High pressure x-ray diffraction studies on ZrFe2: A potential hydrogen absorption medium

Dylan D. Wood
Vanderbilt University

Ravhi S. Kumar
University of Nevada, Las Vegas, ravhi@physics.unlv.edu

Repository Citation
High Pressure X-ray Diffraction Studies on ZrFe$_2$: A Potential Hydrogen Absorption Medium

Dylan D. Wood and Ravil S. Kumar*
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
*HiPSEC and Department of Physics and Astronomy
University of Nevada Las Vegas, NV 89154

BACKGROUND

The potential application of intermetallic compounds (IMC) under high hydrogen pressure in studies of hydrogen sorption properties is defined by two important properties. Intermetallics of Laves phases have a suitable binding energy for hydrogen which allows its absorption or desorption near room temperature and atmospheric pressure. High pressures allow to efficiently interact hydrogen with intermetallics, which were considered nonhydride forming [1,2]. For example, ZrFe$_2$, ZrCo$_2$, and ZrFe$_2$ possess fairly high hydrogen absorption capacity at high pressures [3]. A nonactivated ZrFe$_2$ sample starts to interact with hydrogen only at 80 MPa, while equilibrium absorption and desorption pressures of the activated alloy on a plate are 69 and 32.5 MPa, respectively. Even though ZrFe$_2$ and related Laves phases are subjected only to moderate hydrogen pressures during absorption and desorption, it is essential to understand the structural phase stability under variable pressure-temperature conditions. The present investigation is aimed to study the pressure induced structural changes in ZrFe$_2$ using synchrotron x-ray diffraction. High pressure structural studies were performed up to 50 GPa using a diamond anvil cell in the angle dispersion geometry.

EXPERIMENTAL

High purity (99.9%) ZrFe$_2$ bulk powder obtained from sigma Aldrich was used for high pressure experiments. The powder was well ground in an agate mortar and pelletized. A small piece from the dense pellet was loaded with a few ruby grains in a 7 mm diameter diamond anvil cell (DAC) and an Ar pressurized ethanol mixture was used as a pressure medium. The pressure in the cell was measured with an offline ruby system. The data collection was performed at room temperature with incident synchrotron x-rays of wavelength 0.37571 Å at ID-B station of HPCAT. A MAR 345 imaging plate was used to collect the diffraction images up to 50 GPa. The detector to sample distance was calibrated using a CeO$_2$ standard. The XRD images were then integrated using FIT2D. The structural analysis of the patterns was carried out using the JADE software package.

RESULTS

The x-ray diffraction patterns collected at various pressures are shown in Fig.1 (d). Analysis of the x-ray diffraction images at nearly ambient pressure and temperature conditions showed Fd3m cubic structure. The experimental cell parameter obtained at ambient pressure a=7.10026 Å compares well to the value reported in literature for this material 7.0757 Å [4,5]. The d-spacings plotted as a function of pressure showed gradual decrease as pressure was increased (Fig.2 (a)). Up to 21 GPa, the diffraction patterns show no abrupt changes indicating no structural changes. Above 21 GPa, a new peak around 11 degrees started to appear. This new peak may indicate a possible structural change or distortion. Careful structural analysis is under progress to understand further details. The unit cell volume was obtained for each pressure and plotted as shown in Fig. 2(b).

CONCLUSIONS AND SUMMARY

High pressure diffraction studies on ZrFe$_2$ sample were performed under varying pressures up to 50 GPa. The experiments showed a gradual decrease in cell parameter, volume, and d-spacing as pressure increased. No pressure induced transition is observed up to 21 GPa. Above 21 GPa we inferred a new diffraction peak emerging around 11° . Detailed structural analysis is under progress. The bulk modulus for the Fd3m cubic phase is obtained to be 111.6(3) GPa and it agrees well with the compressibility of similar AB$_2$ type intermetallic compounds [6].

REFERENCES


ACKNOWLEDGEMENTS

The authors thank Prof. Andrew Cornelius, Interim Director of HiPSEC for his constant support and encouragement. Dylan Wood would like to thank Kristie Canaday from Austin Peay State University, Daniel Antonio, Sathish Kumar and Matt Jacobsen from UNLV for their help. Funding from HiPSEC for this work is acknowledged. The UNLV High Pressure Science and Engineering Center was supported by the U.S. Department of Energy, National Nuclear Security Administration, under Cooperative agreement number DE-FC52-06NA26274.