Aug 9th, 10:15 AM - 12:00 PM

Defining the role of NRAS in melanoma maintenance

Sravya T. Challa
University of Nevada, Las Vegas

Sheri L. Holmen
Navada Cancer Institute

Repository Citation
Challa, Sravya T. and Holmen, Sheri L., "Defining the role of NRAS in melanoma maintenance" (2011). Undergraduate Research Opportunities Program (UROP). 33.
https://digitalscholarship.unlv.edu/cs_urop/2011/aug9/33

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Defining the Role of NRAS in Melanoma Maintenance

Sravya T. Challa PI: Sheri L. Holmen, PhD.
Nevada Cancer Institute, Las Vegas, NV

Malignancies is the most rapidly increasing malignancy among young people in the U.S.
• The incidence of melanoma has increased by more than 600 percent over the last 30 years.
 (ACS statistics www.cancer.org)
• Melanoma is the leading cause of cancer death in women aged 25-29.
• 5-year survival for advanced stages of the disease is ~20%.

Goal: to generate an in vivo model of melanoma that is resistant to inhibition of MAPK signaling in the context of mutant NRAS.

Hypothesis: resistant tumors will develop that are no longer dependent on NRAS for continued growth.

Methods: to use a novel mouse model of melanoma, generated through the somatic introduction of NRAS-encoding avian retroviruses in transgenic mice expressing the avian retroviral receptor, TVA, specifically in melanocytes to induce melanoma in vivo. The MAPK pathway will be inhibited genetically by doxycycline-mediated suppression of NRAS expression to select for resistant tumors.

Long-term goal: to identify additional targets for rational combination therapy for advanced melanoma.

Results and Conclusions:
• SHH (+) and 3.36 are resistant to doxycycline (DCT-TEA) or Cre induction.
• Delivery of a dCas9/SAHA to mice expressing P-ERK resulted in a loss of tumor maintenance in nearly all NRAS-regulated tumors.
• Tumor burden from primary tumors established and were significantly defected from the DCT-TEA/Dox/Cre treated mice.

Future Directions:
• Preservation and evaluation of samples to identify the mechanisms of resistance to other genetic or pharmacological inhibitors of the MAPK pathway.
• Development of resistant tumor samples to assess expression of the delivered NRAS expression by both DCT-TEA and Cre and by Western blot analysis of established cell lines.

Acknowledgements:

<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sravya T. Challa</td>
<td>Nevada Cancer Institute</td>
<td>Researcher</td>
</tr>
<tr>
<td>Sheri L. Holmen, PhD.</td>
<td>Nevada Cancer Institute</td>
<td>PI</td>
</tr>
<tr>
<td>James Robinson, PhD.</td>
<td>University of Nevada, Las Vegas</td>
<td>Investigator</td>
</tr>
<tr>
<td>Laura J. C. McCloskey</td>
<td>University of Nevada, Las Vegas</td>
<td>Investigator</td>
</tr>
</tbody>
</table>

This work was supported by NIH Grant Numbers R01-CA111923 and P30-CA213135 to Nevada Cancer Institute, Las Vegas, NV.