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Environmental effects on Drosophila brain development and

learning

Xia Wang'*, Amei Amei?, J. Steven de Belle"+7 and Stephen P. Roberts™$1

ABSTRACT

Brain development and behavior are sensitive to a variety of
environmental influences including social interactions and
physicochemical stressors. Sensory input in situ is a mosaic of both
enrichment and stress, yet little is known about how multiple
environmental factors interact to affect brain anatomical structures,
circuits and cognitive function. In this study, we addressed these
issues by testing the individual and combined effects of sub-adult
thermal stress, larval density and early-adult living spatial enrichment
on brain anatomy and olfactory associative learning in adult
Drosophila melanogaster. In response to heat stress, the
mushroom bodies (MBs) were the most volumetrically impaired
among all of the brain structures, an effect highly correlated with
reduced odor learning performance. However, MBs were not
sensitive to either larval culture density or early-adult living
conditions. Extreme larval crowding reduced the volume of the
antennal lobes, optic lobes and central complex. Neither larval
crowding nor early-adult spatial enrichment affected olfactory
learning. These results illustrate that various brain structures react
differently to environmental inputs, and that MB development and
learning are highly sensitive to certain stressors (pre-adult
hyperthermia) and resistant to others (larval crowding).

KEY WORDS: Brain plasticity, Stress, Enrichment,
Environmental influence

INTRODUCTION

Brain development is tightly regulated by genetic programs, yet
environmental factors also play important roles in sculpting and
refining neural circuitry and consequent behavior (Eisenberg, 1999;
Rutter et al., 2006; Sale et al., 2009). Enrichment of the physical and
social environment can have positive effects on brain development
and function. For example, rodents raised in enriched environments
show significant increases in neurogenesis, brain weight and size,
and learning and memory relative to their sensory-impoverished
siblings (Rosenzweig and Bennett, 1996; van Praag et al., 2000).
Likewise, restricting memory-based tasks and experiences reduces
hippocampal volume and neurogenesis in a passerine bird (LaDage
et al., 2009, 2010). Alternatively, disruption of central nervous
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system (CNS) development by environmental stress exposure
(nutritive, chemical, electromagnetic and thermal) has been
shown in every model system studied to date, including humans
(Ahmed, 2005; Rice and Barone, 2000; Roebuck et al., 1998;
Weinstock, 2001). For example, neural tube defects, one of the most
common birth defects of the CNS in humans, have been linked to
hyperthermia during early pregnancy (Chambers, 2006; Chan et al.,
2014; Dreier et al., 2014; Moretti et al., 2005).

Environmentally induced neuronal and behavioral plasticity is
not limited to vertebrates, as both social and physicochemical cues
affect insect brain development and function. The development of
insect mushroom bodies (MBs), the conserved sensory integration,
associative odor learning and memory center of insects, appears to
be particularly sensitive to environmental influences. In Drosophila
melanogaster, olfactory enrichment and social contact of adults
increase the number of Kenyon cell fibers in the MB peduncle
(Technau, 1984). Female flies reared in high-density larval cultures
were shown to have more MB Kenyon cell fibers than females
reared in low-density larval cultures (Heisenberg et al., 1995).
Darkness and low-density rearing conditions during early adulthood
reduce the volume of MB calyx (dendritic sensory input), although
adult crowding in darkened rearing conditions increases MB calyx
volume (Barth and Heisenberg, 1997). Similarly, olfactory or visual
deprivation reduces MB neuronal proliferation in adult crickets
(Cayre et al., 2007). We previously showed that daily episodes of
physiologically relevant hyperthermia during larval and pupal
development severely reduce MB calyx volume by decreasing
Kenyon cell proliferation, with proportional reductions in Pavlovian
odor learning abilities (Wang et al., 2007).

Given the demonstrated benefits of sensory enrichment and
detrimental impacts of stress on central nervous system development,
itis possible that these effects could offset each other when experienced
concurrently. Indeed, enriched environments aid recovery from
cortical and behavioral deficits associated with malnutrition and
crowding in rats (Carughi et al., 1989). Environmental enrichment can
delay cognitive impairment from brain disorders such as Huntington’s
disease, Alzheimer’s disease and Parkinson’s disease in rodent models
(Hannan, 2014; Nithianantharajah and Hannan, 2006). In Drosophila,
social interactions mitigate the negative effects of visual deprivation on
MB growth (Barth and Heisenberg, 1997). In this study, we examined
brain anatomy and learning in flies exposed to sub-adult heat stress,
larval crowding, early-adult living condition enrichment and
combinations thereof to further investigate the effects of multiple
environmental factors and their interactions on brain development and
function.

MATERIALS AND METHODS

Flies, larval culture, thermal treatments and adult living
condition enrichment

Wild-type Drosophila melanogaster Meigen 1830 adults from a
large orchard population in southern Nevada were collected and
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used to establish populations in the laboratory in 2002. The lineage
of these flies was used for all stress and enrichment studies in which
we assessed anatomy and behavior. We cultured flies at 23°C
(except for the heat stress treatment, below) on a 12 h:12 h light:dark
cycle in plastic vials or bottles containing ~8 cm® (vials) or
~50 cm? (bottles) of standard Drosophila cornmeal medium (yeast,
soy flour, cornmeal and corn syrup; recipe from the Bloomington
Drosophila Stock Center at Indiana University).

In the larval density experiment, flies were allowed to oviposit
overnight on Petri dishes containing 10% molasses and 1% agar. First-
instar larvae (4-8 h after hatching) were counted and transferred into
each vial (1-60 larvae cm~3). The control group was reared at constant
23°C, while the heat-stressed (HS) group was exposed daily to a brief
(35 min) 39.5°C pulse, by immersing culture vials in a circulating
water bath, throughout larval and pupal development. Adult flies were
collected every day after eclosion. As flies that emerged later in
severely crowded densities varied considerably in size, only those flies
emerging in the first 4 days were used.

In the adult living space experiment, both control and HS adult
flies were reared from vials seeded with ~20 first-instar larvae cm™>.
After eclosion, adult flies were either transferred into a bottle
(~150 cm?) containing 50 cm? of standard medium at a density of
100 flies per bottle (spatially deprived) or transferred into a meshed
cage [1.25x10° cm?, i.e. (50 cm)?] containing 5 open food bottles
(otherwise empty) at a density of 200 adult flies per cage (spatially
enriched). Fly food was changed every 3—4 days.

In the adult deprived/enriched living condition experiment, adult
flies (collected from control and HS vials seeded with ~20 first
instar larvae cm™3) were held in isolation or in large groups. In the
adult socio-spatial deprivation group, single pupae were transferred
into each vial. After eclosion, individual adult flies were transferred
to individual fresh vials (~40 cm®) with 8 cm? of standard medium
every 3—4 days. In the adult socio-spatial odorant enrichment group,
approximately 200 adult flies were released into each meshed cage
(1.25x10° cm®) with five open food bottles. Cages were decorated
with visual stimuli, consisting of colorful plastic flowers and leaves.
Ripe fruits (including apples, pears and bananas) were crushed and
held in plastic cups with meshed covers to provide odors. Fly food
and fruits were changed every 3—4 days. Cages were shaken twice a
day to provide mechanical disturbance.

Histology and anatomy

We analyzed brain neuropil anatomy using a paraffin mass histology
protocol as described previously (de Belle and Heisenberg, 1996;
Wang et al., 2007) for 3—4 day old adults in the larval density
experiments and 19-21 day old adults in the adult living condition
experiment. Older flies were analyzed in the latter experiment to
capture any brain reorganization occurring beyond early adulthood.
Flies were cold-anesthetized (~4°C), placed in fly collars, fixed in
Carnoy’s solution (60% ethanol, 30% chloroform, 10% acetic acid,
all chemicals are from Sigma-Aldrich, St Louis, MO, USA),
dehydrated in ethanol (95% and 100%), embedded in paraffin
(Leica Microsystems, Buffalo Grove, IL, USA) and cut into 7 pm
serial frontal sections. Slides were photographed under a
fluorescence microscope with an AxioCam digital camera (Zeiss,
Jena, Thuringia, Germany). The volume of brain neuropil structures
was derived from planimetric measurements of serial brain sections
using AxioVision software (Zeiss).

Behavior assays
We analyzed associative odor learning with a Pavlovian conditioning
T-maze paradigm as described previously (de Belle and Heisenberg,

1996; Wang et al., 2007) for 3—6 day old non-heat-shocked flies in
the high larval density experiment and 19-21 day old flies in the
adult living space experiment. Briefly, in an associative odor training
procedure, groups of approximately 100 flies were transferred into a
training tube embedded with internal double-wound electrifiable
copper grids. Flies were exposed to an air current (750 ml min™")
bubbled through one odor (2x107 dilution of 4-methyl
cyclohexanol or 4x107 dilution of 3-octanol in heavy mineral oil;
Sigma-Aldrich) paired with 1.25 s pulses 0of 90 V DC electric shock
delivered every 5 s for 1 min. They were then exposed to fresh air
for 1 min, followed by another air current bubbled through the other
odor without shock for 1 min. To assay associative odor learning
immediately after training, flies were exposed to both odors in
converging air currents and allowed to choose between them for
2 min and then counted. Learning performance index was calculated
as a normalized percentage of shock-paired odor avoidance. A
second group of flies was trained in a reciprocal manner and tested
similarly. Scores from both tests were averaged to account for
possible odor preferences among different groups of flies.

Statistical analyses

All data were normally distributed (P>0.05, Shapiro—Wilk test) and
all variances were homogeneous (P>0.05, Levene’s test). Two-way
MANOVA (reported as Pillai’s trace) was used to test for thermal
treatment, high larval density and interaction effects on all four brain
structure volumes. Data passed Henze—Zirkler’s test for multivariate
normality (P>0.05) and Box’s M-test for homogeneity of
covariance matrices (P>0.05). Two-way ANOVA was used to test
for thermal treatment, high larval density and interaction effects on
volume for each brain structure. Two-way ANOVA was also used to
test for thermal treatment, low larval density or adult environment
and interaction effects on MB calyx volume and peduncle area.
Tukey’s multiple comparisons test was used for post hoc analysis to
compare individual means. One-way ANOVA was used to test for
effects of larval density on learning. Student’s f-test (two-tailed)
was used to compare learning between the bottle and cage adult
holding groups. Pearson’s product-moment correlation test was
used to test for correlation between MB calyx volume and peduncle
area. All data were analyzed using R statistics software (www.R-
project.org/), in addition to ‘biotools’ and ‘car’ packages (da Silva
et al., 2017; Fox and Weisberg, 2011).

RESULTS

Influence of high larval density and thermal stress on brain
anatomy and learning

Increases in MB Kenyon cell fibers have been observed in adult
female flies as a result of presumptive sensory enrichment derived
from rearing in densely populated larval cultures (5-6 versus
20-25 larvae cm™>; Heisenberg et al., 1995). To investigate a broad
effect of larval culture density, as well as a possible interaction of
larval density and heat stress on brain development, we measured
the volume of adult brain structures (Fig. 1A) in flies reared at
various larval densities ranging from ~6 to ~60 larvae cm~3, either
at constant temperature or in a thermal regime that imposed a daily
heat stress.

We observed strong overall heat stress and larval density effects
on brain development (MANOVA, Pillai’s trace=0.55, F co=21.00,
P<0.0001 and Pillai’s trace=0.61, Fi515=4.52, P<0.0001,
respectively). Follow-up ANOVA revealed variable levels of brain
morphological plasticity in response to different rearing conditions
(Fig. 1B-E). Pre-adult stage heat stress strongly decreased MB calyx
volume (Fig. 1B; F 7,=49.41, P<0.0001). All comparisons at each
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Fig. 1. Effects of high larval density and pre-adult
thermal stress on brain structure volume and learning
in adult Drosophila. (A) Brain structures measured in this
study. Overlaid images of three frontal paraffin sections of
fly heads, viewed under a fluorescence photomicroscope.
Perikarya and neuropil appear yellow and green,
respectively. Structures are shown (outlined) in sections
taken at various depths (z) from the anterior margin of the
brain. Scale bar, 50 um. (B—F) Brain structure volumes.
Planimetric measurements of serial 7 um paraffin sections
of heads from adult flies. Bars represent meansts.e.m.,
n=10 per bar. Asterisks indicate a significant difference
(ANOVA followed by Tukey’s test, *P<0.05, **P<0.01,
***P<0.001). (B) Mushroom body (MB) calyx (left/right
average). (C) Antennal lobe (AL; left/right average). (D)
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density were significant (Tukey’s test, P<0.05), except at very high
density (60 larvae cm™3). ANOVA did not reveal a significant
influence of rearing density or an effect of thermal stress and density
interaction on MB calyx volume. Heat stress had a relatively minor
effect on antennal lobe (AL) volume (Fig. 1C; F)7,=13.74,
P=0.0004), which was only reduced in one rearing density (20
larvae cm=3, Tukey’s test, P<0.05). However, AL was reduced by
20-25% through larval crowding (F47,=13.75, P<0.0001), with
significant differences observed at the highest rearing densities and
most prominently in control flies (60 versus 6, 20 and 40 larvae cm™>;
Tukey’s test, P<0.05). In addition, there was a significant effect of the
interaction between rearing density and heat stress on AL volume
(F572=4.13, P=0.009). That is, the effect of heat stress on AL volume
reduction depends on the rearing density (see Discussion). Heat stress
had no significant impact on either optic lobe (OL) or central complex
(CCX) volumes (Fig. 1D and E, respectively). However, both
neuropils were sensitive to differences in rearing density (£ 7,=15.50,
P<0.0001 and F47,=3.81, P=0.014, respectively). The OL was most
strongly influenced by very high rearing density in control flies (60
versus 6, 20 and 40 larvae cm™>; Tukey’s test, P<0.05). The CCX
volume was reduced by 15% only at the highest rearing density in
control flies (60 versus 6 larvae cm™>; Tukey’s test, P<0.05).

We next examined the effect of crowded larval cultures on
associative odor learning in adult flies developing at larval densities

Larval density (larvae cm=3)

ranging from 6 to 60 larvac cm™— (Fig. 1F). Differences were not
significant, as we might expect with our observation of no impact of
crowding on MB calyx volume. We did not measure odor learning
in HS flies because our earlier work had demonstrated a strong
impairment of both MB development and learning by heat stress
(Wang et al., 2007).

Influence of low larval density and thermal stress on MB
anatomy

To address effects of low larval culture density, in addition to its
possible interaction with heat stress on MB development, we
examined MB calyx volume and peduncle cross-sectional area in
adult control and HS flies reared at various larval densities ranging
from 1 larva per vial (designated as <1 larva cm™ in Fig. 2A,B) to
~6 larvae cm™>. The results are similar to those in high larval
density cultures. Pre-adult stage heat stress strongly decreased MB
calyx volume (Fig. 2A; F 150=152.60, P<0.0001), as well as MB
peduncle cross-sectional area (Fig. 2B; Fj 150=125.88, P<0.0001).
All comparisons at each density were significant (Tukey’s test,
P<0.05). However, there was no significant influence of rearing
density or an effect of thermal stress and density interaction on
either MB calyx volume or peduncle area. Furthermore, Pearson’s
product-moment correlation test revealed a strong and significant
correlation between MB calyx volume and peduncle cross-sectional
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area (Fig. 2C; r=0.81, P<0.0001), indicating that MB peduncle
cross-sectional area and calyx volume changes were proportional.
This association supports our use of MB calyx volume
measurement as a reliable representation of the entire MB volume.
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Fig. 2. Effects of low larval density and pre-adult thermal stress on MB
calyx volume and peduncle cross-sectional area in adult Drosophila.
(A,B) Bars represent means+s.e.m.; n values are shown on each bar. Asterisks
indicate a significant difference (ANOVA followed by Tukey'’s test, ***<0.001).
(A) MB calyx volume. (B) MB peduncle cross-sectional area. (C) Correlation
between MB peduncle cross-sectional area and calyx volume (Pearson’s
product-moment correlation test, =0.81, P<0.0001).

Influence of adult living space and pre-adult stage thermal
stress on MB anatomy and learning

Adult rearing space has been suggested as an enrichment factor that
increases MB size in flies (Technau, 1984). To examine the possible
interaction effect of adult living space and pre-adult hyperthermic
stress on MB development, we measured MB calyx volume in adult
control and HS flies held as groups of 200 in cages and as groups of
100 in bottles. Among all comparisons, only pre-adult heat stress
significantly reduced MB calyx volume (Fig. 3A; F 140=111.72,
P<0.0001; Tukey’s test, P<0.05). Increased adult rearing space
[1.25%10° cm?, i.e. (50 cm)?, in cages versus 150 cm? in bottles] did
not significantly affect MB calyx volume in either control or HS
groups. Furthermore, to examine whether adult living space benefits
learning ability, we measured associative odor learning in adult
control flies held in cages and bottles. Enlarged adult living space
did not significantly affect associative odor learning in flies either
(Fig. 3B).

Influence of adult socio-spatial odorant experience and pre-
adult-stage thermal stress on MB anatomy

Adult olfactory enrichment and social contacts have been observed
as stimulations that can increase Keyon cell fiber numbers in the MB
(Technau, 1984). To examine the possible interaction effect of adult
socio-spatial odorant enrichment and pre-adult hyperthermic stress
on MB development, we measured MB calyx volume and peduncle
cross-sectional area in adult control and HS flies held singly in vials
and as groups of 200 in cages with various odor sources. Pre-adult
heat stress significantly reduced MB calyx volume and peduncle
cross-sectional area (Fig. 4A; F'} 99=106.75, P<0.0001; and Fig. 4B;
F1 99=70.40, P<0.0001, respectively), in both singly isolated flies
and socio-spatial odorant enrichment group flies (Tukey’s test,
P<0.05). We observed no significant influence of adult rearing
condition or an interaction effect of pre-adult thermal stress and
adult rearing condition on either MB calyx volume or peduncle area.
There was a strong and significant correlation between MB calyx
volume and peduncle cross-sectional area (Fig. 4C; r=0.86,
P<0.0001).

DISCUSSION

Influence of larval crowding on MB, AL, OL and CCX volume
Larval crowding in cultured Drosophila increases larval mortality,
prolongs sub-adult development and decreases adult body size and
fecundity, increases developmental time, increases variability of
adult body mass, size and developmental time, and increases larval
mortality (Lints and Lints, 1969; Miller and Thomas, 1958; Zwaan
et al., 1991). Nonetheless, adult flies derived from high larval
culture density have increased longevity and thermal stress
resistance (Miller and Thomas, 1958; Serensen and Loeschcke,
2001; Zwaan et al., 1991). Modest increases in brain structure size,
especially the MBs, have been observed in adults eclosing from
densely populated larval culture (Heisenberg et al., 1995). Female
flies grown in crowded larval cultures (2025 larvae cm=>) had 20%
more MB Keyon cell fibers than flies from low density cultures
(5-6 larvae cm™>). Crowded larval cultures also showed increased
variability in developmental time (13—15 days) compared with low
density larval cultures (13 days). However, the significant effect on
MB calyx volume was only observed in female flies with the most
extended sub-adult developmental time (15 days), but not in female
flies with a regular sub-adult developmental time (13 and 14 days),
or in any male flies (Heisenberg et al., 1995). In this study, we were
interested in the broad effect of larval culture density. Therefore, we
examined MB calyx volume of flies reared at seven larval densities
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Fig. 3. Effects of adult living space and pre-adult thermal stress on MB
calyx volume and learning in adult Drosophila. Bars represent meanszs.e.
m.; n values are shown on each bar. (A) MB calyx volume. Asterisks indicate a
significant difference (ANOVA followed by Tukey'’s test, ***P<0.001). (B)
Associative olfactory learning performance index. Difference was not
significant (t-test).

(1 larva per vial, and 1, 2, 6, 20, 40 and 60 larvae cm™>), without
separating flies from different developmental times. We analyzed 3—
4 day old flies (instead of 1 h old flies analyzed in Heisenberg et al.,
1995), to allow flies to fully mature so they could also be tested in
a learning paradigm. We did not find any significant increase in
MB calyx volume in crowded culture densities (>20 larvae cm™)
relative to low culture densities (<6 larvae cm™), nor any
significant differences between female and male flies.
Furthermore, elevated rearing density did not increase any brain
structure volume; instead, extremely crowded larval cultures
(60 larvae cm~3) impaired volumetric development of the AL, OL
and CCX. High larval density may be potentially stressful or even
harmful because of the excessive utilization and interference
competition of food and space (Beebee and Wong, 1992; Roberts,
1998; Rodriguez-Munoz et al., 2003; Walls, 1998). Many studies
have reported that larval crowding in Drosophila during
development has negative effects on growth, especially in body
size (Imasheva and Bubliy, 2003; Lefranc and Bundgaard, 2000;
Miller and Thomas, 1958). Interestingly, Lin et al. (2013) reported
that during development, MB neuroblasts can continue to proliferate
under starvation conditions, whereas AL lineage cell cycles are
slowed down by nutrient deprivation. These results support our
observations that MB calyx volume was not sensitive to larval
density, even in extremely crowded cultures (60 larvae cm™) in
which access to food was likely limited, while AL volume decreased
under these conditions.

Adult living condition influences on MB volume

MB fiber number and MB calyx volume of flies kept in flight cages
enriched with odor sources (enrichment) were larger than those of
flies kept singly in vials (deprivation) (Heisenberg et al., 1995;
Technau, 1984). The hypothesis that living space by itself can act
as an enrichment parameter for brain structure volume has also been
suggested for Drosophila (Heisenberg et al., 1995). However,
experimental data in support of this are inconsistent. For example,
Balling et al. (1987) reported that the difference of MB fiber number
in one of their enrichment/deprivation experiments was very small
and non-significant. Following the lead of Heisenberg et al. (1995),
we wanted to further investigate the notion that living space is a

A B
50 - 300 = *kk *kk
*k% *kk
40 4 \ \ € 1 \
2
2 8 2004
[
30 - 25
5 —
I
a5
20 i3]
= 3 100+
2
[}
101 g
E
3
2 0 0-
X Isolation Cage Isolation Cage
> Rearing environment
§
g
x C
< 60+
o
)
=
404
204
I control
B Hs
0 v T v T - T - o
0 100 200 300 400
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Fig. 4. Effects of adult socio-spatial odorant experience and pre-adult
thermal stress on MB calyx volume and peduncle cross-sectional area.
(A,B) Bars represent meansts.e.m.; n values are shown on each bar. Asterisks
indicate a significant difference (ANOVA followed by Tukey'’s test, ***P<0.001).
(A) MB calyx volume. (B) MB peduncle cross-sectional area. (C) Correlation
between MB peduncle cross-sectional area and calyx volume (Pearson’s
product-moment correlation test, =0.86, P<0.0001).

critical enrichment parameter. In the current study, we did not find
any significant effect on MB anatomy as a result of an enriched
environment during adulthood. Such inconsistent results in brain
structure volumes have been noted as ‘problematic’ (Heisenberg
et al., 1995). For example, MB calyx volume of flies kept singly in
vials has been observed to be equal to and, at other times, larger than
that of flies kept in group in standard food bottles (Heisenberg et al.,
1995). Moreover, both an increase and a decrease in MB fiber
number during the first week of fly adulthood have been reported
(Balling et al., 1987). These observations might reflect the sensitivity
of the Drosophila brain to subtle differences between rearing
environments of separate experiments. Indeed, Heisenberg et al.
(1995) have cautioned against comparing flies from different
treatment groups in different experiments. In this study, all flies
were descended from the same fly population. In each experiment,
flies were reared with the same batches of food and living conditions,
except for the experimental factors of thermal stress treatment,
density or adult living condition treatments. We showed that MB
calyx volume in flies kept in space-enriched cages (with and without
odor sources) is not significantly different from that of flies kept in
groups in bottles or singly in space-deprived vials during early
adulthood. However, our data are consistent in demonstrating that
pre-adult stage heat stress strongly decreased MB calyx volume in
HS flies relative to control flies. We also observed a robust heat stress
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effect on MB peduncle cross-sectional area, and a strong correlation
between MB calyx (pack of Keyon cell dendrites) volume and MB
peduncle (bundle of Keyon cell axons) cross-sectional area.

Influence of larval crowding and adult living condition on
olfactory associative learning

Genetic and environmentally induced reductions in MB calyx volume
impair olfactory associative learning (de Belle and Heisenberg, 1994,
1996; Wang et al., 2007). In this study, we did not find any significant
effect on odor learning of larval crowding or space-enriched adult
living conditions. The consistency in learning ability across groups
reared at different larval densities and in different adult living space
conditions is not surprising given the similarity in MB calyx volume
among these treatment groups. We did not measure learning in flies
raised at low density (including 1 larva per vial) or in individually kept
flies because of the large number of flies needed for the associative
odor learning assay. This assay requires flies to be tested in groups of
about 100. A comprehensive comparison would include tests
of sensory acuity and learning, and would require many thousands
of individually reared flies. Nonetheless, it would be interesting to
investigate the effects of low larval density and adulthood isolation on
learning and other behavior, using methods that require single flies
(Claridge-Chang et al., 2009).

Possible environmental effects on brain development and
behavior

Environmental enrichment has been shown to enhance neuroblast
proliferation, neuronal survival and morphological changes such as
synaptogenesis and dendrite branching (Kempermann et al., 1997;
Sandeman and Sandeman, 2000; van Praag et al., 1999b; Volkmar
and Greenough, 1972). Crowded larval cultures and enriched adult
living conditions might induce neuronal re-growth or re-sculpture,
but those fine changes may have eluded discovery by our volumetric
measurements with light microscopy. Application of confocal
microscopy and electron microscopy might be required to locate
subcellular changes in the fly brain. Although rodents reared in
enriched laboratory environments were found to have improved
learning and problem-solving abilities (Renner and Rosenzweig,
1987; van Praag et al., 1999a; Wainwright et al., 1993), the results
were often short lived and depended on multiple factors, such as the
age at which enrichment was experienced, and the tasks that were
learned and measured (Rosenzweig, 2003). Rosenzweig (2003) has
cautioned against over-interpretation of enrichment experiments on
learning ability, as early enrichment may improve learning of one
task but have no effect on others. In the olfactory aversive Pavlovian
conditioning paradigm, we found no significant learning differences
among flies reared at variable larval densities or between flies with
different early-adult living space. In line with Rosenzweig’s (2003)
suggestion, alterations in behavior might be stimulated in flies
that experienced crowded larval cultures and space-enriched cages,
but be more prominent in certain neural circuits outside the
MBs. Additional behavior assays (Pitman et al., 2009), such as
courtship conditioning (Siegel and Hall, 1979), olfactory appetitive
conditioning (Tempel et al., 1983), visual learning (Dill et al.,
1993), heat box spatial memory (Putz and Heisenberg, 2002) and
aversive phototaxic suppression (Le Bourg and Buecher, 2002),
would be helpful to uncover possible differences induced by those
environmental enrichment factors.

It is possible that neither larval crowding nor increased space in a
flight cage constitute enriched environments for flies. Enrichment
can be defined as ‘a combination of complex inanimate and social
stimulation’ (Rosenzweig et al., 1978), although the so-called

experimentally enriched environment should also be defined
relative to the regular laboratory impoverished settings, rather than
enrichment over natural living conditions. Studies in rats revealed
that the effects of an enriched environment were mostly associated
with an increase in voluntary motor behavior or exercise
(Kempermann et al., 1997; van Praag et al., 1999a). In crowded
larval cultures, larvae were exposed to increased social interactions,
but with few changes in activity. We also noticed that flies were
inactive unless disturbed in both flight cages and bottles. Most of the
time, flies merely remained inside or at the edge of food bottles. The
lack of stimulation of exploratory movement or voluntary exercise
might be one of the reasons that adult living space is not a sufficient
enrichment by itself to induce significant responses in brain
structures and behavior in Drosophila.

Combination of environmental influences on MB
development

Larval crowding in Drosophila has been reported to induce heat
shock protein 70 expression and increase adult longevity and adult
thermal stress resistance (Serensen and Loeschcke, 2001). We
combined larval crowding and heat stress to determine whether
these environmental factors are compounding or offsetting. Under
these conditions we observed a significant interaction effect
between rearing density and heat stress on AL volume but not on
MB calyx volume. In 20 larvae cm™> cultures, AL volume in HS
flies was significantly decreased in comparison with the control
group (Fig. 1C; Tukey’s test, P<0.05). In 40 and 60 larvae cm™3
cultures, there was no significant difference in AL volume between
control and HS flies. At high larval densities, AL development
might have gained elevated thermal stress resistance from larval
crowding, or heat stress may have alleviated some negative effects
of larval crowding. We observed that daily heat stress (39.5°C for
35 min) was so deleterious that it caused about 60% larval mortality
during development. That is, this heat stress would reduce a culture
from ~60 larvae cm™ to close to 20 larvae cm™>, and from
~40 larvae cm~ to close to 14 larvae cm 3. Therefore, AL volume
in HS group flies cultured at 60 larvae cm ™ was actually that of flies
cultured at 20 larvae cm™ by the end of development. Indeed, AL
volume of HS group flies cultured at 60 larvae cm™=3 (20 larvae cm™>
final density) was smaller than that of flies in the control 20 (and
6) larvae cm™ group (Fig. 1C; Tukey’s test, P<0.05); and AL
volume in HS group flies cultured at 40 larvae cm™>
(~14 larvae cm™ final density) was smaller than that of flies in
the control 20 (and 6) larvae cm™ group (Fig. 1C; Tukey’s test,
P<0.05). High larval density did not mitigate the harmful effects of
daily hyperthermic stress. Instead, heat stress may have alleviated
high larval density-induced developmental pressure of malnutrition
and competition through increased larval mortality (i.e. decreasing
larval density), although it still disrupted AL development.
Nevertheless, MB development was not sensitive to overcrowding,
and thus the benefits of heat stress-induced reduction in larval density
were not realized as a significant increase in MB calyx volume.

Conclusions

The environmental sensitivity of insect brain development varies
depending on specific brain regions and the type of environmental
input or stress. In this study, larval rearing cultures ranging from
sparse (1 larva per vial, ~1 larva cm™) to modest (~2,
~6 larvae cm™), crowding (~20, 40 larvae cm™) and extreme
crowding (~60 larvae cm~>) had no significant effects on adult MB
calyx volume in Drosophila, although extreme larval crowding
impaired the volumetric development of AL, OL and CCX. Adult
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living conditions, including flies that were singly isolated in vials,
grouped in small bottles or maintained as populations in cages (with
and without olfactory enrichment), did not affect MB calyx volume
either. Conversely, heat stress during pre-adult stages, regardless of
larval rearing density, strongly decreased MB calyx volume, but had
little or no effect on AL, OL and CCX volume. Furthermore, neither
larval crowding nor an enriched early adult rearing space
significantly enhanced olfactory associative learning performance
in flies. These results show that although some brain structures and
behaviors are especially sensitive to certain environmental factors,
many traits are invariant to them. The brain tends to retain its
authenticity in genetically determined development and function
under a certain range of situations. Likewise, laboratory rearing of
snails did not reduce their capability to form memories compared
with nurturing in the wild (Orr et al., 2008). These authors
proposed that either their laboratory rearing conditions were not
sufficiently impoverished to affect brain development and
memory ability or the behavior they examined may have been
resistant to environmental challenges during development. In
humans, there is an abundance of data showing that stress, such as
severe malnutrition at an early age, causes delayed brain
development and decreased intelligence (Ivanovic et al., 2004).
However, it has been reported that accommodations can be made
by the brain itself in response to retarding growth conditions
to maintain successful neuronal development and later cognitive
performance (Martyn et al., 1996). Thus, brain plasticity
encompasses a capacity not only to change but also to adapt and
maintain developmental and behavioral fidelity in response to a
variety of environmental factors.
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