Aug 9th, 9:00 AM - 12:45 PM

Undergraduate Research Opportunities Program 2011

Nicholle Booker
Graduate Affairs Coordinator, College of Sciences, University of Nevada, Las Vegas, nicholle.booker@unlv.edu

University of Nevada, Las Vegas

Repository Citation

Booker, Nicholle and University of Nevada, Las Vegas, "Undergraduate Research Opportunities Program 2011" (2011). Undergraduate Research Opportunities Program (UROP). 1.
https://digitalscholarship.unlv.edu/cs_urop/2011/aug9/1

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
University of Nevada, Las Vegas

2011
Undergraduate Research Opportunities Program
& Creative Activities Symposium (UROP/URCAS)

August 9, 2011
Science and Engineering Building
http://digitalcommons.library.unlv.edu/cs_urop/

Compiled and Edited
By
Nicholle Booker, Graduate Affairs Coordinator, College of Sciences
Photo Caption, Cover:

Front row (left to right): Pashtana Usufzy, University of Nevada Las Vegas; Rosa Ojeda, California State Northridge; Maryknoll Palisoc, University of Nevada Las Vegas; Diana Ha, University of Nevada Las Vegas; Alex Khan, University of Nevada Las Vegas; Carmen Vallin, University of Nevada Las Vegas; Daniel Sneed, University of Nevada, Las Vegas; Kyle Childs, South Carolina State;

Second Row (left to right): Mathew Heuton, UNLV; Phil Lotshaw, Willamette University; Anthony Harrington, Institution; Christopher Yip, Juniata College; April Jeffries, State University of New York at Albany; Quinton Guerrero, Monmouth College; Justine Carryer, Colorado College; Jennifer Meoni, North Carolina State; Kimberley Gray, Department of Energy Employee;

Third Row (left to right): Guillermo Esparza, Harvey Mudd College; Trea LaCroix, University of Nevada Reno; Lucy Rivera, Western Arizona; Anna Smith, Davidson College; Mary Evert, Otterbein College; Charles Loelius, Rutgers University; Robert Gex, University of Nevada Las Vegas; Jeanette Perry, University of Nevada Las Vegas;

Back row (left to right): Quinlan Smith, California Lutheran University; Gregory King, University of Nevada Las Vegas; Nick Macholl, Loyola Chicago; Tyler Mosher, Clarkson University; Jack Brangham, Otterbein College; Brandon Stewart, College of Southern Nevada; Stuart Allen, Georgia Institute of Technology; Hassan Rizvi, University of Nevada Las Vegas; Andy Brooks, University of Nevada Las Vegas; Max Olsen, Utah State
UNLV received funding for the Undergraduate Research and Creative Activities Symposium (URCAS), Undergraduate Research Opportunities Program (UROP) from the UNLV Division of Student Affairs; Consolidated Students of the University of Nevada; student fellowships, research activities, and supplies from a the Nevada NSF Experimental Program to Stimulate Competitive Research (EPSCoR) grant; Dr. Thomas Piechota; a National Institutes of Health (NIH) Idea Network of Biomedical Research Excellence (INBRE) grant to Drs. James Kenyon and Carl Reiber; the National Science Foundation (NSF) Research Experience for Undergraduates (REU) Physics to Dr. John Farley; the National Science Foundation (NSF) Research Experience for Undergraduates (REU) Microbiology to Drs. Kurt Regner and Eduardo Robleto; Radiochemistry Fuel Cycle Summer School, Department of Energy – Nuclear Energy (DOE) Dr. Kenneth Czerwinski; NASA EPSCoR; HiPSEC and the UNLV College of Sciences. The UNLV College of Sciences and the departments of physics and astronomy, chemistry, mathematics, geoscience and the school of life sciences provided additional support. UNLV also wishes to thank the staff and management of The Mirage and the Nevada Test Site for opening their facilities for student field trips.

Special thanks are offered to the following individuals for their support and encouragement of this program:

Neal Smatresk, President UNLV
Juanita Fain, Vice President for Student Affairs
Karen Strong, Associate Vice President Student Affairs
Thomas Piechota, NSF EPSCoR Program Director
Ron Smith, Vice President for Research
Tim Porter, College of Sciences, Dean
Javier Rodriguez, College of Sciences, Associate Dean
John Farley, Professor, Department of Physics and Astronomy
Carl Reiber, NIH INBRE Program Coordinator
Kurt Regner, REU Microbiology
Eduardo Robleto, REU Microbiology
Ken Czerwinski, Program Director, Radiochemistry Program
Faculty mentors from UNLV, the Desert Research Institute, and the Nevada Cancer Institute are deserving of particular thanks. These mentors devoted their time and expertise to work with UROP students. Without mentors this program would not be possible.
Table of Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Program of Events for Tuesday August 9, 2011, Poster Session</td>
<td>1</td>
</tr>
</tbody>
</table>

Undergraduate Research Program Descriptions:

- **UNLV** | 2 |
 - NSF EPSCOR Program | 3 |
 - NIH INBRE Program | 4 |
 - NSF REU Physics | 6 |
 - NSF REU Microbiology | 7 |
- **UNLV, Grant Supported Students and Independent Study Programs** | 8 |
- **Radiochemistry Fuel cycle** | 9 |
- **Science 101 (SCI 101)** | 10 |
- **NASA EPSCoR and NASA Program** | 11 |
- **High Pressure Science & Engineering Center** | 12 |
- **Desert Research Institute** | 13 |
- **NVCI, Nevada Cancer Institute** | 14 |
- **Solar and Renewable Energy Minor**| 15 |
- **Urban Sustainability Initiative** | 15 |
- **UNLV, Department of Physics and Astronomy** | 16 |
- **UNLV, School of Life Sciences** | 16 |
Abstracts and Posters

NSF EPSCoR

Diana Ha, UNLV 17
Mentor – Jeff Shen, School of Life Sciences
Mathew Heuton, UNLV 19
Mentor - Frank Van Breukelen, School of Life Sciences
Alexa Khan, UNLV 21
Mentor - Frank Van Breukelen, School of Life Sciences
Jeanette Perry, UNLV 23
Mentor - Brett Riddle, School of Life Sciences

NIH INBRE

Sravya Challa, UNLV 25
Mentor - Sheri Holmen, Nevada Cancer Institute (NVCI)
Gregory King, UNLV 27
Mentor - Andrew Andres, School of Life Sciences
Hassan Rizvi, UNLV 29
Mentor - Ron Gary, Department of Chemistry
Pashtana Usufzy, UNLV 31
Mentor - Helen Wing, School of Life Sciences
Carmen Vallin, UNLV 33
Mentor - Eduardo Robleto, School of Life Sciences
Abstracts and Posters

<table>
<thead>
<tr>
<th>Title</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF REU PHYSICS</td>
<td></td>
</tr>
<tr>
<td>Jack Bragham, Otterbein College</td>
<td>35</td>
</tr>
<tr>
<td>Mentor - Michael Pravica, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Justine Carryer, Colorado College</td>
<td>37</td>
</tr>
<tr>
<td>Mentor - Ravhi Kumar, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Guillermo Esparza, Harvey Mudd College</td>
<td>39</td>
</tr>
<tr>
<td>Mentor - Andrew Cornelius, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Quinton Guerrero, Monmouth College</td>
<td>41</td>
</tr>
<tr>
<td>Mentor - Pamela Burnley, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>April Jeffries, SUNY Albany</td>
<td>43</td>
</tr>
<tr>
<td>Mentor - Andrew Cornelius, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Phillip Lotshaw, Willamette University</td>
<td>45</td>
</tr>
<tr>
<td>Mentor - David Shelton, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Nicholas Macholl, Loyola Chicago</td>
<td>47</td>
</tr>
<tr>
<td>Mentor - John Farley, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Julius Monello, Reed College</td>
<td>49</td>
</tr>
<tr>
<td>Mentor - Oliver Tschauner, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Tyler Mosher, Clarkson University</td>
<td>51</td>
</tr>
<tr>
<td>Mentor - John Farley, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Anna Smith, Davidson College</td>
<td>53</td>
</tr>
<tr>
<td>Mentor - David Shelton, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Quinlan Smith, California Lutheran University</td>
<td>55</td>
</tr>
<tr>
<td>Mentor - Pamela Burnley, Department of Physics and Astronomy</td>
<td></td>
</tr>
<tr>
<td>Brandon Stewart, College of Southern Nevada</td>
<td>57</td>
</tr>
<tr>
<td>Mentor - Ravhi Kumar, Department of Physics and Astronomy</td>
<td></td>
</tr>
</tbody>
</table>
Abstracts and Posters

NSF REU MICROBIOLOGY

Andrew Brooks, UNLV 59
Mentor - Martin Schiller, School of Life Sciences
Mary Evert, Otterbein University 61
Mentor - Elizabeth Hausrath, Department of Geosciences
Anthony Harrington, UNLV 63
Mentor - Penny Amy, School of Life Sciences
Trea LaCroix, University of Nevada, Reno 65
Mentor - Kamud Archarya, Desert Research Institute (DRI) - Las Vegas
Jennifer Meoni, North Carolina State University 67
Mentor - Henry Sun, Nevada Cancer Institute (NVCI) - Las Vegas
Rosa Ojeda, California State University Northridge 69
Mentor - Helen Wing, School of Life Sciences
Max Olsen, Utah State University 71
Mentor - Martin Schiller, School of Life Sciences
Maryknoll Palisoc, College of Southern Nevada 73
Mentor - Brian Hedlund, School of Life Sciences
Denisse Reyes, UNLV 75
Mentor - Eduardo Robleto, School of Life Sciences
Lucero (Lucy) Rivera, Western Arizona 77
Mentor - Dennis Bazylinski, School of Life Sciences
Chelsey VanDriess, University of Minnesota 79
Mentor - Duane Moser, Desert Research Institute (DRI) - Las Vegas
Christopher Yip, Juniata College 81
Mentor - Martin Schiller, School of Life Sciences
UNLV, Grant Supported Students and Independent Study Programs

Daniel Sneed
Nicole Calica, UNLV 83
Mentor – Brian Hedlund, School of Life Sciences

John Gevorkian, UNLV 85
Mentor - Brian Hedlund, School of Life Sciences

Robert Gex, UNLV 87

UNLV, SCIENCE 101

Fadia Abdullah and Guadalupe Medrano, UNLV 89
Mentor – Alicia Simon

Mekdelawit Mezgebu and Victor Trinh 91
Mentor – Alicia Simon
UNLV, Radiochemistry Fuel Cycle Summer School

Stuart Allen, Georgia Institute of Technology
Mentors - Ken Czerwinski, Jonathan Plaue, Radiochemistry Program
Kyle Childs, South Carolina State
Mentors - Ken Czerwinski, Vanessa Sanders, Radiochemistry Program
Briana Clanton, Florida Memorial University
Mentor - Sherry Faye, Radiochemistry Program
Sean Hayes, California Polytechnic Institute
Mentors – Ken Czerwinski, Amber Wright, Radiochemistry Program
Nieka Jackson, South Carolina State
Mentors – Ralf Sudowe, Narek Gharibyan, Balaz Bene, Radiochemistry Program
Charles Loelius, Rutgers University
Mentor - Ken Czerwinski, Radiochemistry Program
Kristin McConnell, University of Texas at Austin
Mentors - Dr. Ken Czerwinski, Jonathan Plaue, Radiochemistry Program
Tenisa Meadows, Florida Memorial University
Mentors - Ken Czerwinski, Vanessa Sanders, Radiochemistry Program
Birdy Phathanapirom, University of Texas at Austin
Mentors - Ken Czerwinski, William Kerlin, Bradley Childs, Radiochemistry Program
Zachary Schriver, Purdue
Mentors - Dan Koury, Gerald Egeland, Radiochemistry Program
Alan Stebbins, University of Massachusetts – Amherst
Mentor - Maryline Ferrier, Radiochemistry Program
Douglas Woods, Oregon State University
Mentor - Ken Czerwinski, Edward Mausolf, Edward Bylina, Radiochemistry Program
Kimberly Gray, Department of Energy Employee
Mentors - Ken Czerwinski, Edward Mausolf, Edward Bylina Radiochemistry Program
2011
Undergraduate Research Opportunities Program & Creative Activities Symposium (UROP/URCAS)

August 9, 2011
UNLV, Sciences and Engineering Building (SEB) Lobby

9:00 a.m. - 10:00 a.m. Poster Installation
10:00 a.m. - 10:15 a.m. Opening Remarks, College of Sciences Dean, Dr. Timothy Porter
10:15 a.m. - 12:00 p.m. Public Viewing
12:00 p.m. - 12:45 p.m. Luncheon, SEB Room #1243
12:45 p.m. - 1:00 p.m. Acknowledgements, Program Directors
Mission Statement

The University of Nevada, Las Vegas is a research institution committed to rigorous educational programs and the highest standards of a liberal education. We produce accomplished graduates who are well prepared to enter the work force or to continue their education in graduate and professional programs. Our faculty, students, and staff enthusiastically confront the challenges of economic and cultural diversification, urban growth, social justice, and sustainability.

Our commitment to our dynamic region and State centrally influences our research and educational programs, which improves our local communities. Our commitment to the national and international communities ensures that our research and educational programs engage both traditional and innovative areas of study and global concerns. UNLV’s distinctive identity and values permeate a unique institution that brings the best of the world to our region and, in turn, produces knowledge to improve the region and world around us.

UNLV is committed to and driven by these shared values that will guide our decision making:

- High expectations for student learning and success;
- Discovery through research, scholarship, and creative activity;
- Nurturing equity, diversity, and inclusiveness that promotes respect, support, and empowerment;
- Social, environmental, and economic sustainability;
- Strong, reciprocal, and interdependent relationships between UNLV and the region around us;
- An entrepreneurial, innovative, and unconventional spirit.
Nevada National Sciences Foundation (NSF)

Experimental Program to Stimulate Competitive Research (EPSCoR)

The Undergraduate Research component of the current NSF EPSCoR award provides lab and field research experiences, through summer scholarship programs and annual fellowship opportunities, to full-time NSHE undergraduate students. These programs fund eligible students either majoring in mathematics, science, or engineering, or majoring in education and specializing in teaching K–12 in the fields of mathematics, science, or technology. Research is conducted under the guidance of NSHE faculty mentors. The hands-on experience gained through these programs has proven to supplement classroom learning and serve as gateways to new and exciting opportunities for all participants.

EPSCoR - Experimental Program to Stimulate Competitive Research

NSF, the federal agency that first developed EPSCoR programs, sponsored the first EPSCoR program in Nevada. Since 1985, NSHE institutions have received more than $41 million in federal funds from NSF EPSCoR, together with non-federal matching funds.

Left to right: Mathew Heuton, UNLV; Alexa Khan, UNLV; Diana Ha, UNLF; Jeanette Perry, UNLV.
National Institutes of Health (NIH) IDeA Network of Biomedical Research Excellence Program (INBRE)

Undergraduate Research Program

Nevada INBRE sponsors 15 undergraduate research scholarships each year. Students selected for the program conduct a lab research project in a faculty mentor’s laboratory. Summer research opportunities often lead to longer-term collaborations between students and faculty, publishable research, and careers in medicine or biomedical research. Opportunities are available for research in emerging areas such as genomics, proteomics, molecular modeling, imaging, and bioinformatics. However, any area of research that might be supported by the NIH is appropriate.

Students are selected in a statewide, merit-based competition. As part of the application process, students are required to identify a faculty mentor at UNR, UNSOM, UNLV, or the Nevada Cancer Institute with whom they are interested in conducting research.

Nevada INBRE is a network of physical and human resources available to scientists in Nevada. Its mission is to provide infrastructure that enables investigators to successfully win research funding. INBRE research facilities provide research support services, training, and equipment for Nevada’s biomedical investigators. Nevada INBRE also sponsors research, scholarships and training opportunities for faculty members and students.

The National Center Research Resources (NCRR) Institutional Development Award (IDeA) program broadens the geographic distribution of NIH funding for biomedical and behavioral research. The program fosters health-related research and enhances the competitiveness of investigators at institutions located in states in which the aggregate success rate for applications to NIH has historically been low. Supported by the NCRR Division of Research Infrastructure, the IDeA program increases the competitiveness of investigators by supporting faculty development and research infrastructure enhancement at institutions in 23 states and Puerto Rico.

IDeA Networks of Biomedical Research Excellence (INBRE) enhance biomedical research capacity, expand and strengthen the research capabilities of biomedical faculty, and provide access to biomedical resources for promising undergraduate students throughout the eligible states. INBRE implements the IDeA approach at the state level by enhancing research infrastructure through support of a network of institutions with a multidisciplinary, thematic scientific focus. INBRE is the
second phase of the Biomedical Research Infrastructure Networks (BRIN) program, which began by providing planning grants in 2001.

Centers of Biomedical Research Excellence (COBRE) augment and strengthen institutional biomedical research capabilities by expanding and developing biomedical faculty research capability through support of a multidisciplinary center, led by a peer-reviewed, NIH-funded investigator with expertise central to theme of the grant proposal.

The IDeA program also supports IDeANet, an Internet-based network providing connectivity for high-bandwidth science applications. IDeANet will enable collaboration among institutions, ultimately supporting all participants in the IDeA program, as well as participants in the Research Centers in Minority Institutions (RCMI) program and other NCRR-supported networks.

Left to Right: Gregory King, UNLV; Pashtana Usufzy, UNLV; Carmen Vallin, UNLV; Hassan Rizvi, UNLV.
National Science Foundation Research Experience for Undergraduates Program (NSF REU)

REU PHYSICS AND ASTRONOMY

The Research Experience for Undergraduates (REU) program is a program of the National Science Foundation to give undergraduate students an experience in performing research.

Most of a student's career consists of classroom lectures. The REU program is intended to benefit students by offering experiences that go beyond the classroom. The UNLV Physics Department has had a successful REU program since 1987. Initially the program was limited to UNLV students. Beginning in 1992, the program was open to non-UNLV students as well. Students participate in research projects in the summer with follow-up activity during the academic year.

Front row (left to right): Quinton Guerrero, Monmouth College; Justine Carrayer, Colorado College; April Jeffries, State University of New York at Albany; Daniel Sneed, University of Nevada Las Vegas; Second row (left to right): Phil Lotshaw, Willamette University; Robert Gex, University of Nevada Las Vegas; Guillermo Esparza, Harvey Mudd College; Anna Smith, Davidson College; Back row (left to right): Quinlan Smith, California Lutheran University; Jack Brangham, Otterbein College; Nick Macholl, Loyola Chicago; Brandon Stewart, College of Southern Nevada; Tyler Mosher, Clarkson University; Not Pictured: Julius Monello.
National Science Foundation Research Experience for Undergraduates Program (NSF REU)

REU MICROBIOLOGY

UNLV offers an REU Site program in partnership with the Desert Research Institute. Undergraduate students participate in a 10-week summer program involving research in the area of environmental microbiology.

Students collaborate with faculty mentors in developing and carrying out hypothesis-based projects on microorganisms from diverse habitats such as hot springs, the deep terrestrial subsurface, hypersaline lakes, arid soils, and ephemeral water sources. Students may also choose to explore the mechanisms of magnetotaxis, microbial adaptation to stressful and non-host environments, or the dynamics between primary producers and consumers.

All students receive training in current molecular techniques and the ethics of science, and they participate in weekly discussions on their project. At the conclusion of the program, students present their research results at a scientific colloquium. In addition, all students are encouraged to present their research at a regional or national scientific conference. Students receive a $4000 stipend, housing, meals, and a travel subsidy. First generation college students and members of an underrepresented group are strongly encouraged to apply.

Back row (left to right): Andy Brooks, University of Nevada Las Vegas; Anthony Harrington, University of Nevada Las Vegas; Max Olsen, Utah State; Middle row (left to right): Mary Evert, Otterbein College; Trea LaCroix, University of Nevada Reno; Lucy Rivera; Western Arizona; Front row (left to right): Christopher Yip, Juniata College; Rosa Ojeda, California State Northridge; Jennifer Meoni, North Carolina State; Maryknoll Palisoc, University of Nevada Las Vegas
Grant Supported Students and Independent Study Programs

Undergraduate research programs are a valued component of the College of Sciences. Independent research activities mentored by our research active faculty cultivate and support research partnerships and invite undergraduates to work as junior colleagues in a laboratory. These programs offer the opportunity to work on cutting edge research. Continuing students, undergraduates, and high school students engage in each phase of standard research activity: developing research plans, writing proposals, conducting research, analyzing data, and presenting research results in oral and written form. Research activities can take place over the summer or during the regular academic terms and are available in both academic departments and interdisciplinary laboratories. Projects may require an entire semester, and many continue for a year or more. Students use their experiences to become familiar with faculty members, learn about potential majors, and investigate areas of interest.

Participants gain practical skills and knowledge they apply to careers after graduation or as graduate students. Most importantly, they become involved in state-of-the-art research. The School of Life Sciences and the Department of Physics and Astronomy are active participants in this year’s summer UROP program with students working in state of the art research laboratories on project ranging from honeybee genomics to extra galactic x-ray bursts.
Radiochemistry Fuel Cycle Summer School

Description
The six week summer school is an intensive course in radiochemistry with a focus on the nuclear fuel cycle. Radiochemistry is introduced through the physics of radioactive decay and chemistry of radioelements, providing an intellectual intersection of the periodic table and chart of the nuclides. The course begins with a description of the chart of the nuclides, detailing the information, concepts, and data used as a foundation for exploring isotopes. Details on alpha decay, beta decay, gamma decay, and fission are presented. The methods and data from the investigation of nuclear properties, nuclear forces and nuclear structure are described. The fundamental chemical properties in radiation and radiochemistry, including the relationship between speciation, kinetics and thermodynamics, the influence of radiolysis on chemistry, radioisotope production and separations will be explored. The use of radiochemistry in research and technology is explored with attention given to the nuclear fuel cycle. The modern nuclear fuel cycle is presented from fundamental chemistry to

Course Outcomes
It is expected students will accomplish the following during the course.

- Understand, utilize, and apply the chart of the nuclides to radiochemistry and nuclear technology
- Understand the fundamentals of nuclear structure
- Understand chemical properties of radioelements
- Comprehend and evaluate nuclear reactions and the production of isotopes
- Comprehend types and descriptions of radioactive decay
- Utilization of radiochemistry in research

From left to right: Kyle Childs, South Carolina State; Kimberley Gray, DOE Employee; Charles Loelius, Rutgers University.
SCI 101 is a First Year Experience (FYE) program designed to help students make the transition to college life by providing opportunities to explore, discover, and connect with the university and its resources. The course syllabus is focused on three themes whose learning outcomes enable the students to navigate their college careers successfully at UNLV. The first third of the course provides students with a tool kit of necessary college skills including note taking, test taking preparation, organization, and stress management. The middle third of the course focuses on research skills and critical thinking. Students participate in projects designed to advance their library literacy, research methods, public speaking, and technical writing. The final portion of the class focuses on university resources including academic and career advising, university academic standards, and
National Aeronautics and Space Administration (NASA)
Experimental Program to Stimulate Competitive Research (EPSCoR)

The NASA Experimental Program to Stimulate Competitive Research (EPSCoR), strengthens the research capabilities of jurisdictions that have not in the past participated equitably in competitive aerospace and aerospace-related research activities. EPSCoR provides eligible jurisdictions with funding to develop a more competitive research base within their jurisdiction and member academic institutions. Seven federal agencies conduct EPSCoR programs. The two main components of NASA EPSCoR are:

NASA EPSCoR Research Infrastructure Development Cooperative Agreement Notice. The Research Infrastructure Development (RID) component enables jurisdictions to build and strengthen relationships with NASA researchers. The RID has a three-year base period of performance with a potential single, two-year renewable period of performance. Awards are $125,000 per year. A one-to-one match (cash or in-kind) is required for every NASA dollar awarded. The most recent RID was announced and awarded in 2007. NASA intends to announce the RID opportunity every three to five years, pending funding availability.

NASA EPSCoR Research CAN. The NASA EPSCoR CAN for Research Awards solicits topic-specific proposals addressing high-priority NASA research and technology development needs. Awards are up to $750,000 for a three-year performance period. A one-to-one match (cash or in-kind) is required for every NASA dollar awarded. NASA intends to announce the EPSCoR CAN for Research Awards yearly, pending funding availability.

NASA Research Opportunities

Supporting research in science and technology is an important part of NASA’s overall mission. NASA solicits this research through the release of various research announcements in a wide range of science and technology disciplines. NASA uses a peer review process to evaluate and select research proposals submitted in response to these research announcements. Researchers can help NASA achieve national research objectives by submitting research proposals and conducting awarded research. University and industry research institutions are important NASA partners in many areas of science and technology. As part of its broadening focus on advancing the field of distributed heterogeneous computing, NASA supports ongoing research efforts in a number of disciplines through the grant process.
HiPSEC focuses on properties of materials relevant to the National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program. High priority is given to measuring static and dynamic high-pressure studies for validating and improving computational models over a largely unexplored range of very high pressures and temperatures. Materials under study include d- and f-band metals, energetic materials and their detonation products, foams, and hydrogen and other and low-Z elements and their compounds. HiPSEC staff measure equilibrium thermochemical properties, mechanical properties, reaction kinetics, and reaction products at static pressures using in situ X-ray diffraction; absorption, emission, light-scattering spectroscopy from infrared to X-ray wavelengths; and other chemical and physical methods.

Its mission also encompasses shock experiments at NNSA's Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory, Scientists recover samples from these experiments for chemical, physical, and mechanical analysis.

Theoretical and computational studies focus on highly correlated and "warm" condensed matter systems. Under the Department of Defense's MURI program, HiPSEC scientists are studying effect of defects on the mechanisms of initiation and energy release in energetic molecular crystals.

Collaboration: This integration of high-pressure science programs in Nevada with programs at NNSA's National Laboratories, DOD Research Laboratories, and other university laboratories aims to enhance Nevada's scientific and educational infrastructure, while developing focused high-pressure research programs relevant to the missions of DOE and DOD. HiPSEC is a member of the High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source of Argonne National Laboratory.

In addition to HPCAT facilities at the Advanced Photon Source, HiPSEC has materials science laboratories on the UNLV campus for crystallography, solidstate spectroscopy, cryogenic studies, and synthesizing and characterizing foams. HiPSEC also maintains computational centers for engineering and solidstate theory on the UNLV campus.
Desert Research Institute (DRI)

Education and Outreach: For higher education students, DRI provides a learning environment strongly focused on collaborative, interdisciplinary research. DRI faculty members participate in Atmospheric and Hydrologic Science academic programs with the University of Nevada, Reno, University of Nevada, Las Vegas, and Nevada State College. Students conduct their research at DRI while earning their degrees through the universities. DRI is also committed to Nevada's K-12 education system and the professional development of its teachers. DRI emphasizes "teaching the teachers" so they can bring real world knowledge back into their classrooms.

Educational Programs

Atmospheric Sciences Graduate Program: Students in the Atmospheric Sciences Graduate Program study dynamic meteorology, atmospheric physics, mesoscale modeling, fire weather and climate, atmospheric chemistry and instrument development.

Hydrologic Sciences Graduate Program: Consistently ranked in the top 10 by U.S. News & World Report, the Hydrologic Sciences Graduate Program offers M.S. and Ph.D. degrees in both Hydrology and Hydrogeology.

The GreenPower Program supports non-fossil fuel energy demonstration projects and education at Nevada schools. The program involves partnerships in both northern and southern Nevada with NV Energy, their customers, and school districts.

Storm Leak Lab Programs: Educational programs at Storm Peak Lab include graduate field work in Atmospheric Sciences, the GeoScience Research at Storm Peak (GRASP) program providing field research experiences for diverse undergraduate students, and a 5th and 6th grade weather and climate program.
Nevada Cancer Institute (NVCI)

Nevada Cancer Institute (NVCI) is the official cancer institute for the State of Nevada. A nonprofit organization, NVCI is committed to reducing the burden of cancer by pursuing the development of a comprehensive cancer center, as defined by the National Cancer Institute. Through the knowledge and expertise of the finest scientists, clinicians, educators and caregivers, the Institute provides hope to communities in Nevada, the Southwest and beyond through research, education, early detection, prevention and high quality patient care. NVCI is striving for a future without cancer that is achieved through initiated and collaborative research in basic, clinical and population science. Nevada Cancer Institute is a team of dedicated professionals committed to providing world-class, research-linked cancer care to Nevadans and people throughout the Southwest. Our research-linked, comprehensive cancer facility opened late Summer 2005 and is dedicated to state-of-the-art research and implementation of groundbreaking methods of prevention, detection and treatment of cancer.
Solar and Renewable Energy Minor

Through an industry-education partnership with NV Energy, UNLV has established educational programs in sustainable energy. The undergraduate Solar and Renewable Energy Minor was developed to catapult Nevada and UNLV into an alternative energy leadership role and to meet workforce needs of the region. This has attracted new students to UNLV and provides an excellent opportunity for workforce development in the state and region. The minor is available to all undergraduate students at UNLV.

There are two tracks (Engineering and Science Track and Policy Track) that have appropriate curriculum where students can add this onto their existing degree program. In the Fall semester of

Urban Sustainability Initiative

Two Department of Energy Grants are being used to implement the Urban Sustainability Initiative (USI) at the University of Nevada, Las Vegas. USI is supporting various interdisciplinary research teams, graduate students, and interns. These research efforts in environmental, economic, and social sustainability. They address critical areas of (e.g., energy, water, transportation, health, built environment) that were identified by the Brookings Institution Mega Mountains study (2008) as critical for the regions continued prosperity. Undergraduate students are supported through this initiative to move forward campus sustainability efforts in education, research, and operations.
Department of Physics and Astronomy

The Department of Physics and Astronomy offers Bachelor of Science degrees in Physics, Applied Physics, and Computational Physics, as well as a minor in Physics. During the summer, a Research Experience for Undergraduate (REU) program supports undergraduates and provides research opportunities during a 10-week period. The REU program is funded by a grant from the National Science Foundation. Students should apply by February or March for the following summer.

A chapter of the Society of Physics Students (SPS), including both graduate and undergraduate students, welcomes student participation.

School of Life Sciences

School of Life Sciences

The School of Life Sciences (SoLS) is one of the largest academic units on the UNLV campus, with 28 full-time faculty members, 15 adjunct and research faculty, and approximately 1,200 undergraduate majors and 60 graduate students. Our enthusiastic faculty is committed to advancing scientific knowledge and to educating, training, and fostering the career development of undergraduate and graduate students. We offer undergraduate concentrations in Biotechnology, Comprehensive Studies, Ecology and Evolutionary Biology, Education, Cell and Molecular Biology, Microbiology, Integrative Physiology, Preprofessional Studies, and Urban Horticulture.

The School has well-equipped laboratories to support research. These facilities are enhanced through access to a number of specialized scientific resources, including the Nevada Genomics Center and DNA Sequencing Facility, the Nevada Center for Biological Imaging, the Ecophysiological Research facility, an animal care facility; and regional natural history collections, including those of the Wesley E. Niles Herbarium and the Marjorie Barrick Museum. Investigators from the Nevada System of Higher Education’s Desert Research Institute also contribute to our graduate program. Prospective students should make contact with one or more faculty members to familiarize themselves with their current research interests, opportunities for conducting research projects, and funding availability.
Title: Bioinformatics Approach to Identifying Proteins Mediating Plant Response to Drought Stress

Abstract: The current water shortage is a major concern in regard to the global climate change. A constant decrease in availability of water will have direct effects on the development of plants. This fact is a strong stimulus to identify the proteins involved with activation of stress response in plants. My research focuses on the abiotic stress of drought on rice (Oryza sativa). There are two components to my research: a bioinformatics approach that will analyze genes activated during drought stress, and an experimental approach that will utilize the yeast one-hybrid system to identify the proteins involved with this response.

Why are you doing this project? I am interested in the growing global climate change crisis that has led us to look into an alternative way to harvesting agricultural crop. My project aims at goal to have the ability to produce the same quality plant with less water.

What problem are you trying to solve? Harvesting rice as an agricultural crop requires an immense amount of water. It is beneficial to our environment if we can find a way to allow our plants to uptake less water yet still produce abundant crop.

What tools or equipment are you using? I will be using bioinformatics tools such as MEME, BioProspector, Gibbs and many others to analyze genes of interest. I will also utilize the yeast-one hybrid system to identify proteins that interact with these genes.

Why is your project worth researching? It is vital for research on drought stress, especially in plants because of the shortage of water our climate is experiencing. The problem we are trying to solve is to find a way to grow rice plants with less water while maintaining an appropriate yield because of its high demand as a world-wide food crop.

What relevance will it have on the community, society, and in your research field? Identifying the proteins that are involved with drought stress responses in rice plants can potentially lead way to genetically modifying these plants to combat drought more efficiently. This means that we can eventually harvest more rice with less water. The identification of these proteins can also pave way to further research in other agricultural crops.

What did you find? There are many genes that are unregulated during exposure to abiotic stress in rice plants. Application of software such as BioProspector allowed for identification of different motif sequences in the promoter regions of the activated genes.

What is the future of your research project? With the identification of proteins mediating drought stress in rice, we can look into genetically modifying rice to grow copiously with less water in the future. Further research on different types of abiotic stresses such as high salinity or cold stress can also be done on the rice plant.
The Role of a Transcription Factor in Regulating Rice Response to Drought Stress

Diana Ha, Liyuan A. Zhang and Jeffery Q. Shen
School of Life Sciences, University of Nevada at Las Vegas

Abstract: The current water shortage is a major concern in regard to our global climate change crisis. A decrease in the availability of water will have direct effects on the development of plants. (1) Some crops, such as Oryza sativa, or commonly known as rice, requires an abundant amount of water for adequate growth. With the water shortage crisis, it will become extremely difficult to harvest such crops to meet the world’s food demand. However, many plants have evolved mechanisms for overcoming and tolerating stresses such as drought. My research focuses on studying the proteins involved with these mechanisms. The WRKY superfamily is a family of transcription factors that up or down-regulate pathways in response to biotic and abiotic stresses in plants. (2) We propose and hypothesize that OsWRKY70 plays a role in the abiotic stress of drought in rice. To identify the physiological role of this gene, we studied the phenotype of OsWRKY70 knockout mutants using an insertional transposon in comparison to its wildtype counterparts. This project aims to study the proteins involved with drought resistance in rice, which will pave the way for the production of genetically engineered crops that will be better at conserving water.

Introduction: WRKY transcription factors are proteins that bind to genes to turn them on or off (1) (see Figure 1). They are the master switches in regulating plant responses to biotic (pathogenic attack) and abiotic (cold, heat, drought) stress.

Figure 1: The WRKY Protein Binds to the W-box to Express or Repress Target Genes.

Figure 2: OsWRKY70 Belongs to WRKY Group 1a.

OsWRKY70 belongs to the Group 1a WRKY superfamily of transcription factors – having two WRKY domains, each with a WRKZ and zinc finger motif. (2) Analysis of data from published papers suggest that OsWRKY70 is a protein that may be responsible in drought tolerance.

Methods:
• To test the physiological role of OsWRKY70, the expression of this gene was knocked out using transposon mutagenesis.
• PCR allowed for selection of mutants that are homozygous for the knockout trait. Quantitative real-time PCR (qRT-PCR) showed the expression levels of OsWRKY70 in the mutants.
• Seedling germination with growth on MS-media with 3% sucrose provided comparative analysis between mutant and wildtype phenotypes.

Figure 3: OsWRKY70 Knockout Mutants Were Created by the dSpm Transposon.

Insertion of this transposon causes a disruption in the transcription of the OsWRKY70 gene. Transposon mutants were obtained from University of California, Davis.

Results:

Figure 4: Homozygous Knockout Lines Were Confirmed by PCR.

A Wildtype Mutant homozygous Mutant homozygous

B Primer pair: A and B Primer pair: B and C Primer pair: A and B

Polymerase Chain Reaction (PCR) was utilized to select for homozygous knockout mutants. Panel A shows the different primers used for wildtype, homozygous, and heterozygous mutant lines. Panel B shows the possible band sizes for each primer pair. A band at 500 bp, using primer pair B and C, indicates both homozygous and heterozygous mutants. Additionally, homozygous mutants will not show a band with primer pair A and B.

Figure 5: The Expression of OsWRKY70 in the Two Mutant Lines is Barely Detectable.

The expression of OsWRKY70 was analyzed by qRT-PCR for each mutant line and wildtype line. Results show that expression was barely detectable in both OsWRKY70 knockout mutants as compared to that of wildtype. Both knockout mutants were derived from the same line.

Figure 6: Knockout Mutants Germinated One Week Later Than Wildtype Seedlings.

Germination of seedlings on MS-media with 3% sucrose. OsWRKY70 knockout mutant seedlings did not germinate until one week after its wildtype counterpart.

Conclusions:
• PCR confirmed that the OsWRKY70 mutant lines we obtained were homozygous for the knockout of OsWRKY70 (see Figure 4).
• qRT-PCR analysis showed that mutant plants had a barely detectable amount of expression (see Figure 5). This indicates that the transposon was able to knock out the expression of OsWRKY70.
• Seedling germination showed that OsWRKY70 knockout mutants germinated one week after wildtype seedlings (see Figure 6), leading us to speculate that OsWRKY70 plays a role in germination in rice plants.
• Further analysis is ongoing to determine if OsWRKY70 plays a role in regulating responses to drought stress.

References:

Acknowledgements: I would like to thank my mentor, Dr. Jeffery Shen, for this rewarding opportunity as well as members of Shen Lab for all their endless help and support. I appreciate your guidance through this project; I could not have done it without your help. This project was made possible by the Nevada Infrastructure for Climate Change Science, Education, and Outreach. NSF EPSCoR Grant # EPS0814372.
Mathew Heuton

Email: HEUTONM@UNLV NEVADA.EDU
Former High School: West High School
Location of High School: Las Vegas, NV
Mentor/Advisor: Frank Van Breukelen
Educational Institute of Project: UNLV
Department: School of Life Sciences
Research Site: SEB 3168

Title: Effects of Climate Change on the Viability of the Devils Hole Pupfish

Abstract:
Devils hole is an unusual, cavernous, aquifer-fed spring in Death Valley National Park. It is the only home to a critically endangered species, *Cyprinodon diabolis*, a.k.a. The Devils Hole Pupfish. *C. diabolis* allows us a unique look at the impact of climate change on a species that has no gene flow and no possibility of escape from its current habitat. Climate change affects ectotherms (cold-blooded animals) tremendously since their body temperature is subject to changes in the temperature of their environment. In the case of *C. diabolis*, they are subject to high temperatures year round, around 33°C. The high temperatures cause an increase in oxygen needs for essential metabolic activity as well as an increase in energy needs. The limited energy and oxygen availability of Devils Hole means *C. diabolis* has to work harder to merely stay alive and has less energy to dedicate to reproduction. Most biologists will tell you that animals are adapted to thrive in their environment. But what happens when the environment changes quickly, the genes necessary for adaptation are unavailable in the population, and there is no chance for finding a new habitat? The answer is simple; the population declines rapidly until the stress or stresses they face are removed. In the case of *C. diabolis*, we are investigating just how much stress is being placed on this population by an increase in temperature. Recent climate change models predict a 5 – 6°C increase in average air temperatures across the southwest portion of the United States in the next 80 years (Meehl, et al., 2007). In biological systems, a 1°C change in body temperature may result in a >10% higher energy demand. Although we do not know what the effects of higher air temperatures will be on Devils Hole water temperature, it is likely that even a modest change in temperature will result in greater energetic demands.

Why are you doing this project? We can also hypothesize what effects global climate change will likely have on this population and even use this species as a model for climate change’s effects on fish population around the world.

What problem are you trying to solve? What tools or equipment are you using? Our investigation includes measuring resting aerobic metabolic activity based on oxygen consumption at various temperatures. Due to the endangered nature of *C. diabolis*, we use a possible hybrid fish of *C. diabolis* and its closest relative, *C. nevadensis mionectes* for testing purposes. The basis of our experiments is flow-through respirometry.

Why is your project worth researching? *Cyprinidon diabolis* is a critically endangered pupfish species that is only found in Devils hole. The population contained just 38 individuals in 2006. The current population is estimated at 120 individuals. Most breeding takes place on the shelf at the bottom center of the photograph.

What relevance will it have on the community, society, and in your research field? Devils Hole is a unique pupfish habitat in the Mojave. We can also hypothesize what effects global climate change will likely have on this population and even use this species as a model for climate change’s effects on fish population around the world.

What did you find? Preliminary data show unusual oxygen consumption patterns for 33°C acclimated fish.

What is the future of your research project? As a model, *C. diabolis* may tell us what will happen to fish populations around the world if human-caused climate change is not controlled.
Effects of Climate Change on the Viability of the Devils Hole Pupfish
Matthew Heuton, Stanley Hillyard, and Frank van Breukelen
School of Life Sciences and School of Dental Medicine, University of Nevada Las Vegas

Abstract

Devils Hole is a unique pupfish habitat in the Mojave. Seasonal temperature variation on the breeding shelf.

C. diabolis likely lives above its ideal temperature range.

Cyprinodon diabolis is a critically endangered pupfish species that is only found in Devils Hole. The population contained just 38 individuals in 2006. The current population is estimated at 120 individuals. Most breeding takes place on the shelf at the bottom center of the photograph.

Don't believe everything you read!

Methods

Our investigation includes measuring resting aerobic metabolic activity based on oxygen consumption at various temperatures. Due to the endangered nature of C. diabolis, we use a possible hybrid fish of C. diabolis and its closest relative, C. nevadensis mionectes for testing purposes. The basis of our experiments is flow-through respirometry. We place the fish in a clear plastic chamber that has water pulled through it by a peristaltic device and a series of tubes. An electrode that senses changes in oxygen pressure takes measurements before the fish enters the chamber to establish a baseline and then continually measures the oxygen pressure over a course of 2-5 hours to determine how much oxygen the fish requires at rest. After determining how much oxygen the fish consumed at rest at various temperatures, we chart those data to determine which temperatures are stressful for the fish in an acute setting. By using fish that are acclimated to different temperatures, 28 and 33 °C, we can see what is happening to the fish metabolically under chronic conditions. We can also hypothesize what effects global climate change will likely have on this population and even use this species as a model for climate change's effects on fish population around the world.

Preliminary data show unusual oxygen consumption patterns for 33 °C acclimated fish.

Summary and Conclusions

• Increased metabolic activity in medium and large fish tested at 34 °C suggests temperature may be limiting size, fecundity, and the ability to thrive in Devils Hole.
• A minimal change in mass-specific metabolic rate on the population level over a wide range of temperatures may indicate a redirection of metabolic resources in order to simply survive, precluding the ability to thrive.
• New data are showing that fish acclimated to 33 °C are very unstable in their metabolic activity and a further increase in habitat temperature may lead to the extinction of C. diabolis.
• As a model, C. diabolis may tell us what will happen to fish populations around the world if human-caused climate change is not controlled.

Supported by cooperative agreement EPS-08144372 from the National Science Foundation
Title: Ubiquitylation of Proteins in the Frozen Wood Frog

Abstract:
Wood Frogs (Rana sylvatica) are able to withstand freezing temperatures during the winter season. During that time heart rate and breathing approaches a halt. One might ask how are they able to spontaneously come back to life when temperatures come back to ideal. In collaboration with Dr. Ken Storey (Carleton University, Canada), we are going to investigate ubiquitin-dependent proteolysis in the freeze-thaw cycle & how that might give clues to their survival.

Why are you doing this project? I am doing this project to find out how Wood Frogs are able to withstand freezing temperatures that would kill most of other organisms.

What problem are you trying to solve? I am trying to find out if ubiquitin conjugate levels decrease when Wood Frogs enter freezing temperatures.

What tools or equipment are you using? A Lowry Assay of my homogenate samples to find protein concentrations during the freeze-thaw cycle of the wood frog. Western and Dot Blots to find out ubiquitin conjugates levels in the freeze-thaw cycle of the wood frog.

Why is your project worth researching? My project is worth researching because it is amazing how these vertebrates (Wood Frogs) are able to freeze and have their heart rate, blood flow, and breathing stop and spontaneously come back when they are thawed out. This research may help out in the future with many other organisms that don’t have this ability.

What relevance will it have on the community, society, and in your research field? To give people around me an insight of the reasons how these organisms are able to withstand freezing temperature would be an amazing accomplishment.

What did you find? I currently am still working on my research project.

What is the future of your research project? I am hoping when I finish this project I am able to get it published in a scientific journal.
Ubiquitylation of Proteins in the Frozen Wood Frog

Alexa Khan¹, Michael Ulrich¹, Kenneth Storey², Frank van Breukelen¹
¹School of Life Sciences, University of Nevada, Las Vegas; ²Carleton University, Ottawa Canada

Abstract
Wood frogs (Rana sylvatica) are able to withstand freezing. Respiratory and cardiac activity ceases when frozen. Homeostatic functions like protein synthesis and degradation presumably must also be compromised. We investigated the fate of ubiquitin-dependent proteolysis in the freeze-thaw cycle and how that might gives clues to wood frog survival. We performed western blots for ubiquitin conjugates.

Introduction
Rana sylvatica has the ability to remain frozen for as many as 11 days at -4°C with 100% survivorship. Few data are available as to the fate of major homeostatic processes like protein synthesis and degradation. Ubiquitin-dependent proteolysis is responsible for as much as 80-90% of cytosolic protein degradation. Essentially, a small peptide modifier, ubiquitin, is conjugated to target proteins and marks those proteins for degradation. Ubiquitin-dependent proteolysis is essential for the turnover of protein pools but is also critical in how a cell responds to cellular stress and protein damage. While there have been numerous predictions of how global climate change will affect temperatures, few studies have addressed the biological implications.

Hypothesis
I hypothesize that when wood frogs (Rana sylvatica) recover from freezing, ubiquitin-conjugate concentrations will decrease.

Materials and Methods
Rana sylvatica were collected from the woods in Ottawa, Canada. Hind thigh muscle and liver tissue samples were collected from different points of the freeze-thaw cycle. Five individuals of each state were used (n = 5).

Control (C) wood frogs were acclimated 1-2 weeks at 5° C.

Frozen (F) wood frogs were exposed to -3° for 24 h.

Long thaw (LT) wood frogs were frozen 24 h @ -3° C and then thawed for 24 h.

Short thaw (ST) wood frogs were exposed to -3° C and then thawed for 8 h.

Sample Preparation:
Samples from the muscle and liver tissues were homogenized in 30 ml Tris-HCl, pH 8.3, 20% glycerol, 2% SDS, and 0.4 M 3-mercaptoethanol. Samples were centrifuged for 20 min @10,000 g for 30 min, 4° C. Supernatants were disrupted using a 30 gauge needle and frozen until use.

A modified Lowry protein assay was performed to determine protein concentrations.

Conclusion
The data demonstrate no qualitative differences in which liver proteins get ubiquitylated. The data do indicate quantitative differences where freezing and thawing is associated with increased ubiquitin conjugate concentrations. The muscle blot was similar in demonstrating no qualitative differences in ubiquitylated proteins (data not shown).

I will perform more quantitative dot blot analyses to determine precisely how much ubiquitylation occurs.

Acknowledgements
We thank NSF EPSCoR for funding this project and the other members of the laboratory for their guidance and assistance. In particular, Michael Treat was instrumental in this study.
Title: Evaluating species responses to climate change using genetic data

Abstract: I examine the impact of historical climate change on the distribution of the Great Basin Pocket Mouse, Perognathus parvus, a sagebrush species from the Great Basin and Columbia Plateau. I evaluate whether the species distribution shifted predictably between the last glacial maximum and present time and whether we can correctly predict the change in species distribution between the two time periods. I use ecological niche modeling to generate a null hypothesis of a range shift assuming that the species has identical climatic requirements between the two time periods. I then use genetic data to evaluate whether the genetic signals of populations correspond to geographic processes (stability or expansion) inferred from the models. Alternatively, if the species climatic requirements do not remain identical through time, the genetic data will not support the models and indicate a different response to climate change, such as range stability.

Why are you doing this project? The current and projected future warming trends together with degradation of habitats throughout much of the Great Basin and Columbian Plateau represent real threats to many species occupying these regions. What problem are you trying to solve? If we can determine the impacts climatic changes have had on the distribution of species, we can obtain a better understanding of the future impacts that projected climatic trends will have on many species in similar regions. Our results with the Great Basin Pocket Mouse may be relevant to other species, some of which are Endangered Species Act candidates. To determine whether the species distribution shifted predictably (accordingly with the climate), the first approach used was ecological niche modeling.

What tools or equipment are you using? This is a computer model that uses information on species environmental requirements and creates a map of the species distribution according to habitat suitability.

Why is your project worth researching? This approach assumes the species environmental requirements have not changed between the last glacial maximum (when ice sheets were at their maximum between 26,500-20,000 years ago) and present time. The second approach used was to contrast these models with genetic patterns. By utilizing DNA sequences, we can determine if the population has been expanding, shifting, or stable.

What relevance will it have on the community, society, and in your research field? What did you find? I cannot include my findings yet, as I have not completed my research for the modeling or genetic markers.

What is the future of your research project? To complete the modeling and genetic markers to conclude my findings.
Evaluating Species Responses to Climate Change Using Ecological Niche Modeling and Genetic Data

Jeanette Perry, School of Life Sciences, University of Nevada, Las Vegas

1 Introduction

The current and projected future warming trends together with degradation of habitats throughout much of the Great Basin and Columbian Plateau represent real threats to many species occupying these regions. If we can determine the impacts of past climatic changes on the distribution of species, we can obtain a better understanding of the future impacts of projected climatic trends on many species in these regions. My results with the Great Basin Pocket Mouse (Perognathus parvus) may be relevant to conservation ecologists and resource managers attempting to protect several Endangered Species Act candidates, such as the pygmy cottontail (Brachylagus diaoensis). I used ecological niche modeling and molecular genetics to determine if P. parvus distribution shifted according to predictions of climate-driven habitat changes between the Last Glacial Maximum (LGM), when ice sheets were at their maximum between 26,500-20,000 years ago and present time.

2 Predictions

I tested the null hypothesis that the species habitat requirements remain identical through time as climates change, and therefore P. parvus responded to the warming climate after the LGM by shifting its range (Fig. 1a; Hewitt 1996). If that’s the case, this range shift will be congruently supported by the ecological niche models and the genetic data. Alternatively, if the species habitat requirements do not remain identical through time, the genetic data will not support the niche models and show a different response to climate change, such as range stability despite the climatic changes (Fig. 1b).

3 Methods

To determine whether the species distribution shifted as predicted under the niche conservation model, I first used the methodology of ecological niche modeling to reconstruct the species current and LGM distributions. I employed the software Maxent (version 3.3.3), which evaluates environmental (e.g., climatic) data taken from the species occurrence records. This information on species environmental requirements was used to identify suitable habitat across the landscape and project species expected distribution on a map. Fourteen climatic variables were used to build the models, including precipitation, temperature, and diurnal range. The project was masked (limited to) the ecoregions where the species actually occurs.

4 Results and Discussion

Secondly, genetic patterns were used to evaluate the niche conservation model. I generated mitochondrial DNA sequences for 71 individuals of P. parvus. I calculated genetic variation among sampling localities which was then interpolated across the landscape in ArcGIS. The patterns of genetic variation can be used to infer which populations have recently expanded and which have remained stable over time according to available population genetic models (Fig. 1) (Hewitt 1996).

5 References

6 Acknowledgements

I thank my mentors B. Riddle and T. Jockina for their assistance with my research, data analysis, and guidance throughout the completion of my paper. I thank V. Herring for her assistance in the laboratory. I also thank M. Shalit and A. Frank for their previous and ongoing research on P. parvus.

Funding Source:
National Science Foundation-EPSCoR
Summer 2011 $4500
Title: Defining the role of NRAS in melanoma maintenance

Abstract: The incidence of melanoma has increased 600 percent over the last four decades; it is the most rapidly increasing malignancy among young people in the United States and is currently the leading cause of cancer death in women aged 25-29. If detected early, the disease is easily treated; however, once the disease has metastasized it is largely refractory to conventional therapies and is associated with a high mortality rate. The development of cancer from a pre-malignant primary tumor to a metastatic cancer that develops at secondary sites is a multi-step process, thought to require many genetic and epigenetic events that provide a growth advantage to cells. It is still unclear, however, which of the many genetic changes are required late in tumor progression. The increased incidence of melanoma, combined with the poor prognosis of patients with advanced disease, make it imperative that we increase our understanding of the underlying genetic causes of melanoma such that better targeted therapeutic strategies can be developed.

Why are you doing this project? I’m working on this project because it gives me not only exposure to biology and chemistry of cancer but also helps me learn and experience a variety of procedures and techniques using different equipment. The project sounded interesting to me because it involves research in the field of oncogenic gene expression and the suppression of it.

What problem are you trying to solve? The fact that resistance plays a major role in treating cancer is known. However, the degree to which this resistance can be understood and dealt with is currently still not impressive. The problem I’m trying to solve is a similar one. Combination therapy to treat cancer is the ultimate goal, and blocking multiple targets that affect cancerous growth is the means we want to do it by.

What tools or equipment are you using? In the lab, there are various exciting and very interesting tools/equipment that I get to work with. Beginning with a pipette to a spectrophotometer, we use a wide array of biotechnology. I get to work with the bio-hood, the PCR machine, Gel Electrophoresis machines, centrifuges of different sizes and etcetera. While specific machines/kits are available for the respective tasks, it is interesting and availed through experience to use personalized tricks or protocols to perform certain procedures.

Why is your project worth researching? This project focuses on treating resistant tumors. When people have cancer and the cells respond positively to the treatment, it is always possible that the cancer will come back and more powerfully the next time. This time, there will be a lot of tumor/growth that is resistant to previous treatment. However, if combination therapy is used to knock out such tumors, there is a possibility that the recurrence of such growth can be prevented. Considering the incidence of melanoma and the frequency of the recurrence of growth, this project might open a good gateway toward treating people with recurring tumors along with the original anomalies.

What relevance will it have on the community, society, and in your research field? This project will create a mouse model that can positively influence future research that will be carried in the field of such resistant tumors. Specific selection for such resistant tumors will allow us to better learn the tumors and this will help the community in the long run. It will definitely make understanding the recurrence of cancer and tumor growth easier and treating it more palpable.

What did you find? We found that tumors are inducible and that extension of tumor growth to other organs, such as the brain and the kidney and a true metastasis to the lung has also occurred on one occasion. The growth of resistance tumors in the mouse model is rapid. Short term cultures from the primary tumors from such growth were established and these cells were syngeneic, forming tumors in all recipient mice. Tumors regressed in all mice treated with Doxycyclin and suppression of NRAS expression significantly increased survival compared with untreated tumor bearing mice.

What is the future of your research project? To take an unbiased approach using gene expression analysis to identify novel mechanisms that may be responsible for resistance.
Defining the Role of NRAS in Melanoma Maintenance

Srvaya T. Challa
PI: Sheri L. Holmen, PhD
Nevada Cancer Institute, Las Vegas, NV

Melanoma is the most rapidly increasing malignant aging
ancy within young people in the U.S.

- The incidence of melanoma has increased by more than 600 percent over the last forty years (ACS statistics www.cancer.org).
- Melanoma is the leading cause of cancer death in women aged 25-29.
- 5-year survival for advanced stages of the disease is ~20%.

Molecular Analysis of Human Melanoma

<table>
<thead>
<tr>
<th>Genes</th>
<th>Normalcy</th>
<th>Mutant Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRAS</td>
<td>Point mutation, deletion, rearrangement</td>
<td>Point mutation</td>
</tr>
<tr>
<td>B-Raf</td>
<td>Point mutation</td>
<td>Point mutation</td>
</tr>
<tr>
<td>NRAS</td>
<td>LOH and Point mutation</td>
<td>LOH</td>
</tr>
<tr>
<td>H-Ras</td>
<td>Point mutation</td>
<td>Point mutation</td>
</tr>
<tr>
<td>C-ary</td>
<td>Overexpression</td>
<td>Overexpression</td>
</tr>
<tr>
<td>B-Raf</td>
<td>Point mutation</td>
<td>Point mutation</td>
</tr>
</tbody>
</table>

Initial Validation of Melanoma-Associated Genes

CASVTA Melanoma Mouse Model System

TVA: transgenic A549-human fibroblasts (A549-HF). Transgenic mouse model for studying the effects of NRAS mutations in melanoma cells. Normal untreated mice develop tumors with a latency of 6-12 months. Melanoma mouse models are essential tools for understanding the mechanisms of tumor development and progression.

Receptor Activator of NF-kB (RANKL) axis

Schematic of the canonical RAS effector pathways RAF-MEK-ERK and PI3K-Akt and the mutations that most often activate these pathways in melanoma patients.

Future Directions

- Prospective use of repurposed drugs to identify mechanisms of resistance to combined targeted therapies in melanoma.

ACKNOWLEDGEMENTS

Matthew Vaithalingam, PhD
Sarah Solomon, PhD
Adrian Kyrylenko-Malikny
Louisa Song
Elisabeth Maciasch

Figure Legends

1. Graph: Generate an in vivo model of melanoma that is resistant to inhibition of MAPK signaling in the context of mutant NRAS.
2. Hypothesis: Resistant tumors will develop that are no longer dependent on NRAS for continued growth.
3. Method: Use a novel mouse model of melanoma, generated through the somatic introduction of NRAS-encoding avian retroviruses into transgenic mice expressing the avian reversion receptor, TVA, specifically in melanocytes to induce melanoma in vivo. The MAPK pathway will be inhibited genetically by doxycycline-mediated suppression of NRAS expression in selected resistant tumors.
4. Long-term goal: To identify additional targets for rational combination therapy for advanced melanoma.
Title: The Role of an ABC Transporter as a Steroid Antagonist in Drosophila

Abstract: Drosophila melanogaster are holometabolous insects that have several distinct life stages including larvae and a winged adult. The larval stage is mainly a time of feeding and growth, while the adult stage is optimized for sexual reproduction and dissemination. The larval stage can itself be divided into three time periods, or instars: 1st (L1), 2nd (L2), and 3rd (L3) (Figure 1). Larval growth – both between instars and beyond – depends on specific signaling pathways controlled by a cholesterol derived steroid, 20-hydroxyecdysone (20E). Although 20E is a systemic developmental signal, little is known about the molecular details of how different tissues respond to the hormone. We have been studying one gene induced by 20E in some target tissues [1]. This gene, E23, encodes an ATP binding cassette (ABC) transporter protein that may function to limit hormone exposure in tissues where it is expressed.

Why are you involved in research as an undergraduate/graduate student? I originally joined a research lab to gain hands-on experience involving the things I had been learning through my coursework. I was considering graduate school at the time, and I knew that the reality of working in a lab would be different from my visualization of it; joining a lab would put me in the correct mindset for seeing if I would actually enjoy research as a career.

What is your background? I am originally from Phoenix, Arizona and went to high school in Arizona, Texas, and finished in Nevada. I have been at UNLV for four years, although I spent two of those years going to business school for a degree in Finance. I eventually converted to Biology when I realized how bored I was with school!

How did you get involved/interested in science? All aspects of science have captivated me for as long as I remember. Being curious is a part of being human, and science attempts to answer the burning questions that we all have about ourselves, the world around us, and how we fit into that world.

How did you go about applying for / getting into the lab? I had been in Tribeta, an Honors Biology group, which had weekly talks from professors and graduate students about their research. I saw one of the upcoming talks was involving Alzheimer’s research, which interested me. The professor giving the talk was one I had also been talking a course from that semester and I approached him to see if he had space in his lab. Luckily, he had just formed a group for a summer research project, and I was able to work with the group.

What is your project and how would you describe a typical day in the laboratory? I am currently studying some aspects of molting in Drosophila melanogaster, fruit flies. The main focus is on larval growth and the timing and molecular characteristics of their distinct growth stages. My normal day includes tending to the flies – making sure they have good food and lots of friends. For the project, I also have to create crosses between specific stocks and then collect the eggs and larvae that arise and observe their growth and physiology.

What are your plans in the future? I am currently applying to schools for medical research programs. I hope to return to Texas, and I would love to work in the fields of Neuroscience and clinical research and trials.

How do you feel this experience will prepare you for those plans? Any real experience in the lab is a learning opportunity. I have many years ahead of me in labs working on projects and I feel more prepared for some of the work that entails. I have also been able to write grant proposals, a necessary evil that I will face many more times.
The Role of an ABC Transporter as a Steroid Antagonist in Drosophila
Gregory King and Andrew J. Andres
University of Nevada, Las Vegas School of Life Sciences

Introduction

Drosophila melanogaster are holometabolous insects that have several distinct life stages including larva and a winged adult. The larval stage is mainly a time of feeding and growth, while the adult stage is optimized for sexual reproduction and dissemination. The larval stage can be divided into three time periods, or instars: 1st (L1), 2nd (L2), and 3rd (L3) (Figure 1). Larval growth – both between instars and beyond – depends on specific signaling pathways controlled by a cholesterol derived steroid, 20-hydroxyecdysone (20E).

Although 20E is a systemic developmental signal, little is known about the molecular details of how different tissues respond to the hormone. We have been studying one gene induced by 20E in some target tissues [1]. This gene, E23, encodes an ATP binding cassette (ABC) transporter protein that may function to limit hormone exposure to tissues where it is expressed.

We have used transgenic Drosophila containing DNA constructs in which E23 is ectopically overproduced. We have found that several target tissues do not respond to 20E at metamorphosis, consistent with the hypothesis that E23 acts as a 20E antagonist to pump hormone out of cells before a genomic response can occur (Figure 3) [Paladin and Andre, manuscript in prep].

E23 functions as a 20E antagonist, reasoning when it is overproduced in any target cell the cell will not respond to hormone and produce the normal developmental response. Since the linka cells respond to 20E by stimulating larval ecdysone, E23 overproduction in these specific cells should result in the larvae displaying ecdysone defects that prevent normal growth.

Material and Methods

Materials and Methods

To control the production of E23 within specific tissues, a powerful genetic system can be used: the UAS-Gal4 system (Figure 5). This system, which has been adopted from yeast, consists of two parts: the Upstream Activation Sequence (UAS), and the GAL4 "driver" protein which binds to UAS. This allows for transcription and production of the UAS controlled E23 only in cells that express the Gal4-Gal4 system (Figure 6 is a diagram of the procedure to assay for defects.

The larvae were observed on molasses agar egg plates every 12 hours out to 84 hours from hatching. Their mortality was recorded by assay of remaining living larvae, and ecdysone defects were noted by presence of supernumerary mouth hooks and pharyngeal plates. As a control, the UAS-E23 stock was also crossed to a w(1)1188 stock, a commonly used unmodified control stock and the same analysis was performed.

References

Acknowledgments

Andrew Fly Lab, Elana Paladino, Kathryn Lantz

UNLV

NIH/National Institute of General Medical Sciences 1 R15 GM080416-01A1
Title: Effects on Cell Migration with the Inhibition of GSK-3 kinase in Glioblastoma and Fibrosarcoma cell lines

Abstract: Cell migration is a vital component of metastasis. In order for a cell to migrate, during metastasis or under other conditions, cell-cell contacts must be broken, and cell-substrate contacts (i.e. focal adhesions) must be formed to give the moving cell traction. An enzyme called GSK-3 kinase regulates the function of a bifunctional protein known as β-catenin. In the cytoplasm, β-catenin serves as a key structural component of adherens junctions, the points of contact between neighboring cells. These cell-cell contacts contain transmembrane cadherins that link to dynamic membrane and cytoskeletal substructures, of which β-catenin is a key constituent. Under normal conditions, GSK-3 kinase phosphorylates β-catenin, which then undergoes ubiquitin-dependent proteolysis. However, using a GSK-3 kinase inhibitor, such as BeSO4, would allow for the stabilization of β-catenin and suggest an increase in its adhesive behavior. Thus, we hypothesized that cell migration is suppressed by GSK-3 inhibitors.

This experiment investigated a glioblastoma tumor cell line called A172 and a fibrosarcoma cell line called HT-1080. To test our cell migration hypothesis, we used an In-vitro FluoroBlok Tumor Cell Migration Assay and the Wound-Healing Assay. For the cell migration experiment to work, we must initially make sure that each cell line is sensitive to BeSO4 (by carefully observing patterns in their growth), as many cell lines are not sensitive and do not respond to BeSO4. After confirming the sensitivity of A172 and HT-1080 to BeSO4, the use of the In-vitro FluoroBlok Tumor Cell Migration Assay and the Wound-Healing Assay demonstrated that both cell lines showed a dramatic decrease in cell migration when treated with BeSO4. These results provide evidence that tumorigenic cells (A172 and HT-1080) treated with BeSO4, causes stabilization of β-catenin and allows for stronger cell-cell contacts, and therefore decreased cell migration.

Why are you doing this project? I am doing this project because I am fascinated by the intricate systems involved in cancer cell progression, such as the ability of cancerous cells to invade and migrate during metastasis.

What problem are you trying to solve? We are trying to see if treating tumorigenic cells with BeSO4 will decrease cell migration, which may potentially aid in developing better treatments in the future.

What tools or equipment are you using? We are using various tools and equipments for this experiments. Some of these equipments include: Tissue Culture Hood, Pipettes, different types of microscopes, cell-plate readers to count cells, Cell migration assay kits, and Wound healing assays which include items such as petri dishes and pipette tips.

Why is your project worth researching? Cancer is a very deadly disease. One of the big problems of cancer is metastasis; and if we can find a way to prevent invasion of tumorigenic cells from one region to another region, then we can better treat those suffering from this condition.

What relevance will it have on the community, society, and in your research field? It will have a very profound impact on society as a whole. Millions of people around the globe suffer from cancer, and finding better treatments would not only help those suffering from cancer, but it will also aid in future studies with hopes of curing cancer.

What did you find? We found out that treating the glioblastoma cell line and the fibrosarcoma cell line with BeSO4 significantly decreased cell migration, a key part of metastasis.

What is the future of your research project? The future for this research project is very promising. We now have evidence that inhibition of GSK-3kinase, by treatment with BeSO4 ,(which causes stability of β-catenin) leads to a dramatic decrease in cell migration. Therefore, we can begin to explore the possible mechanistic connections between GSK-3 kinase/β-catenin signaling and cell migration.
Cell Migration Dynamics After Alteration of Cell-Cell Contacts in Fibrosarcoma and Glioblastoma Cell Lines

Hassan S. Rizvi and Ronald K. Gary
Department of Chemistry, University of Nevada, Las Vegas
4505 Maryland Parkway, Las Vegas, NV 89154

Abstract

Cell migration is a vital component of metastasis. In this study, our intent was to study cell migration by alteration of the Wnt/GSK-3 pathway. Since BeSO₄ is a known GSK-3 kinase inhibitor, we hypothesized that this agent would cause cell migration to decrease as a result of β-catenin stabilization. Two human cell lines, HT-1080 (fibrosarcoma) and A172 (glioblastoma), were used to observe migration levels in the presence and absence of BeSO₄. Our results show that cell migration is diminished for cells that were pre-treated with BeSO₄ in comparison to the untreated (control) cells.

Results

In order for a cell to migrate, during metastasis or under other conditions, cell-cell contacts must be broken, and cell-substrate contacts (i.e. focal adhesions) must be formed to give the moving cell traction. An enzyme known as GSK-3 kinase regulates the function of a bi-functional protein called β-catenin. In the cytoplasm, β-catenin serves as a key structural component of adherens junction, the points of contact between neighboring cells. These cell-cell contacts contain transmembrane cadherins that link to dynamic membrane and cytoskeletal substructures, of which β-catenin is a key constituent. Under normal conditions, GSK-3 kinase phosphorylates β-catenin, which then undergoes ubiquitin-dependent proteolysis. However, using a GSK-3 kinase inhibitor, such as BeSO₄, would allow for the stabilization of β-catenin, and thus potentially increase cell-cell adhesion and decrease cell migration.

Methods

• Coulter Counter
 • Used to count cells in order to assess effects on cell division.
 • BeSO₄ is known to affect cell division in many cell types, but its effect on HT-1080 cells has never been studied.
 • In vitro FluoroBlok Tumor Cell Migration Assay
 • BeSO₄ treated and untreated cells were allowed to migrate from the apical surface to the basal surface through the membrane via 3 μm pores. Cells that had migrated to the basal surface were stained with a fluorescent dye and mean fluorescence was measured to determine cell migration.
 • Wound-Healing Assay
 • A pipette tip was used to make an initial wound (cell-free area), which was then monitored over time to observe the amount of cell migration.

1. Grow cells to preferred confluence in +/- BeSO₄ media.
2. Use a pipette tip to scrape away cells in a line across the dish.
3. Observe cell migration back into the cleared area.

Figure 1a. Low micromolar BeSO₄ inhibits cell proliferation in glioblastoma cells. A172 cells were dosed with BeSO₄ on Day 0 and counted after 9 days with 1.4 x 10⁶ cells/mL.

Figure 1b. Low micromolar BeSO₄ inhibits cell proliferation in fibrosarcoma cells. HT-1080 cells were dosed with BeSO₄ on Day 0 and counted after 8 days with 3.6 x 10⁵ cells/mL.

Figure 2a. Untreated and 10μM BeSO₄ (3-days pre-treated) HT-1080 cells were allowed to pass through 3μm pores within the membrane via cell migration. Cells that had migrated to the basal side of the membrane were stained with a fluorescent dye, and the mean fluorescence was measured to quantify cell migration. Cells were seeded into the migration assay chambers at higher density (30,000 cells/well) and lower density (15,000 cells/well) to determine the optimal conditions for the experiment.

Figure 3a. HT-1080 cells were pretreated with +/- BeSO₄ for 36 hours. Plates were approximately 80-85% confluent. A wound was made at t=0 (using a pipette tip) and cell migration was observed at t=0, t=3, t=6, and t=9 hr.

Figure 3b. HT-1080 wound-healing assay using 3μm Pore FluoroBlok 13-hour Migration Period, Pre-treated +/- 10 μM BeSO₄ for 3 days.

Figure 3c. A172 cells were pretreated with +/- BeSO₄ for 74 hours. Plates were approximately 95-100% confluent. A wound was made at t=0 (using a pipette tip) and cell migration was observed at t=0, t=13, t=23, and t=23 hr.

Conclusion

After confirming the sensitivity of A172 and HT-1080 to BeSO₄ in the Proliferation Assay, the FluoroBlok Tumor Cell Migration Assay and the Wound-Healing Assay demonstrated that both cell lines show a decrease in cell migration when treated with BeSO₄. We hypothesize that BeSO₄ treatment causes stabilization of β-catenin, which allows for stronger cell-cell contacts, and therefore decreased cell migration. Further studies are planned to test this hypothesis.

Acknowledgements

The project described was supported by NIH Grant Number P20 RR-016464 from the INBRE Program of the National Center for Research Resources.

References

Pashtana Usufzy
Email: pashtana.usufzy@gmail.com
Former High School: Arbor View HS
Location of High School: Las Vegas, NV
Mentor/Advisor: Helen Wing
Educational Institute of Project: UNLV
Department: School of Life Sciences
Research Site: WHI 314A

Title: Combination of VirB binding site mutations to evaluate collective impact on icsP promoter activity in Shigella flexneri

Abstract: Past research studying Shigella flexneri has examined the regulation of the promoter region of icsP, a virulence gene. Conventionally, the binding of transcription factors occurs within 200 base pairs of the transcription start site of a gene. The Wing Lab has demonstrated that two binding sites of the transcription factor VirB are required for the regulation of the icsP promoter. However, these two sites are located more than 1 kb upstream of the transcription start site of the icsP promoter. Seven additional binding sites are located between the two distal sites and the transcription start site. The impact of the two distal sites on regulation leads us to wonder as to the impact of the closer sites on the regulation of promoter activity. Past research in the Wing Lab has shown no decrease in promoter activity when each of the seven binding sites is replaced with a mutated version of itself. I hypothesize that my experiment will reveal a collective impact upon icsP promoter activity not demonstrated in tests of individual mutations. We can witness this effect by combining all seven mutations in one plasmid construct through an organized experimental plan. To do this, I utilized restriction enzymes to cut previously prepared plasmids carrying each of the VirB binding site mutations. I combined one binding site mutation with another through ligation, and I transformed cells of DH10B E. coli to verify that a new plasmid was created. By repeating this process, I will combine all the mutations into one construct. I will then measure the activity of the new construct and the original plasmid constructs using beta-galactosidase assays. The overall aim of this project is to further characterize the relationship between binding sites of VirB and expression of icsP.

Why are you doing this project? I’d like to learn more about the research being done on campus, and I find the subject matter truly interesting and important. In terms of scientific reasoning, my hope is that, through this project, we will develop a better understanding of the workings of Shigella through exploring how the binding sites of the VirB transcription factor affect promoter activity.

What problem are you trying to solve? I am trying to assess the impact of VirB binding sites on the regulation of promoter activity of icsP, given past data that show two more distal VirB binding sites do have an impact upon this activity.

What tools or equipment are you using? PCR, DNA ligations, transformations and the application of restriction enzymes. I will utilize everything from a balance to a spectrophotometer to achieve my goal of creating a single construct containing the seven VirB binding site mutations.

Why is your project worth researching? It will further the information available on the relationship between binding sites of the transcription factor VirB and expression of the virulence gene icsP.

What relevance will it have on the community, society, and in your research field? Shigella flexneri is an invasive bacterial pathogen that causes shigellosis, an illness triggering severe dysentery. According to the World Health Organization, “More recent estimates fix the Shigella disease burden at 90 million episodes and 108,000 deaths per year.” An investigation into the impact of the VirB binding sites is part of a larger effort to examine the promoter activity and workings of icsP. Because icsP can cleave the icsA protein from the surface of Shigella, it can affect the actin-based motility of Shigella. This will be important in helping to limit the intercellular spread of Shigella and, therefore, in reducing the impact on those affected by the pathogen.

What did you find? The results are pending.

What is the future of your research project? This will depend upon whether my results show that the VirB binding sites between the transcription start site and the two distal VirB binding sites have an impact upon the regulation of icsP promoter activity. If this is the case, then more work would have to be done to assess the level of impact.
Combination of VirB binding site mutations to evaluate collective impact on icsP promoter activity in *Shigella flexneri*

Pashtana Usufzy, Juan C. Duhart, Maria I. Castellanos, and Helen J. Wing

School of Life Sciences, University of Nevada, Las Vegas

INTRODUCTION

Shigella flexneri is a gram-negative, invasive bacterial pathogen that afflicts the human colonic epithelium, causing shigellosis, an illness triggering severe dysentery. The World Health Organization cites the disease burden of shigellosis near 90 million episodes and 108,000 deaths per year [1]. The motility and spread of *Shigella* is modulated by *icsP*, a virulence gene. The transcription factor VirB positively regulates many virulence genes encoded by the *Shigella* virulence plasmid. Two distal binding sites of VirB have been shown to regulate the promoter activity of *icsP*, despite their location of more than 1 kb upstream of the transcription start site [2]. Five VirB binding sites are located between these two sites and the transcription start site, and two are located in close proximity downstream of the transcription start site [2].

Investigation into the impact of the VirB binding sites is part of a larger effort to understand the workings of VirB, which is the major switch that controls virulence gene expression in *Shigella*.

BACKGROUND

- Previous truncation analysis has shown that two distal binding sites of VirB more than 1 kb upstream play a role in regulating *icsP* promoter activity [2].
- Five other sites are located between the transcription start site and the promoter. Two are located downstream, within 30 base pairs of the start site [2].
- Individual mutations have been inserted in each binding site to measure promoter activity. No single mutated binding site showed great impact upon activity (unpublished work, see Fig. 1 & 2).

RESULTS

- Combination of mutated VirB binding sites into a single plasmid construct will result in decreased activity of the *icsP* promoter.

HYPOTHESIS

- Beginning with previously created plasmids carrying mutations, I used restriction digest, as seen in Fig. 4, to cut specific segments of the promoter carrying the desired VirB binding sites.
- I used blunt-end ligation techniques by setting my ligation at 16 degrees Celsius overnight. After dialyzing a ligation, I transferred it into viable cells of DH10B *E. coli* through bacterial transformation.

CONCLUSIONS AND CURRENT WORK

The diagnostic digest done on my first construct shows that the desired construct is present. Cutting with *Smal* and *SacI* reveals that pPU01 releases a piece approximately 579 base pairs long, the same size piece released by pMIC28, the desired insert. This construct is now being moved into pHJW20, a reporter plasmid that will allow me to test its effect upon promoter activity. Construction of my second construct, using the same process as seen in Fig. 4, is under way.

FUTURE DIRECTIONS

- Combination of VirB mutations will continue. My vector, pPU01, and insert, pCD03, will form the basis for a construct including sites 4, 6 and 7.
- Combination of binding sites will be utilized as an insert to the reporter plasmid pHJW20 to measure promoter activity.

ACKNOWLEDGEMENTS

Thank you to the Wing Lab.
This project was supported by NIH grant P20 RR-016464 from the INBRE program of the NCRR and by NIH grant R15 AI090573-01.

BIBLIOGRAPHY

OVERALL GOAL AND REASONING

This project involves combining the individual mutations of VirB binding sites into a single construct (see Fig. 3 for plan).

- Decreased promoter activity would suggest that BS1 and the four VirB binding sites between the transcription start site and the two distal binding sites play a role in *icsP* promoter activity regulation.

MATERIALS AND METHODS

- Box 1. Box 2

FIG. 1

- The use of ligation of the *icsP* promoter carrying all sites VirB binding sites is shown. A reporter construct for VirB binding sites was generated with region of *Pseudomonas aeruginosa* promoter. Each lane corresponds to the *SacI* and *SmaI* digestion for the promoter. Two distal binding sites of VirB have been shown to regulate the promoter activity of *icsP*, despite their location of more than 1 kb upstream of the transcription start site [2]. Five VirB binding sites are located between these two sites and the transcription start site, and two are located in close proximity downstream of the transcription start site [2].

FIG. 3

- Decreased promoter activity would suggest that BS1 and the four VirB binding sites between the transcription start site and the two distal binding sites play a role in *icsP* promoter activity regulation.

FIG. 4

- Box 1. Box 2

FIG. 5

- After a diagnostic digest to confirm that my construct has been created, I cloned the segment carrying the desired binding sites into a pHJW20 reporter construct, which allows usage of a β-galactosidase assay to measure promoter activity through color produced.
Title: Transcription Associated Mutagenesis in Stressed B. subtilis cells: The Role of Transcription Associated Stem-loop Structures

Abstract: It is widely known and accepted that the cause of many mutations in cells are generated during the replication process of actively dividing cells, however more recent research has shown that mutations also arise in non growing conditions, a phenomenon known as stationary phase mutagenesis. Much of what is known come from studies in eukaryotic and bacterial models. It has been proposed that in non-growing cells, the process of transcription plays an important role in mutagenesis. We test the hypothesis that DNA secondary structures, formed during transcription, promote mutagenesis. The transcription-generated structures are speculated to be prone to mutations by exposing regions of single stranded DNA to lesions. We examined the Bacillus subtilis gene thiF, predicted by in silico analysis to be prone to mutations at particular locations during transcription. By altering the base sequence of this gene, the stability of its stem-loop structures is affected, thereby allowing us to test whether transcription of the altered sequence influences accumulation of mutations in thiF. Our assay for detection of mutations is based on reversion to thiamine prototrophy in cells under conditions of starvation. Ultimately, these experiments will increase our understanding of how mutations occur in cells of all domains of life.

Why are you doing this project? The mechanism behind the generation of mutations is an important process to understand because not only could it provide insight for eukaryotic systems but also help us understand how antibiotic resistance and evolution occur in prokaryotes.

What problem are you trying to solve? I am trying to find out what specific aspect of transcription could be influencing those mutations. Transcription is part of the process of making proteins and stationary phase refers to cells that are in a non-growing phase.

What tools or equipment are you using? I am trying to find out what specific aspect of transcription could be influencing those mutations. Transcription is part of the process of making proteins and stationary phase refers to cells that are in a non-growing phase.

Why is your project worth researching? My project is worth researching because at this point my lab is unable to answer exactly how transcription generates mutations. My results should bring us closer to understanding the mechanism behind transcription associated mutagenesis.

What relevance will it have on the community, society, and in your research field? Mutations affect everyone in society since many eukaryotic diseases are due to mutations, and since every day antibiotics are becoming less and less effective. Any research that aims to understand the mechanisms that lead to mutations can provide results for others to build upon and potentially use to begin to solve the many problems mutations lead to.

What did you find? The results are still pending

What is the future of your research project? The future for my project includes doing a stationary phase assay with the strains I constructed to test whether stem loop structures have a role. Depending on the results of the stationary phase assay the project could continue in a number of different directions.
DNA secondary structures and their contribution to mutagenesis in B. subtilis stationary phase cells.

Carmen Vallin,
Holly Martin, Christian Ross, Ronald E. Yasbin and Eduardo A. Robledo
School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV

Abstract
It is widely known and accepted that the cause of many mutations in cells are generated during the replication process of actively dividing cells, however more recent research has shown that mutations also arise in non-growing conditions, a phenomenon known as stationary phase mutagenesis. Much of what is known come from studies in eukaryotic and bacterial models. It has been proposed that in non-growing cells, the process of transcription plays an important role in mutagenesis. We tested the hypothesis that DNA secondary structures, formed during transcription, promote mutagenesis. The transcription-generated structures are speculated to be prone to mutations by exposing regions of single stranded DNA to lesions. We examined the Bacillus subtilis gene thiF, predicted by in silico analysis to be prone to mutations at particular locations during transcription. By altering the base sequence of this gene, the stability of its stem-loop structures is affected, thereby allowing us to test whether transcription of the altered sequence influences the accumulation of mutations in thiF. Our assay for detection of mutations is based on reversion to thiamine prototrophy in cells under conditions of starvation. Ultimately, these experiments will increase our understanding of how mutations occur in cells of all domains of life.

Background
• Stationary phase mutagenesis was first evidenced in the 1950s by Francis J. Ryan in a paper in Genetics.
• Later on, Cairns and coworkers revisited the concept of mutagenesis in conditions of carbon starvation and showed that cells under stress accumulated Lac+ mutations (1999).
• Two pathways in the E. coli FC-40 lac system has been proposed. One that generates point mutations and another that generates amplifications.
• Recent evidence in Bacillus subtilis suggests that aspects of transcription mediate the formation stationary phase mutations.
• Transcription and its transient changes in DNA topology have been linked to formation and stabilization of secondary structures such as hairpins and Z-DNA G4 structures in both the transcribed and non-transcribed strands. These structures are stabilized with increased transcription and increased negative supercoiling.
• Recent work has shown how G4 DNA, when located in the non-transcribed strand, can block T7 RNAS and Mammalian RNAP. This arrest has the potential to initiate a “artificial” TCR response that can lead to mutagenesis.
• Work in E. coli has also evidenced a role for stem loop structures or hairpins in mutagenesis in association with transcription and replication.
• The likelihood of forming SLS is sequence-dependent and may be estimated by calculating Gibbs free energy value, which suggests that transcription-associated mutations occur at hotspots in the genome.
• Here, we report the construction of thiF alleles that differ in their ability to form SLS. These alleles will be used to test whether stationary phase mutations are dependent on transcription and take place at hot spots.

Hypothesis
Transcription associated mutations in stationary phase are dependent on the formation of SLS. SLS stability, as measured by free energy of formation, influences the accumulation of mutations.

Methods
Find a marker gene that forms SLS in Bacillus subtilis

RESULTS
• Defective thiF alleles differing in their ability to form SLS have been constructed and transformed into WT strain (see figure 3).

Future Plans
• Knockout thiF gene eliminating stem loop sequence to prevent recombination.
• Conduct a stationary phase assay and score revertant to thiamine prototrophy.
• Conduct stationary phase assay in the presence of subinhibitory concentrations of gyrase inhibitors.
• Conduct stationary phase assay without transcription strand specific repair pathways such as knockout mfd gene.
• Sequence analysis of ThiF reversions.

Acknowledgements
I would like to thank the Nevada INBRE program for funding this work. A special thanks to everyone in the Robledo lab for sharing their knowledge with me. This project was supported by the following grants MCB0834306, and 2 P20 RR016463 Nevada INBRE. I would also like to acknowledge Katherine One for her involvement in the research project.

References

I would like to thank the Nevada INBRE program for funding this work. A special thanks to everyone in the Robledo lab for sharing their knowledge with me. This project was supported by the following grants MCB0834306, and 2 P20 RR016463 Nevada INBRE. I would also like to acknowledge Katherine One for her involvement in the research project.
Title:

Abstract: A high pressure study is being conducted on 1,1-diamino-2,2-dinitroethene (DADNE or Fox-7) using micro Raman spectroscopy. A Merrill-Basset diamond anvil cell is being used to produce the high pressure for the experiment. Fox-7 will be studied under both non-hydrostatic and quasihydrostatic conditions to study if there is any differences in the phase changes seen. Liquid nitrogen is used as the quasihydrostatic medium for its ability to maintain hydrostatic conditions up to 10 GPa. The micro Raman spectrum is collected every few GPa from 0 to 28 GPa for both experiments. During the non-hydrostatic study a phase change is suspect to happen around 18 GPa. This phase change is believed to be due to a change from a chair conformation of the molecule to a planar conformation and due to a change in the hydrogen bonding between the molecules in the crystal. The quasihydrostatic experiment is suspected to show the same results as non-hydrostatic experiment with the usual phase change shift to higher pressures. The information gained from these experiments will lead to a better understanding of these energetic materials. This will hopefully allow other people to create new materials that will not only be safer to use, but also new effective. It could also lead to current materials being able to be used in a more effective and safer way as well.

Why are you doing this project? The goal of this experiment is to better understand the reasons for Fox-7’s insensitivity and high performance. It is very similar to other explosives in composition but different in structure. This different structure is believed to be the reason for Fox-7’s unique characteristics.

What problem are you trying to solve? Using Raman spectroscopy along with high pressure techniques we hope to better understand this molecule and how it handles extreme conditions.

What tools or equipment are you using? A diamond anvil cell (DAC) was loaded with Fox-7 and no medium in a stainless steel gasket. The DAC used was a Merril-Basset design and had a pair of 400 micron diamonds. The gasket was preindented to about 60 microns in thickness and then a 145 micron hole was drilled for the sample. The sample was loaded with ruby sphere, which would be used to measure pressure. Once the DAC was loaded and a spectrum of the ruby was taken to find the initial pressure. The Raman spectrum was then collected on the Fox-7 at 537, 571 and 615 nm, 0-1400, 1400-2500 and 2700-3700 cm⁻¹ Raman Shifts respectively. The pressure was then increased and the ruby and sample were scanned again and this process continued until a pressure of 20.34 GPa was reached with approximately 1 GPa steps. The DAC was then decompressed to ambient pressure and a spectrum was taken of the sample again. A spectrum of a new sample of Fox-7 was then taken to measure the ambient spectrum of the sample prior to compression. The data was then analyzed and the peaks were mapped against pressure and the spectrums were stacked according to pressure.

Why is your project worth researching? 1,1-diamino-2,2-dinitroethene (Fox-7) is an insensitive secondary explosive that was developed recently by Sweden. Thus there is very little known about it.

What relevance will it have on the community, society, and in your research field? This explosive, or energetic material, has a higher insensitivity and performance than RDX, making it a more ideal explosive.

What did you find? The phase transitions are believe to be in largely due to a change in hydrogen bonding and possibly a change from the zig zag crystal pattern to a planar crystal pattern.

What is the future of your research project? To further study these phenomena an analysis of each peak should be done to determine what vibrational mode it corresponds to.
High Pressure Study of 1,1-diamino-2,2-dinitroethene with Raman Spectroscopy
Jack Brangham, Michael Pravica, Martin Galley
High Pressure Science and Engineering Center, Department of Physics and Astronomy, UNLV, Las Vegas, Nevada USA, 89154-4002

Abstract
The goal of this experiment is to better understand the reasons for Fox-7’s insensitivity and high performance. It is very similar to other explosives in composition but different in structure. This different structure is believed to be the reason for Fox-7’s unique characteristics. Using Raman spectroscopy along with high pressure techniques we hope to better understand this molecule and how it handles extreme conditions.

Introduction
1,1-diamino-2,2-dinitroethene (Fox-7) is an insensitive secondary explosive that was developed recently by Sweden. Thus there is very little known about it. The material is known to form a zig zag crystalline pattern as seen in Figure 1. The molecule itself consists of two carbon atoms connected by a double bond, one carbon has two amino groups and the other has two nitro groups. The structure of the molecule shown in Figure 2. The molecule is also known to have hydrogen bonding. This explosive, or energetic material, has a higher insensitivity and performance than RDX, making it a more ideal explosive. A higher insensitivity means that it takes a higher energy to start a reaction and thus it is less likely to be detonated unintentionally, while it maintains the desired performance when detonated.

Procedure
A diamond anvil cell (DAC) was loaded with Fox-7 and no medium in a stainless steel gasket. The DAC used was a Merit-Basset design and had a pad of 400 micron diamonds. The gasket was pretrained to about 60 microns in thickness and then a 145 micron hole was drilled for the sample. The sample was loaded with ruby sphere, which would be used to measure pressure. Once the DAC was loaded and a spectrum of the ruby was taken to find the initial pressure. The Raman spectrum was then collected on the Fox-7 at 537, 571 and 615 nm. 0-1400, 1400-2500 and 2700-3700 cm⁻¹ Raman Shifts respectively. The pressure was then increased and the ruby and sample were scanned again and this process continued until a pressure of 20.34 GPa was reached with approximately 1 GPa steps. The DAC was then decompressed to ambient pressure and a spectrum was taken of the sample again. A spectrum of a new sample of Fox-7 was then taken to measure the ambient spectrum of the sample prior to compression. The data was then analyzed and the peaks were mapped against pressure and the spectra were stacked according to pressure.

Conclusion
Figures 4, 5 and 6 show strong evidence of a phase transition around 3 GPa by the appearance and disappearance of peaks. Upon further inspection Figures 3 and 7 also support this with a change in the shift of peaks. Figures 3, 4 and 8 show evidence of a phase transition around 5 GPa with the strongest evidence being the appearance of a peak in Figure 4. Figures 6 and 7 show evidence of another phase transitions around 9-10 GPa. The change in the shift of the lowest peak in Figure 6 is the strongest evidence of this. The phase transitions are believed to be in largely due to a change in hydrogen bonding and possibly a change from the zig zag crystal pattern to a planar crystal pattern. To further study these phenomena an analysis of each peak should be done to determine what vibrational mode it corresponds to. From there you could see which vibrational modes are involved in each phase change to help understand what is happening on the molecular level during the transitions.

References
1. Lochert, J., Ian, Fox-7: A New Insensitive Explosive. DSTO-TR-1238
2. Galley, Martin. Raman Studies of 1,3,5,7 Cyclooctatetrayne at High Pressure

Support from the High Pressure Science and Engineering Center (HPSEC), funded by the US Department of Energy, is gratefully acknowledged. The support from UNLV, the rest of the faculty and the graduate students is also gratefully appreciated.
Justine Carryer

Email: justinecarryer@gmail.com
Former High School: Schenley High School
Location of High School: Pittsburgh, PA
Mentor/Advisor: Ravhi Kumar
Educational Institute of Project: UNLV
Department: Physics and Astronomy
Research Site: BPB 150

Title: Pressure Induced Structural Transitions in BaCo3

Abstract: The crystal structure of witherite BaCo3 was studied using powder X-Ray diffraction through a Merrill-Bassett diamond anvil cell to high pressures up to 20 GPa using synchrotron x-rays at Argonne National Laboratory. BaCo3 crystallizes in the orthorhombic structure with space group Pmcn and the lattice parameters are found to be a = 5.3017, b = 8.90274, and c = 6.42761 Å. Between 4 and 8 GPa a pressure induced first-order phase transition is observed to a hexagonal structure with space group P-31c. After the phase transition, an axial anisotropic compressibility (as the b axis intersects with the a axis) is observed in our experiments. This experiment was conducted with an aim of understanding the phase transition behavior of BaCO3 under pressure and providing more detailed analysis of the high pressure phase by extending the pressure range previously investigated. Our experimental results show that the hexagonal phase is stable up to 20 GPa.

Why are you doing this project? I am doing this research to develop an understanding of how physics research is inspired, planned, conducted, and analyzed. In particular, I am doing research on BaCO3 to learn how pressure affects crystalline properties.

What problem are you trying to solve? I am investigating a phase change that occurs at around 8GPa (Giga-pascals) in Barium Carbonate (BaCO3) in order to find an equation of state and a bulk modulus.

What tools or equipment are you using? Through this research I am gaining knowledge of the advanced technologies of X-Ray diffraction using X-Rays from the synchrotron at Argonne National Laboratories, high pressure diamond anvil cells, and the analysis programs Fit 2D, Jade, Igor, Origin, and EOS Fit.

Why is your project worth researching? Barium Carbonate is the chief source of barium salts. It is used in the preparation of rat poison and in the production of glass, porcelain, and ceramics. Understanding how this material reacts under pressure can help further deepen our awareness of the application of this compound.

What relevance will it have on the community, society, and in your research field? The potential commercial and artistic applications of Barium Carbonate could have economical impact as well as developmental impact on companies and individuals who produce and use the materials listed above. For the scientific community it will deepen an understanding of Barium Carbonate in particular as well as how high pressure can affect crystalline properties.

What did you find? I found that BaCO3 changes from an orthorhombic structure to a hexagonal structure starting at as little as 4.31 GPa. I also found the equation of state for BaCO3.

What is the future of your research project? I plan to write a paper summarizing the research conducted and results found. Additionally, further scientific analysis of my data collected as well as additions to the collected data may occur.
BACKGROUND

Carbonate compounds are thought to make up a minor portion of the Earth's upper mantel. Shock heating of the surfaces of carbonate rocks, as in the instance of a meteor impact, has the potential to affect CO₂ concentrations in the Earth’s atmosphere. The bulk modulus of carbonate materials is directly proportional to the rate of devolatilization under these conditions [1]. The interest in Barium Carbonate (BaCO₃) specifically is motivated by its structural proximity to aragonite carbonates. Crystalline phase transitions occur in aragonite under extreme conditions that are difficult to maintain in a laboratory: BaCO₃ is isostuctural with aragonite and therefore is expected to have similar phase transitions at conditions easier to simulate in a laboratory. Studies of Barium carbonate will not only lead to conclusions about wetherite carbonates, but aragonite carbonates as well [1]. Another use of Barium carbonate is in ceramic glazes [4].

Under extreme conditions (firing in a kiln) the structural transition of BaCO₃ provides changes necessary for interesting glazes. This experiment was conducted with an aim of understanding the phase transition behavior of BaCO₃ under pressure and providing more detailed analysis of the high pressure phase by extending the pressure range previously investigated [1,2,3].

EXPERIMENTAL

The crystal structure of wetherite BaCO₃ was studied using powder X-ray diffraction through a Merill-Bassett diamond anvil cell to high pressures up to 20 GPa. The powder form was loaded with ruby in a fife gasket with a 150 µm hole and 4.1 methanol-ethanol pressure medium. X-rays used for the experiment were of incident wavelengths 0.36793 Å and were generated by the synchrotron at Argonne National Laboratory at the 1st-B station in sector 36. The pressure was measured at room temperature using an off-line ruby system and was increased in intervals of approximately 2 GPa. XRD patterns were taken for an exposure time of 15-30 seconds. The patterns were integrated using Rietveld. The structural analysis was performed using JADE and GSAS.1.2.

RESULTS

BaCO₃ crystallizes in the orthorhombic structure with space group Pnmc and the lattice parameters are found to be a = 5.3017 Å, b = 8.90274 Å, and c = 6.42761 Å. These parameters compare well with literature [1,2,3]. Between 4 and 8 GPa a pressure-induced first-order phase transition is observed to a hexagonal structure with space group P-3c1. During this interval, a mixed phase is observed. After the phase transition, an axial anisotropic compressibility (as the 0 axis intersects with the a axis) is observed in our experiments. The variations of d-spacings as a function of pressure are shown in figure 2(a). From the cell parameter values found in JADE, the volume has been obtained for each pressure and is shown in figure 2(b) where the orthorhombic, mixed, and hexagonal phases are plotted. A third-order Birch-Murnaghan equation was used to fit the high pressure phase of our P-V data.

CONCLUSIONS AND SUMMARY

The orthorhombic structure is stable up to 4.3 GPa. At 4.3 GPa diffraction peaks representing the hexagonal phase begin to appear compared to the previously found exposure range of approximately 8 GPa [1,2,3]. In our experiment, diffraction peaks from both the orthorhombic structure and the hexagonal structure co-exist until after 8 GPa. After 8 GPa, a complete phase transformation to the hexagonal phase with space group P-3c1 was observed. The phase change represented in the P-V data does not reflect a steep change in volume as pressure increases as found previously [1].

REFERENCES

4. Materials Safety Data Sheet, Barium Carbonate 1903

ACKNOWLEDGEMENTS

Justine Carrey would like to thank Prof. Andrew Cornelius and Prof. Ravhi Kumar for their encouragement and support; Prof. Stephanie Dicenzo and Prof. Shane Burns of Colorado College; Daniel Antonius and Jason Baker from UNLV for their dedication and help; Argonne National Laboratory Support from HIPSEC and the REU program of the National Science Foundation under grant DMR-1005347 is gratefully acknowledged.
Guillermo Esparza

Email: gmartinezgar@hmc.edu
Former High School: North HS
Location of High School: Phoenix, AZ
Mentor/Advisor: Andrew Cornelius
Educational Institute of Project: UNLV
Department: Physics and Astronomy
Research Site: BPB 142

Title: Neutron Diffraction of NaBD4: Phase Transition, Rietveld Structure Refinements, and Equation of State

Abstract: NaBH4 is a hydride with possible applications as a hydrogen storage material for future renewable energy technologies. Its dehydrogenation properties are enhanced with the mixture of particular catalysts through ball-milling techniques during which local pressures may exceed several GPa’s. It is for this reason that understanding the behavior of pressure induced phase changes of its crystalline unit cell is an area of interest.

Why are you doing this project? NaBH4 is a hydride with possible applications as a hydrogen storage material for future renewable energy technologies.

What problem are you trying to solve? Its dehydrogenation properties are enhanced with the mixture of particular catalysts through ball-milling techniques during which local pressures may exceed several GPa’s. It is for this reason that understanding the behavior of pressure induced phase changes of its crystalline unit cell is an area of interest.

What tools or equipment are you using?
This study makes use of neutron diffraction data collected from NaBD4 up to about 12 GPa. The sample was held in a Paris-Edinburgh cell in non-hydrostatic pressure conditions. The program Topaz was used to perform Rietveld Refinement on the data, and external data on the structure and atom positions of Na and B was attained in order to determine the atom positions of hydrogen (in this case its isotope deuterium) within the unit cell. Volume vs. Pressure data was also collected in order to attain an appropriate equation of state and from it determine the compound's bulk modulus.

Why is your project worth researching? NaBH4 is a hydride with possible applications as a hydrogen storage material for future renewable energy technologies.

What relevance will it have on the community, society, and in your research field?
What did you find? When NaBD4 is studied at high pressures up through 12.2 GPa, shifting of peaks to a higher 2θ in neutron diffraction patterns indicates a smaller d-spacing as the unit cell is compressed. The appearance of new peaks also indicates at least one phase transition to lower symmetry somewhere between 6.3 and 7.9 GPa, determined to be from a cubic Fm-3m space group to an orthorhombic Pnma one. The resulting pressure vs. volume data was used to fit a 3rd order Birch-Murnaghan equation of state to the cubic phase and a 2nd order one to the orthorhombic phase, with the determined values of B, B’, and V0.

What is the future of your research project? To continue researching potential applications.
Neutron Diffraction of NaBD₄: Phase Transition, Rietveld Structure Refinements, and Equation of State
Guillermo Esparza, Patricia Kalita, Professor Andrew Cornelius
Department of Physics and Astronomy
University of Nevada Las Vegas, NV 89154

BACKGROUND
NaBH₄ is a hydride with possible applications as a hydrogen storage material for future renewable energy technologies. Its dehydrogenation properties are enhanced with the mixture of particular catalysts through ball-milling techniques during which local pressures may exceed several GPa's. It is for this reason that understanding the behavior of pressure induced phase changes of its crystalline unit cell is an area of interest.

EXPERIMENTAL PROCEDURE & DATA ANALYSIS
This study makes use of neutron diffraction data collected from NaBD₄ up to about 12 GPa. The sample was held in a Paris-Edinburgh cell in non-hydrostatic pressure conditions. The program Topaz was used to perform Rietveld Refinement on the data, and external data on the structure and atom positions of Na and B was attained in order to determine the atom positions of hydrogen (in this case its isotope deuterium) within the unit cell. Volume vs. Pressure data was also collected in order to attain an appropriate equation of state and from it determine the compound’s bulk modulus.

RESULTS
Analysis of the neutron diffraction data using Rietveld Refinement showed a phase transition occurring into the orthorhombic phase between 6.3 and 7.9 GPa. However, this appeared to occur from the cubic phase, as the intermediate tetragonal structure mentioned in other literature to appear between 6.3 and 8.9 GPa was not observed. Atom coordinates were determined for deuterium, demonstrating only a small amount of drift, and are showcased in Fig.1 (a) for the cubic and orthorhombic structures. The Pressure vs. Volume data is also shown.

Fig.1 (a) Unit cell structure for the cubic phase (left) and orthorhombic phase (right). (b) Representative neutron diffraction patterns at various pressures up to 12.2 GPa for NaBD₄ in non-hydrostatic pressure conditions.

CONCLUSIONS AND SUMMARY
When NaBD₄ is studied at high pressures up through 12.2 GPa, shifting of peaks to a higher 2θ in neutron diffraction patterns indicates a smaller d-spacing as the unit cell is compressed. The appearance of new peaks also indicates at least one phase transition to lower symmetry somewhere between 6.3 and 7.9 GPa, determined to be from a cubic Fm-3m space group to an orthorhombic Pnma one. The resulting pressure vs. volume data was used to fit a 3rd order Birch-Murnaghan equation of state to the cubic phase and a 2nd order one to the orthorhombic phase, with the determined values of B, B', and V_0 displayed in Fig. 2 (c).

REFERENCES

ACKNOWLEDGEMENTS
Guillermo Esparza would like to thank Professor Ravhi S. Kumar, Daniel Antonio, and Jason Baker from UNLV for constant support and encouragement. The UNLV High Pressure Science and Engineering Center was supported by the U.S. Department of Energy, National Nuclear Security Administration, under cooperative agreement number DE-FCS2-06NA27684. Support from the REU program of the National Science Foundation under grant DMR-1005247 is gratefully acknowledged.
Quinton Guerrero

Email: Swguerrero@gmail.com
Former High School: Galesburg High School
Location of High School: Galesburg, IL
Mentor/Advisor: Pamela Burnley
Educational Institute of Project: UNLV
Department: Geosciences

Title: Correlation Between Grain Dislocation Density and Orientation for Naturally Deformed Mantle Xenolith from the Jagersfontein Mine

Abstract: Determining the reaction of poly-crystalline structures to induced stress is an extremely difficult problem in contemporary engineering and geology. The main challenge lies in the inhomogeneity of the grains inside of the poly-crystalline structures. To predict the response of a certain polycrystalline structure to a specific stress, you must resort to one of two views on grain interaction, an orientation or propagation based model. For every material there may be certain correlations between the prediction model used and the actual deformation that occurred. Our work centers around describing the correlation of these prediction models with a sample of naturally deformed mantle xenolith from the Jagersfontein Mine in South Africa. In order to correlate the models with the sample, we needed to calculate the orientation and dislocation density of the individual grains. To measure the dislocation density, the ratio of the area of the dislocations to the total area of the grain itself, the sample needed to go through a decoration process. The sample was heated to accelerate oxidization and highlight the sample’s dislocations. This “decorating” process allows us to easily discern the dislocations on the surface of the sample using a Scanning Electron Microscope (SEM). Dislocation density can then be calculated by using an open-source image analysis software called ImageJ on the image of the grain. Additionally, the other calculation, the orientation of the grain, is measured by an Electron Backscatter Diffraction (EBSD) analysis of the sample. The EBSD is a process of firing electrons at the sample and reading the diffractions produced. These diffractions create a “picture” of Kikuchi Bands, simply the diffraction lines produced by the electrons, which can be analyzed by proprietary software resulting in a calculation of the orientation of each grain. We were then able to look for correlations between the dislocation density and the orientation of each grain and identify which model describes the deformation results most accurately.

Why are you doing this project? We are doing this project in order to better understand how rocks deform.
What problem are you trying to solve? We’re trying to see if the deformation of crystals within the rock can be predicted by the orientation of the crystals in the rock.
What tools or equipment are you using? Scanning Electron Microscope, Polishing Pad, Diamond Slurries, and Electron Backscatter Device.
Why is your project worth researching? The rock deformation process is still an unsolved mystery, but with a better understanding of it, we could engineer materials better and understand mantle rheology more completely. Moreover, with better understanding of rock deformation, buildings could be safer and long-standing geological problems could be closer to being answered.
What relevance will it have on the community, society, and in your research field? Better understanding of rock deformation could revolutionize construction and the building process. Also, there is a possibility that one could better predict how earth materials react under pressure, like in an earthquake.
What did you find? We were able to look for correlations between the dislocation density and the orientation of each grain and identify which model describes the deformation results most accurately.
What is the future of your research project? In the future we will most likely perform the same experiment on different materials in order to draw general conclusions about deformation.
Correlation Between Grain Dislocation Density and Orientation for Naturally Deformed Mantle Xenolith from the Jagersfontein Mine

Quinton Guerrero (Monmouth College) and Quinlan Smith (California Lutheran University)

UNLV Physics REU Advisor: Pamela Burnley
Dept of Physics, University of Nevada Las Vegas, Las Vegas NV 89119

Abstract

Determining the reaction of polycrystalline structures to induced stress is an extremely difficult problem in contemporary engineering and geology. The main challenge lies in the inhomogeneity of the grains inside of the polycrystalline structures. To predict the response of a certain polycrystalline structure to a specific stress, you must resort to one of two vies on grain interaction, an orientation or propagation-based model. For every material there may be certain correlations between the precision models used and the actual deformation that occurred. Our work centers around describing the correlation of these precision models with a sample of naturally deformed mantle xenolith from the Jagersfontein Mine in South Africa. In order to correlate the models with the sample, we needed to calculate the orientation and dislocation density of the individual grains. To measure the dislocation density, the ratio of the area of the dislocations to the total area of the grain itself, the sample needed to go through a decoating process. The sample was heated to accelerate recrystallization and highlight the sample’s dislocations. This decoating process allows us to easily discern the dislocations on the surface of the sample using a Scanning Electron Microscope (SEM). Dislocation density can then be calculated by using an open-source image analysis software called ImageJ on the image of the grain. Additionally, the other calculation, the orientation of the grain, is measured by an Electron Backscatter Diffraction (EBSD) analysis of the sample. The EBSD is a process of firing electrons at the sample and reading the diffractions produced. These diffractions create a “picture” of Kilikits Bands, simply the diffraction lines produced by the electrons, which can be analyzed by proprietary software resulting in a calculation of the orientation of each grain. We were then able to look for correlations between the dislocation density and the orientation of each grain and identify which model describes the deformation results most accurately.

Introduction

Our sample rock is a piece of Kimberlite, a polycrystalline rock which is usually created in the upper mantle of the earth’s core. This rock, being polycrystalline, is comprised of many grains of crystals. In a deformation process, such as one that occurs naturally in the Earth’s upper mantle, the grains of the polycrystalline rock are subjected to pressures and forces that are great enough to displace and move atoms in the crystal structures of the grains. The results of these movements and displacements of atoms in the crystals are what we refer to as dislocations. There are two major types of dislocations, edge dislocations and screw dislocations. Both of these types can be highlighted through an oxidation process, which can occur because of iron naturally present in the rock. The iron can be oxidized by subjecting it to extremely high temperatures for an extended period of time. This oxidation process creates a visible contrast between the dislocations and the grains itself. This contrast is what we are examining in our SEM images.

The orientation of a grain is the calculated orientation of the plane of the atoms of the crystaline structure. For polycrystalline rocks every grain has its own orientation, and these orientations affect the way that a stress field is transferred through the rock. Different orientations cause different reactions to a specific stress field. Every orientation has a slip system which can be conducive to a stress field or non-conducive. If the orientation is conducive to a stress field, then the slip system will be aligned with the stress field and a dislocation can be formed and propagated through the crystal. If the orientation is non-conducive, then the slip system will not be aligned with the stress field and no dislocations can be formed. In essence, orientation is the basis for the formation of dislocations, and attempting to combine these two ideas experimentally is the basis of our research.

Experiment

- A thorough polishing of our sample was done, ranging from 400 grit down to 1/1 micron.
- The sample was then decorated (oxidized) in a lab furnace at 900 degrees Fahrenheit for 45 minutes.
- Dislocation density data was collected by using the SEM to take photographs of the grains.
- Orientation data was collected by using the EBSD function of the SEM.
- EBSD data was taken by hand using optical and SEM images of the sample's surface to locate our SEM grains.
- Orientation data was converted into pole figures, allowing a visual display of orientation for all the grains.
- The SEM pictures were analyzed using the open source image analysis software, ImageJ, which allowed us to calculate both dislocation density area and total area of the grain.
- The dislocation density was divided into ranges, then colored, and finally mapped to the pole figures, allowing for a qualitative analysis of correlation.

Conclusions

- Evaluation of the pole figures revealed a noticeable trend between orientation and dislocation density.
- High dislocation dense grains clustered on the right side of the 100 direction and they clustered on the top of the 010 direction.
- Low dislocation dense grains clustered in the middle of the 100 direction and the bottom of the 010 direction.
- In the end it’s easy to see a trend between dislocation density and orientation, but, because of systematic errors in the image analysis of ImageJ, definite conclusions cannot be drawn.

Acknowledgements

Support from the NS GP program at the National Science Foundation under Grant EEC- 1052245, and support from the High Pressure Science and Engineering Center (HPSEC), under Grant 1115201. We wish to acknowledge the Jagersfontein Mine for the use of their research site, and special thanks to our research advisor, Dr. Pamela Burnley.
April Jeffries

Email: AJ725282@albany.edu
Former High School: Shenendehowa High School
Location of High School: Clifton Park, NY
Mentor/Advisor: Andrew Cornelius
Educational Institute of Project: UNLV
Department: Physics and Astronomy
Research Site: BPB 142

Title: Crystal Structural Behavior of CoCuO at High Temperatures

Abstract: High temperature structure of CoCuO
The spin ladder compounds have received much attention recently due to their relation to the high transition temperature superconductivity. Also the study of spin ladder compounds is of great interest to explore the specific characteristics that result in their behavior. The CoCuO spin ladder crystal structure is similar to SrCuO, which is apparent composition for many high temperature superconductors. The effects of temperature on structural change are investigated for this system. High temperature x-ray diffraction patterns were collected up to 1000°C and the variation of lattice parameters as a function of temperature up to decomposition is studied.

The thermal stability of CoCuO, has been studied at elevated oxygen pressures beyond a high temperature of 1000°C [1]. Temperatures at which CoCuO undergoes decomposition reactions were studied along with the products of the reactions. The study introduced here provides structural details and the linear coefficient of thermal expansion (CTE) before progressive decomposition.

Why are you doing this project? To explore specific characteristics that may result in the high transition temperature for superconductivity.
What problem are you trying to solve? Inefficiency in electronic transport (reducing waste energy in transport of electricity).
What tools or equipment are you using? D8 Advance X-Ray Diffractometer, high temperature stage.
Why is your project worth researching? Research in this area may lead to more efficiency in transport of electricity.
What relevance will it have on the community, society, and in your research field? An increase in efficient electronic transport will lead to less and even no waste energy. This can reduce costs of electricity and make electricity more accessible and economical to remote areas. Also high temperature superconductors may be used in improving speed in computer circuits and innovations in transportation.
What did you find? Linear coefficient of thermal expansion; the change of lattice parameters as a function of temperature. The decomposition of CoCu2O3 from 30°C to 1000°C.
What is the future of your research project? Further researching characteristics of the material to understand which characteristics may lead to high transition temperature superconductivity.
Crystal Structural Behavior of CoCu$_2$O$_3$ at High Temperatures

April Jeffries*, Ravhi Kumar, and Andrew Cornelius

*Department of Physics, State University of New York at Albany, Albany, NY 12222
University of Nevada, Las Vegas, Las Vegas, NV 89154

Abstract:
High temperature structure of CoCu$_2$O$_3$
The spin ladder compounds have received much attention recently due to their relation to the high transition temperature superconductivity. Also the study of spin ladder compounds is of great interest to explore the specific characteristics that result in their behavior. The CoCu$_2$O$_3$ spin ladder crystal structure is similar to SrCu$_2$O$_3$, which is apparent composition for many high temperature superconductors. The effects of temperature on structural change are investigated for this system. High temperature x-ray diffraction patterns were collected up to 1000°C and the variation of lattice parameters as a function of temperature up to decomposition is studied.

The thermal stability of CoCu$_2$O$_3$, has been studied at elevated oxygen pressures beyond a high temperature of 1000°C [1]. Temperatures at which CoCu$_2$O$_3$ undergoes decomposition reactions were studied along with the products of the reactions. The study introduced here provides structural details and the linear coefficient of thermal expansion (CTE) before progressive decomposition.

Experimental Details:
Sample Preparation:
Powder samples of (Ca$_{1-x}$Cox)Cu$_2$O$_3$ (x=0.05) were prepared by the solid state reaction method as described elsewhere [2]. The phase purity of the sample was verified by powder XRD measurements on polycrystalline samples and found to be in single phase. The chemical compositions of the synthesized samples were determined [2].

High Temperature X-Ray Diffraction:
A circular corundum sample stage was loaded with fine powdered CoCu$_2$O$_3$ and loaded into the evacuated high temperature stage in the Bruker D8 Advance X-Ray Diffractometer (Figure 1). Sample was heated at a rate of 0.5°C/sec from 30°C to 400°C. XRD data was collected at temperatures of 30 °C, 100 °C, 200 °C, 300 °C, and 400 °C then cooled at a rate of 1°C/sec back to 30 °C for a final collection of data. Another run from 30 °C to 1000 °C was conducted to track the decomposition of the sample. XRD data was collected starting at 30 °C, and every 200 °C up to 1000 °C, and back to 30 °C. TOPAS was used to analyze the x-ray diffraction patterns and the track percent compositions of the sample at various temperatures. Origin® was used to analyze the data and obtain the linear coefficient of thermal expansion.

Results:

- TOPAS was used to display the intensity peaks which are characteristic of the material (Figure 2 and Figure 3) from 30°C to 400°C. As the temperature increases the shift of the peaks to the lower 2θ shows an expansion of the cell.
- Length of lattice parameter vs. temperature data is linear only to 300°C, so linear CTE was determined using data from 30°C to 300°C using Origin® (Figure 4-a).
- Linear CTE for each lattice parameter can be seen in Table 1.
- Reactions observed in the previous study [1] occur at 900°C to form CoO and O$_2$ from Co$_3$O$_4$ and at 952°C CoCu$_2$O$_3$ begins to reform.

Conclusions:
- Lattice parameters do not have the same coefficient of thermal expansion, therefore the volume expansion is not isotropic.
- Products of the reaction between 400°C and 600°C are in good agreement with previous TGA/DTA study [1].
- CoCu$_2$O$_3$ decomposes at 537°C [1]. There are no temperature induced phase changes observed before decomposition.

References:

Acknowledgements:
Support from the REU program of the National Science Foundation under grant DMR-1005247 is gratefully acknowledged. The authors thank Dr. Thomas Hartmann and Jerry Egland for assistance with x-ray diffraction equipment and software. Help in data collection and analysis is acknowledged for Daniel Antonio, Patricia Kalita and Jason Baker.
Phillip Lotshaw

Email: pllotshaw@gmail.com
Former High School: Ballard High School
Location of High School: Washington
Mentor/Advisor: David Shelton
Educational Institute of Project: UNLV
Department: Physics and Astronomy
Research Site: BPB 149

Title: Second Hyperpolarizability of Carbon Tetrachloride

Abstract: Although present theories of nonlinear optics for second-harmonic generation agree with observed behavior in simple atoms such as Helium, more complex molecules containing many electrons cannot consistently be described by theory. Carbon tetrachloride gas was used to produce electric field induced second-harmonic generation because of its complex structure. The resulting second-harmonic signal can be used to determine the hyperpolarizability of carbon tetrachloride by comparing it with a reference of Nitrogen gas. The hyperpolarizability value, an intrinsic property of molecules, can serve as a benchmark to compare with future work in the theory of nonlinear optics.

What problem are you trying to solve? Although present theories of nonlinear optics agree with observed behavior in simple atoms such as helium, more complex molecules containing many electrons, such as carbon tetrachloride (CCl4), cannot consistently be described by theory. Through experimental analysis of nonlinear materials, a new, more sophisticated model for describing their properties could be realized.

What tools or equipment are you using? We performed our experiments by taking second-harmonic signal measurements for triplets of N2 gas, a mixture of N2 and CCl4 gases, and N2 gas. The decision to measure the N2 signal before and after the CCl4 signal allowed us to monitor the power fluctuations and possible mode changes of the laser. Since the second-harmonic signal varies with the square of the power, changes in the power output can significantly alter the signal.

Why is your project worth researching? The purpose of our experiment was to measure the nonlinear behavior of the second harmonic signal generated from CCl4 and to compare the results with the prediction by the CCSD(T) molecular model.

What relevance will it have on the community, society, and in your research field? What did you find? The value we obtained for agrees with previous experiments, which provides further evidence that these results are within their quoted margins of error.

What is the future of your research project? To further the study of the nonlinear properties of CCl4 and other molecules, one would like to eliminate error due to power and mode fluctuations by testing with a more stable laser. Also, performing the experiment at multiple fundamental frequencies will give a more accurate best fit line for w2 versus . A more accurate γ value would provide a better foundation for refining current molecular models.
Second Hyperpolarizability of Carbon Tetrachloride

Phillip C. Lotshaw1, Anna M. Smith2, and Dr. David P. Shelton3

1Department of Physics, Willamette University, Salem, OR 97301, USA
2Department of Physics, Davidson College, Davidson, NC 28035, USA
3Department of Physics, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA, NSF-REU Program Summer 2011

Background

Although present theories of nonlinear optics agree with observed behavior in simple atoms such as helium, more complex molecules containing many electrons, such as carbon tetrachloride (CCl4), cannot consistently be described by theory. Through experimental analysis of nonlinear materials, a new, more sophisticated model for describing their properties could be realized. The purpose of our experiment was to measure the nonlinear behavior of the second harmonic signal generated from CCl4 and to compare the results with the prediction by the CSDST molecular model.

Figure 1: Second harmonic generation occurs when two fundamental frequency photons are incident upon a molecule with nonlinear properties. The resulting emitted photon has twice the frequency of the fundamental.

Materials with nonlinear properties can convert light from one frequency to another, allowing for generation of many different frequencies from a single source. We measured second-harmonic generation, a nonlinear process in which two light waves of equal frequency are combined into a single lightwave with double the frequency of either initial wave. The experiment utilized static electric field induced second-harmonic generation (ESHG) to produce a measurable second-harmonic signal from CCl4. The signal was compared with the signal from nitrogen, a gas of known second hyperpolarizability, to determine the value of χ for CCl4. Our N2 χ value was compared to previously measured values at varying frequencies and with the prediction by the CSDST mathematical model using the 31G(3d,p) basis set, the highest approximation by reference 2.

The relevant equation for the second hyperpolarizability is given by the Taylor series expansion of the total electric dipole moment with respect to the local electric field E:

\[\mu_{\text{tot}} = \mu + \alpha E + \beta E^2/2 + \gamma E^3/6 + \ldots \]

In the presence of a static electric field E0 and an electric field Ew varying with frequency ω, the term is given by:

\[\chi = \chi_{\text{e}} + \chi_{\text{cw}} \cos(2\omega) + 3\chi_{\text{e}} \cos^2(\omega) \]

The term \(\chi_{\text{cw}} \) is responsible for the second harmonic generated in our experiment.

Figure 2: The electric array used in our experiment to produce a static electric field.

Typically, the second-harmonic wave and the fundamental wave travel at different speeds through the nonlinear medium. As the length of the medium is increased, the second-harmonic waves generated at the beginning and the end of the sample get progressively further out of phase, interfering perfectly destructively at the coherence length of the sample. ESHG allows for periodic phase matching in which the static field reverses in sign at length intervals equal to the coherence length of the sample, causing a phase shift of π radians in the generated second-harmonic wave, and therefore causing all second harmonic waves to be generated in phase with each other. The coherence length of the sample is adjusted to match the spacing of the electrodes by changing the density of the sample.

Figure 3: A schematic diagram of our experimental setup. Fused silica optics allow for transmission of UV light.

Apparatus

Figure 4: The static electric field generated by the electrode array is determined by the high voltage input. The periodic reversal of the sign of the field allows for optimal phase matching when the pressure is set to give a coherence length comparable to the length of the spacing between the electrodes. The enhanced amplitude of the signal due to phase matching varies by the square of the number of pairs of electrodes. The array used in our experiment contained 150 pairs of electrodes separated by 2.092 mm.

Data & Analysis

We performed our experiments by taking second-harmonic signal measurements for triplts of N2 gas, a mixture of N2 and CCl4 gases, and N2 gas. The decision to measure the N2 signal before and after the CCl4 signal allowed us to monitor the power fluctuations and possible mode changes of the laser. Since the second-harmonic signal varies with the square of the power, changes in the power output can significantly alter the signal. A change in mode affects the intensity profile of the beam, which also affects the second-harmonic signal. To reduce the error from changes in power and mode, triplts in which the peaks for N2 varied by amounts greater than counting statistics could account for, were discarded.

Figure 5: Typical triplets data for consecutive fills of N2, N2 and CCl4, and N2.

The peak signal value and pressure were approximated by a quadratic equation. Because each peak was not perfectlyparable, a better approximation was obtained by only analyzing the top fifty percent of the data. This method also accounted for short power fluctuations of the laser by averaging over a range of pressures.

Figure 6: Example quadratic fit to the phase match peak for the top fifty percent of the second-harmonic signal from N2.

Results

Figure 7: A linear relationship was observed between the second hyperpolarizability and the square of the frequency. The large error bars for our data was caused primarily by fluctuations in laser beam propagation. Data points are computed using the CSDST model with basis set 31G(3d,p) and was not included in the linear regression. Reference 2. Reference 4. This work.

A linear relationship is expected between the square of the frequency and the second hyperpolarizability. Therefore, a linear regression, weighted by the error bars, was obtained for all experimentally measured points. The static second hyperpolarizability determined by our fit was \(\chi_{\text{cc}} = 9268 \pm 375 \) mm.

Assuming ideal gas behavior for both nitrogen and carbon tetrachloride, the ratio \(\alpha^2 \) of phase match densities was calculated to be \(\frac{\alpha_{\text{N2}}^2}{\alpha_{\text{CCl4}}^2} = 9.8375 \pm 0.1127 \). The observed phase match pressure for nitrogen was 4500 ± 2 atm.

Conclusion

The value we obtained for \(\chi_{\text{cc}} \) agrees with previous experiments, which provides further evidence that these results are within their quoted margins of error.

The value of \(\gamma \) derived from the best fit line is not consistent with the value expected from the CSDST method using a 31G(3d,p) basis set. The value of \(\gamma \) is between 33% and 3% of the 4% error in our calculated value for \(\gamma \) does not account for this discrepancy, suggesting that current modeling techniques for nonlinear optics are unreliable.

To further study the nonlinearity of CCl4 and other molecules, one would like to eliminate error due to power and mode fluctuations by testing a more stable laser. Also, performing the experiment at multiple fundamental frequencies will give a more accurate best fit line for \(\alpha^2 \) versus \(\chi_{\text{cc}} \). A more accurate \(\chi_{\text{cc}} \) value would provide a better foundation for refining current molecular models.

Acknowledgements

We would like to thank Dr. David P. Shelton for his extensive help with all aspects of the experiment. Support from the REU program of the National Science Foundation under grant DMR-1005247 is gratefully acknowledged.

References

Nichollas Macholl

Email: nickmacholl@gmail.com
Former High School: Hoffman Estates High School
Location of High School: Hoffman Estates, IL
Mentor/Advisor: John Farley
Educational Institute of Project: UNLV
Department: Physics and Astronomy
Research Site: BPB 155

Title: Investigation of Raman Active Modes of MgxZn1-xCr2O4

Abstract: Using Raman spectroscopy, vibrational modes of the spinel structure MgxZn1-xCr2O4 were experimentally examined. The spinel compounds were synthesized by producing solid solutions via combustion method, of MgxZn1-xCr2O4 in the range x=0 to x=1 in 0.1 intervals. The purpose of which was to experimentally verify gradual shifts of Raman peaks as the samples transitioned between the two different compounds and gain information about the dependencies of the lattice vibrations on the tetrahedral and octahedral cations. X-ray diffraction was also used to verify spinel structure, and track the changes in lattice parameter of the samples.

Why are we doing this project? We are doing this project to better understand the vibrational modes in certain series of spinel structures. Which until this point have only been solved theoretically.

What problem are you trying to solve? We are trying to verify the accuracy of the theoretically predicted vibrational modes in the series MgxZn1-xCr2O4

What tools/equipment are you using? We are using a box furnace to synthesize our samples by combustion, and Ramon Spectroscopy, as well as X-ray diffraction is being used to analyze the samples.

What relevance will it have on the community, society and in your research field? We will gain a better understanding of vibrational modes in spinel structures. This updated knowledge in material properties can lead to advancements in the production of technology. For example, the spinel structure LiMn2O4 is commonly used as the cathode in Li-ion batteries.

What did you find? Results pending.

What is the future for your research topic? Upon completion of this particular series, there are others that can be experimentally verified. Such as ZnCr2-xFe2O4
Investigation of Raman-Active Modes of $\text{Mg}_x\text{Zn}_{1-x}\text{Cr}_2\text{O}_4$

Nick Macholl - Loyola University Chicago :: Tyler Mosher - Clarkson University

Advisors
Dr. John Farley :: Dr. Brian Hosterman

Raman Spectroscopy

Raman spectroscopy is a spectroscopic technique for studying the vibrational modes of molecules. Typically, the object of study is illuminated with a laser beam. Light scattered by the sample is collected and examined. The vast majority of photons are scattered elastically, and have the same energy as the incident laser photons. However, a small fraction of the photons can give up some of their energy to cause vibrational excitation of the molecules. This results in a scattered photon with less energy than the incident photon. By comparing the energies of the incident and scattered photons, we can determine the vibrational behavior of molecules and crystals.

![Elastic and Inelastic Scattering Diagram](image)

Spinell Structure

The spinell structure is a cubic close-packed metal oxide of the form Al_2O_3 with eight tetrahedral sites and sixteen octahedral sites occupied by the cations. Spinells are versatile in that they can incorporate many different cation species into its structure. There are over one hundred known spinell compounds. A common example is magnetite (Fe_3O_4). Magnetites have industrial applications, such as lithium manganese oxide (LiMn_2O_4) for use as a cathode material in lithium ion batteries.

![Spinell Structure Diagram](image)

Results

Micro-Raman Spectra

- **$F_{2g}(1)$ Mode of $\text{Mg}_x\text{Zn}_{1-x}\text{Cr}_2\text{O}_4$**
- **$F_{2g}(2)$ Mode of $\text{Mg}_x\text{Zn}_{1-x}\text{Cr}_2\text{O}_4$**
- **$F_{2g}(3)$ Mode of $\text{Mg}_x\text{Zn}_{1-x}\text{Cr}_2\text{O}_4$**
- **A_{1g} Mode of $\text{Mg}_x\text{Zn}_{1-x}\text{Cr}_2\text{O}_4$**

![Micro-Raman Spectra](image)

Conclusions

Our data shows that some of the observed Raman-active modes depend upon the magnesium content. Our $F_{2g}(1)$ mode disagrees with literature in that we observed this mode at lower energies than reported in every data collection. Additionally, our $F_{2g}(1)$ mode was no longer observable at $x > 0.6$. The $F_{2g}(3)$ mode showed a linear dependence upon magnesium content with the largest percent change of any other observed mode at $x = 0.4$. The $F_{2g}(3)$ mode exhibited the most peculiar behavior in that the two end points were equivalent, though the solid solutions showed a variation in the mode's energy. This behavior requires more investigation. Last, the A_{1g} mode showed the most independent behavior with respect to magnesium content. However, the mode's energy decreased slightly through the series. This may be due to a small increase in the lattice parameter between zinc chromite ($8.327\AA$) and magnesium chromite ($8.334\AA$).

Motivation

With the vibrational understanding not yet complete for many spinellic materials, experimental data are needed to test theory and to gain a better understanding of the dependence of these modes on the tetrahedral and octahedral cations. This experimental data allows theoreticians to validate theory with experiment, which leads to a better understanding of this structure. Additionally, unpredicted material properties could be found that have uses in industry and applications.

Experiment

Solid solution spinell oxides of the form $\text{Mg}_x\text{Zn}_{1-x}\text{Cr}_2\text{O}_4$ were synthesized via combustion reaction (in $x = 0.1$, interval from 0 to 1). Eleven samples were generated using magnesium nitrate-$\text{Mg(NO}_3)_2$-$4\text{H}_2\text{O}$, zinc nitrate-$\text{Zn(NO}_3)_2$-$6\text{H}_2\text{O}$, and chromium nitrate-$\text{Cr(NO}_3)_3$-$9\text{H}_2\text{O}$ with urea-$\text{CO(NH}_2)_2$ as fuel. The stoichiometric composition of each sample was found based on the total oxidizing and reducing valences of the oxide and fuel. Resulting in a combined molar ratio of Mg:Zn:Cr:O = 1:2.4:0.67 of magnesium nitrate, zinc nitrate, chromium nitrate and urea respectively. The reactions were performed in a box furnace, at approximately 1350°C for 24-25 minutes.

For the first time, micro-Raman spectral studies were performed on this series to observe vibrational spectrum. The micro-Raman microscope system consisted of a Leica Raman Spectrometer laser tuned to 647.1 nm as the excitation source. The laser light was passed through a spatial filter containing a $10\mu\text{m}$ pinhole, and then sent to the entrance port of a Nikon MM-40 Microscope. The laser light is redirected by a beam splitter through the microscope and focused onto the sample. A Raman objective was used for all data acquisition. The light is then directed to a Horiba Jobin Yvon T64000 spectrometer, and a Princeton Instruments liquid nitrogen-cooled Spex 10 CCD detector, which was used for photon counting and sending the information to the computer software. This setup can be seen below. Multiple data acquisitions were taken for all eleven samples in the series, in which we tracked the gradual shifts in the Raman peaks as the sample transitioned from zinc chromite ($x = 0$) to magnesium chromite ($x = 1$). This allowed us to gain information about the dependence of the lattice vibrational modes on the tetrahedral and octahedral cations. In all, four modes were tracked through the transition.

Acknowledgements

Support from the REU program of the National Science Foundation under grant DMR-1005127 is gratefully acknowledged.

We would also like to acknowledge Daniel Sheehy for his work in the laboratory.

Title: Alkali Halide Alkanalates as Pressure-Media in High-Pressure DAC Experiments

Abstract: The goal of the experiment is to determine if a series of alkali halide alkanalates would make good pressure-media for high-pressure experiments utilizing diamond-anvil cells. In a diamond-anvil cell, the pressure transmitting medium transforms uniaxial pressure supplied by the cell into uniform hydrostatic pressure. The brunt of the experimental work involved setting up and aligning the optical equipment, as well as calibrating the grating spectrometers. To test the potential pressure-media, we measured the fluorescence of the media with a 457 nm laser and TriVista triple-grating spectrometry apparatus. We also measured the stiffness of the Raman modes of the media as a function of the pressure in the cell. The pressures will range to a maximum of 20 GPa.

Why are you doing this project? We are doing this project to determine new techniques in high-pressure diamond anvil cell experiments.

What problem are you trying to solve? We are trying to determine if certain organic liquids serve as better pressure-media in a diamond anvil cell.

What tools or equipment are you using? In order to determine this, we are using an optical system with a 457 nm blue laser and a TriVista spectrometry system, along with a diamond-anvil cell.

Why is your project worth researching? Different high-pressure diamond-anvil cell experiments require different pressure-media – we hope to illuminate a new media that can be used by high-pressure researchers.

What relevance will it have on the community, society, and in your research field? If it is found that the Alkali Halide Alkanalates serve as good pressure-media in diamond-anvil cells, then other researchers will be able to use them as needed in future experiments.

What did you find? Are results are still pending at this time.

What is the future of your research project? To provide other researchers Alkali Halide Alkanalates as a good pressure-media in diamond-anvil cells to be used in researchers future experiments.
Abstract

In Diamond Anvil Cells (DACs), usually a pressure transmitting medium functions to transform the uniaxial pressure supplied by the opposing diamond anvils into uniform hydrostatic pressure acting on the sample. Conventionally, a 4-1 methanol-ethanol solution, or a 15-3-1 methanol-ethanol-water solution is used as pressure transmitting medium. However, these two solutions transform into a glass with high elastic shear strength at pressures around 12-14 GPa and no longer function as hydrostatic medium. Our goal was to determine if liquid ionic alkalihalide alkaliolate complexes provide more uniform pressure in the cell up to 20 GPa. Ruby (Cr-doped Al₂O₃) produces two Cr³⁺ fluorescence lines when exposed to sufficiently energetic radiation (457.9 nm in our case). These two fluorescence lines shift toward the IR with increasing pressure. We used the splitting of the two fluorescence lines as well as the width of the peaks in order to measure the shear strength of the alkaliolate as a function of pressure.

Introduction

Fig. 1: Diagram of a Diamond Anvil Cell

Basic diagram of a DAC. The opposing diamond anvils provide uniaxial pressure onto the pressure medium, the sample, and the ruby. The pressure medium converts the uniaxial pressure from the anvils into uniform hydrostatic pressure. Since we were simply testing the pressure medium, no sample was inserted for our trials.

Data and Conclusions

Fig. 2: Wavelength vs. Pressure for both samples

![Graph showing wavelength vs. pressure for both samples.]

While the alkaliolate may be superior to the standard methanol-ethanol-water pressure medium, it is not preferable to gas pressure media such as helium. While the alkaliolate exhibits modest shear strength after the glass-transition visible as a pressure gradient between different points in the chamber of ~1 GPa. Gas media like helium crystalize but maintain lower shear strength to much higher pressures. The question might arise: why not always use helium as a pressure medium, since it maintains near hydrostatic conditions at higher pressures? Since helium is a gas, loading it into the DAC is a markedly more difficult task. Additionally, different media are needed for different samples, given that reactions between the media and the sample are unwanted.

The standard pressure medium in DACs, a 16-3-1 methanol-ethanol-water solution, begins to transition into a glass at approximately 9-14 GPa. In our case we saw a glass transition as pressure neared 10 GPa. The alkaliolate undergoes a glass transition at approximately 7 GPa. It is in the glass transition where the alkaliolate complex is superior to the methanol-ethanol-water solution. As pressure increases to above 15 GPa, the alkaliolate maintains a relatively constant R2 peak width, whereas the methanol-ethanol-water solution experiences a drastic increase in peak width (Fig. 3). Broader ruby fluorescence peaks imply a greater shear strain on the sample, in other words: non-hydrostatic conditions. Thus, at high pressures, the alkaliolate provides conditions closer to hydrostatic pressure.

Fig. 3: R2 Width vs. Pressure for both samples

![Graph showing R2 width vs. pressure for both samples.]

Fig. 4: Experimental Setup

![Image of experimental setup.]

Figure 3 shows our experimental setup. A 457.9 nm laser (labeled A in the above picture) is reflected such that it travels through a focusing lens and hits the DAC (B). The excited fluorescence from the DAC travels through a collecting lens, reflects off a translateable mirror. If the mirror is in position, then the sample can be viewed in the microscope (C). Otherwise, when the mirror is moved out of position, then the light passes the microscope and travels through a condensing lens and into the spectrometer (D). We used the spectroscopy program WinSpecS2 to image the peaks from the pressure media, and Origin 8 to subsequently analyze the peaks.

Experimental Setup

References

Support from the REU program of the National Science Foundation under grant DMR-1005247 is gratefully acknowledged. I would also like to thank my research advisors: Dr. Oliver Tschauer and Dr. Valentin Iota for their help this summer.
Title: Investigation of Ramon Active Modes of MgZn1-xCr2O4

Abstract: Using Raman spectroscopy, vibrational modes of the spinel structure MgZn1-xCr2O4 were experimentally examined. The spinel compounds were synthesized by producing solid solutions via combustion method, of MgZn1-xCr2O4 in the range x=0 to x=1 in 0.1 intervals. The purpose of which was to experimentally verify gradual shifts of Raman peaks as the samples transitioned between the two different compounds and gain information about the dependencies of the lattice vibrations on the tetrahedral and octahedral cations. X-ray diffraction was also used to verify spinel structure, and track the changes in lattice parameter of the samples.

Why are we doing this project? We are doing this project to better understand the vibrational modes in certain series of spinel structures. Which until this point have only been solved theoretically.

What problem are you trying to solve? We are trying to verify the accuracy of the theoretically predicted vibrational modes in the series MgZn1-xCr2O4

What tools/equipment are you using? We are using a box furnace to synthesize our samples by combustion, and Raman Spectroscopy, as well as X-ray diffraction is being used to analyze the samples.

What relevance will it have on the community, society and in your research field? We will gain a better understanding of vibrational modes in spinel structures. This updated knowledge in material properties can lead to advancements in the production of technology. For example, the spinel structure LiMn2O4 is commonly used as the cathode in Li-ion batteries.

What did you find? Results pending.

What is the future for your research topic? Upon completion of this particular series, there are others that can be experimentally verified. Such as ZnCr2-xFexO4
Investigation of Raman-Active Modes of Mg\textsubscript{x}Zn\textsubscript{1-x}Cr\textsubscript{2}O\textsubscript{4}

Nick Macholl - Loyola University Chicago :: Tyler Mosher - Clarkson University

Advisors
Dr. John Farley :: Dr. Brian Hosterman

RESULTS

MOTIVATION

With the vibrational understanding relatively unknown for many spinel lades, experimental data are needed to test theory and to gain a better understanding of the dependence of these modes on the tetrahedral and octahedral cations. This experimental data allows theorists to validate theory with experiment, which leads to a better understanding of this structure. Additionally, unpredicted material properties could be found that have use in industrial applications.

EXPERIMENT

Solid solution spinel oxides of the form Mg\textsubscript{x}Zn\textsubscript{1-x}Cr\textsubscript{2}O\textsubscript{4} were synthesized via combustion reaction in x = 0.1 interval from 0 to 1. Eleven samples were generated using magnesium nitrate-Mg(NO\textsubscript{3})\textsubscript{2}, zinc nitrate-Zn(NO\textsubscript{3})\textsubscript{2}, and chromium nitrate Cr(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O. The stoichiometric composition of each sample was found based on the total x-content and reducing valencies of the oxide and fuel. Resulting in a combined molar proportion of 1.x=2.667 of magnesium nitrate, zinc nitrate, chromium nitrate and oxide respectively. The reactions were performed in a box furnace, at approximately 350°C for 24-25 minutes.

For the first time, micro-Raman spectral studies were performed on this series to observe vibrational spectrum. The micro-Raman microscope system consisted of a Leica Ram:onty monochromator laser tuned to 647 nm as the excitation source. The laser light was passed through a spatial filter containing a 10 μm pinhole, and then sent to the entrance port of a Nikon MM-40 Microscopc. The laser light is redirected by a beam splitter through the microscope and focused onto the sample. A Raman spectrometer was used for all data acquisition. The light is then directed to a Horiba Jobin Yvon T64000 monochromator, and a Princeton Instruments liquid nitrogen-cooled Spex 10 CCD detector, which was used for photon counting and sending the information to the computer software. This setup can be seen below. Multiple data acquisitions were taken for all eleven samples in the series, in which we tracked the gradual shifts in the Raman peaks as the sample transitioned from zinc-chromite (x=0) to magnesium-chromite (x=1). This allowed us to gain information about the dependence of the lattice vibrations on the tetrahedral and octahedral cations. In all, four modes were tracked through the transition.

CONCLUSIONS

Our data shows that some of the observed Raman-active modes depend upon the magnesium content. Our F₂g(1) mode disagrees with literature in that we observed this mode at lower energies than reported in every data acquisition. Additionally, our F₂g(1) mode was no longer stable at x=0.8. The F₂g(2) mode showed a linear dependence upon magnesium content with the largest percent change of any other observed mode at 5.5%. The F₂g(3) mode exhibited the most peculiar behavior in that the two end points were equivalent, though the solid solutions showed a variation in the mode’s energy. This behavior requires more investigation. Lastly, the A₁g mode showed the most independent behavior with respect to magnesium content. However, the mode’s energy decreased slightly through the series. This maybe due to a slight increase in the lattice parameter between zinc-chromite (8.327Å) and magnesium-chromite (8.344Å).

SPINEL STRUCTURE

The spinel structure is a cubic close-packed mixed metal oxide of the form AB\textsubscript{2}O\textsubscript{4} with eight tetrahedral sites and sixteen octahedral sites occupied by the cations. Spinels are versatile in that it can incorporate many different cation species in its structure. There are over one hundred known spinel compounds. A common example is magnetite Fe\textsubscript{3}O\textsubscript{4}. Most spinels have industrial applications, such as lithium manganese oxide LiMn\textsubscript{2}O\textsubscript{4} for use as a cathode material in lithium-ion batteries.

Support from the NSF program of the National Science Foundation under grant DMR-1005247 is gratefully acknowledged.

We would also like to acknowledge Daniel Sneed for his work in the laboratory.

Anna Smith

Email: ansmith@davidson.edu
Former High School: Riverdale High School
Location of High School: Murfreesboro, TN
Mentor/Advisor: David Shelton
Educational Institute of Project: UNLV
Department: Physics and Astronomy
Research Site: BPB 149

Title: Second Hyperpolarizability of Carbon Tetrachloride

Abstract: Although present theories of nonlinear optics for second-harmonic generation agree with observed behavior in simple atoms such as Helium, more complex molecules containing many electrons cannot consistently be described by theory. Carbon tetrachloride gas was used to produce electric field induced second-harmonic generation because of its complex structure. The resulting second-harmonic signal can be used to determine the hyperpolarizability of carbon tetrachloride by comparing it with a reference of Nitrogen gas. The hyperpolarizability value, an intrinsic property of molecules, can serve as a benchmark to compare with future work in the theory of nonlinear optics.

What problem are you trying to solve? Although present theories of nonlinear optics agree with observed behavior in simple atoms such as helium, more complex molecules containing many electrons, such as carbon tetrachloride (CCl4), cannot consistently be described by theory. Through experimental analysis of nonlinear materials, a new, more sophisticated model for describing their properties could be realized.

What tools or equipment are you using? We performed our experiments by taking second-harmonic signal measurements for triplets of N2 gas, a mixture of N2 and CCl4 gases, and N2 gas. The decision to measure the N2 signal before and after the CCl4 signal allowed us to monitor the power fluctuations and possible mode changes of the laser. Since the second-harmonic signal varies with the square of the power, changes in the power output can significantly alter the signal.

Why is your project worth researching? The purpose of our experiment was to measure the nonlinear behavior of the second harmonic signal generated from CCl4 and to compare the results with the prediction by the CCSD(T) molecular model.

What relevance will it have on the community, society, and in your research field? The value we obtained for agrees with previous experiments, which provides further evidence that these results are within their quoted margins of error.

What did you find? To further the study of the nonlinear properties of CCl4 and other molecules, one would like to eliminate error due to power and mode fluctuations by testing with a more stable laser. Also, performing the experiment at multiple fundamental frequencies will give a more accurate best fit line for w2 versus . A more accurate γs value would provide a better foundation for refining current molecular models.
Second Hyperpolarizability of Carbon Tetrachloride

Phillip C. Lotshaw¹, Anna M. Smith², and Dr. David P. Shelton³

¹Department of Physics, Willamette University, Salem, OR 97301, USA
²Department of Physics, Davidson College, Davidson, NC 28035, USA
³Department of Physics, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA, NSF-REU Program Summer 2011

Background

Although present theories of nonlinear optics agree with observed behavior in simple atoms such as helium, more complex molecules containing many electrons, such as carbon tetrachloride (CCl₄), cannot consistently be described by theory. Through experimental analysis of nonlinear materials, a new, more sophisticated model for describing their properties could be realized. The purpose of our experiment was to measure the nonlinear behavior of the second harmonic signal generated from CCl₄ and compare the results with the prediction by the CSD(T) molecular model.

Materials with nonlinear properties can convert light from one frequency to another, allowing for generation of many different frequencies from a single source. We measured second-harmonic generation, a nonlinear process in which two light waves of equal frequency are combined into a single lightwave with double the frequency of either initial wave. The experiment utilized static electric field induced second-harmonic generation (ESHG) to produce a measureable second-harmonic signal from CCl₄. The signal was compared with the signal from nitrogen, a gas of known second hyperpolarizability γ, to determine the value of γ for CCl₄. Our result was compared to previously measured values at varying frequencies and with the prediction by the CSD(T) mathematical model using the 3(G3D)-pad basis set, the highest approximation by reference 2.

The relevant equation for the second hyperpolarizability is given by the Taylor series expansion of the total electric dipole moment with respect to the local electric field E:

\[\mu_{\text{eit}} = \mu + \alpha E + \beta E^2 / 2 + \gamma E^3 / 6 + \ldots \]

In the presence of a static electric field E₀ and an electric field Eₜ varying with frequency w, the term is given by:

\[g_{\text{g}} = \frac{\mu_{\text{g}} + \mu_{\text{eit}} \cos(w \tau) + \beta E_{\text{g}} \cos(w \tau) + \beta E_{\text{g}} \cos(w \tau) + \gamma E_{\text{g}} \cos(w \tau)}{2 \beta E_{\text{g}}^2 (1 + \cos(2w \tau))} \]

Typically, the second-harmonic wave and the fundamental wave traveled at different speeds through the nonlinear medium. As the length of the medium is increased, the second-harmonic waves generated at the beginning and the end of the sample get progressively further out of phase, interfering perfectly destructively at the coherence length of the sample. ESHG allows for periodic phase matching in which the static field reverses in sign at length intervals equal to the coherence length of the sample, causing a phase shift of π radians in the generated second-harmonic wave, and therefore causing all second harmonic waves to be generated in phase with each other. The coherence length of the sample is adjusted to match the spacing of the electrodes by changing the density of the sample.

Apparatus

- 671 nm Nd:YAG laser
- Fused silica prisms
- High voltage supply
- Pressure cell and electrode array

Figure 1: A schematic diagram of our experimental setup. Fused silica optics allow for transmission of UV light.

Data & Analysis

We performed our experiments by taking second-harmonic signal measurements for triplets of N₂ gas, a mixture of N₂ and CCl₄ gases, and N₂ gas. The decision to measure the N₂ signal before and after the CCl₄ signal allowed us to monitor the power fluctuations and possible mode changes of the laser. Since the second-harmonic signal varies with the square of the power, changes in the power output can significantly alter the signal. A change in mode affects the intensity profile of the beam, which also affects the second-harmonic signal. To reduce the error from changes in power and mode, triplets in which the peaks for N₂ varied by amounts greater than counting statistics could account for, were discarded.

Conclusion

The value we obtained for γₐg₁ agrees with previous experiments, which provides further evidence that these results are within their quoted margins of error.

The value of γₐ is derived from the best fit line and is not consistent with the value expected from the CSD(T) method using a 3(G3D)-pad basis set. The two values of γₐ differ by 33%. The 4% error in our calculated value for γₐ does not account for this discrepancy, suggesting that current modeling techniques for nonlinear optics are unreliable.

To further study the nonlinear properties of CCl₄ and other molecules, one would like to eliminate error due to power and mode fluctuations by testing with a more stable laser. Also, performing the experiment at multiple fundamental frequencies will give a more accurate best fit line for γₐ versus γₐ. A more accurate γₐ value would provide a better foundation for refining current molecular models.

Acknowledgements

We would like to thank Dr. David P. Shelton for his extensive help with all aspects of the experiment. Support from the REU program of the National Science Foundation under grant DMR-1065247 is gratefully acknowledged.

References

Abstract: Determining the reaction of poly-crystalline structures to induced stress is an extremely difficult problem in contemporary engineering and geology. The main challenge lies in the inhomogeneity of the grains inside of the poly-crystalline structures. To predict the response of a certain polycrystalline structure to a specific stress, you must resort to one of two views on grain interaction, an orientation or propagation based model. For every material there may be certain correlations between the prediction model used and the actual deformation that occurred. Our work centers around describing the correlation of these prediction models with a sample of naturally deformed mantle xenolith from the Jagersfontein Mine in South Africa. In order to correlate the models with the sample, we needed to calculate the orientation and dislocation density of the individual grains. To measure the dislocation density, the ratio of the area of the dislocations to the total area of the grain itself, the sample needed to go through a decoration process. The sample was heated to accelerate oxidization and highlight the sample’s dislocations. This “decorating” process allows us to easily discern the dislocations on the surface of the sample using a Scanning Electron Microscope (SEM). Dislocation density can then be calculated by using an open-source image analysis software called ImageJ on the image of the grain. Additionally, the other calculation, the orientation of the grain, is measured by an Electron Backscatter Diffraction (EBSD) analysis of the sample. The EBSD is a process of firing electrons at the sample and reading the diffractions produced. These diffractions create a “picture” of Kikuchi Bands, simply the diffraction lines produced by the electrons, which can be analyzed by proprietary software resulting in a calculation of the orientation of each grain. We were then able to look for correlations between the dislocation density and the orientation of each grain and identify which model describes the deformation results most accurately.

Why are you doing this project? We are doing this project in order to better understand how rocks deform.

What problem are you trying to solve? We’re trying to see if the deformation of crystals within the rock can be predicted by the orientation of the crystals in the rock.

What tools or equipment are you using? Scanning Electron Microscope, Polishing Pad, Diamond Slurries, and Electron Backscatter Device.

Why is your project worth researching? The rock deformation process is still an unsolved mystery, but with a better understanding of it, we could engineer materials better and understand mantle rheology more completely. Moreover, with better understanding of rock deformation, buildings could be safer and long-standing geological problems could be closer to being answered.

What relevance will it have on the community, society, and in your research field? Better understanding of rock deformation could revolutionize construction and the building process. Also, there is a possibility that one could better predict how earth materials react under pressure, like in an earthquake.

What is the future of your research project? In the future we will most likely perform the same experiment on different materials in order to draw general conclusions about deformation.
Correlation Between Grain Dislocation Density and Orientation for Naturally Deformed Mantle Xenoliths from the Jagersfontein Mine

Quinton Guerrero (Monmouth College) and Quinan Smith (California Lutheran University)
UNLV Physics REU Advisor: Pamela Burnley
Dept. of Physics, University of Nevada Las Vegas, Las Vegas NV 89119

Abstract

Determining the reaction of polycrystalline structures to induced stress is an extremely difficult problem in contemporary engineering and geology. The main challenge lies in the inhomogeneity of the grains of the polycrystalline structures. To predict the response of a certain polycrystalline structure to a specific stress, you must resort to one of two views on grain interaction: an orientation or propagation-based model. For every material there may be certain correlations between the propagation model used and the actual deformation that occurred. Our work centers around describing the correlation of these prediction models with a sample of naturally deformed mantle xenolith from the Jagersfontein Mine in South Africa. In order to correlate the models with the sample, we needed to calculate the orientation and dislocation density of the individual grains. To measure the dislocation density, the ratio of the area of the dislocations to the total area of the grain itself, the sample needed to go through a decarboxylation process. The sample was heated to accelerate oxidation and highlight the sample’s dislocations. This “decorating” process allows us to easily discern the dislocations on the surface of the sample using a Scanning Electron Microscope (SEM). Dislocation density can then be calculated using an open-source image analysis software called ImageJ on the image of the grain. Additionally, the other calculation, the orientation of the grain, is measured by an Electron Backscatter Diffraction (EBSD) analysis of the sample. The EBSD is a process of firing electrons at the sample and reading the diffractions produced. These diffractions create a ‘picture’ of Kikuchi Bands, simply the diffraction lines produced by the electrons, which can be analyzed by proprietary software resulting in a calculation of the orientation of each grain. We were then able to look for correlations between the dislocation density and the orientation of each grain and identify which model describes the deformation results most accurately.

Introduction

Our sample rock is a piece of Kimberlite, a polycrystalline rock which is usually created in the upper mantle of the earth’s core. This rock, being polycrystalline, is composed of many grains of crystals. In a deformation process, such as one that occurs naturally in the Earth’s upper mantle, the grains of the polycrystalline rock are subjected to pressures and forces that are great enough to displace and move atoms in the crystal structures of the grains. The results of these movements and displacements of atoms in the crystals are what we refer to as dislocations. There are two major types of dislocations, edge dislocations and screw dislocations. Both of these types can be highlighted through an oxidation process, which can occur because of iron naturally present in the rock. The iron can be oxidized by sublimating, it is extremely high temperatures for an extended period of time. This oxidation creates a visible contrast between the dislocations and the grain itself. This contrast is what we are examining in our SEM images.

Experiment

- A thorough polishing of our sample was done, ranging from 400 grit down to 1 micron.
- The sample was then decorated (oxidized) in a lab furnace at 900 degrees Fahrenheit for 45 minutes.
- Dislocation density data was collected by using the SEM to take photographs of the grains.
- Orientation data was collected by using the EBSD function of the SEM.
- EBSD data was taken by hand using optical and SEM images of the samples’ surfaces to locate our SEM grains.
- Orientation data was converted into pole figures, allowing a visual display of orientation for all the grains.
- The SEM pictures were analyzed using the open source image analysis software, ImageJ, which allowed us to calculate both dislocation density area and total area of every grain.
- The dislocation density was divided into ranges, then colored, and finally mapped to the pole figures, allowing for a qualitative analysis of correlation.

Conclusions

- Evaluation of the pole figures revealed a noticeable trend between orientation and dislocation density.
- High dislocation dense grains clustered on the right side of the 100 direction and they clustered on the top of the 010 direction.
- Low dislocation dense grains clustered in the middle of the 100 direction and the bottom of the 010 direction.
- In the end its easy to see a trend between dislocation density and orientation, but, because of systematic error in the image analysis of ImageJ, definite conclusions cannot be drawn.

Acknowledgements

Support from the NSF (grant # awards numbers 124-18541 and 124-18542) and National Science Foundation Graduate Research Grant (NSF-1241294), and support from the High Pressure Science and Engineering Center (HPSEC), funded by the US Department of Energy is gratefully acknowledged. Thanks would also be extended to Dr. Bandy, Dr. Bandy and the entire lab for their support and insistence on research advice Officer Pamela Burnley.

56
Brandon Stewart

Email: beesh.stewart@gmail.com
Former High School: Cimarron Memorial High School
Location of High School: Las Vegas, NV
Mentor/Advisor: Ravhi S. Kumar
Educational Institute of Project: UNLV
Department: Physics and Astronomy
Research Site: BPB 150

Title: Pressure Induced Structural Phase Changes in Nb5Si3

Abstract: Refractory metal silicides are an important class of materials, they are used in high temperature applications such as turbines and aerospace modules. Having a higher melting temperature and lower density, both of which are desirable, Nb5Si3 is considered to be a superior alloy in comparison to nickel super-alloys. Even though the behavior of this alloy is under investigation at high temperature by several groups, there are no studies available on high pressure properties. Here, we focus on the high pressure crystal structure of Nb5Si3. High pressure powder x-ray diffraction was performed on Nb5Si3 using synchrotron radiation at Argonne National Laboratory; up to 35 GPa was applied and the preliminary data analysis shows a pressure induced structural transition below 10 GPa. The results will be discussed in detail.

Why are you doing this project? I chose Ravhi as the mentor I wished to work with because he currently works with superconductors, thermoelectrics and phase changing alloys. I intend to gain experimental knowledge and laboratory experience. Why this project: I love physics.

What problem are you trying to solve? We are showing the benefit of working with refractory metal silicides (in this case, Nb5Si3), integrating, plotting data sets and fitting the equation of state (Birch-Murnghan).

What tools or equipment are you using? I have used (and/or am currently using): many software programs including, EOSfit, fit2D, OriginPro8, Jade7, Igor, PowderCell2.4, high powered microscopes, EDM drills, laser drills, the synchrotron (at Argonne National Laboratory), Scopus, ISI Web of Knowledge and, of course, the Internet.

Why is your project worth researching? The discovery of new properties of compounds, the practice of applying math and science, the expanse of our knowledge based, the experience of working with and meeting great people. And without a doubt, the research experience.

What relevance will it have on the community, society and in your research field? The finding of higher preforming alloys can have application in various forms of propulsion, improving electronics and/or enhancing structural integrity in extreme environments.

What did you find? I found data is quite difficult to ascertain in an experimental setting. The setting up and gathering of data takes patience and appreciation for detail. Nb5Si3 has a higher melting temperature and lower density and is considered to be a superior alloy in comparison to nickel super-alloys. We can use electrical current and a dielectric and drill 100 micron holes in metals. Lasers look nothing like I thought they would.

What is the future for your research project? The studying Nb5Si3 will continue past the REU internship program. For myself, this project will result in a poster presentation, possibly a paper and help me gain a better understanding of how science can be applied in a laboratory. I am doing another research program (hopefully, the next one might last longer, time wise) and I can not wait until the next internship, where ever that may be.
RESULTS

The lowest pressure pattern, 0.42 GPa, was indexed to the tetragonal I4/mcm(140) space group with lattice parameters $a = 6.566 \pm 0.004 \text{ Å}$ and $c = 11.86 \pm 0.004 \text{ Å}$ from this experiment. The literature quotes $a = b = 6.557 \text{ Å}$ and $c = 11.86 \text{ Å}$ which agrees reasonably well with data collected [3]. Up to 10 GPa, the XRD patterns were fit to the I4/mcm(140) structure and volumes were obtained. The ambient volume, as determined from this experiment was 515.12 Å^3 and agreed with the literature value of 509.91 Å^3 [3]. The bulk modulus from the literature is 191.0 GPa while the bulk modulus for the data collected is $210 \pm 10 \text{ GPa}$ [4]. Evidence of a structural phase transition can be seen in the XRD patterns of Fig. 1(c); this has a higher melting temperature and lower density achieving better performance under said conditions [2].

CONCLUSIONS AND SUMMARY

The preliminary data analysis shows a pressure induced structural transition at 10 GPa with peaks appearing in the two-theta range of 6-9°. The data retrieved from the XRD of Nb$_5$Si$_3$ matches the reading: confirming both the bulk modulus of 191.0 GPa and ambient cell volume 509.91 Å3 [4,5]. Nb$_5$Si$_3$ has proven to hold structural integrity up to 10 GPa. The material structure is undetermined at this time and further investigation is currently underway.

REFERENCES

ACKNOWLEDGEMENTS

Brandon Stewart would like to thank Prof. Andrew Cornelius and Prof. John Farley for the opportunity to participate in the UNLV REU program. Prof. Ravhi Kumar for support and insight. The HiPSEC community and National Science Foundation in funding this project, HP CAT and everyone that helped out at Argonne National Laboratory. A big thank you to thank Daniel Antonio and Jason Baker from UNLV for their constant help, encouragement and guidance. Support from the REU program of the National Science Foundation under grant DMR-1005247 is gratefully acknowledged.
Title: Motif Logic

Abstract: Cells are the most basic building blocks of life and they carry out complex chemical and physical functions in order to survive and make decisions. In turn proteins are building blocks for cells. Proteins are known to interact with each other and help cells carry out sophisticated processes, but the mechanisms are largely unknown. Large databases and networks of protein interactions have been established, but these give little inference into how more complex protein signaling networks work toward building complex cell processes. The overarching hypothesis is that cells make decisions through gated protein interactions and we can assign logic to these reactions in order to understand how they build larger cell "thought" processes. Directional protein gates can be represented as one of sixteen Boolean logics depending on the possible inputs and outputs, which when used in combination create simple circuits such as a double inverter, which in turn build into higher functionality. By using computers to assign digital logic and gating to protein-protein interactions, our goal is to relate the pathway created within the network to electrical circuits with known functions such as counting, by starting from the individual gates and building upward. This would allow for a far more complete understanding of how cells work and "think," and could transform how we think about signal transduction. Eventually understanding these pathways would allow investigation into treatment of diseases such as cancer and auto-immune diseases, where it appears that there is an error in cell logic, with examples including cancer cells starting to grow when they should not divide, or beta-cells being.

Why are you doing this project? We want to have a more complete knowledge about how cells work because they are the building blocks of life.

What problem are you trying to solve? We are trying to understand how cells think and make decisions that are necessary to cell and human survival.

What tools or equipment are you using? We are using powerful computers and extremely large databases or protein interactions to analyze and solve the problem.

Why is your project worth researching? Through this project we hope to learn how our body works at a level previously unexplored, and through this understanding to develop new drugs to combat disease.

What relevance will it have on the community, society, and in your research field? The largest relevance would be in the scientific community where we would create a completely new understanding of how cells function, while in society it would result in new cures to diseases and more efficient and safe medication.

What did you find? So far we have found that Boolean logic can be assigned to protein pathways and that massive protein networks exist with large amounts of crosstalk and large variability in communication.

What is the future of your research project? The next step is to search for larger circuits in the pathways and from there to develop more unifying rules for cell thought processes.
Proposed Mechanistic Basis of Cellular Decision Making

Max Olsen 1, Andy Brooks 2, Sarah Harris 3, Astha Bajpai 2, David Sargent 2, Logan Lee 2, and Martin R. Schiller 2

1 Utah State University, Computer Science, Logan, UT 84322 USA
2 University of Nevada, Las Vegas, School of Life Sciences, 4505 Maryland Pkwy, Las Vegas, NV 89154-4004 USA
3 Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711
email: martin.schiller@unlv.edu, m.r.schiller@aggiemail.usu.edu

Introduction

A cell exhibits sophisticated behaviors that exhibit decision-making capabilities. For example, an eukaryotic cell can sense substrate levels, which requires integration of multiple processes (such as metabolism, signaling, and navigation systems). Understanding such complex cell behaviors is critical for treating human system failures, such as mitochondrial disorders. This task of changing a bacterium requires an integration of complex logical decisions. A possible navigational system might look similar to the electrical circuit on the right. Others have suggested the presence of complex cellular circuits that the cell has never seen before to test the circuits (number 201, 202).

Hypothesis

Protein interaction networks can be modeled as a network of logic gates. For any two inputs and one output, logic gates have three possible logical states (see AND, OR, XOR). Some logical functions can be represented by biological networks such as inhibitor, coactivator, active, coincidence detector, and dominant negative, supporting our hypothesis. For example, Figure 2 shows the presence of a double inverter circuit in the Nisin signaling pathway diagram.

To begin to test our hypothesis, we modeled known human protein-protein interactions as a network where nodes are proteins and edges are their interactions. Protein nodes were combined into units of protein complexes based on previously known interactions. By searching for matching common chain components, larger circuits were built. We built structures for electrical circuits such as half adders, latches, flip-flops, XORs, implication circuits, and encoders. These structural components of many electrical circuits are often used to construct functional circuits that one would also expect to find in cell logic processing.

Due to vast combinatorial complexity, we thoroughly examined 65 total proteins in a 16,000 node protein interaction network constructed from several databases. Each protein has the start position and has an average of 0.1 million chains associated with it. We identified structures for millions of T-box, flip-flops, latches, and half adders. We used structural identification tools to find structural homologues. We searched for two different implementations of the XOR logic and found 25 with one type of XOR and more than 100 with the other type of XOR. The results suggest that circuits may be inherited and modularize as protein domains in proteomes. This analysis can be extended, refined and experimentally tested.

Strategy for finding electrical circuits

Step 1. Protein-protein interaction network
Step 2. Build chains of four proteins
Step 3. Combine chains to create structures that match electrical circuits

Figure 3. Strategy for identifying circuits in cell networks. 1. A human protein-protein interaction network was built from several databases. 2. All possible protein chains assemblies present in the network were identified. 3. The identified chains were classified into groups of those chains to search for the structures across several different electrical circuits.

Circuit Structures Identified

<table>
<thead>
<tr>
<th>Simple Circuits</th>
<th>Complex Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 Adder</td>
<td>100%</td>
</tr>
<tr>
<td>Flip Flop</td>
<td>85%</td>
</tr>
<tr>
<td>Latch</td>
<td>57%</td>
</tr>
<tr>
<td>* - 9% of 15 proteins with identified circuits in search of 9% protein</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions:

1. Cells contain structures for common electrical circuits
2. One type of XOR was observed much more often than another type.

These results suggest that cells contain complex logical circuits and that the XOR logic may have evolved once and then used in a modular way.

References

Title: BIOLOGICAL EFFECTS ON SERPENTINITE WEATHERING

Abstract: Serpentinites, perhaps more than any other rock type, control the composition and evolution of the development of the surrounding ecosystems. The bulk chemistry of serpentinite rocks, high in Mg and trace elements, and low in nutrients such as Ca, K, P, and N, causes an extreme and stressful environment for ecosystems. However, the role that those serpentinite ecosystems play in development of serpentine soils has not been examined.

Due to the unusual chemistry of serpentine soils, serpentine ecosystems have deeper and better-developed root systems than other ecosystems. The rhizosphere of serpentine systems, documented to produce abundant organic acids and siderophores, is also likely to impact serpentine soils. In order to test the effects of biological impacts on serpentine soil formation, soil pore waters will be analyzed for siderophores and organic acids. Furthermore, Fe-oxidizing bacteria have been detected using Biological Activity Reaction Tests (BARTs) and cultures of such bacteria will be grown. In addition to directly measuring the biological factors including organic acids, siderophores, and Fe-oxidizing bacteria, the impact of such weathering on soils and rock was examined using XRF, XRD, and SEM.

Why are you doing this project? To determine a future field and potential school/advisor for graduate school.
What problem are you trying to solve? Measuring the biological factors including organic acids, siderophores, and Fe-oxidizing bacteria.
What tools or equipment are you using? XRD, XRF, SEM, UV-VIS, GC/MS, BET
Why is your project worth researching? Serpentinites, perhaps more than any other rock type, control the composition and evolution of the development of the surrounding ecosystems. The bulk chemistry of serpentinite rocks, high in Mg and trace elements, and low in nutrients such as Ca, K, P, and N, causes an extreme and stressful environment for ecosystems. However, the role that those serpentinite ecosystems play in development of serpentine soils has not been examined.
What relevance will it have on the community, society, and in your research field? It will determine the biological effects on the weathering of serpentinite for future studies.
What did you find? Nothing yet, I am still waiting on chemicals to run most tests.
What is the future of your research project? Impacts specific biological factors have on the weathering rate of serpentinite. Looking into carbon sequestration.
Biological Effects on Serpentineite Weathering

Mary H. Evert*, Julie L. Baumeister*, Elisabeth M. Hausrath*

*Department of Chemistry, Otterbein University, Westerville, OH 43081
*Department of Geoscience, University of Nevada, Las Vegas, 89154

ABSTRACT

Serpentinites, perhaps more than any other rock type, control the composition and evolution of the development of the surrounding ecosystems. The bulk chemistry of serpentine rocks, high in Mg and trace elements, and low in nutrients such as Ca, K, P, and N, causes an extreme and stressful environment for ecosystems. However, the role that those serpentinite ecosystems play in development of serpentine soils has not been examined. Due to the unusual chemistry of serpentine soils, serpentineite ecosystems have deeper and better-developed root systems than other ecosystems. The rhizozone of serpentine systems, documented to produce abundant organic acids and siderophores, is also likely to impact serpentine soils. In order to test the effects of biological impacts on serpentine soil formation, soil pore waters were analyzed for organic acids. Furthermore, Fe-oxidizing bacteria have been detected using Biological Activity Reaction Tests (BARTs) and such bacteria were investigated by enrichment cultures. In addition to directly measuring the biological factors including organic acids, siderophores, and Fe-oxidizing bacteria, the impact of such weathering on soils and rock was examined using XRF, XRD, and SEM.

FIELD AREA

Klamath Mountains

Serpentinite derived samples were collected on ridge tops of the Trinity Alps of the Klamath Mountains.

To avoid areas that have been glaciated more recently than 10 ka (+ 6800 ft), samples were collected between elevations of 4500 - 6000 ft to confirm a glaciation date of approximately 12 ka.

METHODS

Sample Collection

Sample were stored in the refrigerator after collecting from soil pits and rock cores.

Mineral Content

XRF: Analyzed from powdered samples.
XRD: Analyzed major elements from powdered and heated samples.
SEM-EDS: Analyzed from epoxy embedded and polished samples.

Siderophores

UV-VIS: Pore water samples will be mixed with a CAS assay and analyzed.

Bacteria

Biological Activity Reaction Tests (BARTs): Mixed samples with a phosphate-buffred saline solution and observed over time.

Cultures: Suspended rock samples in vitamin rich gel with a iron sulfate base and observed over time.

Organic Acids

UV-VIS: Detection of organic acids by absorbance at 233.7 nm.

ORGANIC ACIDS

FeDye + L → FeL + Dye

FeDye + L → FeL + Dye

CONCLUSIONS

• Bulk chemistry and bulk mineralogy analysis indicated lizzidite as the main mineral in the rock samples.
• SEM analysis indicates weathered surfaces.
• In order to confirm the presence of iron related bacteria previously detected, Biological Activation Reaction Tests and Fe-oxidizing samples will be allowed to culture for an extended period of time. Previous tests have implied longer time needed for growth.
• Ultraviolet absorbance of porewaters suggests decreasing concentrations of UV-absorbing compounds with increasing depth.
• Organic acids are likely to be present but other organic compounds such as lignin, tannin, humic substances, and aromatic compounds also absorb UV light.

FUTURE WORK

Siderophores

What type of siderophores are present in weathered serpentinites?

What are the effects on weathered serpentinites?

Iron Oxidizing Bacteria

How many bacteria are present?

Does the number of bacteria have a major impact on the weathering rate?

Does the abundance of iron affect the bacteria?

Organic Acids

How does the depth of the rock have an impact on the amount of organic acids present?

Overall

What are the controlled effects of specific organic acids on the weathering of serpentinite?

What is the biological effect on serpentinite weathering?

ACKNOWLEDGEMENTS

We would like to thank the National Science Foundation Research Experience for Undergraduates program A Broad View of Environmental Microbiology at the University of Nevada, Las Vegas (DE 0800323) for funding and LAGU Department of Geoscience and UNLV School of Life Sciences for their support. We would also like to thank Chris Adock, Kurt Regner, Jodi Batta, Jared Gores, and Dennis Bazylnski for their assistance with materials and lab use.

REFERENCES

Title: Identification of Nitrifying Bacteria in a Commercial Inoculant Using Enrichment and Molecular Biology Techniques

Abstract: Nitrifying bacteria play an important role in aquatic and terrestrial environments through the nitrogen cycle. Nitrification, one of the processes of the nitrogen cycle, refers to the oxidation of ammonia to nitrate. This process requires two types of chemoautotrophic bacteria, ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB). These bacteria are essential in maintaining an optimal environment for plants and aquatic organisms, such as fish. Current applications of nitrifiers include: inoculants for aquariums, biofertilizers, and nitrogen removal in wastewater treatment plants. This study wants to identify a consortium of nitrifiers that can be used to produce sufficient nitrate for plants in a hydroponic system. Previous studies have shown that Fritz-zyme turbostart 700, a commercial freshwater inoculant has had success in a semi-hydroponic system, zeoponics. Our lab’s preliminary data has shown that Fritz-zyme contains more than the specific nitrifying bacteria. In order to create the optimal consortium, it would be mandatory that we know exactly what bacteria we are working with. Using 16s rDNA universal primers and PGEM-T easy vector cloning kit, this study will amplify the 16s rDNA present in different enrichment samples and clone it into the PGEM-T easy vector E. coli plasmid. The cloned plasmids are transformed into competent E. coli cells and sequenced to identify the bacteria present in each sample. This study will determine whether the current enrichment techniques being used are sufficient to eliminate the heterotrophic and spore-forming bacteria present in the original Fritz-zyme.

Why are you doing this project? I am doing this project to learn more about nitrifying bacteria and their applications in society.

What problem are you trying to solve? Our problem involves identifying the specific nitrifying bacteria present in a commercial aquarium inoculant. Our preliminary data on the product suggest that it contains more than nitrifying bacteria. We want to identify what other organisms are in the product and find ways to specifically isolate the nitrifying bacteria.

What tools or equipment are you using? Some of the many equipment that we are using for this project includes: PCR thermocycler, heating blocks, spectrophotometers, aquarium test strips, and phylogenetic analysis software. We are also using the services of UNLV Genomic Center for sequencing.

Why is your project worth researching? Learning what types of organisms are present in the commercial inoculant will be vital in helping to create a consortium of microbes capable of providing the necessary nutrients to support plant growth in a hydroponic system.

What relevance will it have on the community, society, and in your research field? This project will hopefully lead to a commercialized product that can be used to grow plants in a hydroponic system using only microbes.

What did you find? We are still awaiting results at this time.

What is the future of your research project? Determining if we can successfully isolate the necessary nitrifiers from the product and characterizing their oxidation rates of certain nitrogen compounds. The step after that will be finding out how well they will respond with a nitrogen fixing microorganism.
Identification of Nitrifying Bacteria Contained in a Commercial Inoculant Using Molecular Biology Techniques

By Anthony Harrington, John Perry, and Penny S. Amy
University of Nevada, Las Vegas-School of Life Sciences

Introduction
Nitrifying bacteria play an important role in the aquatic and terrestrial nitrogen cycle. Nitrification, one of the processes of the nitrogen cycle, refers to the oxidation of ammonia to nitrate. This process requires two types of chemosynthetic bacteria: ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). These bacteria are essential as they supply nitrates for the growth of plants and aquatic organisms.

Current applications of nitrifiers include inoculants for aquaria, biofiltrizers, and nitrogen removal in wastewater treatment plants. Previous studies have shown that Frits-zyme Turbostart 700, a commercial freshwater inoculant, has been successfully used in a semi-hydroponic system, i.e., aquaculture. In our laboratory, preliminary data have shown that Frits-zyme contains more than the specific nitrifying bacteria. In order to determine an optimal consortia for ecologies, it is necessary that we know exactly what bacteria are present. Using 16S rRNA universal primers and pGEM®-T Easy Vector Cloning Kit (Promega), we amplified the 16S rDNA genes from Frits-zyme and cloned them into the pGEM®-T Easy E. coli vector plasmid. The cloned plasmids were transformed into competent E. coli cells and sequenced to identify the bacteria present in each sample. In this study, we determined whether the current enrichment techniques being used are sufficient to eliminate the heterotrophic and spore-forming bacteria present in Frits-zyme.

Materials and Methods (continued)

Primer 5’-3’

Specificity
27f AGAGTTTGATCCTGGCTCAG Bacterial 16S rDNA gene
1492r ACCGCTAGCTTGGTGACCTT Bacterial 16S rDNA gene
EUB338f AACTCTACGGGAGGCAGCAG Bacterial 16S rDNA gene
Mol1255r CGCAGAATGATACCTCAGTA AOB 16S rDNA gene
Nitrospira Nitrospirae Nitrospira Nitrospirae Nitrospirae Nitrospirae Nitrospirae Nitrospirae Nitrospirae Nitrospirae

Results

Fig. 1 Original Culture Oxidation.

Fig. 2 NH₃ and NO₂ Oxidation from subculture.

Fig. 3 Agarose Gel showing Hybrid Plasmids using SAC I Restriction Endonuclease.

Conclusion
1. We confirmed the activity of nitrifying bacteria based on NH₃ and NO₂ oxidation using test strips.
2. Sequencing data showed the presence of Ammonia-oxidizing and Nitrite-Oxidizing bacteria in Frits-zyme.
3. Sequencing data also showed the presence of non-nitrifying bacteria from the genera Pseudomonas and Nitrobacter, which could indicate the presence of denitrifying bacteria as well as nitrifying bacteria.

Future Research
• Measure oxidation of NH₃ and NO₂ using Ion-Selective Electrodes to gain a more accurate measurement of oxidation.
• Find Primers capable of amplifying 16S rDNA from sub-culture samples. Possible candidates include EUB338f and EUB338r along with specific 16S rDNA primers.
• Determine if sub-culturing techniques are suitable for isolating pure nitrifiers.

References

Acknowledgements
• Dr. Penny S. Amy, Dr. Kurt Regner, John Perry, Diane Yost, Adam Mustafa, and the UNLV Genomics Center.
• Mr. Anthony Harrington was the recipient of an award from the NSF Research Experience for Undergraduates (REU) program A Broad View of Environmental Microbiology at the University of Nevada, Las Vegas (DMB 1005238).
Title: The Use of Chloramines to Exterminate Quagga Mussel Veligers

Abstract: Quagga Mussels, Dressenia bugensis, were discovered in Lake Mead Nevada in 2007 and have since spread to other western waterways (CA, NV, AZ, UT, CO); the highest densities being in Lake Mead and Lake Mojave. Once the mussels have established themselves in an aquatic system they obstruct underwater infrastructures such as dams and can clog water intake pipes and screens reducing pumping capabilities for power and treatment plants, costing companies, industries and communities millions. Control of this invasive species is not only important for the anthropogenic uses of the bodies of water but also the overall ecology of the lake. Quagga mussels are prodigious water filterers that have the ability to reduce the phytoplankton causing changes in water transparency ultimately resulting in trophic level changes in the food web. Quagga Mussels are highly polymorphic and have the ability to adapt rapidly to extreme environmental conditions. Veligers (planktonic larval form of quagga mussels) allow them to easily infest new areas. Most of the research thus far has gone into researching the physiological processes, ecology and biology of this species; little research has gone into developing methods to control the species and stopping them from spreading to other systems. One of the commonly used treatments includes the use of chlorine. Chlorine is effective in treating veligers but it leaves a residue called trihalomethanes, which at higher concentrations can be carcinogenic. Recently, scientists have hypothesized that chloramines (chlorine and ammonia) instead of chlorine can be used as an effective alternate disinfectant with little to no harmful residual trihalomethanes. The goal of this research is to test effectiveness of various dosages of chloramines on the treatment of veligers in laboratory conditions with no residual trihalomethanes. The results will not only provide important information on the use of chloramines but also have potential to develop a new economical and safer way of treating veligers in water treatment facilities.

Why are you doing this project? This research is being conducted to study viability of using chloramines to treat quagga mussel veligers (planktonic larvae).

What problem are you trying to solve? Water treatment facilities have been using chlorine to treat veligers at their intake system. Chlorine is effective in treating veligers but it leaves a residue called trihalomethanes, which at higher concentrations can be carcinogenic. There is a need for research to find alternate chemical treatments that leave no such residues.

What tools or equipment are you using? Veligers are collected from Lake Mead using plankton tows and brought to the laboratory. The samples are then filtered through a 120µm mesh filter to filter out the larger zooplankton. The samples are then put into 500mL Imhoff settlement cones so the veligers settle at the bottom while other zooplanton smaller than 120 um remain in the upper water column. The veligers are then dosed with various concentrations of the chloramines, and the chlorine residue in the water water is measured. Number of veligers living and dead are counted under the microscope using a gridded slide.

Why is your project worth researching? This research is important because quagga mussels are causing many problems specifically at intake plants of water treatment plants. Veligers could attach at the intake pipes and block water flow costing the treatment plants millions of dollars.

What relevance will it have on the community, society, and in your research field? Finding an effective dose of chloramines to kill the veligers will not only save the treatment plants money but, will also eliminate the use of chlorine to get rid of the veligers. This leads to less trihalomethanes in the treated water and safer drinking water for the public.

What did you find? Preliminary research suggests that the quagga mussel veligers are effectively killed by chloramines, but the lowest and most efficient dose has yet to be determined.

What is the future of your research project? Our study involves finding the lowest dose that will effectively kill all the mussels while leaving little harmful residues in water.
The Use of Chloramines to Eradicate Quagga Mussel Larvae
Trea LaCroix1 and Kumud Acharya2

1University of Nevada, Reno (trealacroix@gmail.com)
2Desert Research Institute, Las Vegas (kumud.acharya@dri.edu)

Abstract

Quagga Mussels, Dreissena roosevelti, are a growing problem in the western United States, particularly in their ability to infiltrate underwater infrastructures such as clog water intake pipes and screens of power and treatment plants. Chlorine has been found to be the most effective chemical to get rid of veligers (planktonic larval form of quagga mussels) in the pipes. However, chlorine leaves a residue called trihalomethane, which is a carcinogen at higher concentrations. The purpose of this project is to test the effectiveness of an alternate chemical, chloramines (chlorine and ammonia), which leaves behind little to no residual trihalomethane. Upon experimentation with various dosages of chloramines, it was found that 1.0 mg/L effectively kills approximately 97% of the veligers after an exposure time of approximately 4 hours. Our results provide critical information needed to replace the use of harmful chemicals in drinking water systems.

Introduction

Quagga Mussels were discovered in Lake Mead in Nevada in 2007 and have since spread to other western waterways (CA, NV, AZ, UT, CO); the highest densities being in Lake Mead and Lake Mojave. Once the mussels have established residence time from intake to final treatment in water treatment plants is approximately 4 hours. Quagga Mussels were discovered in Lake Mead Marina in the mornings of the day of the experiments. Vertical tows were conducted using a 63 µm plankton net by submerging the net approximately 10 meters below the surface of the water from the dock. Approximately 10-20 tows were performed depending on veliger density on the sampling day. The samples were then placed in 250 ml sample bottles and transported back to the lab in a cooler. The lights were turned off while handling the animals and for the duration of the experiment to reduce stress on the animals. Water from the tows was then filtered with a 120 µm mesh filter to eliminate larger zooplanktons. The filtered water with veligers was then placed into a large container to homogenize the sample and then was placed into 12 500 ml imhoff settlement cones, each filled to 250 ml. The cones were then treated with chloramines with desired residual chlorine concentration. A Pachcock polycotilha was used to measure C1 residuals after the addition of chlorine. Veligers were then observed for 4 hours (Exp. 2) and 24 hours after exposure to the chloramines to ensure that each is exposed for the same amount of time.

Methods

Three dosages of chloramines (0.50 mg/L, 0.75 mg/L, and 1.0 mg/L) were tested on veligers. These dosages were chosen through communication with Southern Nevada Water Authority (SNWA), the providing water services to the city of Las Vegas, and preliminary trial and error experiments. There were three replicates of each dosage and 3 controls (with veligers) without the chemical addition. There were also two chemical controls for each dosage (6 total) without veligers.

The first experiment focused mainly on a short term exposure time (5 and 10 minutes). This is due to the fragile nature of the animals, and unstable nature of chlorine for long periods of time in carbonated rich Lake Mead Water. The 24 hour exposure was taken to ensure that the system displayed 100% mortality. The second experiment looked at an intermediate exposure time (4 hours) to see the difference after a larger time period compared to the shorter exposure.

Veligers were sampled from the Lake Mead Marina in the mornings of the day of the experiments. Vertical tows were conducted using a 63 µm plankton net by submerging the net approximately 10 meters below the surface of the water from the dock. Approximately 10-20 tows were performed depending on veliger density on the sampling day. The samples were then placed in 250 ml sample bottles and transported back to the lab in a cooler. The lights were turned off while handling the animals and for the duration of the experiment to reduce stress on the animals. Water from the tows was then filtered with a 120 µm mesh filter to eliminate larger zooplanktons. The filtered water with veligers was then placed into a large container to homogenize the sample and then was placed into 12 500 ml imhoff settlement cones, each filled to 250 ml. The cones were then treated with chloramines with desired residual chlorine concentration. A Pachcock polycotilha was used to measure C1 residuals after the addition of chlorine. Veligers were then observed for 4 hours (Exp. 2) and 24 hours after exposure to the chloramines to ensure that each is exposed for the same amount of time.

The first experiment focused mainly on a short term exposure time (5 and 10 minutes). This is due to the fragile nature of the animals, and unstable nature of chlorine for long periods of time in carbonated rich Lake Mead Water. The 24 hour exposure was taken to ensure that the system displayed 100% mortality. The second experiment looked at an intermediate exposure time (4 hours) to see the difference after a larger time period compared to the shorter exposure.

Results

<table>
<thead>
<tr>
<th>Table 1: Percent of swimming veligers for experiment #1.</th>
<th>Table 2: Percent of swimming veligers for experiment #2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose mg/L</td>
<td>% swimming</td>
</tr>
<tr>
<td>0</td>
<td>60%</td>
</tr>
<tr>
<td>0.5</td>
<td>55%</td>
</tr>
<tr>
<td>0.75</td>
<td>50%</td>
</tr>
<tr>
<td>1.0</td>
<td>45%</td>
</tr>
</tbody>
</table>

With the significant differences in swimming between the controls and the dosed veligers, it was found that 1.0 mg/L effectively kills approximately 97% of the veligers after an exposure time of approximately 4 hours. Our results provide critical information needed to replace the use of harmful chemicals in drinking water systems.

Discussion

Both experiments display differences in percentages between the control and the dosed veliger indicating that the chloramines are having a negative impact on the survivability of the veligers (tables 1 and 2). In the first experiment the statistical analysis of the percentages swimming shows that there is a significant (p < 0.05) effect of the treatment, however effects varied between the dosages. Figure 1: 1.0 mg/L had the highest effect after a 5 minute exposure time. In the second experiment both 0.50 mg/L and 0.75 mg/L display no significant difference between the control and the dosed water after 5 minutes. All three dosages are significantly different than the control in 10 minute exposure dos. 4 hours after exposure, all three dosages are significantly different from the control. 0.75 is similar to both 0.50 and 1.0, but 0.50 and 1.0 are significantly different from each other. The most effective treatment dose in both experiments proved to be 1.0 mg/L. Each replicate either had 0 swimming or only 1 swimmer which was of larger size and was clearly negatively affected by the chemical because swimming was reduced and only the movement of cilia was observed. After 24 hours there was a complete mortality in all dosages. With the significant differences in swimming between the controls and the dosed water it can be concluded that chloramines are toxic to veligers. It can also be concluded that 0.50 mg/L, 0.75 mg/L, and 1.0 mg/L will cause complete mortality after a time period of 24 hours however this is not viable in treatment plants. After a time period of 4 hours 1.0 mg/L is very close to causing full mortality and may be the threshold value to cause complete mortality. It would be advisable to dose above 1.0 mg/L to achieve complete mortality of veligers in a system.

Conclusions

With the significant differences in swimming between the controls and the dosed water it can be concluded that chloramines are toxic to veligers. It can also be concluded that 0.50 mg/L, 0.75 mg/L, and 1.0 mg/L will cause complete mortality after a time period of 24 hours however this is not viable in treatment plants. After a time period of 4 hours 1.0 mg/L is very close to causing full mortality and may be the threshold value to cause complete mortality. It would be advisable to dose above 1.0 mg/L to achieve complete mortality of veligers in a system.

References

Acknowledgments

The research was funded by the NSF Research Experience for Undergraduates (REU) Site A Broad Based Research in Environmental Microbiology at the University of Nevada, Las Vegas (NSF 0550925). Thanks to Todd Tietjen and Julia Law of SNWA and Sachkio Sueki of Dr. Acharya’s Lab.
Jennifer Meoni

Email: jenmeoni@gmail.com
Former High School: Terry Sanford High School
Location of High School: Fayetteville, NC
Mentor/Advisor: Henry Sun
Educational Institute of Project: UNLV
Department: Geosciences
Research Site: DRI

Title: Alternate User of D-amino Acid Lies in Algae

Abstract: The recent discovery of an abundance of D-amino acid in water and soil raises the question of which organisms are able to utilize this normally toxic form. It has been shown that bacteria can uptake D-amino acids using racemases in reverse. Current research is inconclusive as to other organisms that have a racemase gene. This study was performed to determine the effect of D-amino acids on algal growth under sterile conditions in the absence of bacteria. The effects of D-glutamic acid on Micromonas pusilla, D-proline and D-leucine on Chlorrella sorokiniana, and D-proline, D-alanine, and D-aspartic acid on Euglena gracilis were studied to determine if the algae would prosper, die, or display no change upon addition of the foreign nitrogen source. Preliminary results based solely upon spectrophotometer readings show the presence of D-amino acid retards and/or has a negligible effect on the growth of algae. Pending HPLC analysis, which will determine the decrease of D-amino acid in the supernatant, conclusions will be drawn in regards to whether the D-amino acid form is usable by algae.

Why are you doing this project? The D-form of amino acids is thought to be toxic to most living things, although it is known from another project in our laboratory that bacteria can grow on D-amino acids by running their racemases in reverse. This work was motivated by the recent discoveries of D-amino acids in soils and waters, which are derived primarily from cell wall (peptidoglycan) remnants of bacteria.

What problem are you trying to solve? Algae, which are composed exclusively of L-amino acids (like most organisms on Earth), may help mop up the toxic D-amino acid from our environment so that we are not exposed. However, racemases are not known to be present in algae. So the question arose as to whether algae can detoxify D-amino acids or if they rely on associated bacteria to remove D-amino acids for them.

What tools or equipment are you using? Different algal strains (Chlorella sorokiniana and Euglena gracilis) were allowed to grow in their selective mediums before distribution into 24 mL test tubes.

Why is your project worth researching? A better understanding of relationships between bacteria and plants/animal have implications in agriculture and medicine. For example, it is true that gut bacteria are responsible for removing D-amino acids for us, then a patient who is taking antibiotics may have to be careful about what to eat, because some food, such as yogurt and cheese, contain bacteria and D-amino acids.

What relevance will it have on the community, society, and in your research field? What did you find? The findings give reason to believe that certain D-amino acids can be used by algae, given the decrease in concentration in the samples. The level of aspartic acid did not display signs of decrease even though Euglena continued to grow.
D-Amino Acid Utilization in Algae

Jennifer Meade,
Fanteck Mozeza,
Gexuan Zhang, Ph.D.,
Henry Sun, Ph.D.

Extensive research has been conducted on the utilization of D-amino acids by algae, showing promising potential in various applications.

Figure 1: This graph shows amino acid concentration (shown in purple and red) while also monitoring the growth of algae. (Shown in blue and green).

The algae continue to grow in D-aep even though the main quantity of H2O is not present in the media with the level of amino acids remaining constant, giving a boost to Euglena utilizing the trace amount of H2O, found in the Trace Minerals solution.

Figure 2: This graph shows amino acid concentration (shown in purple and red) while also monitoring the growth of algae. (Shown in blue and green).

The increase of D-Leu ancor in solution while the absence of Leu in growth could be associated with algae death and the absence of D-Leu into solution.
Title: Regulation of the *Shigella flexneri icsP* gene and H-NS dependent repression

Abstract: The gram negative bacterium Shigella flexneri is known to cause dysentery in humans and primates. In order to help prevent the spread of shigellosis, gene regulation must be understood. Studies show that the virulence genes in *S. flexneri* are thermo regulated. At 30°C histone-like nucleoid structuring protein (H-NS) represses transcription of virulence genes and at 37°C VirB derepresses virulence genes. One of the genes that contribute to the virulence of *S. flexneri* is icsP. My project focuses on the regulation of the *S. flexneri icsP* gene and has two main goals. The first is to identify the sequence of H-NS dependent repression. Previous studies suggest that the DNA sequence necessary for the H-NS dependent repression is located between -1058 and -523 upstream of the icsP promoter. We are going to create a series of promoter truncations to positions -637, -601, -550, and -436 relative to the icsP promoter. We anticipate this will pin-point which sequences are required for H-NS dependent repression. My second goal is to further characterize the icsP-lacZ reporter plasmid. Specifically we want to know if icsP promoter activity is being affected by an upstream chloramphenicol cassette. Our hypothesis is that the chloramphenicol cassette is not affecting icsP promoter activity. To test this we will insert a transcription terminator after the chloramphenicol cassette stopping all transcription before the icsP promoter. Promoter activity will be measured by beta-galactosidase assays. These studies will improve our understanding of the regulation of the icsP promoter, and this knowledge may be helpful when studying the regulation of other virulence genes in *S. flexneri*.

Why are you doing this project? I am doing this project in order to understand gene regulation in virulent bacteria.

What problem are you trying to solve? I am trying to identify the DNA sequence of H-NS dependent repression.

What tools or equipment are you using? I will be cloning genes and making plasmids. I will also be measuring promoter activity by beta-galactosidase assays.

Why is your project worth researching? My project is worth researching because it will help us prevent virulence diseases from spreading.

What relevance will it have on the community, society, and in your research field? Over one million people around the world die from shigellosis therefore it is important to understand these genes in order to prevent shigellosis.

What did you find? We have not yet determined the region where H-NS dependent repression occurs.

What is the future for your research project? Our future research project will be to better understand the gene regulation mechanism in bacteria.
Regulation of the *Shigella flexneri* icsP gene and H-NS dependent repression

Rosa Ojeda, Amanda Wigley, Dustin Harrison and Helen J. Wing
School of Life Sciences, University of Nevada, Las Vegas

Introduction
Shigella flexneri is a gram negative bacterium which is known to cause dysentery in humans and primates. *S. flexneri* is the cause of over a million deaths worldwide especially in children and the elderly. When Shigella enters its host it is able to recruit actin from the host’s cell, forming an actin based tail that allows it to move. The outer membrane protein which recruits actin is IcsA, and the protein which regulates IcsA is IcsP, where IcsP cleaves excess IcsA. The icsP gene is regulated by VirB and the histone-like nucleoid structuring protein (H-NS) which are two transcription factors. At 30°C H-NS represses transcription of virulence genes and at 37°C VirB derepresses virulence genes. Our goal is to identify the DNA sequences required for the H-NS dependent repression of the icsP promoter. These studies will improve our understanding of the regulation of the icsP promoter, and this knowledge may be helpful when studying the regulation of other virulence genes in *S. flexneri*.

Hypothesis 1
H-NS dependent repression requires sequences between -637 and -351 with respect to TSS.

Hypothesis 2
The gentamycin cassette is affecting icsP promoter activity.

Material and Methods
To test this we will insert a transcription terminator after the gentamycin cassette stopping all transcription before the icsP promoter.

Conclusion
2. Insert lambda ccpp (transcription terminator) was unable to be amplified by PCR, possible hairpin occurring.

Future Directions
1. Zone in on the two sequences between -893 to -637 and -601 to -436 to determine if H-NS binds within these regions.
2. Further analyze regions -893 to -637 and -601 to -436 using protein experiments.
3. Assay these truncations in the presence of VirB
4. Instead of PCR amplification of transcription terminator, we will isolate the terminator DNA from a plasmid using restriction enzymes.

Acknowledgements
- Rosa Ojeda is recipient of an award from the NSF Research Experience for Undergraduates (REU) program A Broad View of Environmental Microbiology at the University of Nevada, Las Vegas (DBI 1005223).
- This work was also supported by NIH R15 AI090573-01.
- Dr. Wing, Dr. Zavala, Dr. Medh, Dr. Hogue, Nick Egan, Pashtana Usufzy, Juan Duhart, Holly Martin, Denise Reyes, Amanda Wigley, Hiro Park and Anthony Daulo

References
Max Olsen

Email: m.l.o@aggiemail.usu.edu
Former High School: Mountain Crest HS
Location of High School: Hyrum, UT
Mentor/Advisor: Martin Schiller
Educational Institute of Project: UNLV
Department: School of Life Sciences
Research Site: WHI 120A

Title: Proposed Mechanistic Basis of Cellular Decision Making

Abstract: A cell exhibits sophisticated behaviors that exhibit decision-making capabilities. For example, phagocytic cells will chase a bacterial cell, which requires integration of many processes such as motility, sensory, navigation, and phagocytic systems. Understanding such complex cell behaviors is likely essential for treating human system failure as exemplified by type 2 diabetes where cells decide to stop eating glucose. We hypothesize that there are logical circuits within protein networks that are used by cells to make decisions. Like a cell, electrical circuits are engineered with a series of interconnected transistors capable of making decisions. At most fundamental level we can model protein interaction networks as a series of connected transistors where proteins are logic gates take two inputs and produce one output. For any two inputs, and one output logic gate there are sixteen possible logical truths (e.g. AND, OR, XOR). Surprisingly, some truths are represented by biological terms such as inhibitor, constitutionally active, coincidence detector, and dominant negative, supporting our modeling approach. Furthermore our hypothesis was supported by the identification of a double inverter in examination of a AKT signaling pathway diagram. To begin to test our hypothesis, we modeled known human protein-protein interactions into a network where nodes are proteins and edges are their interactions. Here, we first looked for the structure of common electrical circuits within this protein-protein interaction network. Protein nodes were combined into units of 4 protein chains based on previously known interactions. By searching for and matching common chain components, larger circuits were built. We built structures for simple electrical circuits such as half-adder, latch, and flip-flop, as well as more complex circuits such as several types of XORs one-then-two, and encoders. These principal components of many electrical circuits and used to construct functions that one would expect to find in cell logic processing. Due to combinatorial complexity we first through examined 50 total protein in a ~10,000 node protein interaction network constructed from several databases. We identified structures for millions of flip-flops, latches and half-adders. More complex circuits were more variable where we identified ~10 proteins with encoders, and two proteins with one type of XOR. XOR can be engineered in many ways and we searched for two types. One type of XOR was observed only twice, whereas another type of XOR was observed in ten proteins. This result suggest that circuitry may be inherited and modularized as protein domains are in proteomes.

Why are you doing this project? The human cell has always been fascinating in its complexity. The cell is made up of so many different proteins that it is hard sometimes to understand it all. I wanted to come up with a different way to look at the cell so that I could understand it better.

What problem are you trying to solve? A cell exhibits sophisticated behaviors that exhibit decision making capabilities. For example, leukocyte cell will chase a bacteria cell which requires a variety of different behaviors like stop, go, and a whole navigation system to name a few.

What tools or equipment are you using? ModelSim, Quartus II, Eclipse (java compiler), Navicat (SQL GUI), Microsoft Excel, Microsoft Powerpoint, SVN

Why is your project worth researching? Understanding complex cell behaviors is essential for treating human system failure as in the case of diabetes II where there is a common condition cells decide to stop eating glucose.

What relevance will it have on the community, society, and in your research field? The understanding of microbiology is based on the cell. The better our understanding of the cell, the better anything that relies on that knowledge like in the study of Alzheimer's disease, cancer, and all metabolic diseases.

What did you find? The cell can be represented as digital circuits. Each protein node in the network is readily labeled. As an example we found a double inverter which in computers can be used in some counters as a delay component to resolve data races.

What is the future of your research project? Hopefully we will be able to find more and more complicated circuits in the cell. If we do find some very complicated things we could certainly manufacture pieces that are missing or replace old parts. There is also the idea that a certain kind of circuit evolved and can be followed and a genetics tool.
Proposed Mechanistic Basis of Cellular Decision Making

Max Olsen 1, Andy Brooks 2, Sarah Harris 3, Astha Bajpai 2, David Sargent 2, Logan Lee 2, and Martin R. Schiller 2

1University of Nevada, Las Vegas, School of Life Sciences, 4505 Maryland Pkwy, Las Vegas, NV 89154-4004 USA
2Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711
e-mail: martin.schiller@unlv.edu, млlee@seppemail.usu.edu

Introduction

A cell exhibits sophisticated behaviors that exhibit decision-making capabilities. For example, T cells naive cells will check arterial cells which requires the integration of many processes (such as mobility, memory, and navigation systems). Understanding such complex cell behaviors is likely to be essential for treating human systems failure as exemplified by type 2 diabetes where cells decide to stop eating glucose. We hypothesize that there are logical circuits within protein networks that are used by cells to make decisions. Like protein interactions in cells, electrical circuits are connected with a series of interconnected transistors capable of decision-making.

Protein interaction networks can be modeled as a network of logic gates. For any two input and one output logic gates, there are eleven possible logical gates (e.g. AND, OR, XOR). Some logical functions can be represented by biological terms such as inhibitor, constitutively active, coincidence detector, and dominant negative, supporting our modeling approach. For example, Figure 1 shows the presence of a double inverter circuit in the Wnt signaling pathway diagram.

To begin to test our hypothesis, we modeled known human protein-protein interactions as a network where nodes are proteins and edges are their interactions. Protein nodes were combined into units of protein chains based on previously known interactions. By searching for and matching common chain components, larger circuits were built. We built structures for electrical circuits such as half adders, latches, flip-flops, XORs, and more. The circuits and encoders were constructed. Circuit components and electrical circuits are often used to construct complex functional circuits that they were also expected to find in cell logic processing.

Due to vast combinatorial complexity, we thoroughly examined 69 total proteins in a ~1,000 node protein interaction network constructed from several databases. Each protein is the start protein and has an average 0.1 million chains associated with it. We identified structures for flip-flops, latches, half-adders, and fulladders. We also created 30 protein networks of different 2 inputs by 2 outputs. This result suggests that the circuitry may be inherited and modularized as protein domains are in proteins. This analysis can be extended, refined, and experimentally tested.

Hypothesis

Protein interaction networks contain the structure of electrical circuits.

Sample Circuit pathway

Step 1. Protein-protein interaction network

Step 2. Build chains of four proteins

Step 3. Combine chains to create structures that match electrical circuits

Cells exhibit complicated behaviors

Figure 1. White blood cells use complicated logic to catch bacteria navigates might look like this electrical circuit. In the 1950s David Rogers made a video of a white blood cell moving a bacterium. Sequential frames of the video are shown. The same logic drives the motion of the white blood cell movement. This task of catching a bacterium requires an integration of complex logical decisions. A possible navigational system might look something like the electrical circuit on the right. Others have suggested the presence of complex cellular circuits but the cell has never been solved to the level of a circuit (Rogers et al., 2020).

References

[For a list of references, please see the document's actual text or additional information provided.]
Title: Novel Thermophilic Cellulolytic Isolates Belonging to the Phylum Chloroflexi

Abstract: The major technological hurdle limiting second-generation biofuels technology is the difficulty in efficiently converting structurally complex lignocellulose feedstocks to fermentable sugars or directly to biofuels. Corn stover and aspen shavings were incubated in Great Boiling Spring in Gerlach, Nevada and used as inocula for 72 enrichments designed to support the growth of strongly cellulolytic microorganisms. One enrichment generated a biofilm capable of degrading insoluble cellulose, and this consortium was found to contain a mixture of rods and filaments. Rods belonging to the genera Geobacillus and Rhodothermus were isolated by plating and found to have weak cellulolytic activity on insoluble cellulose. It was hypothesized that the filaments were responsible for the strong cellulolytic activity displayed by the community, but the filaments were not observed to grow on plates.

Why are you doing this project? I am working on this project because I would like to confirm if the bacterium that I am studying is from a novel class or order. Above this, I would like to know how this bacterium degrades cellulose and the potential applications that it has on the biofuel industry.

What problem are you trying to solve? The main challenge of this project is to cultivate the bacterium efficiently for sequencing and phylogenetic analysis.

What tools or equipment are you using? We utilized 24 different kinds of media in order to determine the most suitable one. We are also growing them in incubators of five different temperatures to find out the best temperature where they grow in. Also, the liquid medium where the bacterium is grown is tested everyday for its pH and number of filaments present per ml. The medium is also tested for fermentation products by employing gas chromatography. DNA was extracted using the FastDNA Spin Kit for Soil and was amplified through PCR. The amplified DNA samples were then sent for sequencing. The sequences were then utilized to identify the identity of the bacterium. This was done by utilizing a database called BLAST which stands for Basic Local Alignment Search Tool.

Why is your project worth researching? This project is necessary to be conducted because it is a novel species of bacterium which branches off from the earliest photosynthetic bacteria in the phylogenic tree. Moreover, because the bacterium degrades cellulose, it has the potential to produce ethanol which is currently a popular subject in fuel production. Lastly, this species of bacterium can be exploited to reduce waste products that contain cellulose.

What relevance will it have on the community, society, and in your research field? This project will greatly benefit the community and society in general because if the bacterium turns out to ferment ethanol from agricultural waste products, the bacterium can be genetically modified to enhance its ethanol yield. This ethanol can then be used to run vehicles in a less expensive cost. Moreover, in the field of research, this bacterium will be an addition to the list of thermophilic bacteria ever discovered and studied. Also, further research will be needed to understand the structure and metabolism of this bacterium. By doing this, genetic modification can be done to improve its fermentative capability.

What did you find? We found out from its 16S rDNA sequence that it belongs to the Phylum Chloroflexi, a photosynthetic group of filamentous bacteria. Moreover, this new bacterium was discovered to grow in two different strains (Novel Strains JKG1 and JKG2) in the Hedlund Lab. Also, the bacterium grew in long filaments of 500-700 microns while in the R2A Agar Medium. It also grew in lesser concentration and length in the Castenholz Medium D with 1% Filter Paper (Cellulose). The fermentation metabolites are currently still in the process of being identified.

What is the future of your research project? Extensive studies must be contacted in finding out the identity and structure of the bacterium’s fermentative metabolites. Moreover, this microorganism must be tested to grow with a light source to find out if it will grow better. Its genome must also be identified. Lastly, genomic and phenotypic analyses must be applied to further characterize the various strains.
Novel Thermophilic Cellulolytic Isolates Belonging to the Phylum Chloroflexi

Maryknoll M. Palisoc, Jessica K. Guy, Joseph P. Peacock, Duy C. Trinh, Jeremy A. Dodsworth, and Brian P. Hedlund
School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada

Introduction

Current biofuel technologies utilize valuable foodstuffs, such as corn kernels and cane sugar, as sources of easily metabolized sugars. Microbes are used to ferment these sugars into bioethanol, a first-generation biofuel. However, in order to avoid diverting foodstuffs from the food supply, the development of second-generation biofuels technology is necessary. Second-generation biofuels are produced by converting structurally complex lignocellulosic biomass, such as agricultural and municipal wastes, to fermentable sugars or directly to biofuels (1).

The major technological hurdle limiting the mass production of second-generation biofuels is the difficulty in efficiently converting structurally complex lignocellulosic materials to fermentable sugars or directly to biofuels. The discovery of novel thermophilic microorganisms and enzymes that have high activities or broad substrate ranges on plant polymers addresses this challenge.

Research Objectives

Objective I:
To obtain pure cultures of thermophilic microbes capable of cellulose degradation

Objective II:
To characterize the morphology and physiology of the isolates

Objective III:
To identify isolates through DNA sequencing of the 16S rRNA gene and phylogenetic analysis

Experimental Design

Objective I:
Corn stover and aspen shavings were incubated in Great Boiling Spring in Gerlach, Nevada (Fig. 2) and used as inocula for 72 enrichments designed to support the growth of strongly cellulolytic microorganisms. The enrichments were tubes containing Filter Paper Medium I (Castenholz Medium D with filter paper as the sole organic carbon source and additional vitamins and nitrogen). One enrichment generated a biofilm capable of degrading insoluble cellulose, and this consortium was found to contain a mixture of rods and filaments. Rods belonging to the genera Bacillus and Rhodothermus were isolated by plating and found to have weak cellulolytic activity on insoluble cellulose. It was hypothesized that the filaments were responsible for the strong cellulolytic activity displayed by the community, but the filaments were not observed to grow on plates. Hence, optical tweezers and a microfluidic cell sorting device (Fig. 3) were employed to physically isolate the filaments from the community. 33 single filaments, six small groups of filaments, and one negative control were sorted into Filter Paper Medium I and incubated at 55°C.

Objective II:
Six cultures inoculated with single filaments grew to high cell density and efficiently degraded the filter paper at temperatures ranging from 45-65°C (Fig. 4).

Objective III:
Of the 28 different conditions tested, the best growth was observed in R2A Medium while shaking at 65 RPM. Filaments sometimes aggregated into spherical (Fig. 6A) or thread-like (Fig. 6B) structures and were observed to cling to glass surfaces. The isolates stained Gram-negative. In addition, some dense cultures were visibly pink or red and all cell pellets produced through centrifugation were pink or red.

Results and Discussions

Objective I:
All six isolates were unbranched multicellular filaments ranging from 20 to 600 μm in length and 0.7-0.8 μm in width (Fig. 5A). All isolates were capable of gliding motility but were not motile in liquid medium.

Objective II:
If photosynthetic, the isolates could be the most phylogenetically "ancient" phototrophs, while if not photosynthetic, the isolates could shed light on the evolution of photosynthesis.

Future Directions

Detailed phylogenetic and phenotypic characterization is underway to determine whether the organisms represent a novel order or family within the Chloroflexi, further resolve the branching pattern of the phylogenetic tree, and to delineate isolate activities against specific biopolymers. Future enzymatic and genomic characterization will determine whether these organisms or their enzymes may be useful for increasing the efficiency of second-generation biofuels technology.

Acknowledgements

This work was possible due to the generous support of the NSF Career Grant MCB-0544665, Nevada Renewable Energy Consortium (DOE), Urban21 (DOE) and NSF REU (DBI 1005223).

Literature Cited

Denisse Reyes

Email: haro082@yahoo.com
Former High School: Rancho Buena Vista HS
Location of High School: Envista, CA
Mentor/Advisor: Eduardo Robles
Educational Institute of Project: UNLV
Department: School of Life Sciences
Research Site: WHI 317A

Title: Inactivation of spo0A gene increases Stationary Phase Mutagenesis in Bacillus subtilis

Abstract: Stationary phase mutagenesis occurs when a population of cells acquires mutations conferring escape from non-growing or stress conditions. This type of mutations is observed in nutritionally starved cells. Because the mutations occur after the onset of stress and in cells that are in non-replicative conditions, elucidating the underlying mechanisms contributes novel views to the process of evolution and apply to the formation of cancer in human cells and antibiotic resistance in microbial pathogens. Studies have shown that in Bacillus subtilis, the Mfd protein which is a transcription repair coupling factor is necessary for this phenomenon to occur. Here, we investigate the effect of expression of heterologous Mfd proteins on stationary phase mutagenesis in Escherichia coli and B. subtilis. Mfd from both bacterial sp. was cloned under the transcriptional control of IPTG. Results and their implication on how Mfd mediates the formation of stationary-phase mutations are discussed.

Why are you doing this project? To gain further understanding of how the Mfd protein affects stationary phase mutagenesis in protein from different bacterial sp.

What problem are you trying to solve? To determine how cells generate mutations when they are not dividing. This process applies to the development of many human diseases.

What tools or equipment are you using? PCR machine, gel electrophoresis, Klett meter, molecular and microbial techniques such as cell culturing, plating, preparation of media, and cloning.

Why is your project worth researching? The process under study is central to evolution and is unraveling novel mechanisms in molecular genetics. We can relate our research to antibiotic resistance and cancer in humans.

What relevance will it have on the community, society, and in your research field? We can relate the concept of stationary phase mutagenesis with cancer.

What did you find? Currently in the works

What is the future of your research project? The results of my research will inform on how and what parts of Mfd are important for stationary-phase mutagenesis.
Abstract

Stationary phase mutagenesis occurs when a population of cells acquires mutations conferring escape from non-growing or stress conditions. This type of mutations is observed in nutritionally starved cells. Because the mutations occur after the onset of stress and in cells that are in non-replicative conditions, elucidating the underlying mechanisms contributes novel views to the process of evolution and apply to the formation of cancer in human cells and antibiotic resistance in microbial pathogens. In B. subtilis, entry into stationary phase activates the development of differentiated cell subpopulations that confer competence, canmatism, antibiotic production, biofilm formation and sporulation. Here we investigate whether the development of endospore formation influences the ability of cells to generate stationary-phase mutations. One key factor in the development of sporulation is the spoVA transcription factor. We examined the accumulation of mutations in two chromosome markers in cells that were either SpoVA proficient and SpoVA deficient. Cells that are deficient in SpoVA were significantly increased in accumulation of mutations that confer leucine or methionine prototrophy compared to cells proficient in SpoVA. These results then suggest that activation of the program for the development of endospores prevents the formation of mutations in stationary-phase cells.

Methods

Strains used:
- AAP101ΔspoVA(YV855)
- YV855 (lacC952 medB5 suZ427 sin spoVA)

Strain AAP101 was constructed by isolating DNA from strain MF476 and transforming strain YV855 as previously described in Boylan et al. paper in 1972. Transformants were selected on plates containing erythromycin at concentration of 5μg/ml.

References

Conclusions

- Inactivation of the spoVA gene increases stationary phase mutagenesis in B. subtilis.
- Activation of the sporulation program inhibits development of stationary phase mutations.

Future Directions

- Examine revertants at the Hisidine allele.
- Examine the effect of single inactivation of spoOH and in combination with spoVA on stationary phase mutagenesis.

Acknowledgements

This project was supported by NSF grants DB 1051223 (REU Site: A Broad View of Environmental Microbiology) and NSF MCB0443956.

Strain MF476 were kindly gift from the laboratory of Dr. Masaya Fujita at the University of Houston.
Title: Magnetoosome Genes in the Gammaproteobacterium Strain BW-2

Abstract: Magnetotactic bacteria (MTB) biomineralize intracellular nanometer-sized, magnetic crystals surrounded by a lipid bilayer membrane known as magnetosomes. These crystals, which consist of magnetite (Fe3O4) or greigite (Fe3S4), cause the cell to align along the geomagnetic field lines as they swim, a phenomenon known as magnetotaxis. Strain BW-2 is a magnetite-producing magnetotactic bacterium isolated from Badwater Basin, Death Valley National Park (California) and is one of only two species of MTB that are known to phylogenetically belong to the Gammaproteobacteria class of the Proteobacteria phylum. The biomineralization of magnetite in magnetotactic bacteria is mediated by a series of genes that include the mam, mms, and mtx genes that presumable control the production of and the size and shape of the magnetite crystal within the magnetosomes. Magnetoosome genes have not yet been found in the genomes of magnetotactic Gammaproteobacteria. In this study, we use the polymerase chain reaction with degenerate primers designed from mam genes in other magnetotactic bacteria, and DNA sequencing to search for and amplify possible mam genes in the Gammaproteobacterium strain BW-2. In addition, with enough DNA sequence, we may be able to find evidence of the presence of a magnetoosome gene island in this organism. Positive results from this study will be instrumental in determining evidence for lateral gene transfer of the magnetoosome gene island to the Gammaproteobacteria and the evolution of magnetotaxis based on magnetite biomineralization in general.

Why are you doing this project? I am doing this project in order to find evidence of the presence of the magnetoosome gene island which will also determine evidence for lateral gene transfer of these islands and the evolution of magnetotaxis.

What problem are you trying to solve? By using polymerase chain reactions, I was able to determine if the organism had the possible mam genes that code for the biomineralization of these crystals and with enough DNA sequencing determine the presence of the magnetoosome island.

What tools or equipment are you using? So far, I have been able to amplify two mam genes: mamk and mamO from the strain BW-2.

Why is your project worth researching? Studying the biomineralization of these crystals in magnetotactic bacteria is important in many commercial and medical applications.

What relevance will it have on the community, society, and in your research field? An example would be the separation of cells and the diagnosis and treatment of cancerous tumors.

What did you find? Our results make strain BW-2 an excellent candidate for a whole genome sequencing.

What is the future of your research project? To further our research.
Magnetosome Genes in the *Gammaproteobacterium* Strain BW-2

Lucero Rivera¹, Denis Trubitsyn² and Dennis A. Bazylinski²

¹Arizona Western College, Department of Science, Math, and Agriculture
²School of Life Sciences, University of Nevada at Las Vegas

Abstract

Magnetotactic bacteria (MTB) biomineralize intracellular nanometer-sized, magnetic crystals surrounded by a lipid bilayer membrane known as magnetosomes. These crystals, which consist of magnetite (Fe₃O₄) or greigite (Fe₃S₄), cause the cell to align along the geomagnetic field lines as they swim, a phenomenon known as magnetotaxis. Strain BW-2 is a magnetite-producing magnetotactic bacterium isolated from Badwater Basin, Death Valley National Park (California) and is one of only two species of MTB that are known to phylogenetically belong to the *Proteobacteria* class of the *Gammaproteobacteria*. The biomineralization of magnetite in magnetotactic bacteria is mediated by a series of genes that include the *mam*, *msm*, and *mms* genes that presumably control the production of and the size and shape of the magnetite crystal within the magnetosome. Magnetosome genes have not yet been found in the genomes of newly discovered magnetotactic *Gammaproteobacteria*.

In this study, we use polymerase chain reaction with degenerate primers designed from mam genes found in other MTB, and DNA sequencing to search for and amplify possible mam genes in the genome of *Proteobacteria*-derived MTB. *Gammaproteobacteria* experience a torque in a magnetic field that causes them to passively align along magnetic field lines: cells are not being pulled in any direction (as shown in Figure 1) and even dead cells align but don't swim. This phenomenon is caused by the ability of MTB to biomineralize intracellular magnetic crystals (Figure 2) that consist of either an iron oxide or iron sulfide surrounded by a lipid bilayer known as magnetosomes (Bazylinski and Frankel, 2004). Most of these organisms organize magnetosomes in one or more chains (Bazylinski and Frankel, 2004). The control of production and specific characteristics that these crystals display is mediated by a series of genes known as the *mam*, *msm*, and *mms* genes. These genes are organized in the genomes of MTB of the *Deltaproteobacteria* within a genomic island, known as the magnetosome island. Genomic islands are typically surrounded by transposase elements such as insertion sequences, transposases, and pseudogenes (Bazylinski and Frankel, 2004). Because of this, magnetosome genes and the trait of magnetotaxis is thought to have been transmitted to many different bacteria through horizontal gene transfer.

The purpose of this study is to search for and amplify mam genes in the newly-isolated *Gammaproteobacterium* strain BW-2. If enough DNA sequence is obtained, it may be possible to show evidence for the existence of the magnetosome island in this organism thus also providing evidence for horizontal gene transfer of the magnetosome island to the *Gammaproteobacterium*.

Introduction

Magnetotactic bacteria (MTB) are Gram-negative prokaryotes that display a phenomenon known as magnetotaxis where these organisms align along geomagnetic field lines as they swim (Leiferv et al. 2011). MTB experience a torque in a magnetic field that causes them to passively align along magnetic field lines: cells are not being pulled in any direction (as shown in Figure 1) and even dead cells align but don't swim. This phenomenon is caused by the ability of MTB to biomineralize intracellular magnetic crystals (Figure 2) that consist of either an iron oxide or iron sulfide surrounded by a lipid bilayer known as magnetosomes (Bazylinski and Frankel, 2004).

Most of these organisms organize magnetosomes in one or more chains (Bazylinski and Frankel, 2004). The control of production and specific characteristics that these crystals display is mediated by a series of genes known as the *mam*, *msm*, and *mms* genes. These genes are organized in the genomes of MTB of the *Deltaproteobacteria* within a genomic island, known as the magnetosome island. Genomic islands are typically surrounded by transposase elements such as insertion sequences, transposases, and pseudogenes (Bazylinski and Frankel, 2004). Because of this, magnetosome genes and the trait of magnetotaxis is thought to have been transmitted to many different bacteria through horizontal gene transfer.

The purpose of this study is to search for and amplify mam genes in the newly-isolated *Gammaproteobacterium* strain BW-2. If enough DNA sequence is obtained, it may be possible to show evidence for the existence of the magnetosome island in this organism thus also providing evidence for horizontal gene transfer of the magnetosome island to the *Gammaproteobacterium*.

Methods

The polymerase chain reaction (PCR) using degenerate primers (Table 1) for specific magnetosome genes was employed to amplify possible mam genes found in magnetotactic *Gammaproteobacteria*. PCR products were sequenced (Functional Biosciences, Inc., Madison WI) while some PCR products were cloned into pGEM-T Easy (Promega) prior to sequencing.

Table 1. Degenerate PCR primers used to amplify magnetosome genes in strain BW-2.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>mamA</td>
<td>5'-ggaactacttcaagggca-3'</td>
<td>mamH</td>
</tr>
<tr>
<td>mamB</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamD</td>
</tr>
<tr>
<td>mamC</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamC</td>
</tr>
<tr>
<td>mamD</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamR</td>
</tr>
<tr>
<td>mamE</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamK</td>
</tr>
<tr>
<td>mamF</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamG</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamH</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamI</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamJ</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamR</td>
</tr>
<tr>
<td>mamK</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamL</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamM</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamN</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamO</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamR</td>
</tr>
<tr>
<td>mamP</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamQ</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamS</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamT</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamR</td>
</tr>
<tr>
<td>mamU</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamV</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamW</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamX</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamY</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamR</td>
</tr>
<tr>
<td>mamZ</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamC</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamM</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamC</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamM</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamC</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamM</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamC</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamM</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamT</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamM</td>
</tr>
<tr>
<td>mamC</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamO</td>
</tr>
<tr>
<td>mamR</td>
<td>5'-tcggcgttcggatagtt-3'</td>
<td>mamS</td>
</tr>
<tr>
<td>mamM</td>
<td>5'-tcggcgttcggaggtgt-3'</td>
<td>mamT</td>
</tr>
</tbody>
</table>

Future Directions

Studying magnetite biomineralization in magnetotactic bacteria is important because magnetite maghemites have been shown to have unique magnetic, physical and optical properties that can be exploited in a very large number of scientific, commercial and medical applications (Lang and Schiller, 2006) including magnetic cell separation and the diagnosis and treatment of cancerous tumors.

Discussion

Here we show strong evidence that the magnetosome genes, *mamK* and *mamO*, are present in the genome of BW-2. Although, no evidence for the presence of a large number of other magnetotactic genes was found in strain BW-2, the genes may still be present. This is most likely due to the fact that the degenerate primers we used were designed from magnetotactic *Deltaproteobacteria* genes. The magnetosome genes and the magnetosomes may be significantly different enough that most of the primers we used were not effective. We also expected to amplify a fragment approximately 4 kb long, based on data from magnetotactic *Deltaproteobacteria*, but we did not. Our results indicate that the magnetosome genes are present in BW-2 compared to other MTB (Figure 3).

Acknowledgements

This project was funded by the U.S. National Science Foundation (NSF) grant DBI 1005223. REU Site: A Broad View of Environmental Microbiology. Research in the Bazylinski lab is supported by U.S. NSF grant EAR 0820718.

References

Chelsey Vandrisse

Email: vanr026@umn.edu
Former High School: Oshkosh West High School
Location of High School: Oshkosh, Wisconsin
Mentor/Advisor: Dennis Moser
Educational Institute of Project: UNLV
Department: School of Life Science
Research Site: WHI

Title: Investigating the origin of coprolites from three great basin caves

Abstract: The study of coprolites (fossilized feces) in the scientific community is proving to be a controversial topic, altering the currently accepted beliefs of Clovis people migration into North America. In previous years, the oldest dated remains of human artifacts were no more than 11,000 14C yr B.P (Gilbert et al. 2008). However, recently human coprolites found in Oregon have dated 12,300 14C years B.P, about 1,000 14C years earlier than the currently accepted Clovis complex (Gilbert et al. 2008). During a recent archeological dig of the Bonneville Estates Rockshelter, coprolite remains dating 6,000 14C years were found and collected. The source of most of these 19 samples is currently unknown and some are thought to be of human origin. To test this hypothesis, DNA from samples was extracted and PCR amplified using various primers. Primers used amplified regions of mitochondrial DNA (mtDNA) specific for humans. Positive results have been seen with mtDNA primers and DNA will be sent for sequencing to detect homology of Native American origin. Primers specific for Bacteroides strains will also be used in conjunction with mtDNA, seeing as some species of Bacteroides are specific to human fecal matter (Dick et al. 2005). The biggest obstacle in this process will be avoiding contamination. All participants who may have come in contact with the extracted DNA will provide a sample of mtDNA to be sequenced and compared to coprolite sequences. If samples found are of human origin, it could provide an interesting lens into the colonization of the Bonneville Estates Rockshelter area.

Why are you doing this project? To determine if humans inhabited caves at The Bonneville Estates Rockshelter 6,000 years ago

What problem are you trying to solve? The origin of coprolites

What tools or equipment are you using? PCR (primers, LA taq, DNA extractions), gel electrophoreses (agar, TAE buffer, PCR products), sequencing, BLAST

Why is your project worth researching? Helps us understand migratory and living patterns of ancient humans

What relevance will it have on the community, society, and in your research field? Look at d, also could open up new opportunities to other scientists. Many archeologists are mostly interested in the tools they find in digs, this would spark interest in microbiologists to take on similar projects.

What did you find? Human mitochondrial DNA and prevalence of bacteria in the coprolites, in the midst of sequencing now.

What is the future of your research project? Test coprolites from other caves in the United States, perhaps may test coprolites from South Africa that date back to 160,000 14C years.
Investigating the origin of coprolites from three great basin caves
Chelsey VanDrisse1, Duane P. Moser2, Dave Rhode3

University of Minnesota1; Desert Research Institute, Las Vegas, Nevada2; Desert Research Institute, Reno, Nevada3

Introduction
The study of coprolites (mummified feces) is a relatively new endeavor, which enables investigations of the health and diet of ancient people and provides some of the oldest evidence to date for the human habitation in North America (2). In this project, 18 coprolites were examined from archeological digs at three Great Basin caves: the Bonneville Estates Rockshelter (UT), Hidden Cave (NV), and Top of the Terrace Rockshelter (UT). The main objectives were: 1) to verify human origin through the presence of mitochondrial DNA (mtDNA) and 2) assuming human origin, characterize intestinal microflora of Native Americans prior to European contact. Primer sets specific for human mtDNA were employed to obtain products and establish human origin in general and Native American origin specifically (through SNP analysis). Initial microbial efforts targeted the bacterial genus, Bacteroides, which tend to dominate gut flora in modern humans and thus is considered an ideal indicator for human fecal contamination (1,6). Primers targeting human-associated Bacteroides spp. strains were used in conjunction with human mtDNA results to further verify human origin. A major obstacle in this project, as might be expected, was damage to ancient DNA (aDNA). aDNA from coprolite samples is usually degraded into short fragments due to hydrolytic or oxidative damage, greatly reducing the possibility of long polymerase chain reaction (PCR) amplifications (4). The suggestion is that if large fragments are obtained from PCR, that the sample is most likely contaminated (3). To repair the fragmented aDNA, a technique termed reconstructive polymerization (RP) developed by Golenberg et al. (3) was applied. If these samples are found to be of human origin, it could provide an interesting lens into not only humans, but also the colonization of Western North America and beyond.

Results

Materials and Methods
Dr. Dave Rhode (DRI) provided 18 samples, 13 suspected to be of human origin and 5 known to be wood rat coprolites. Through carbon dating performed by Dr. Rhode, the samples are predicted to be between 1,500-6,000 years old. DNA from coprolite samples, modern human and non-human (horse) fecal matter and human mtDNA were extracted using MoBio UltraClean Soil DNA isolation kit. The presence of bacterial 16S RNA was found using universal primers: 27F YM+3, 926R and 1496R. Prior to PCR, 1:40 dilutions of some of the templates were needed to negate the activity of inhibitors which co-purified with the DNA. Damaged aDNA was repaired using the method of reconstructive polymerization adapted from Golenberg et al. (3). Bacteroides-Prevotella primers Bac32F/Bac708R (Field 2000) amplified specific bacterial DNA. Primers L00654 and H00686 (Gilbert et al. 2008) were used to amplify human mtDNA.

Conclusions
Original amplification using 16S universal bacterial primers showed 6 positive results at full strength and 9 positive results at a dilution of 1:40 (figure 1). This is probably due to the dilution of inhibitors that are common with aDNA (5). Coprolite DNA amplification with 16S rRNA gene universal bacterial primers after reconstructive polymerization yielded 15 positive amplifications (figure 2). Repairing the aDNA allowed for a more effective amplification for future reactions and reconstructive polymerization product was successfully used as a template for said reactions. The amplification of mtDNA as seen is promising but does not guarantee human origin (figure 3). It will be necessary to properly sequence these products to verify Native American origin and to show lack of contamination with scientists who have handled the coprolites. Samples 5 and 14 were positive for mtDNA and Bacteroides spp., making these samples more likely to be of human origin (figure 4).

Future Directions
•Clone mtDNA fragments into a vector to be sequenced and compared to humans of Native American origin, compare to scientist’s mtDNA who have come in contact with samples
•Create 16S rRNA gene libraries of bacteria in samples
•Cultivate spore forming bacteria from samples

Acknowledgments
This work was funded by NSF Research Experience for Undergraduates (REU) program A Broad View of Environmental Microbiology at the University of Nevada, Las Vegas (DRI 1005223) and by the General Frederick Lander Endowment. A special thanks my mentor, Duane Moser, and fellow lab members.

References
Christopher Yip

Email: yipcx08@juniata.edu
Former High School: Queens Gateway to Health Sciences Secondary School
Location of High School: Jamaica, NY
Mentor/Advisor: Martin Schiller
Educational Institute of Project: UNLV
Department: School of Life Sciences
Research Site: WHI 120A

Title: Synthesis of Chimeric Receptors Essential for Spore Germination

Abstract: Various species of bacteria have been reported to form an endospore, a metabolically dormant cell, during times of nutrient deficiencies and extreme stress. These said structures are outstandingly resistant to harsh chemicals, extreme temperatures, and can revert back to a metabolically active cell, through a process known as germination, when the necessary conditions are met. The rigid membrane of the endospore contains various germination (Ger) receptors which sense the external environment for necessary metabolites and germinants. Ger receptors are encoded by tricistronic operons that produce three distinct membrane proteins, the A, B, and C subunits. Although the function of the Ger receptor has been established by genetics, no information is currently available for germinant binding site. Bioinformatic and genetic approaches has predicted that the C-terminus of the B subunit is the most likely candidate to contain the germinant binding site. B. Subtilis and B. Megaterium, two species of the Bacilli genus, germinate in response to different germinants; B. Subtilis germinates in response to L-alanine by activation of the GerA receptor, while B. Megaterium germinates in response to L-leucine by the activation of its GerU receptor. The focus of this study is to construct chimeric genes in which fragments of B. Subtilis GerA receptors and B. Megaterium receptors are fused together. These B. Subtilis::B. Megaterium chimeric receptors will be introduced into the B. Subtilis genome and the mutant B. Subtilis spores will then be tested for the ability to germinate with leucine in order to establish the leucine binding site of GerUB. During the initial pilot studies, the regions coding for the N-terminus of the GerA receptor from B. Subtilis and the C-terminus of the GerU receptor from B. Megaterium were amplified using polymerase chain reaction with primer ends complementary to each other in order to further produce the desired hybrid genes without the use of restriction enzymes.

Why are you doing this project? Spores need to germinate in order to transform into a metabolically active cell. Before the cell can germinate, it must sense the environment for necessary metabolites. By transforming a spore’s germination receptors, we can change what it can germinate to.

What problem are you trying to solve? Although the function of the germination receptors of spores are established via genetics, there’s currently no information available on the binding site of the germinants.

What tools or equipment are you using? Polymerase chain reaction is the main tool using to achieve the focal point of this project. By amplifying various regions of the genome where the germination receptors are coded, the products can then be transformed into an organism and tested for whether or not it has the associated phenotype.

Why is your project worth researching? In addition to isolating where the germinants bind, the intermediate steps will produce methods of mutants with varying degrees of germination. If a germination receptor that binds to copper, for example, is isolated, the receptor can then be transformed into a host and the host can be used as an environmental probe.

What relevance will it have on the community, society, and in your research field? The various germinant binding sites of the Bacillus genus can be isolated. Using this method of isolation, amplification, and transformation, environmental probes can be created.

What did you find? The various genes coding for the germination receptors can be isolated and recombined, but it is not known yet whether or not the host organism will accept the plasmid containing the chimeric genes or express the phenotype.

What is the future of your research project? Various species of Bacilli all germinate to different metabolites. The binding site of the germinants in all of the species is not known and will take more than one summer or semester to decipher where these sites lie on the genome. In addition, mutants can further be created which can germinate to specific germinants, assuming that they uptake the desired plasmids.
Synthesis Of Chimeric Receptors Essential For Spore Germination
Christopher Yip1, Christian Ross2, Eduardo Robleto3, Ernesto Abel-Santos2
Junia College, Huntington PA 166512
School of Life Sciences, University of Nevada, Las Vegas NV 891562

Abstract
Various species of bacteria have been reported to form an endospore, a metabolically dormant cell, during times of nutrient deficiencies and extreme stress. Endospores are extremophile organisms that utilize metabolic activities to enhance life in harsh environments, extreme temperatures, and can revert back to a metabolically active cells, through a process known as germination, when the necessary conditions are met. The rigid membrane of the endospore contains various germination (Ger) receptors which sense the external environment for necessary metabolites and germinants. Ger receptors are encoded by tricistronic operons that produce three distinct metabolic factors, the A, B, and C subunits. Although the function of the Ger receptor gene has been established by genetics, no information is currently available for germination binding site. Bioinformatic and genetic approaches has predicted that the C-terminals of the B, subunit is the most likely candidate to contain the germination binding site. B, subunit and B, megeritum, two species of the Bacillus genus, germinate in response to different germinants; B, subunit germinates in response to L-lysine by activation of the Ger receptor, while B, megeritum germinates in response to L-lysine by activation of the Ger receptor. The focus of this study is to construct chimeric genes in which fragments of B, subunit Ger receptor and B, megeritum Ger receptor are fused together. These B, subunit-B, megeritum chimeric receptors will be introduced into the B, subunit germinon and the mutant B, subunit spores will then be tested for the ability to germinate with lysine in order to establish the germination binding site of GerB. During the initial pilot studies, the regions coding for the N-terminal of the GerA receptor from B, subunit and the C-terminus of the Ger receptor from B, megeritum were amplified using polymerase chain reaction with primer end complements to each other in order to further produce the desired hybrid genes without the use of restriction enzymes.

Methods
Polymerase Chain Reaction (PCR)
The genomic DNA from B. megeritum CM18551 (ATCC 12872) and B. subtilis 19553 was extracted using the Wizard Genomic DNA Purification Kit and used as a template for initial PCR reactions. Appropriate primers were designed to produce complementary ends, which would allow for the engineering of chimeric genes without the use of restriction enzymes (Horton, 1988). Primers 1 and 2, noted in fig. 2, amplifies the front end of the B. subtilis GerA receptor. Primers 3 and 4 amplifies the tail end of the B. subtilis GerA receptor. Primers 5 and 6 amplifies the GerB receptor of B. megeritum. Samples containing the appropriate primers, PCR master mix (Firmaq), water, and template were subjected to 30 cycles of PCR amplification. Each cycle can be denaturing at temperature of 94°C, annealing at temperature of 50°C, and elongation temperature of 68°C. The resulting products were amplified using overhang PCR containing the appropriate primers.

Bacterial Transformations
Selected reactions containing the correct size PCR product were inserted into the Blunt II-TOPO vector (Invitrogen) following the manufacturer’s protocol. The vector was then transformed into One Shot TOP10 Chemically Competent E. coli (Invitrogen) following the manufacturer’s protocol. Transformants were grown on Luria Berani agar plates containing a selective antibiotic and incubated overnight at 37°C. Resulting colonies grown in the presence of the selective media were screened for the desired insert. Colonies were picked and finally added into a PCR tube to act as the template for sequential PCR reactions as previously described.

Methods (Con’t)
Restriction Digest and Ligation of Products
Plasmids containing the desired insert were isolated using the Qiagen Spin Miniprep Kit (Qiagen). The insert was digested with EcoRI and incubated at 37°C for 3 hours. The PMU4 constructed plasmid, a plasmid that integrates directly into the B. subtilis genome, was digested and incubated similarly. The plasmid reaction was dephosphorylated, incubated at 37°C for 1 hour, and then 65°C for 15 minutes. Both reactions were purified and ligated together using T4 Ligase (New England Biolabs) following the manufacturer’s protocol.

A. subtilis Transformations
300L of B. subtilis 19553 cells resuspended in a growth medium was grown until 90 minutes after the transition between the cell’s exponential and stationary phase was measured. The cells were then transferred to minimal growth medium and incubated at 37°C for an hour as a sket. Varying concentrations of plasmid DNA were added to the cells and incubated for an hour. The transforms were grown on tryptose blood agar base plates containing a selective antibiotic.

Results

Discussion
The initial gene that codes for the proposed chimeric germination receptor was successfully generated and confirmed based on the addition of base pairs from subunit to megeritum sequences when analyzed on an agarose gel. The synthesized chimeric product was then inserted into the PMU4 vector. The PMU4 vector was chosen to its ability to integrate directly into the B. subtilis genome. The PMU4 vector needed to be subsequently cloned into a strain that would reproduce the vector, but with homologous recombinant into B. subtilis’ ability to first cleave circular DNA, then upate it as a linear strand (Kaufmann et al., 2011). B. Subtilis has been transformed and successfully screened to contain the insert. The general outline of introducing foreign germination receptor genes has been outlined in this project.

Future Direction
Having created only one mutant of wild type B. subtilis 19553, other mutants will be created using the same methods. Once this mutant has been tested for germination and produces desirable results, other genes coding for various other germination receptors can hopefully be integrated into the B. subtilis genome and then tested for. Using this strategy as a model species can be created as used as an environmental model, germinating only when triggered or compound is present.

Acknowledgements
I would like to thank Dr. Abel-Santos, Dr. Ross, and Dr. Robleto for constant guidance throughout the entire project while working on it. I would also like to thank the Abel-Santos labs, and the Robleto lab for helping me understand the various mechanisms of sporing organisms, such as Bacillus.

This project was funded by the NSF Research Experience For Undergraduates (REU) Program: A Broad View of Environmental Microbiology At The University Of Nevada, Las Vegas (DBI 155021).

References
2. Ross and Abel-Santos (2020). The Ger Receptor Family from Sporulating Bacteria.
Title: Nitrite oxidation in the Great Boiling Spring system in the US Great Basin

Abstract: While recent advancements have contributed greatly to our current knowledge of the nitrogen biogeochemical cycle in high temperatures, there is still much more that remains unknown. In this study, we focused our attention on the second step of nitrification, chemolithotrophic nitrite oxidation. We combined in situ measurements of dissolved inorganic nitrogen (DIN) species in two hot spring outflow systems in the Great Boiling Spring (GBS) geothermal system, and characterization of nitrite-oxidizing enrichment cultures form Great Boiling Spring. Measurements of DIN showed that source water ammonia concentrations decreased in the outflow channels with concomitant increases in nitrite and nitrate concentration at >70°C and >50°C, respectively. Enrichments for thermophilic nitrite-oxidizing bacteria (NOB) inoculated with sediment/water slurries from Great Boiling spring yielded nitrite-oxidizing cultures at 50°C after 12 weeks of incubation. No successful cultures were obtained at 65°C or 80°C. Mixed cultures contained an organism with high 16SrRNA gene homology to Nitrospira calida, a thermophilic NOB from Gorjachinsk Hot Spring, Russia. Nitrite oxidation activity was more stable and reproducible under a suboxic headspace (3:1 N2:air) as compared to a full air headspace. Nitrite oxidation activity in the culture was highest at 45°C (2.4 µM/h) and had a maximum temperature of 55°C. The optimal initial nitrite concentration was 500-750 µM. The work presented here suggest a high temperature limit for chemolithotrophic nitrite oxidation somewhere between 65°C and 55°C, suggesting that a temperature-driven decoupling of ammonia oxidation and nitrite oxidation exists, consistent with the accumulation of nitrite observed in the GBS system above 60°C. Nitrospira spp. may be important nitrite oxidizers in geothermal springs worldwide.
Nitrite oxidation in the Great Bolling Spring system in the U.S. Great Basin

Tara A. Edwards¹, Dee Huang¹,², Nicole Calica¹, Jeremy Dodsworth¹, Brian P. Hedlund¹

¹School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154
²Nevada State College, 125 Nevada State Drive, Henderson, NV 89012

Introduction

Nitrite is an important two-step in the nitrogen cycle that leads to the production of NO₂⁻ (Figure 1). In the first step of nitrite oxidation, nitrite oxidizes, NO₂⁻ to nitric oxide, NO, and in the second step, nitric oxide is oxidized to nitrous oxide, NO₂. Since we know that nitrous oxide can act as a potent greenhouse gas, it is crucial to understand these two-step processes.

Until recently, this area has not been focused on in high temperatures. After observing nitrite oxidizes and nitrous oxide and nitric oxide, we decided to study the Great Bolling Spring (GBS) system.

Nitrite Oxidation in the Great Bolling Spring System

\[\text{NO}_2^- + \text{O}_2 \rightarrow \text{NO}_2 \]

Results

Bacteriology

Rich's Hot Creek

Sandys' Spring

Optical Temperature

A. NO2⁻ Consumption as a Function of Temperature

B. Log a as a Function of Temperature

Optical Concentration

A. NO2⁻ Consumption as a Function of Concentration

B. Log a as a Function of Concentration

The GBS system is a warm spring with temperatures ranging from 57-80°C. The temperature range is highly dependent on the time of year. The GBS system has a unique ecosystem that is adapted to these high temperatures. The GBS system has a unique ecosystem that is adapted to these high temperatures. The GBS system has a unique ecosystem that is adapted to these high temperatures. The GBS system has a unique ecosystem that is adapted to these high temperatures. The GBS system has a unique ecosystem that is adapted to these high temperatures.

References

Acknowledgements

This project is funded by grants from DOD-JSE (ESR-103), NSF (MAB-0649695 and CBET-0963283) and NASA (NGO5-0088872). We would like to express our gratitude to Chris Phillips for allowing us to use his lab, and to David Jardine for access to the spring.

Chinese Academy of Sciences

Nevada State College

University of Nevada, Las Vegas

The Nevada System of Higher Education

C.B. Grady Institute for Environmental Studies

The Nevada System of Higher Education
Title: Isolation, characterization, and genome sequence of the first representative of a novel class within the Chloroflexi that is abundant in some US Great Basin hot springs and may play important roles in N and C cycling

Abstract: A thermophilic, facultatively microaerophilic, heterotrophic bacterium, designated strain JAD2, was isolated from sediments of Great Boiling Spring (GBS), an ~80°C, circumneutral hot spring in the US Great Basin (GB). The strain grew anaerobically on yeast extract or peptone with an optimal growth temperature of 70-75°C. Growth was stimulated by addition of 0.01 atm O2 to the culture vessel headspace, but was inhibited by higher concentrations (0.2 atm). Cells of JAD2 formed non-motile filaments ranging from 10 to >300 µm in length, which typically decreased in length during stationary phase. 16S rRNA gene-targeted pyrotag sequencing and clone library data suggest that close relatives of this isolate are prominent members of the sediment communities in GBS. Shotgun sequencing of the JAD2 genome produced an assembly consisting of ~3.2Mbp with an average G+C content of 67.3%. Phylogenies inferred from the 16S rRNA gene and predicted amino acid sequences of various conserved proteins indicate that JAD2 is the first cultivated representative of the GAL35 group, a new class within the Chloroflexi. Predicted genes in the draft genome encoding a putative carbon monoxide dehydrogenase (coxMSL), nitrite reductase (nrfHA) and nitrous oxide reductase (nosZ) suggest that this isolate may play important roles in N and C cycling in GBS sediments.
Isolation, characterization, and genome sequence of the first representative of a novel class within the Chloroflexi that is abundant in some US Great Basin hot springs and may play important roles in N and C cycling

Jeremy A. Dodsworth1, Senthil K. Murugapiran2, Jonathan Gevorkian1, James Han3, Tanja Woyke4, Susan M. Lucas2, Sam Pitluck2, Len Pennacchio5, Lynne Goodwin6, and Brian P. Hedlund1

1University of Nevada-Las Vegas, Las Vegas, NV 89154
2US DOE Joint Genome Institute, Walnut Creek, CA, 94598

Introduction
Recent studies have shown that novel phylum- and class-level bacterial and archaean lineages are abundant in various hot springs in the US Great Basin (GB) (Costa et al., 2009; Dodsworth et al., 2010; Vick et al., 2010). Among these, Great Boiling Spring (GBS), a circumneutral, ~80°C spring, has been identified to have a robust biochemically active nitrogen (N) cycle (Dodsworth et al., 2011; Hedlund et al., 2011). One overarching goal of our studies of hot springs in the GB and elsewhere is to understand the metabolic capabilities of microbial novel lineages and how they contribute to biogeochemical and energy cycling in these environments. Here we describe the isolation, initial characterization and draft genome sequence of strain JAD2, the first cultured representative of the “GAL35” group (Hugenholtz, Greigwoo, respectively) which likely represents a new class within the phylum Chloroflexi.

Methods
Ultrafiltered spring water or a synthetic medium mimicking GBS water chemistry, supplemented with Na2CO3, NH4Cl, and a trace element mixture, was made anaerobic by sparging with N2:CO2 (400x) for 1 h, portioned in an anaerobic chamber; and autoclaved. Solid medium was supplemented with gelite (0.9%) and MgCl2 (0.4%). Subsequent addition of a vitamin mixture, phosphate, and complex organics from sterile, anaerobic stocks were made by needle and syringes. Liquid cultures (5 mL) were grown in 18x150 mm tubes sealed with butyl rubber stoppers with 1 atm overpressure of N2:CO2 in the headspace. Growth was monitored by phase contrast microscopy. 16S rRNA gene pyrosequencing and genome sequencing (Illumina paired end, assembled using Velvet) were performed at the United States Department of Energy Joint Genome Institute (US DOE-JGI).

Isolation and characterization
- Isolated from GBS sediment using solid media designed to enrich for heterotrophic nitrate reducers (5 mM NO3, and complex organics, anaerobic conditions)
- Samples of colonies were observed by microscopy; those containing filaments were streaked for isolation (5x).
- Anaerobic growth on GBS spring water medium with yeast extract and/or peptone as C source and energy sources, no added Fe acceptor.
- Growth stimulated by 0.01 atm O2, inhibited by 0.2 atm.
- Generation time of ~1 day with yield of 10⁶-10⁷ filaments/ml.
- Filamentous morphology (Fig. 1), no obvious motility.
- Draft genome sequence is ~3.2 Mbp in ~80 contigs with N50 of 400x of a late log-phase culture of JAD2.

Phylogeny of strain JAD2 and the GAL35 group

Potential roles of JAD2 in N and C cycling in GBS

Summary and future directions
Strain JAD2 is a member of the GAL35 group, which likely represents a new class-level group within the phylum Chloroflexi (Fig. 4). Close relatives of JAD2 are abundant in GBS and other GB hot springs (Fig. 2) and have been found in terrestrial geothermal systems worldwide (Fig. 4), and may play important roles in N and C cycling in these environments (Figs. 5-6).

Further characterization of JAD2 will include:
- Full phylogenetic characterization, formal placement of class- and species-level taxonomic groups.
- Compare cell envelope structure to that of other members of the GAL35 group and other bacterial phyla.
- Determine whether proposed pathways for CO reduction, N2O reduction and nitrite reduction to ammonium are functional and linked to respiration, and their importance in GBS and other hot springs.
- Assess the physicochemical habitat and biogeography of the GAL35 lineage in hot springs globally by qPCR.

Acknowledgements:
The authors thank Dave and Sandy Bundy for access to GBS. This work was supported by NSF grant 0957797, DOE-0945153, and DOE-0848231. Work conducted at JGI was supported by the Office of Science of the US Department of Energy under contract No. DE-AC02-05CH11231.

References:

Potential roles of JAD2 in N and C cycling in GBS

Figure 1. Phase contrast micrographs (400x) of a late log-phase culture of JAD2.

Figure 3. Strain JAD2 is a member of the phylum Chloroflexi. The cladogram shows the phylogeny inferred from concatenated amino and nucleotide sequences of 31 housekeeping genes from taxa representing major phyla within the Bacteria (Gorlenko and Lens, 2008). Strain JAD2 and other members of the Chloroflexi form a monophyletic lineage with high bootstrap support (100% of 500 replicates). Sequences were aligned using ClustalW and the tree was constructed and visualized using the MEGAS software package (http://www.megasoftware.net).

Figure 4. Phylogeny of 16S rRNA genes demonstrate that strain JAD2 and relatives (~90% identity) in the GAL35 group form a distinct clade within the phylum Chloroflexi. Phylogeny was inferred using distance matrix and neighbor joining methods (Felsenstein, 2004) with near-full length sequences from named classes and class-level groups within the Chloroflexi (Hugenholtz et al., 2004), using E. coli, B. subtilis, and C. diphtheria as outgroups. Named species or isolates are in bold. Regions where GAL35 sequences were obtained are indicated. GBS, Great Basin.

Figure 5. A nitrous oxide reductase (nir) gene in JAD2's genome is predicted to encode a functional enzyme. A putative carbon monoxide dehydrogenase (coxMSL), nitrite reductase (nrfHA), and nitrous oxide reductase (nosZ) suggest that this isolate may play important roles in N and C cycling in GBS sediments.
Joseph Peacock

Email: PEACOC16@UNLV.NEVADA.EDU
Former High School:
Location of High School:
Mentor/Advisor: Brian Hedlund
Educational Institute of Project: UNLV
Department: School of Life Sciences
Research Site: WHI 306A

Title: A Spatial and Temporal Analysis of Microbial Communities in Great Boiling Spring, Nevada, by 16S rRNA Gene Pyrotag Analysis

Abstract: Great Boiling Spring (GBS) is a large, circumneutral, long residence time geothermal spring in the US Great Basin. Twelve samples were taken from four different sediment sites and the planktonic community in the bulk water of GBS on up to four different dates. Microbial community composition and diversity was assessed by using a barcoded, improved universal primer set targeting the V8 portion of the 16S rRNA gene and PCR. Over 200,000 products were sequenced using the Roche 454 GS FLX Titanium System. Sediment and planktonic microbial communities were distinct with very little overlap, regardless of the sampling location or temperature. Planktonic communities were extremely uneven and were dominated by a single phylotype related to Thermocrinis in the Aquificales. Benthic microbial communities grouped according to temperature and sampling location. Two locations, Site A (80-87°C) and Site B (79°C), were predominantly composed of the crenarchaeal class Thermoprotei, the novel archaeal lineage pSL4, and the novel bacterial lineage GAL35. Populations of the ammonia oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii” comprised 5-15% of all samples when Site A was cooler than normal (80°C) and at cooler sites throughout the spring (76-62°C). At cooler temperature sites (76-62°C), the phylum-level diversity and evenness were significantly higher, and bacteria made up a significantly higher percentage of the population. To our knowledge, this is the most detailed study of the spatial and temporal variation in any geothermal spring. The study underscores the distinctness of planktonic and benthic communities and the importance of temperature in driving the spatial variation of microbial phylotypes throughout the mineralogically homogenous source pool.
A Spatial and Temporal Analysis of Microbial Communities in Great Boiling Spring, Nevada, USA

Jesica K. Guv*, Joseph P. Peacock†, Jeremy A. Dodsworth‡, Tanja Woyke*, Tijana G. del Rio§, Brian P. Hedlund¶, School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Parkway, Las Vegas, Nevada 89154
Петр К. Гув*, Йозеф П. Пакън†, Йереми А. Досвотър‡, Таня Г. Дел Рио§, Брайън П. Хедлънд¶, Университет на Лас Вегас, 4505 С Мериленд Пейквейк, Лас Вегас, Невада 89154

Objectives

1. To describe the spatial distribution of the bacteria and archaea inhabiting Great Boiling Spring (GBS).
2. To examine the temporal variability of the microbial community of the different sites throughout GBS.
3. To compare and contrast the water and sedimentborne microbial communities of GBS.

Introduction

GBS is a large, circumneutral, hot-spring residence-time geothermal spring located in the US Great Basin. It is microbially dominated, with an average residence time of 10-100 days. The microbial community composition and diversity were assessed through the analysis of the 16S rDNA clone library. The results showed a high diversity of microbial communities, with a significant proportion of the bacterial community being composed of Archaea and Bacteria. The results also indicated a high degree of similarity between the water and sedimentborne microbial communities, with a high proportion of the same species present in both environments.

Methods

Eight sediment samples were collected using sterile sampling devices and four water samples were collected using either normal or temporal flow samplers, as previously described. Sediment samples were collected from four sites, while water samples were collected from the edge of the hot spring. Water was sampled at a depth of 10 cm from the surface, while sediment samples were collected using sterile sampling devices. DNA was extracted using a modified version of the Dual-Adenine Nucleotide (GEN) protocol, and the 16S rDNA gene was amplified using the primer pair 27F and 1492R, which target the V3-V4 regions of the 16S rRNA gene. The amplicons were sequenced using the Illumina MiSeq sequencing platform. The results showed a high diversity of microbial communities, with a significant proportion of the bacterial community being composed of Archaea and Bacteria. The results also indicated a high degree of similarity between the water and sedimentborne microbial communities, with a high proportion of the same species present in both environments.

Results and Conclusions

Water and sedimentborne microbial communities were distinct with very little overlap, regardless of the sampling location or temperature (Fig 1). Waterborne communities were extremely diverse and were dominated by a single phyla related to Thermococcus in the Archaea domain. Sedimentborne microbial communities were dominated by bacteria and archaea, with Thermococcales and Thermoproteales being the most abundant. The results also indicated a high degree of similarity between the water and sedimentborne microbial communities, with a high proportion of the same species present in both environments.

Figure 1: Photograph of GBS with sampling sites. A: indicated average estimated temperatures. B: Site A (25°C), B (5°C). C: Site D (25°C). D: O.1, O.2; E: D. Samples from Site B are of the waterborne microbial community and samples from Site D are of the sedimentborne microbial community.

Acknowledgements

This paper was funded by grants from DOE (DE-SC0016497, DE-SC0016377, and DE-SC0016394). We thank the Nevada BLM for providing access to the sampling sites.

References

Fadia Abdullah and Guadalupe Medrano

Email: fayabdullah@rocketmail.com
Former High School: CSN High School
Location of High School: Las Vegas, NV
Mentor/Advisor:
Educational Institute of Project: UNLV
Department: Healthcare Administration

Title: HIV Patients' Rights

Abstract: HIV is a sexually transmitted disease that develops into AIDS. There is no cure for it, only treatment. In this poster, we look at the pros and cons of disclosing this type of information. People who decide to disclose their HIV status may have various reasons for doing so, but most do it for emotional support and for prevention of spreading the disease. Those who decide to keep it private primarily do it to not face rejection, discrimination, degradation, and loss of respect. (Petronio Page 72) The problem with creating a public database is that many organizations are against the idea of disclosing personal information. Through documents as old as the Constitution, government officials have deemed a public database to be unethical. It confronts with individuals’ basic rights. Others still argue that creating such a database would lower the spread of HIV, saving hundreds of lives. The balance between patient’s privacy and the well-being of society has yet to be found. We want to prevent the spreading of AIDS, so disclosure should be mandatory. By knowing who has the disease the chances of spreading it become minimal. In exchange, patients should be treated just as any other person.

Why are you doing this project? I am doing this project because HIV is a topic that is worth researching. It is such a deadly virus, that it deserves to be researched closely in hopes to find ways to stop the spread.

What problem are you trying to solve? I am trying to resolve whether or not an HIV public database is an ethical solution to the HIV epidemic.

What tools or equipment are you using? I used scholarly journal entries along with books and articles to compile information.

Why is your project worth researching? My project is worth researching because HIV has killed so many people already, there is no reason why it should continue. Creating a database is a proposed solution to the problem.

What relevance will it have on the community, society, and in your research field? It will help individuals who are struggling with forming an opinion on whether or not an HIV database is ethical.

What did you find? I found many strong arguments for the public database, along with strong arguments against. Some arguments even reference to the U.S. Constitution.

What is the future of your research project? I hope my research will be examined by many and it will help uncertain peoples decide that a HIV database would indeed be an ethical decision.
AIDS/HIV DENIALISM: Patients’ Privacy Rights
FADIA “FAY” ABDULLAH
GUADALUPE “LUPE” MEDRANO
UNLV: SCIENCE 101- SPRING 2011

Abstract
HIV is a sexually transmitted disease that develops into AIDS. There is no cure for it, only treatment. In this poster, we look at the pros and cons of disclosing this type of information. People who decide to disclose their HIV status may have various reasons for doing so, but most do it for emotional support and for prevention of spreading the disease. Those who decide to keep it private primarily do it to not face rejection, discrimination, degradation, and loss of respect. (Petronio Page 72) The problem with creating a public database is that many organizations are against the idea of disclosing personal information. Through documents as old as the Constitution, government officials have deemed a public database to be unethical. It confronts with individuals’ basic rights. Others still argue that creating such a database would lower the spread of HIV, saving hundreds of lives. The balance between patient’s privacy and the well being of society has yet to be found. We want to prevent the spreading of AIDS, so disclosure should be mandatory. By knowing who has the disease the chances of spreading it become minimal. In exchange, patients should be treated just as any other person.

Introduction
HIV/AIDS weakens a person’s ability to fight off infections and cancer, thus creating an extremely weak body that is susceptible to many diseases. Because it is such a serious issue, the idea of creating a public database has been circulating. The database would be similar to a state’s sex offender registry. But along with the idea of publicizing AIDS victims have come many arguments. The main argument against the database is that it would go against patients’ privacy rights. Others argue it would cause public humiliation to the people infected, and possibly cause riots to break out against them. Although the thought of innocent people being ridiculed over a virus is unfortunate, the fact that these people may be spreading HIV to unaware citizens is even more unfortunate. That is why some believe that taking the risk of public humiliation of victims is well worth the possibility of lowering the spread of the fatal virus. This forces HIV and gay advocacy groups to confront the burning question: Which do you value more — your privacy or the chance to halt this plague? (Essenzi Paragraph 1)

Pros of Public Database
Compiling a database of the infected makes it easier to track and prevent the spread of the disease. (Essenzi Paragraph 2)
The youth will be made more aware of the commonness of the HIV virus and how easily it can be spread. People will be aware if their partners are infected. (Emiet Paragraph 4)
It will possibly lower the possibility of people spreading the disease with a criminal intent. It is the public’s responsibilities to use data for good ends. (Gostin Paragraph 2)

Cons of Public Database
People with HIV is ‘discredited’ and becomes ‘discredited’ through disclosure. (Petronio Page 71)
Results in loss of employment, housing access to public education, insurance, and health care. (Petronio Page 72)
Loss of friends, family, spouses, and the emotional and instrumental support those relationships might otherwise provide. (Petronio Page 72)
Despite ‘duty to treat’ many providers prefer to avoid patients with HIV. (Petronio Page 76)
Rejection of potential sexual partners. (Emiet Paragraph 4)
Potential risk of information being abused and used in ways not appreciated. (Emiet Paragraph 4)
Face anxiety over the potential of unintentional disclosure. (Emiet Paragraph 5)

Conclusion
Since the beginning of the HIV/AIDS epidemic, well over half a million people have died of AIDS in the United States. A virus as deadly as cancer should be given more extreme solutions. It may not be considered ethical in some eyes, but anyway of reducing the increase of peoples infected should be taken into consideration. Simply reinforcing safe behavior and urging HIV testing is not enough to end the epidemic.
Yes, the thought of publicly humiliating individuals is terrible, but if serious measures are not taken, the HIV virus will continue to spread. And because the main ways to spread it are through unprotected sex and needle sharing, this means that youth are very much at risk. With young age comes ignorance, and going as extreme as a public database will more than likely open the eyes of teens who engaging in these practices. AIDS is one of the most serious, deadly diseases in human history, and if a public database is what it takes to reduce the spread, then it should be attempted.

Bibliography

Title: Intelligent Design and its Place in the Classroom

Abstract: Creationism, is the dominant belief held by the public. Evolution, on the other hand, is the competing theory of the mechanisms of creation. The recent dispute among the scientific and political field that has furthermore complicated the question of intelligent design being integrated into the curriculum of public schools is addressed here. We attempt to give both sides of the argument, along with analyzing the components of each theory. Intelligent design advocates are for the idea of accommodating what they have coined “intelligent design” into the classrooms of American schools. The opponents of intelligent design (evolution supporters); however, claim that this is preposterous because intelligent design is not even considered a real science. Science is based on the fact that hypotheses can be tested empirically and proven a number of times before they become theories. According to evolution proponents, intelligent design does not complete such task. Intelligent design supporters believe that even if evolution explained creation of man, there would have to be a creator since humans are complex beings. This and other questions will be covered throughout the poster.

Why are you doing this project? We completed this project in order to become more familiar with the place of religion in the classroom. The connection between science and religion has always been of interest to us, and we wanted to explore its limits in the public sphere.

What problem are you trying to solve? In the poster, we attempted to answer the question of whether or not intelligent design should be integrated into the public school curriculum along with evolution.

What tools or equipment are you using? Microsoft Powerpoint to complete our poster.

Why is your project worth researching? Religion and science are always going to be conflicting, and it is better to be aware of both points of view before having an opinion. This can be done by researching. Not only will it make one aware of other views but provide insight into current events concerning the topic, as well.

What relevance will it have on the community, society, and in your research field? It gives the ability to draw a public course of action. Conflicts can bring interest, and in becoming more aware of this topic, people can become entrenched in finding a solution or a middle ground to the question of religion v. science.

What did you find? We found that there is a middle ground to reach in the argument between evolution supporters and intelligent design advocates. It is acceptable to believe the mechanisms of evolution are what make life possible on earth, along with the help of a creator.

What is the future of your research project? We have not prepared in thinking about that yet.
Naturalized Mexican Immigrants & their Voting Behavior

PURPOSE

Explain determinants of voting with a main focus on the effects of membership in Mexican hometown associations. In particular, does membership make it more or less likely that Mexican immigrants who have naturalized will vote.

INTRODUCTION

Despite the increasing population size of Latinos (individuals who are of Hispanic descent) in the United States, the number of Latino voters is not increasing. This is based on the ratio of Latino residents and those who are registered to vote.

Between 2000 and 2004, Latinos accounted for 50 percent of the population growth; however, they represented only 24 percent of new voters. When compared to white and black voters, only 59 percent of Latinos were eligible to vote in 2004 compared to the 97 percent of white eligible voters and 94 percent of black eligible voters. Even though Latinos rose to 41.3 million.

in 2004, Mexicans represented the largest documented immigrant group in the United States, but they also represented the largest group with the lowest voter turnout rates. Thus, it is important to understand the reasons why Mexican immigrants who have been naturalized do not vote.

DATA & METHODS

The Latino National Survey (LNS) contains 8,634 un-weighted and completed interviews of self-identified Latino/Hispanic residents of the United States. Interviewing began on November 17, 2005, and continued through August 4, 2006. The survey covered several cities and states with a high number in Latino population. The sample was stratified by geographic designation, meaning that each state sample was a valid, stand-alone representation of that state's Latino population. The survey asked questions regarding their demographics.

The primary independent variable of interest is membership in hometown associations. Controlling for other variables that are correlated and associated with voting, the influence of membership in hometown associations will be produced.

Logistic Regression Analysis

<table>
<thead>
<tr>
<th>VOTE 2004 Election</th>
<th>Hypothesized Results</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>Z Value</th>
<th>Level of Statistical Significance</th>
<th>Direction of Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Political Interest</td>
<td>Positive influence</td>
<td>0.797</td>
<td>0.265</td>
<td>3.00</td>
<td>0.003 (99%)</td>
<td>Positive & Statistically Significant</td>
</tr>
<tr>
<td>Hometown Association Involvement</td>
<td>Negative influence</td>
<td>0.834</td>
<td>0.465</td>
<td>1.79</td>
<td>0.073 (90%)</td>
<td>Positive & Statistically Significant</td>
</tr>
<tr>
<td>Union Membership</td>
<td>Positive influence</td>
<td>0.795</td>
<td>0.384</td>
<td>2.07</td>
<td>0.038 (95%)</td>
<td>Positive & Statistically Significant</td>
</tr>
<tr>
<td>English Proficiency</td>
<td>Possible influence</td>
<td>0.456</td>
<td>0.135</td>
<td>3.38</td>
<td>0.001 (99%)</td>
<td>Positive & Statistically Significant</td>
</tr>
<tr>
<td>Income Level</td>
<td>Possible influence</td>
<td>0.054</td>
<td>0.045</td>
<td>1.18</td>
<td>0.237</td>
<td>Positive but Not Significant</td>
</tr>
<tr>
<td>Education Level</td>
<td>Positive influence</td>
<td>-0.009</td>
<td>0.061</td>
<td>-0.15</td>
<td>0.880</td>
<td>Negative but Not Significant</td>
</tr>
<tr>
<td>Birthdate</td>
<td>Negative influence</td>
<td>0.000</td>
<td>0.000</td>
<td>2.02</td>
<td>0.044 (95%)</td>
<td>Positive & Statistically Significant</td>
</tr>
</tbody>
</table>

PRELIMINARY FINDINGS

The logistic regression analysis shows that having an interest in politics has a positive effect on voting for Mexican immigrants who have naturalized. This result is not necessarily novel. However, the positive effect that hometown association membership has on voting behavior is. This shows that membership in hometown associations is a primary determinant in voting behavior among Mexican immigrants who have naturalized.

Further research is necessary to explain this effect due to the contradicting research that exists on the impacts of hometown association membership. This project will attempt to reconcile this contradiction.
Title: Analysis of Uranium Fuel Pellets for Forensic Applications

Abstract: Potential forensic signatures in nuclear fuels were explored using uranium dioxide (UO2) to make fuel pellets with varying percent binder of total mass as well as pellets varying percent U3O8 of total uranium content. Ammonium uranyl carbonate was precipitated from the mixing of ammonium carbonate and uranyl nitrate. The precipitate was calcined overnight at 800 °C to make U3O8. The U3O8 was reduced to UO2 in a tube furnace with H5 gas overnight at 600 °C. X-ray diffraction was performed on the UO2 to verify the composition. Aluminum stearate and ethylene stearamide were used as binders, and binder percentages ranging from 0.25 to 1.5 weight percent, were tested to determine the effect on pellet density. The criterion for determining the optimal percent binder was the highest sintered density due to having the highest energy to mass ratio. The optimal binder content was determined to be 0.66 weight percent for aluminum stearate and 0.5 weight percent for ethylene stearamide. Using the optimal percent binder, pellets were made with the U3O8 percentage of uranium content varying from 5 to 20 weight percent to determine the effects on pellet density. Over the range studied, the impact on density of varying the U3O8 content was less than 5 %. The fuel pellets were analyzed under an optical microscope to study the microstructure and other features. By determining the dependence of density on percent binder and percent U3O8 and the microstructure, information was gained that can be used to determine forensic signatures in nuclear fuels.
Title: Evaluation of metals Rhenium and Technitium with ligands Acetohydroxamic acid and Ethylenediaminetetraacetic acid

Abstract: Evaluation of the metal-ligand interaction of Rhenium and Technetium with Acetohydroxamic acid (AHA) and Ethylenediaminetetraacetic acid (EDTA) was performed by use of UV-Visible spectroscopy. Complexation was performed through ligand exchange. All Re-AHA complexes were carried out in aqueous solutions of Rhenium oxycitrate obtained from reductive synthesis procedure, but Re-EDTA was complexed in an alkaline environment as EDTA only becomes miscible in water at a pH of 10 or greater. Technetium complexation was carried out in an acidic medium of methanol for AHA and basic media of ethanol. Technetium metal compound was obtained from a multi-step reduction synthesis to obtain Tc(V) from Tc(VII). Based upon results obtained by molar absorbitivity measurements of Re-AHA complex, it was concluded the Rhenium does complex and the same was observed for the TcO-AHA complex. UV-visible spectra showed no shift for Re-EDTA complex which neither confirmed nor denied the presence of a complex. Initial Tc-EDTA complex was not evaluated as solid precipitate was produced during complexation and was hypothesized to be the result of the oxidation of technetium in the presence of a sodium hydroxide. A second complex synthesis was performed in acidic medium for Tc-EDTA which yielded a UV-Vis active complex. For all four complexes produced, crystallization was performed through complex ion exchange with hexaflourophosphate. These samples will be analyzed by X-ray diffraction to confirm if the proposed complexes are forming. Crystal yield was varied by the amount of metal compound added to the complex.
Title: Comparison of Two Actinide Separation Methods Using Extraction Chromatography Resins

Abstract: The mobility of radionuclides in the environment is of great interest to gain a better understanding of the effect on the specific environment. One such method that can provide information on contaminant mobility is sequential extraction. The resulting leachates from a sequential extraction procedure must be separated and purified before counting by alpha spectroscopy. Extraction chromatography is an efficient separation tool that produces less waste than other methods.

This research involves investigating two separation methods using extraction chromatography; Maxwell (2006) and Thakur (2011). Tracers were used to monitor the recovery of the samples. The samples were first prepared by adding a known amount of activity of each isotope; 229Th, 232U, 242Pu, 243Am. Samples were then subjected to a ferric hydroxide co-precipitation to pre-concentrate the actinides before separation. Triplicates of each sample were run through the Maxwell procedure and another set of triplicates was run through the Thakur procedure. The samples were then prepared for alpha spectroscopy by CeF3 micro precipitation. Each sample was counted until counting error was less than 1 %. The total recovery was calculated for each sample.
Title: Solubility Studies of TBP in Various Tributylphosphate and Nitric Acid Systems

Abstract: Data on the solubility of tributylphosphate in bi-phasic nitric acid systems with and without uranium was collected using a Parr pressure vessel and density meter. Equa-portions of either pure TBP or 30% TBP in n-dodecane were used as the organic phase and 1 M, 5 M and 10 M nitric acid was used as the aqueous phase. UO2(NO3)2 was used in trials studying uranium. Runs were completed at 50 °C and 75 °C with the phases separated manually after 10 minutes. Separations were performed quickly in order to minimize phase separations after heating was removed. Temperature data over the heating period was collected to look for signs of a runaway reaction and to create a temperature profile of each mixture. Nitrate ions were detected using ion chromatography and quantified using a peak area method based on a generated calibration curve. From the concentrations of nitric acid and a referenced constant describing water concentration in TBP systems, a model was generated to predict the density of the resulting aqueous phase. With a predicted density and a known mole fraction of both water and nitric acid, an estimate of TBP concentrations could be generated. These results agreed to within 10% of the measured densities of the aqueous phases.
Nieka Jackson

Academic Institution: South Carolina State
Mentor/Advisor: Ken Czerwinski
Educational Institute of Project: UNLV
Department: Chemistry
Research Site: HRC 245

Title: Separation of Neighboring Lanthanides

Abstract: Lanthanide separations techniques using ion chromatography methods had been studied since the early 1950s. There has been limited research performed on the separation of neighboring lanthanides and the extraction of the specific lanthanide fraction of interest. Experiments have been in progress to explore an efficient separation method of thulium and erbium with respect to various factors such as flow rate, temperature, pH of the elution phase and use of different complexing agents for elution off of a cation exchange resin. An automated ion chromatography system (DIONEX ICS-3000) has been used to analyze for trace levels of the lanthanides by the use of a post column reagent for the detection of the lanthanides with a UV-VIS detector. Unfortunately, using a post-column reagent setup prevents the possibility of differentiating between the different lanthanides since the absorption of light is a result of PAR-lanthanide interaction, independent of the specific lanthanide. Therefore, differentiating one lanthanide from another in a fraction cannot be determined using the post-column reagent method. The use of a fraction collector can be used to collect fractions of interest for elemental analysis with an inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Experiments were performed using a mock solution of a fraction collected from the IC run which included trace amounts of thulium and erbium and the complexing agent (α-HIBA), to determine an efficient method of separation of lanthanides from the (α-HIBA) by column purification using the TRU resin. IR spectroscopy was utilized to observe the presence/absence of the organics before and after the purification and the lanthanides were analyzed with ICP-AES to determine the yield of the entire procedure.
Title: Investigation of Uranium-Zirconium Fuel Pellets for TerraPower Traveling Wave Reactor

Abstract: The objective of this project is to discover the lowest reasonable percentage of zirconium that could be used in the fuel pellets of TerraPower’s traveling wave nuclear reactor. The traveling wave reactor in development by TerraPower is intended to maximize the energy obtained and prevent proliferation by burning through the products created over the period of operation. The fuel being looked at currently is a uranium zirconium alloy, where the zirconium suffices to stabilize the phase of the fuel and to prevent interactions between the fuel and the cladding. The production of fuel pellets was begun by testing only pure zirconium. Another pellet was then made similarly but made out of zirconium metal foil. This was tested and was found to show less oxidation. Two pellets were then created, made of depleted uranium with 10% zirconium, where the constituents were washed in 70% nitric acid. One was coated in mineral oil and one was washed in a hexane bath. These were then both heated to 1500 °C for 2 hours in a furnace, with argon flowing over. These formed alloys, which were characterized using microscopy and XRD analysis. This suggests a method of producing pellets for testing the minimum amount of zirconium in the pellet.
Title: Analysis of Uranium Fuel Pellets for Forensic Applications

Abstract: Potential forensic signatures in nuclear fuels were explored using uranium dioxide (UO2) to make fuel pellets with varying percent binder of total mass as well as pellets varying percent U3O8 of total uranium content. Ammonium uranyl carbonate was precipitated from the mixing of ammonium carbonate and uranyl nitrate. The precipitate was calcined overnight at 800 °C to make U3O8. The U3O8 was reduced to UO2 in a tube furnace with H5 gas overnight at 600 °C. X-ray diffraction was performed on the UO2 to verify the composition. Aluminum stearate and ethylene stearamide were used as binders, and binder percentages ranging from 0.25 to 1.5 weight percent, were tested to determine the effect on pellet density. The criterion for determining the optimal percent binder was the highest sintered density due to having the highest energy to mass ratio. The optimal binder content was determined to be 0.66 weight percent for aluminum stearate and 0.5 weight percent for ethylene stearamide. Using the optimal percent binder, pellets were made with the U3O8 percentage of uranium content varying from 5 to 20 weight percent to determine the effects on pellet density. Over the range studied, the impact on density of varying the U3O8 content was less than 5 %. The fuel pellets were analyzed under an optical microscope to study the microstructure and other features. By determining the dependence of density on percent binder and percent U3O8 and the microstructure, information was gained that can be used to determine forensic signatures in nuclear fuels.
Title: Evaluation of metals Rhenium and Technitium with ligands Acetohydroxamic acid and Ethylenediaminetetraacetic acid

Abstract: Evaluation of the metal-ligand interaction of Rhenium and Technetium with Acetohydroxamic acid (AHA) and Ethylenediaminetetraacetic acid (EDTA) was performed by use of UV-Visible spectroscopy. Complexation was performed through ligand exchange. All Re-AHA complexes were carried out in aqueous solutions of Rhenium oxycitrate obtained from reductive synthesis procedure, but Re-EDTA was complexed in an alkaline environment as EDTA only becomes miscible in water at a pH of 10 or greater. Technetium complexation was carried out in an acidic medium of methanol for AHA and basic media of ethanol. Technetium metal compound was obtained from a multi-step reduction synthesis to obtain Tc(V) from Tc(VII). Based upon results obtained by molar absorbptivity measurements of Re-AHA complex, it was concluded the Rhenium does complex and the same was observed for the TcO-AHA complex. UV-visible spectra showed no shift for Re-EDTA complex which neither confirmed nor denied the presence of a complex. Initial Tc-EDTA complex was not evaluated as solid precipitate was produced during complexation and was hypothesized to be the result of the oxidation of technetium in the presence of a sodium hydroxide. A second complex synthesis was performed in acidic medium for Tc-EDTA which yielded a UV-Vis active complex. For all four complexes produced, crystallization was performed through complex ion exchange with hexafluorophosphate. These samples will be analyzed by X-ray diffraction to confirm if the proposed complexes are forming. Crystal yield was varied by the amount of metal compound added to the complex.
Title: Investigation of Pentavalent Uranium Oxide via Reduction of [UO2]2+ Under Hydrothermal Reaction Conditions

Abstract: The synthesis of [UV(H2O)2(UVIO2)2O4(OH))(H2O)4 (1) via hydrothermal reaction of UO22+ with Zn and hydrazine dihydrochloride at 120 °C for three days was investigated. Yields of Compound 1 in the form of a dark red crystalline solid were not observed. Hydrothermal reaction of UO22+ with Zn and hydrazine dihydrochloride at 120 °C under normal atmosphere and H2 atmosphere via addition of Na(BH3) for three days yielded UIVO2+x, determined by powder X-ray diffraction (XRD). A lattice parameter of 5.4126(43) Å was measured using XRD, which disagrees with the known lattice parameter for UO2 of 5.467 Å, suggesting cation deficiency in the UO2 structure. An unknown peak in XRD data was observed at 3.3 Å.
Title: Solid Solution Diffusion Couples for Analyzing Fuel/Cladding Interactions

Abstract: Diffusion couples were designed and created for the purpose of examining the effectiveness of novel production methods for Uranium-Zirconium alloys. The diffusion couple designs and material choices were derived from previous work done by Dan Koury, Ph.D. and Gerald Egeland, Ph.D. of the University of Nevada Las Vegas in addition to previous experiments by D. D. Keiser of Idaho National Laboratories. Solid solution diffusion between uranium and zirconium, and uranium and molybdenum were both chosen to be examined for their applicable nature towards the study of interactions between nuclear fuels and their cladding. Uranium, zirconium, and molybdenum samples were cut, polished, clamped together, and exposed to a heat of 700 °C for 100 hours. The resulting couples (U-Zr & U-Mo) were then polished, leaving only the original uranium pieces with their newly formed diffusion zones. These diffused Uranium samples were then clamped on either side of a polished iron sample and heated to 650 °C for 65 hours, allowing a new diffusion layer to form. This final sample was then mounted and polished for scanning electron microscopy. Analysis of the final couple intends to find the extent of the metals’ diffusion into one another, and thus their effectiveness at alloy creation.
Title: Characterization of TcO3S

Abstract: 99Tc is an important radionuclide in fuel waste because it is long lived, and in non-reducing conditions the most common form is the pertechnetate ion, TcO4−, which is highly soluble and environmentally mobile. This project began by trying to synthesize TcS4- to obtain a comparison with TcO4-, in hopes of finding a more desired waste form of 99Tc. Past work using rhenium, a good surrogate for technetium, successfully synthesized ReS4-. The same synthesis was unsuccessful in producing TcS4-; the product seemed to be Tc2S7. While attempting the synthesis of TcS4- under various other conditions, an unknown compound was detected and determined to be TcO3S-. The goal of the project became to characterize TcO3S-. Previous work has developed a procedure, reacting TBATcO4 and HMDST, producing TcO3S- and various other species. Ultraviolet-visible spectroscopy (UV-Vis) and electrospray ionization mass spectrometry (ESI/MS) kinetic experiments were performed on the reaction, allowing the synthesis of TcO3S- to be observed and characterized. The UV-Vis exhibits a short lived peak at a wavelength of 364 nm, while the ESI/MS displays a short lived peak at 178 m/z, which both confirm the presence of TcO3S-. Various reaction ratios of TBATcO4 and HMDST were performed to determine the optimal conditions, and the longest appearance with the highest absorbance and corresponding intensity occurred at a 1 Tc : 200 S mole ratio. Using rhenium as a surrogate, a reaction was performed under nitrogen gas atmosphere to produce ReO3S-. ReO3S- has been widely characterized, and using the literature data, confirmation of the ReO3S- synthesis was deduced through ESI/MS and UV-Vis. Optimizing the conditions of this reaction to produce optimized amounts of ReO3S- may become beneficial to the isolation or production of TcO3S-. Future work includes isolating, optimizing production of, and further characterization of the TcO3S- compound.
Title: Precipitating and Characterizing Hexamminecobalt(III) Chloride

Abstract: Technetium is a long-lived radioisotope that poses a problem for spent nuclear fuel reprocessing. There are several methods being considered to remove technetium from the fuel cycle. This experiment explored the availability of alloying ammonia pertechnetate with hexamminecobalt(III) chloride. This alloy was precipitated by mixing the two solutions and characterized by the following: powder XRD, single-crystal XRD, sorption onto several graphites, analyzed on the SEM, and UV-Visible spectrophotometer. A sample of the alloy was reduced in the tube furnace under H5 gas and compared to a sample heated under argon gas by powder XRD. The crystal grown for the single-crystal XRD was not large enough to receive immediate results and requires further attention. Untreated, heat-treated, and activated graphite samples were prepared to characterize the sorption of pertechnetate onto each type of graphite. All samples showed low amounts of sorption, activated having the most, and untreated having the least amount of sorption. There was not enough pertechnetate in the graphite samples to see any phases under the SEM. The UV-Visible spectra indicates a large amount of cobalt and technetium in the alloy and will be further analyzed to determine relative concentrations compared to the spectra of stock hexamminecobalt (III) chloride. Formation of the CoTc3 alloy is easily achievable. It does not absorb well onto graphite in general and could become pertinent information in Generation IV reactors or methods of long-term storage for spent nuclear fuel. The SEM images and data have yet to be analyzed but should indicate certain phases under normal and reducing conditions.
Title: Precipitating and Characterizing Hexamminecobalt(III) Chloride

Abstract: Technetium is a long-lived radioisotope that poses a problem for spent nuclear fuel reprocessing. There are several methods being considered to remove technetium from the fuel cycle. This experiment explored the availability of alloying ammonia pertechnetate with hexamminecobalt(III) chloride. This alloy was precipitated by mixing the two solutions and characterized by the following: powder XRD, single-crystal XRD, sorption onto several graphites, analyzed on the SEM, and UV-Visible spectrophotometer. A sample of the alloy was reduced in the tube furnace under H5 gas and compared to a sample heated under argon gas by powder XRD. The crystal grown for the single-crystal XRD was not large enough to receive immediate results and requires further attention. Untreated, heat-treated, and activated graphite samples were prepared to characterize the sorption of pertechnetate onto each type of graphite. All samples showed low amounts of sorption, activated having the most, and untreated having the least amount of sorption. There was not enough pertechnetate in the graphite samples to see any phases under the SEM. The UV-Visible spectra indicates a large amount of cobalt and technetium in the alloy and will be further analyzed to determine relative concentrations compared to the spectra of stock hexamminecobalt (III) chloride. Formation of the CoTc3 alloy is easily achievable. It does not absorb well onto graphite in general and could become pertinent information in Generation IV reactors or methods of long-term storage for spent nuclear fuel. The SEM images and data have yet to be analyzed but should indicate certain phases under normal and reducing conditions.