios produced samples with greater moduli of rupture and stiffness.  The largest stiffness was 

exhibited by the 12.5 M sample with 0.54 s/b ratio and the smallest stiffness was shown by the 

2.5 M 0.58 s/b ratio sample. 

 

5.4 Density/Absorption/Voids 

The densities of the 7-day sealed curing samples were shown to increase with increasing 

NaOH concentration.  The absorption and void contents of the samples decreased with increasing 

NaOH concentration, while they were shown to increase with increasing s/b ratios.   

 

5.5 Rapid Chloride Penetration Test 

RCPT results showed that with increasing s/b ratio, more charge was passed through the 

7-day sealed curing samples.  The initial current was also shown to increase with increasing s/b 

ratio.  The 7-day sealed curing samples showed the largest charge passing through the 5.0 M and 

7.5 M samples.   
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5.6 Rapid Migration Test 

The RMT results showed that the migration coefficient increased with increasing s/b 

ratios.  Additionally, increasing the NaOH concentration reduced the migration coefficient.   

 

5.7 Recommendations 

When replacing OPC with alkali-activated natural pozzolans, the curing conditions 

drastically change.  Instead of a moist environment, mortar made with natural pozzolans requires 

an elevated temperature and an environment that allows for some evaporation.  The challenge 

with implementing a large-scale use of natural pozzolans within the construction industry is the 

limitations caused by this heated curing environment.  Natural pozzolan usage may be limited to 

pre-cast mortar and concrete projects that are able to fit inside of an oven.   

Another issue that needs to be addressed regarding natural pozzolan usage is the 

economic standpoint of using this material instead of OPC.  Natural pozzolans are not available 

in every city around the world.  They are mined from specific areas that had volcanic activity in 

the past.  In contrast, OPC is able to be produced anywhere, making it much more readily 

available.  If a city has natural pozzolan deposits, it may be a proactive idea to incorporate alkali-

activated natural pozzolans in mortar and concrete mixes.  However, if there is not a source 

nearby that produces natural pozzolans, the fee required to transport the pozzolans and the fossil 

fuels released along the way might counteract some of the benefits of using pozzolans. 

Natural pozzolans also need a high curing temperature, requiring both money and energy.  

The OPC production process requires even higher temperatures, so there may be some savings 

on this end since these natural pozzolans are not heat treated in a kiln like OPC is.  Another 

expense incurred by the usage of natural pozzolans is the cost of the alkali-activator, NaOH.  If 
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used for a large project, several tons of NaOH may need to be purchased, thus increasing the 

overall cost of using natural pozzolans. 

There are many ideas for future research on alkali-activated natural pozzolans.  Firstly, 

research can be conducted to develop a super-plasticizer that will increase the workability of the 

mixtures.  When using the higher NaOH concentrations, the mixture had reduced workability, 

making it difficult to mix.  Currently, there are no available super-plasticizers that work in an 

alkali-activated environment.  Secondly, research can be conducted on alkali-activated natural 

pozzolan concrete instead of mortar.  The strength, load dependent properties, time dependent 

properties, and long-term durability of this type of concrete needs to be better understood.  

Finally, the last area of potential research involves the additions of various additives to help 

remove the need for oven curing. 

There are many benefits to using alkali-activated natural pozzolans as replacements for 

OPC.  There is potential for increased sustainability with no compromise to the material’s 

mechanical and transport properties.  However, the practicality of using natural pozzolans needs 

to be considered on a project-by-project basis.  If the project site is near a source of natural 

pozzolans, incorporating them into the mortar or concrete may not increase overall costs.  

Additionally, if the project can be constructed from pre-cast bricks or similar small structures of 

mortar and concrete, natural pozzolans may suit the project well.  Unfortunately, not all projects 

fall within those categories, thus limiting alkali-activated natural pozzolan usage.       
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Appendix B: Flow Data 

Table	  9:	  Flow	  Results	  

 

NaOH%
Concentration%(M) S/B%Ratio Flow%(cm)

0.50 9.9
0.54 13.0
0.58 13.0
0.50 6.5
0.54 8.3
0.58 10.7
0.50 5.7
0.54 7.5
0.58 7.6
0.50 3.7
0.54 5.0
0.58 6.8
0.54 3.5
0.58 5.7

2.5

5.0

7.5

10.0

12.5
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Appendix C: Compressive Strength Data 

Table	  10:	  2.5	  M	  Compressive	  Strength	  Data	  

S/B$Ratio Age$(days) Exposed$(MPa) Moisture$(MPa) Sealed$(MPa)
1 3.775 4.159 4.718
1 ) ) 4.483
1 ) ) 4.552
1 ) ) )
3 4.912 6.202 5.433
3 5.490 6.157 )
3 ) ) )
3 ) ) )
7 4.614 9.974 6.052
7 ) ) 5.783
7 ) ) 5.774
7 ) ) )
1 3.552 3.828 4.433
1 3.558 4.411 4.566
1 3.525 4.438 )
1 ) ) )
3 5.026 5.886 5.759
3 5.057 ) 5.624
3 4.914 ) )
3 4.926 ) )
7 4.564 9.511 5.946
7 4.581 9.514 5.552
7 ) ) )
7 ) ) )
1 2.204 2.775 2.615
1 2.568 2.673 2.953
1 ) 2.499 3.080
1 ) ) 2.797
3 3.123 4.349 3.394
3 3.323 3.409 )
3 2.299 ) )
3 3.099 ) )
7 2.620 6.284 4.161
7 2.949 6.086 4.088
7 3.146 5.853 3.401
7 3.127 ) )

0.50

2.5$M$Compressive$Strengths

0.54

0.58
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Table	  11:	  5.0	  M	  Compressive	  Strength	  Data	  

S/B$Ratio Age$(days) Exposed$(MPa) Moisture$(MPa) Sealed$(MPa)
1 7.072 5.029 5.528
1 7.360 4.985 4.828
1 7.070 4.638 5.977
1 7.272 4.500 5.250
3 8.844 6.872 9.680
3 9.145 7.966 ,
3 , 7.558 ,
3 , , ,
7 9.401 11.714 13.046
7 8.292 10.707 12.362
7 8.840 , 11.981
7 8.835 , ,
1 6.088 4.126 4.364
1 6.117 3.521 4.574
1 5.924 4.125 4.145
1 , 4.671 ,
3 6.653 6.851 8.201
3 6.620 6.801 7.918
3 , , 9.104
3 , , 8.489
7 6.948 10.655 11.496
7 6.748 10.297 11.524
7 6.710 , 11.095
7 , , 11.374
1 4.811 2.277 3.078
1 4.487 2.136 2.994
1 5.042 2.803 3.111
1 4.612 2.585 2.890
3 5.840 4.607 6.589
3 5.817 4.428 7.039
3 5.476 4.652 6.624
3 4.931 , ,
7 5.110 6.956 8.389
7 5.124 , 8.596
7 5.035 , 8.318
7 5.076 , ,

5.0$M$Compressive$Strengths

0.50

0.54

0.58
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Table	  12:	  7.5	  M	  Compressive	  Strength	  Data	  

S/B$Ratio Age$(days) Exposed$(MPa) Moisture$(MPa) Sealed$(MPa)
1 12.096 6.667 7.360
1 8.804 6.610 7.513
1 9.854 , 7.287
1 11.009 , ,
3 15.147 10.381 16.779
3 14.606 11.016 16.921
3 13.734 12.096 15.886
3 , 11.176 ,
7 16.593 17.339 21.319
7 15.266 , 20.249
7 13.954 , 20.075
7 , , ,
1 9.995 4.967 6.193
1 9.447 5.057 5.557
1 9.974 5.705 5.548
1 , 5.550 6.065
3 10.986 9.390 14.606
3 , 9.564 14.895
3 , 9.609 ,
3 , 8.375 ,
7 11.839 13.675 17.410
7 11.212 , 19.480
7 , , 16.374
7 , , 18.367
1 8.168 3.178 3.504
1 7.977 3.221 3.347
1 8.194 3.404 3.589
1 , 3.204 3.392
3 10.073 6.917 15.900
3 , 6.579 11.886
3 , 5.964 10.385
3 , , 12.153
7 8.577 8.549 14.668
7 , , 15.340
7 , , 14.620
7 , , ,

0.58

7.5$M$Compressive$Strengths

0.50

0.54
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Table	  13:	  10.0	  M	  Compressive	  Strength	  Data	  

S/B$Ratio Age$(days) Exposed$(MPa) Moisture$(MPa) Sealed$(MPa)
1 13.404 8.451 9.480
1 13.696 7.913 9.409
1 + 8.906 +
1 + 9.473 +
3 29.258 15.464 22.267
3 28.210 15.704 +
3 25.592 15.795 +
3 + 16.741 +
7 27.069 23.079 31.378
7 27.355 21.524 32.447
7 24.763 21.885 +
7 25.489 24.977 +
1 13.689 6.267 7.889
1 11.905 6.863 7.899
1 + 6.931 +
1 + 6.762 +
3 24.841 15.116 21.581
3 20.921 15.161 +
3 27.740 12.565 +
3 27.667 11.097 +
7 24.070 21.564 26.204
7 26.769 22.136 30.229
7 21.948 20.166 +
7 23.974 20.621 +
1 15.275 5.145 6.036
1 11.803 4.778 5.602
1 9.228 5.047 5.540
1 11.253 5.004 5.612
3 25.473 8.859 17.226
3 20.621 8.735 17.841
3 22.260 9.095 +
3 19.406 + +
7 21.848 14.797 27.095
7 23.151 15.209 +
7 19.737 + +
7 + + +

10.0$M$Compressive$Strengths

0.50

0.54

0.58
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Table	  14:	  12.5	  M	  Compressive	  Strength	  Data	  

S/B$Ratio Age$(days) Exposed$(MPa) Moisture$(MPa) Sealed$(MPa)
1 14.689 7.642 11.166
1 17.324 6.617 11.600
1 14.954 7.330 9.600
1 15.805 7.511 9.087
3 31.594 15.799 23.901
3 30.639 15.666 24.270
3 31.439 17.391 ,
3 29.522 16.229 ,
7 27.660 24.932 30.827
7 27.517 26.380 ,
7 , , ,
7 , , ,
1 14.682 5.653 7.274
1 13.398 5.583 6.901
1 , 5.498 7.829
1 , 6.076 7.546
3 30.191 16.278 22.722
3 31.504 17.152 22.143
3 36.925 18.692 20.533
3 30.923 17.293 27.841
7 31.278 26.621 37.202
7 33.367 , 38.190
7 32.793 , ,
7 29.684 , ,

12.5$M$Compressive$Strengths

0.54

0.58
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Appendix D: Density/Absorption/Void Data 

 

Table	  15:	  0.50	  S/B	  Ratio	  Density/Absorption/Void	  Data	  

Concentration
S/B-
Ratio Sample-#

Abs.-after-
immers.-(%)

Abs.-
after-

immers-
and-

boiling-
(%)

Bulk-
density-,-

dry

Bulk-density-
after-

immers.

Bulk-
density-
after-

immers.-
and-

boiling App.-Density-

Volume-of-
Perm.-Pore-

space,-
voids-

1 12.28% 13.41% 1.914 2.149 2.171 2.575 25.67%
2 12.49% 13.78% 1.874 2.108 2.132 2.525 25.81%
3 12.43% 13.67% 1.905 2.142 2.165 2.575 26.04%

Average 12.40% 13.62% 1.898 2.133 2.156 2.559 25.84%
1 10.39% 11.95% 1.939 2.140 2.170 2.523 23.17%
2 10.65% 12.28% 1.934 2.140 2.171 2.536 23.74%
3 9.94% 11.22% 1.956 2.151 2.176 2.506 21.95%

Average 10.33% 11.82% 1.943 2.144 2.172 2.522 22.95%
1 7.61% 8.29% 2.076 2.234 2.248 2.507 17.21%
2 7.41% 8.04% 2.087 2.242 2.255 2.508 16.79%
3 8.08% 8.94% 2.059 2.226 2.243 2.524 18.41%

Average 7.70% 8.42% 2.074 2.234 2.249 2.513 17.47%
1 8.23% 9.56% 2.018 2.184 2.211 2.500 19.29%
2 -0.12% 0.39% 2.178 2.175 2.186 2.196 0.84%
3 3.71% 4.04% 2.103 2.181 2.188 2.298 8.50%

Average 3.94% 4.66% 2.100 2.180 2.195 2.332 9.54%

10.M 0.50

2.5.M 0.50

5.M 0.50

7.5.M 0.50
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Table	  16:	  0.54	  S/B	  Ratio	  Density/Absorption/Void	  Data	  

Concentration
S/B-
Ratio Sample-#

Abs.-after-
immers.-(%)

Abs.-
after-

immers-
and-

boiling-
(%)

Bulk-
density-,-

dry

Bulk-density-
after-

immers.

Bulk-
density-
after-

immers.-
and-

boiling App.-Density-

Volume-of-
Perm.-Pore-

space,-
voids-

1 13.35% 15.19% 1.881 2.132 2.167 2.634 28.58%
2 13.49% 15.27% 1.879 2.132 2.166 2.634 28.69%
3 13.38% 15.38% 1.871 2.122 2.159 2.628 28.78%

Average 13.41% 15.28% 1.877 2.129 2.164 2.632 28.68%
1 11.46% 13.07% 1.903 2.122 2.152 2.534 24.88%
2 11.05% 12.70% 1.860 2.065 2.096 2.435 23.62%

Average 11.26% 12.88% 1.903 2.094 2.124 2.484 24.25%
1 8.61% 9.44% 1.962 2.130 2.147 2.407 18.52%
2 8.58% 9.39% 1.938 2.105 2.120 2.370 18.21%
3 8.05% 9.30% 1.928 2.083 2.107 2.349 17.93%

Average 8.42% 9.38% 1.962 2.106 2.125 2.389 18.22%
1 4.82% 6.97% 2.028 2.125 2.169 2.362 14.13%
2 6.50% 8.04% 2.040 2.173 2.204 2.440 16.40%
3 5.08% 6.99% 2.045 2.149 2.188 2.386 14.30%

Average 5.47% 7.33% 2.038 2.149 2.187 2.374 14.94%
1 2.00% 3.96% 2.066 2.108 2.148 2.250 8.17%
2 3.13% 6.08% 2.060 2.124 2.185 2.354 12.52%
3 2.00% 3.04% 2.088 2.129 2.151 2.229 6.35%

Average 2.38% 4.36% 2.071 2.120 2.161 2.278 9.01%

2.5-M 0.54

12.5-M 0.54

5-M 0.54

7.5-M 0.54

10-M 0.54
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Table	  17:	  0.58	  S/B	  Ratio	  Density/Absorption/Void	  Data	  

Concentration
S/B-
Ratio Sample-#

Abs.-after-
immers.-(%)

Abs.-
after-

immers-
and-

boiling-
(%)

Bulk-
density-,-

dry

Bulk-density-
after-

immers.

Bulk-
density-
after-

immers.-
and-

boiling App.-Density-

Volume-of-
Perm.-Pore-

space,-
voids-

1 13.99% 15.89% 1.842 2.099 2.134 2.604 29.26%
2 13.95% 15.79% 1.833 2.088 2.122 2.579 28.94%
3 13.53% 15.32% 1.847 2.096 2.129 2.575 28.28%

Average 13.82% 15.66% 1.840 2.095 2.129 2.586 28.83%
1 11.40% 13.16% 1.906 2.123 2.157 2.544 25.09%
2 11.58% 13.15% 1.916 2.138 2.168 2.561 25.19%
3 11.57% 13.21% 1.907 2.128 2.159 2.550 25.19%

Average 11.52% 13.17% 1.907 2.130 2.161 2.552 25.16%
1 10.14% 12.37% 1.981 2.182 2.226 2.624 24.51%
2 9.54% 11.78% 1.961 2.148 2.192 2.550 23.10%
3 10.07% 12.37% 1.975 2.174 2.219 2.614 24.43%

Average 9.92% 12.17% 1.961 2.168 2.213 2.550 24.01%
1 5.84% 9.75% 1.952 2.066 2.143 2.411 19.03%
2 6.26% 8.62% 1.947 2.069 2.114 2.339 16.77%
3 7.13% 9.07% 1.984 2.125 2.164 2.419 17.99%

Average 6.41% 9.14% 1.961 2.087 2.140 2.390 17.93%
1 2.62% 5.71% 2.070 2.124 2.188 2.347 11.81%
2 2.46% 6.21% 2.042 2.092 2.169 2.339 12.69%
3 2.15% 5.18% 2.095 2.140 2.204 2.350 10.86%

Average 2.41% 5.70% 2.069 2.119 2.187 2.345 11.78%

12.5-M 0.58

5-M 0.58

7.5-M 0.58

10-M 0.58

2.5-M 0.58
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Appendix E: RCPT Data 

Table	  18:	  RCPT	  Data	  

0.50 0.54 0.58 0.50 0.54 0.58
263.8 315.9 369.3 6069 6162 7799
276.8 276.5 344.3 6166 5780 5801
, 304.9 , , 6983 ,

374.6 ,,, 481.8 6625 ,,, 6776
, ,,, , , ,,, ,
, ,,, , , ,,, ,

334.5 331.2 439.0 6239 6433 7080
, , , , , ,
, , , , , ,

115.2 195.2 328.3 2202 3459 6788
133.6 169.5 295.1 2611 3467 6005
, , , , , ,

N/A 43.9 57.5 N/A 868 867
N/A 58.3 67.0 N/A 1078 1260
N/A 64.2 , N/A 1217 ,

7.5

10.0

12.5

Initial'Current'(mA) Adjusted'Charge'Passed'(Coulombs)NaOH'
Concentration

2.5

5.0
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Appendix F: RMT Data 

Table	  19:	  2.5	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  

 

 

Table	  20:	  5.0	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  

 

 

S/B$Ratio 20$mm 30$mm 40$mm 50$mm 60$mm 70$mm 80$mm
28.84 30.68 30.95 32.65 34.43 31.87 32.18
32.25 31.96 30.31 32.18 32.86 32.31 32.60
34.51 34.07 31.59 32.65 32.89 32.83 33.41
36.7 39.57 33.4 33.13 32.84 36.09 34.6
6 6 6 6 6 6 6
6 6 6 6 6 6 6

45.74 46.02 48.38 47.12 47.23 47.02 47.91
45.48 46.23 46.78 47.28 47.02 46.48 46.90
45.92 43.67 42.68 43.13 42.91 41.96 42.08

0.50

2.5$M$Chloride$Penetration$Depths$at$Given$Distances$(mm)

0.54

0.58

S/B$Ratio 20$mm 30$mm 40$mm 50$mm 60$mm 70$mm 80$mm
16.55 17.08 18.18 18.57 18.31 18.48 20.19
20.14 20.91 18.46 18.98 18.91 18.61 20.60
22.10 21.62 21.64 21.53 22.15 22.54 21.92
19.3802 22.58 19.74 23.09 25.17 30.07 28.80
19.18 22.12 17.88 13.82 16.84 23.60 21.16
18.08 19.58 18.08 20.27 18.49 20.07 24.94
28.09 26.97 31.98 33.46 28.98 29.25 25.07
31.17 29.15 29.86 27.47 27.40 27.86 33.69
29.28 31.20 34.75 33.90 32.32 30.29 31.53

0.50

5.0$M$Chloride$Penetration$Depths$at$Given$Distances$(mm)

0.54

0.58
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Table	  21:	  7.5	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  

 

 

Table	  22:	  10.0	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  

 

 

Table23:	  12.5	  M	  RMT	  Chloride	  Penetration	  Depth	  Data	  

S/B$Ratio 20$mm 30$mm 40$mm 50$mm 60$mm 70$mm 80$mm
10.40 8.61 8.31 8.66 8.47 8.70 8.28
8.70 7.92 8.26 8.67 8.55 8.69 8.79
8.65 8.53 8.54 8.96 8.55 8.42 8.56
12.50 12.83 12.32 11.91 12.47 11.48 11.05
20.88 13.06 13.54 11.89 11.58 14.81 14.05
13.00 16.54 10.21 7.39 8.56 7.80 12.09
11.25 10.43 9.61 10.29 10.64 12.35 14.83
12.83 13.24 12.85 12.95 14.01 15.49 19.28
15.38 16.81 15.46 14.84 12.41 13.32 14.90

7.5$M$Chloride$Penetration$Depths$at$Given$Distances$(mm)

0.50

0.54

0.58

S/B$Ratio 20$mm 30$mm 40$mm 50$mm 60$mm 70$mm 80$mm
6.62 6.30 6.78 6.22 6.46 6.31 8.33
5.41 5.55 5.46 5.22 5.24 5.54 5.44
5.46 4.76 5.10 5.26 4.87 5.15 5.18
3.78 5.25 5.71 6.86 5.72 5.43 5.79
6.80 4.15 5.33 3.72 4.47 5.08 6.53
6 6 6 6 6 6 6

5.66 4.32 4.18 3.65 4.75 4.27 5.34
4.57 4.20 4.14 3.86 4.01 5.29 5.86
8.32 8.35 6.97 4.31 5.54 7.92 10.58

10.0$M$Chloride$Penetration$Depths$at$Given$Distances$(mm)

0.50

0.54

0.58

S/B$Ratio 20$mm 30$mm 40$mm 50$mm 60$mm 70$mm 80$mm
3.89 6.13 4.05 3.96 3.94 3.15 4.47
4.07 4.49 3.29 3.39 4.61 4.95 4.87
6 6 6 6 6 6 6

5.41 4.02 4.26 3.73 4.25 4.60 5.66
5.09 3.76 4.02 4.90 5.16 5.06 4.27
4.37 4.26 4.30 3.91 4.57 4.28 4.39

0.54

0.58

12.5%M%Chloride%Penetration%Depths%at%Given%Distances%(mm)
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Table	  24:	  2.5	  M	  Rates	  of	  Chloride	  Penetration	  Data	  

 

 

Table	  25:	  5.0	  M	  Rates	  of	  Chloride	  Penetration	  Data	  

 

 

190.56 0.528
193.30 0.534
200.46 0.552
214.57 0.587

, ,
, ,

295.04 0.784
291.88 0.777
268.72 0.720

0.50

0.54

0.58

2.5$M$Rates$of$Chloride$Penetration
DNSSM,2x10,122

(m2/s)
S/B2Ratio

Rate2of2Chloride2
Penetration2(mm/Vh)

101.61 0.303
110.17 0.325
125.90 0.365
140.90 0.402
108.77 0.320
113.36 0.332
174.10 0.485
176.78 0.492
192.73 0.532

0.50

0.54

0.58

5.0$M$Rates$of$Chloride$Penetration

S/B/Ratio
DNSSM,/x10:12/

(m2/s)
Rate/of/Chloride/

Penetration/(mm/Vh)



	   88	  

Table	  26:	  7.5	  M	  Rates	  of	  Chloride	  Penetration	  Data	  

 

 

Table	  27:	  10.0	  M	  Rates	  of	  Chloride	  Penetration	  Data	  

 

 

42.22 0.146
40.61 0.142
41.16 0.143
62.63 0.201
76.37 0.238
54.64 0.180
58.10 0.189
77.35 0.240
79.49 0.246

7.5$M$Rates$of$Chloride$Penetration

S/B/Ratio
DNSSM,/x10:12/

(m2/s)
Rate/of/Chloride/

Penetration/(mm/Vh)

0.50

0.54

0.58

22.22 0.090
20.53 0.085
( (

22.80 0.092
20.79 0.086
( (

17.68 0.077
17.49 0.076
34.13 0.124

0.50

0.54

0.58

S/B0Ratio
DNSSM,0x10(120

(m2/s)
Rate0of0Chloride0

Penetration0(mm/Vh)

10.0$M$Rates$of$Chloride$Penetration
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Table	  28:	  12.5	  M	  Rates	  of	  Chloride	  Penetration	  Data	  

 

 

15.60 0.070
15.66 0.071
' '

17.49 0.076
17.75 0.077
16.01 0.072

0.58

12.5%M%Rates%of%Chloride%Penetration

S/B/Ratio
DNSSM,/x10'12/

(m2/s)
Rate/of/Chloride/

Penetration/(mm/Vh)

0.54
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