2007

Use of Positron Annihilation Spectroscopy for Stress-Strain Measurements

Ajit K. Roy

University of Nevada, Las Vegas, aroy@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_sciences_materials

Part of the Metallurgy Commons, Nuclear Engineering Commons, and the Oil, Gas, and Energy Commons

Repository Citation

Available at: https://digitalscholarship.unlv.edu/hrc_trp_sciences_materials/118

This Annual Report is brought to you for free and open access by the Transmutation Research Program Projects at Digital Scholarship@UNLV. It has been accepted for inclusion in Transmutation Sciences Materials (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Task 14
Use of Positron Annihilation Spectroscopy for Stress-Strain Measurements
A. K. Roy

BACKGROUND
Engineering metals and alloys, when subjected to tensile loading beyond a limiting value, undergo plastic deformation resulting in lattice defects such as voids and dislocations. These imperfections interact with the crystal lattice, producing a higher state of internal stress, also known as residual stress, which can be associated with reduced ductility. Residual stresses are also generated in welded structures due to rapid solidification and resultant dissimilar metallurgical microstructures between the weld and the base metals. Development of these internal stresses is often influenced by incompatible permanent strain resulting from thermal and mechanical operations associated with welding and plastic deformation. These types of operations can cause premature failures in structural materials unless these stresses are relieved by thermal treatments, which are commonly known as stress-relief operations.

During the past academic year, this project was focused on the characterization of residual stress in welded specimens consisting of austenitic and martensitic stainless steels using an activation technique based on the Positron Annihilation Spectroscopic (PAS) method. The extent of residual stress was expressed in terms of three line-shape parameters (S-, W-, and T-). Further, efforts were made to characterize linear lattice defects such as dislocations in the vicinity of Fusion-Line (FL), Heat-Affected-Zone (HAZ), and the base material of the welded specimens using Transmission Electron Microscopy (TEM). The metallurgical microstructures at these three regions have also been evaluated by optical microscopy.

RESEARCH OBJECTIVES AND METHODS
The primary objective of this task was to evaluate the feasibility of the characterization of residual stresses in plastically-deformed and welded structural materials using a new nondestructive technique based on PAS. The residual stresses measured by a modified PAS method have been compared to those measured by three other techniques, namely the Ring-Core (destructive), X-Ray Diffraction (non-destructive), and Neutron Diffraction (non-destructive).

All four techniques have been used to evaluate residual stresses in cold-worked, plastically deformed and welded specimens of austenitic Type 304L Stainless Steel (SS), and martensitic Alloys EP-823 and HT-9. Alloy EP-823 is a leading target structural material to contain the molten lead-bismuth eutectic nuclear coolant needed for fast spectrum operations of an Accelerator-Driven Transmutation System. Type 304L SS is a universally-known corrosion resistant low-carbon iron-nickel-chrome alloy having optimum formability and weldability. Alloy HT-9 is known for its superior high temperature tensile properties. The metallurgical microstructures and the nature of defects have been analyzed by optical microscopy, scanning electron microscopy, and TEM.

RESEARCH ACCOMPLISHMENTS
The significant results obtained from this investigation during the past academic year are summarized below.

- For welded specimens consisting of similar materials on both sides, the residual stress in terms of the S-, W-, and T-parameters was maximum at the FL. A gradual drop in residual stress was observed with these specimens at locations away from the FL.
- The extent of residual stress was higher in martensitic Alloy EP-823 compared to that of austenitic Type 304L SS, irrespective of the weld configuration.
- Compressive residual stresses were observed in Alloy EP-823, when welded to Type 304L SS.
- The magnitude of dislocation density ($\rho$) was substantially higher at the HAZ compared to that of the base material of the welded specimens consisting of similar materials (Type 304L SS or Alloy EP-823) on both sides.
- In the case of the welded specimen of dissimilar materials (Type 304L SS and Alloy EP-823) on the opposite side, the concentration of dislocation in terms of $\rho$ was greater at the HAZ on the Alloy EP-823 side of the weld.
- The enhanced value of $\rho$ at the HAZ on the Alloy EP-823 side of the weld may be attributed to the faster rate of solidification of this alloy compared to that of the austenitic SS.
- The sizes of the HAZ on the Alloy EP-823 sides of the welded specimens were relatively larger, irrespective of the weld configuration.
TASK 14 PROFILE

Start Date: May 2002
Completion Date: December 2006

Theses Generated


Journal Articles

Conference Proceedings
Ten conference papers were also published. See TRP website at http://aaa.nevada.edu for more information.

Dislocation density (\(\rho\)) in welded specimens of different configurations

<table>
<thead>
<tr>
<th>Weld configuration</th>
<th>Base material</th>
<th>HAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>304L SS/304L SS</td>
<td>5.1 (\times) 10^{13}</td>
<td>2.4 (\times) 10^{14}</td>
</tr>
<tr>
<td>EP-823/EP-823</td>
<td>7.6 (\times) 10^{13}</td>
<td>1.3 (\times) 10^{14}</td>
</tr>
<tr>
<td>304L SS side of 304L SS/EP-823</td>
<td>1.7 (\times) 10^{13}</td>
<td>3.2 (\times) 10^{13}</td>
</tr>
<tr>
<td>EP-823 side of 304L SS/EP-823</td>
<td>6.5 (\times) 10^{13}</td>
<td>2.2 (\times) 10^{14}</td>
</tr>
</tbody>
</table>

Optical micrographs of welded specimens of similar materials. (a) Type 304L SS/Type 304L SS, HNO_3+CH_3COOH+C_3H_5(OH)_3; (b) Alloy EP-823/Alloy EP-823, Fry's reagent.

Research Staff
Ajit K. Roy, Ph.D., Principal Investigator, Professor, Mechanical Engineering Department

Students
Srinivas Chanda, Subhra Bandyopadhyay, Silpa Suresh, Satish Dronavalli, Vikram Marthandam, Anand Venkatesh, Bhagath Yarlagadda, and Raghunandan Karamcheti Graduate Students, Mechanical Engineering Department

Collaborators
Stuart A. Maloy, Ph.D., AFCI Materials Team Leader, Los Alamos National Laboratory
J. Frank Harmon, Ph.D., Director, Idaho Accelerator Center, Idaho State University
Doug Wells, Ph.D., Associate Professor, Department of Physics, Idaho State University
Farida Selim, Ph.D., Post Doctoral Researcher, Idaho Accelerator Center, Idaho State University