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ABSTRACT

Based on feedback linearization and ultimate boundedness theory, a new 

approach to attitude control of the space station using control moment gyros 

(CMG’s) is presented. A linearizing transformation is derived to obtain a 

simple linear representation of the nonlinear pitch axis dynamics. A feedback 

control law for trajectory tracking is derived when there is no disturbance 

torque acting on the space station. For attitude control in the presence of 

uncertain torque input, an additional control signal is superimposed such 

that in the closed-loop system, attitude responses are uniformly ultimately 

bounded and tend to a small set of ultimate boundedness. Extension of 

this approach to linearization of the coupled yaw and roll axis dynamics 

and control is presented. Simulation results for the pitch axis control are 

obtained to show that in the closed-loop system precise attitude control is 

accomplished.

Also, based on the nonlinear inversion technique, a control law is derived 

such that in the closed-loop system the input-output map is linear, and the 

selected output variables are independently controlled. The stability of the 

zero dynamics is examined and it is shown that in the closed-loop system



attitude angles and the CMG momenta converge to the origin. Simulation 

results are presented to show attitude and CMG momenta regulation capa­

bility of the controller.
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CHAPTER ONE

INTRODUCTION

By employing control moment gyro (CMG), this paper suggests methods 

to control the dynamics of the Space Station. The equations of motion of 

the space station are described by nonlinear differential equations. Often, 

attitude control system design using linear control theory [1-4] is obtained. 

Linear control systems are designed based on the assumption that the pertur­

bations in attitude angles are small. For large changes in orientation of space 

vehicles employing moment exchange devices, nonlinear controllers have been 

designed in literature [5-11]. An adaptive control has been designed [10]. In 

recent papers [2 , 4], an approach to CMG momentum management and a tti­

tude control of the space station has been presented. Control system design 

is based on a linearized model of the space station. Using feedback lineariza­

tion theory [1 1 ], a linear representation of the nonlinear'dynamics of the 

space station is derived. In the new state space, a feedback control law is 

derived for the control of pitch angle. In a realistic situation, unknown but 

bounded disturbance torque acts on the space station. A nonlinear control 

law is derived in the closed-loop system with the total control input, the



attitude trajectory is uniform ultimate bounded in a small neighborhood of 

the origin.

It is assumed that the attitude control system design of the space sta­

tion employs control moment gyros (CMG’s). CMG’s are moment exchange 

devices that are considered to be ideal torquers in the mathematical model. 

For the derivation of control law, a new set of output vectors is defined. Each 

output variable is a linear combination of attitude angle, angular rate and 

CMG angular momentum.

The nonlinear inversion [14, 15] theory is applied to obtain a feedback 

control law for the linearization of the selected input-output map [12]. The 

parameters in the output vectors are chosen so that the relative degree of 

the system is two. Input-output feedback linearization allows independent 

regulation of each of the outputs to the origin. The zero dynamics [17,18] are 

derived and are stable at the origin. In the closed-loop system, the attitude 

angles and the momentum tend to zero.



CHAPTER TWO 

M A T H E M A T IC A L  M O D E L

The space station is in a circular orbit. An orbital frame of reference 

(LVLH axis) with its origin at the center of mass of the space station is 

chosen. The axis of the reference frame are chosen with the roll axis is the 

flight direction, the pitch axis is perpendicular to the orbital plane, and the 

yaw axis points toward the Earth. The orientation of the space station with 

respect to the reference frame is obtained by a pitch-yaw-roll { 6 2  — O3  — 6 1)  

sequence of rotations, where 6 1 , 0 2 , and 6 3  are the roll, pitch, and yaw angles. 

The nonlinear equations of motion can be written as [2].

Space Station Dynamics:

In I 1 2 h s W i 0 — LO3 U)2

h i I 2 2 h s d >2 L03 0 — U>i

h i I 3 2 I 3 3 C03 — U>2 UJi 0



where

h i I 1 2 h z Uli 0 - C 3 Cg

X h i I 2 2 h z Wg +  3n ^ C3 0 - C l

h i I 3 2 h z W3 —Cg Cl 0

X

hi I12 hz Cl

h i I22 hz Cg +

hi Iz2 hz C3

—U\ +  W\ 

—U2 +  W2 

—Us +  W3

Cl =  —sinOscosBs 

C2 =  cosdisin6 2 sin0 3  +  sin0 icos0 2  

C3  =  —sin0 isin0 2 sin 0 3  +  cos0 icos0 2  

Attitude kinematics:

cos^ 3  —cos0 is in 0 3  sin0\sin03 

0 COS01 —sin0\

0  sin0 icos0 3  cosOiCOSs

0 1

1
0 2 COS03

0 2  _

(1)

Wl 0

U?2 + n (2)

CO3 0



CMG momentum:

i l l 0 — CO3 Wg h i U i

Ag 4- W3 0 — W i Ag = U 2 (3)

h z — Wg tOi 0 A3 « 3

where the orbital angular velocity is n= . 0 0 1 1  rad/s; (wi, Wg, W3 ) are the body- 

axis components of absolute angular velocity; (In,  I 2 2 , hz)  are the moments 

of inertia; Jy (i^ j) are the products of inertia; (/ii, /ig, hs) are the body-axis 

components of CMG momentum; (uj, ug, U3 ) are the body-axis components of 

control torque; and (loi, lüg, 1 0 3 ) are the body-axis components of disturbance 

torque. For the configuration of the space station (e.g., assembly flight'3), 

the complete equations of motion have been derived in the literature [2 ]. 

These are:

h 0 i  4- (1 4" 3cos ^g)n (7g — h )0 i  — n [h  — 7g 4- h)0z (4)

■f 3(/g — h)n^{sin62Cos62)6z =  —ui 4- 

h h  4- Zn^{h — h)sin62cos02 =  —ug 4- lOg



h03 4" (1 +  3sin^02)^^(72 — 7i)^3 4- ti[Ii — /g 4" h)0i  

4-3(7g — Ii)n^(sin02cos92)6i =  —% 4- W3  

hi — nhz = ui  

Ag =  Wg

A3  4- nAi =  U3

Equation (4) is derived from (1 ), (2), (3) assuming that 0g is large but the 

roll, and yaw attitude errors are small. It is assumed here that the products 

of inertia are small and these are neglected. The nonlinear functions of the 

pitch angle are retained in the model. Here 7,- =7,-,-; i=  1,2,3. Observe from (4) 

that the pitch axis dynamics are decoupled from the roll and yaw dynamics. 

Uncoupling of pitch axis motion, simplifies the attitude control problem. 

Define the state vector:

z  =  (g:^,g^,ATe7Z=

where

0  =  {0\,02,03Ÿ



and

h  =  ( A i j A g ,  A a ) ^

Here T denotes transposition. Let the control vector be

u =  (wijWgjWa)^

Using (4), one obtains the state variable representation of the system

X =  f{ x )  -t- Bu  +  Dw (5)

where

/(æ) =  (0 ^ , / 4 (æ ),/5 (a:),/6 (æ),nA3 ,O ,-nA i)^ ,

f 4 {x) = [(1 -f Zcos^6 2 )11? — 1 2 ) 6 1  4- n(7i — 7g 4-1 3 ) 6 3

—1.5(72 — 1 3 )11? sin 2 6 2 6 3 ]f II

/s(a:) =  1.5n^(7a — I i)s in262/ l 2

fei^)  — [(1 4* Zsin?6 2 )11? {Il — 1 2 ) 6 3  ~  n{Ii — 7g 4* Ts)^!]/Ts

—1.5(7g — I i )t?  sin262di 
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B  =

0 7i 0 0

-7 -1 , 7 = 0 7g 0

Id 0 0 h

D  =

0

7-1

0

where 7j is a 3x3 identity matrix and 0 denotes the null matrix.



CHAPTER THREE

FEEDBACK LINEARIZATION AND ULTIMATE 

SOUNDNESS CONTROL

3.1 Linearizing Transformation for Pitch Dynamics

For the pitch axis control system design, consider the equation:

6 2  — ~~ h)sin292 -^{—U2 W2 ) (6 )
1 X2  X2

Ag =  Wg

A nonlinear transformation from (5) is derived that has a linear represen­

tation by the theory of Hunt, Su, and Meyer[16]. For the derivation of 

linearizing transformation, the unknown disturbance torque w)g=0 .

Equation (5) written in a compact notation is:

x = f {x )  + gu2 (7)

where

bi = (l/I i) ,  z =  1,2,3



X =  (02, 02, Ag)^, 02 =  " 0 g(^l -  ^3),

/(jj =  —ogsm2 0 g

X 2 0

f { x )  = — f l g s m 2 0 g , 9  = — 6g

0 1

Define the Lie bracket of two vector fields f and g, denoted as [f,g] or ad/g

by

d g  d f
»<;« =  [/, si =

Repeated Lie brackets are denoted as

a^fg = g

ad) =  [/, ody i r̂], fc >  0

D efin ition :A set of I vectors /i(x),....,/;(x) is involutiveif there exist smooth

10



functions 7 ,jjt(x) such that

[/«■> =  Z ) ' ïijk{x)fk{x),yi ,j ,  k = l . . . , l
A= 1

To verify the existence of linearizing transformation on an open set U 

containing the origin x = 0 , use the following theorem.

T h eo rem  1 ; The dynamics of the nonlinear system (6 ) are equivalent in a 

local region to the dynamics of a controllable linear system by change of state 

and input coordinates and state feedback if and only if

1. The distribution

span{g, adfg, adjg} has dimension 3 on U.

2. The distribution 

span{g,ad/g} is involutive on U.

In the following conditions 1 and 2  are verified. Computing the Lie brack­

ets yields:

ad/g =  [f,g] =

11



adjg =  [/, adjg] =  -

hi 

0 

0

0 1 0 

—2 ü2Cos2 B2 0  0  

0 0 0

0

2 ü2 h2 COs2 Q2 

0

(8)

adfg{x)

(9)

The vectors g, ad/g, and adjg{x) are independent at x=0. Therefore, 

these vectors fields are independent on an open U containing the origin x=0. 

This verifies condition 1,

The vector fields g, ad/g are involutive on U since

[g,adjg] =  Qespan{g,adfg}

and this verifies condition 2 .

According to Theorem 1, a linearizing transformation exists. In order to

12



find this transformation [16], one needs to solve a system of linear partial 

differential equations. This can be accomplished by solving the following 

system of equations

dx
ds =  /(a:), x(0 ) =  0  \ / s  e  R (10)

^  =  adjg, a:(s,0 ) =  x{$) Vt i  Ç Hall

^  = g, x { s j i , 0 ) =  x (s ,ii)  Vig e  72 aÎ2

(11)

(12)

where f {x)  =  adjg or / (x )  is any vector field that is linearly independent of 

g and [f,g].

Choose

f {x )  = (13)

The set of equations (9) to (11) are solved by first solving (9) with the initial 

condition x(0 ) =  0 .

x(s) =  (0 ,s,0)^. (14)

13



Now solve (10). The solution of

dx
dti

62

0 , x (s ,0 ) =  (0,a,0)3 (15)

IS

x{s, ti)  =  ( M l ,  3 , 0 ) ^

Solving (eqn. (1 1 ))

dx
dto =  (0 ,-& 2 , l )^ , x { s , t i , 0 ) = (M l,5 , 0 )̂ (16)

one gets

x ( s , t i , < 2 )  —  ( M l ,  — M 2  +  3 , ^ 2 ) ^ (17)

Solving (16) for s

s =  X2 +  6 2 2 :3 (18)

14



Set s=^i. Then the linearizing transformation is by [11]

where

6  = 6 ,  & = 6- 

The nonlinear transformation is

+ 62X3

—O2 szn2 0 2  

- 2 a 2 cos2 0 2 0 2

A linear representation of (6 ) is given by

0 1 0 0

i  = 0 0 1 0

0 0 0 1

V2

(19)

(20)

(21)

(22)

15



where

V2 = [4a2sz’n20202 +  +  (2 0 2 6 2 6 0 3 2 0 2 ) ^ 2  (23)

=  0 2 (1 ) -f 6 2 W2

A choice of coordinate transformation (20) and a feedback control

«2 =  b*2 ^{x)[-a *2 +  V2] (24)

results in a controllable linear system representation (21) of the nonlinear 

pitch dynamics.

16



3.2 Pitch Axis Control

The new state vector z\ is the integral of The introduction of inte­

gral term leads to robustness in the control system to uncertainty in system 

parameters.

Zl =02 + Za (25)

where

Za — 622 3̂ . (26)

Define a new state vector z  =  zÇ.R^ given by

z  =

0 2  +  Za 

® 2  +  6 2  Z3

—a2sin2 0 2  

—2 ü2 COs2 0 2 0 2

(27)

17



z  =

Z2 0 0

Z3 0 b2W2
+ V2 +

Z4 0 b2W2

0 1 —2a2b2Cos202W2

(28)

Suppose that it is desired to track the reference trajectory z ^  of a command 

generator

lfc(^)^cl “  ^c^ncl^nc2 ^ci (^^)

IIc(s) =  (s +  Ac) %%(6  ̂+  2 Cc.-W„ciS +  Ŵc.0 ) 
i=l

where •s =  ^  and is the terminal value of Zc\. Define

(30)

Zc{i+i) = Zci, i =  1 , 2 ,3 ,4

18



Then one has

Z2 0 0

is 0 b2W2
z = + Vr +

i4 0 6 2 ^ 2

0 1 —Zc5 — 2 0 2 6 2 0 0 5 2 ^2 ^ 2

(31 )

Choose a control law

V2 =  —P o h  — P i Z2 — P2Z3 -  P3Z4 +  ZcS +  Vr (32)

In the closed-loop system (30) and (31), one has

z = A z  + B{vr — 2 a2 b2Cos2 9 2 Lü2 ) +  d{t) (33)

where

A =

0 1 0 0 0

0 0 1 0 0

0 0 0 1

; B  =
0

—Po - P l —P2 —P3 1

(34)

19



d =  (0, 6îO2,6iü2,0)^

Choose Pi such that A is a Hurwitz matrix.

Note that when u)2 ( t)= 0 , z\ satisfies a linear differential equation given

by

M s ) z i  =  0 (35)

where

I le (s )  =  (a^ +  P35® +  P2s'^ +  P lS  +  po) (36)

The tracking error z\ has a linear response. The parameters pi are chosen by 

equating the polynomials

ne(-s) =  H(-S^ +  2CeiWnet-S +  W êi) (37)
:=1

where

Cet ^  0 ; Wnt ^  O'

The tracking error i i ( t ) ^ 0 ,  as t —>oo when W2=0. Bounded responses for 

Zi are obtained.

20



3.3 U ltim ate Boundedness Control

In this section, based on the Lyapunov theory [19], a compensating control 

signal is derived which causes the closed-loop system the trajectories to tend 

to a small neighborhood of the origin in spite of the disturbance input W2 - It 

is assumed that the disturbance input W2 is bounded but unknown and is an 

arbitrary function of time. Since A is a Hurwitz matrix there exists a unique

symmetric positive definite solution for P (denoted as P>0) of the Lyapunov

equation

A ^P  A P A  = - Q  (38)

for any given Q>0.

Assumption 1;

\2a2h2Cos292W2{t)\ < p(^2, W2 )

|2 f  d(f)| <  A  (39)

Choose a control law of the form

—Kce
0  (40)

21



a  =  z^P B

« • > d î ± i l , £ > 0

Consider a Lyapunov function

V{z) = z ^P z  (41)

Then along the solution of the system (32) and (39), the derivative of V is;

V  =  —z^Q z  +  2z^PBvr — 2z^ PB2a2b2COs262W2

+ 2z~TPBd{t) (42)

Using the control law (39) in (41) gives

V < - A .(Q ) ||z |r  +  +  Hp + llzllA (43)

V < -A .(g)||* ||: -  J 2 j ^ « ( | „ |  - e )  +  ||i||A

where Am(R) [Am (R-)] denotes the smallest [largest] eigenvalue of a matrix R.

22



Let { max  |a |(—|a | +  e )/( |a | +  6 ), |a | > 0 }  =  c* (44)

Then

V <  -[A m (Q )||z|r -  Pll/3i -  c*] (45)

let

A  +  \JPl +  4c*Ato(Q)
2A4 0 )----------

Define ellipsoids as

% )  =  1 z^P z< r  > 0

Now let

where

Note that

r* =  Xm { P W

23

(47)

r* =  min{ r ; Z{r)DB{Tj)} (48)

B{t)) = { z : \\z \\ <  T)} (49)



So that

ÿ  < 0, z 0 Z(r') (50)

Since V(z)>0, for z V(0) =  0, and the derivative of V  is negative ac­

cording to (49), V(z) decreases along the trajectory of the system as long as 

z{t) ^Z{r), r > r* and the trajectory approaches the ellipsoid Z{r) for any 

f  >  r*.

24



3.4 Yaw and Roll Linearization and Control Design

The yaw and roll dynamics are given by

dt

A 01 0 0

Â A -b i 0

03 03 0 0

+
03 A 0 — 6 3

hi nh3 1 0

h3 —nh-y 0 1

Ui

Us
(51)

+

0 0 

h  0

0 0 w i

0  6 3  W3

0 0 

0 0

=  / ( ® ,  0 2 )  +  9 i U i  +  g a U 3  -  g i W i  -  ^ 3^3

25



where

ü =  [u i, ua]^, w  =  (tü i, lüa)^, X =  { 6 - iJ i ,  63,63, h i ,  63)^  (52)

j. —(1 4- 3co s^02) tP { I2  — l z ) 0i , n {Iy  — J2 +  ^3)^3

A +  Â

—3(^2 — I ^ T i^  sin 2 0 2 0 z  
2ÎÏ

j  —(1 4" S s in ^0 2 )n ^{ l2  ~  d i )03 , n [Iy  — /2  +  / 3)Â

Ï3 +  Ï3

—3(^2 — 7 3 )^^5 2 7 1 2 ^ 2  A 
2 Ï 3

A linearizing transformation for this system with tD(t)=0, is the Lie

derivative of a scalar function h along a vector field f, denoted as A/h(x);

is given by

l ,h { x )  = l ^ ] m  (53)

where

X =  (z^, 02, 02, h sY ,  f  =  iP ',  02, A ,  «2 )^ (54)

26



Let

L}k(x) = L,(L,h)(x) (56)

— djg-{Lfh)(x)

Define a transformation

$  =

A i

^12

<l>13

<f>31

(f>32

^33

(56)

where the coordinates ^ n , <f>si are chosen as

(67)

=  +
I3  4 3

27



By the choice of and ^3 1 , one has i€ {1,3}; j= 0 ,l; k= {l,3 ).

(j>i2 =  Â i =  L sé n (58)

Moreover

^13 — Â 2 — Ly^ll 

<f>32 =  ^31 =  Lf<j>3i

^33 =  ^32 =  i/<^32 =  i/^31

-T'/Ai
+

1-51 If} (̂ 11 Lĝ L'j<j>n

. 4 ? . L/<̂ 31 A l -b/<̂ 31

U

=  G*(z) +  B*{x)ü

(59)

where <l>\f =

Note that Bf<j>n, and jL}^3 i include input U2 , which has been already derived

28



in Section 3.1 and 3.2. Choose a linearizing feedback control law

u = B* ^[—a*(x) +  v] (60)

Then linear representation of the system is

$,• =  Ay^i  +  e^Vi, 2 =  1,3 (61)

- " <f>3\

$1
$  =

$3
, $1 = ^ i 3

<j>i3

, $3 = ^32

<l>33

0 1 0 0

A y  = 0 0 1 , 63 = 0 , V  =
V y

0 0 0 1
Û 3

The coupled yaw and roll dynamics decompose into two third order linear 

subsystems. The integral of (f>yy, and ^ 3 1  are additional state variables for 

robustness and carry out the design as done for controlling pitch angle. The 

coordinate transformation (55) leads to the additive unknown vector function

29



in (60) when Wi is included. The effect of the additive unknown function 

in (60) can be minimized by designing an ultimate boundedness controller 

following the steps of Section 3.2.

30



3.5 Simulation Results

Space Station Parameters are: (Inertia slug-ft^)

Jn=50.28E6,

/22=10.80E6,

733=58.57E6,

The controller parameters are:

Ac=.0005, Cci=l'0, cu„ct=-0005, i= l,2  

Wne,'=.0015, Cei =  l'0 , 1=1,2

Shown at the end of the paper in figs l(a)-(e) are the simulation results for 

the control presented in this section. A 30° pitch angle was regulated. The 

complete closed-loop system (with W2 =  Ur=0 ) was simulated for simplicity. 

The initial conditions were chosen to be ^2 (0 ) =  30° , ^2 (0 ) =  .005°/sec., 

6 2 (0 ) =  0, and Zs = 0. The initial conditions for the command generator 

were chosen such that % (0)=  z,-, i=l,2,3,4, and Zcs(0)=0. Notice that with
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this choice of Zd (0), one has z,(0) =  0. Selected responses are shown in 

Fig, 2. It was observed that the pitch angle 0 2  and /1 2 converge to  zero in 

about 500 minutes for the chosen command trajectory Zci{t). The maximum 

values of the torque input U2 and the angular momentum 6 ,2  were less than 7 

ft-lb and 5900 ft-lb-sec, respectively, which are well within permissible limits. 

Here small torque is required, since a suitable command trajectory Zc\{t) 

for regulation was chosen. It is interesting to note that the tracking error 

zi{t) = 0 , for all t as predicted.
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CHAPTER FOUR

NONLINEAR INVERSION

4.1 Input Output Linearization

In the previous chapter, a controller is designed for the attitude control 

of the space station based on the theory of exact linearization. The exact 

linearization technique has a linear representation of the original nonlinear 

model, it was observed that the pitch axis control system has a singularity at 

0 2  =  ±45°. In this chapter a controller is designed based on (i-o) linearization 

which is effective over a larger region in the state space than the previous 

method. By solving with nonlinear inversion techniques [14, 15], one obtains 

a linear input-output map for the nonlinear dynamics of the system. In the 

closed-loop system, independent control of each output is achieved.

The inversion approach is dependent on the choice of the output variables. 

The output vector must be chosen so the desired variables are controlled. 

When the output variables are nulled, it may happen that residual internal 

dynamics (zero dynamics) may be unstable. The choice of controlled output 

variables which lead to stable zero dynamics are required in the design.
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4.2 C ontro l Law The attitude control system designed using nonlinear 

inversion depends on the choice of controlled output variables. The choice 

of these variables is essential for the attitude and CMG momenta regulation 

of the space station. In this study the output vector y =  (2/1 , 7/2 , to be 

controlled is chosen as

y =

0:101 +  01 +  Ip h y  

0202 4" Â  ±  7g ^^2

O3 0 3  4 - 0 3  +  7 3  ^ 6 3

(62)

where o,- >  0, C{x) =  Cqx,

Co =  [o, Id, 7"^]

o  =  dzag(o{), 2 =  1,2,3

The input-output (i-0) map of the system (5) and (62) is nonlinear. The 

nonlinear feedback control law is derived. This law is based on nonlinear
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inversion theory in the closed-loop system the input-output map. Differenti­

ation of the output and nonlinear transformation beginning with the original 

system (5) and (62) when certain rank condition for the solvability of the 

control input vector is satisfied. For the derivation of the inverse control law, 

assume that to =  0. In the sequel, these definitions will be useful.

4 ( c ) ( x )  =  '(C ))(x)

LB L,(C )ix)  =  [ É I / E M j b

Successively differentiating y and using (5), one obtains System 1  and 

System 2  by the inversion algorithm of [14, 15]

System 1 :

X =  f ( x )  +  B u  (63)

zi =  Lf{C){x)

where

zi = y
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Lj{C){x) = aè + i f4{x), f5{x) , fe{x)f  +  n{Iy ^6 3 ,0, - I p h { f

System 2:

X =  f [ x )  +  B u (64)

where

Z2 = L){C){x) + [LBLf{C){x)]u

Z2 = y,

/(» )  =  [M ^)i fs ix), f 6 ( x ) f ,

9{x) = [Pi(a:),g2(a;),^3(z)r,

L}{C){x) = a f{ x )  + g{x)

The analytical expression for g{x) is in the appendix. The m atrix D* =
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L b L j { C ) { x ) is

D* =

0—Oiylp

0 —OL2 I 2

n { lil 3 )~^{I3  — I 2 ) 0

n { h l 3 ) - V 2 - h )  

0 (65)

Since each row of D 2 is nonzero, the relative degree of each output com­

ponent is 2. The determinant of D 2 is nonzero provided that

0 :1 0 :3  ~  ^(7z — 7i)(/3 — J2 ) 7  ̂ 0 (66)

For the Space Station I 2 < h  and I 3 > I 2 . D 2 is nonsingular when oty > 0, 

and « 3  >  0. The inversion algorithm terminates here. System 2 is invertible 

and the tracking order of the system is 2.

An input-output linearizing feedback control law is derived from (64). 

Choose a control law of the form

=  D*-^[-L}{C){x) -  P2I  -  Pyÿ -  PoXs +  ÿr] (67)

where P,- =  diag(pij), i=0,l,2 , j= l,2 ,3 , and =  (yruVri^yrs)'^ is a reference
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trajectory to be tracked, ÿ =  (2/1 ,^ 2 5 2 /3 ) is the tracking error and

Xa =  y (68)

where y,- =  (y,- — yd). The integral of the tacking error is Xa. Feedback of z , 

is used to obtain robustness of the control system.

Substituting control law (67) in the output equation of System 2

ÿ =  -P zÿ  -  Piÿ -  PoXa (69)

Differentiating (69) and using (68), a linear differential equation is found for 

y of the form

'§ + P 2 Ü +Pi ii +Poÿ =  0 (70)

The gains pij are chosen such that (70) is asymptotically stable. From (70) 

that each component y,- of the tracking error vector is independently con­

trolled and y, follows y^  provided that the initial state matching conditions

2 / ( 0 )  =  2 / r ( 0 ) ,  ÿ ( 0 ) = ÿ r ( 0 )
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ÿ ( 0 ) = ÿ r ( 0 )  (71)

are satisfied.

For the purpose of attitude regulation to zero, a command generator of 

the form below is added.

ÿ r  + P 2 ÿ r  + P l  ÿ r  +Po2/r =  0 (72)

where p = d ia g (A ), i=0,l,2; and j= l,2 ,3 . The gains /,•_,■ are properly chosen 

to obtain desirable reference trajectories for smooth regulation. The reference 

trajectory (16) is asymptotically stable so that yr{t) - 4  0 as < —> oo.

In the closed-loop system y(t)—>0 as t-^  0 0 . To regulate 0 and h to the 

origin, it is necessary to derive the zero dynamics of the system and examine 

their stability property.
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4.3 Stability of Zero Dynamics

Zero dynamics of the closed-loop system (5) and (67) (with disturbance 

u) =  0) represent the internal dynamics when the trajectory x(t) is such that 

y{t) =  C{x) =  0 and ÿ =  Lj{C){x) =  0. Using (62) and (3); one has

y =  0:0 +  0 +  I~^h =  0 (73)

ÿ = aè + f {x )  +  n ( /" A 3 , 0, - I p h { f  =  0 (74)

4.3a Pitch Zero Dynamics

To consider stability of pitch axis zero dynamics, use (74) and

«202 =  —h {x )  =  —l.b n ^ Ip { l 3  — /i)sm202 =  0 (75)

which yields

02 =  —I32sin292 (76)

where /? 2  =  1.5n^(/3 — 7i)(/2«2)~^- When y2 (i) =  0, 02 trajectory evolves
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according to (76).

The stability of the equilibrium point is found for 0 2  =  0  of (75) by the 

Lyapunov approach. Choose a Lyapunov function

y(02) =  sin{2 0 d̂  =  |( 1  -  cos202) (77)

Note that V(0) =  0, and 1/ ( 0 2 ) > 0 if 0 2  ^  0 and 0 2  € fZ, where 

Ü =  { 0 2  :| 0 2  |<  7t / 2 }. For studying the stability of 0 2  =  0, compute the 

derivative of 1/ ( 0 2 ) which is

1/(02) = —̂2sin̂ 202 < 0

provided that 0 2  7  ̂ n =  0,+l,d%2,.... For inertia parameters of the space 

station I 3 > ly, and /? 2  > 0  if « 2  > 0  so that 1/ ( 0 2 ) is negative for all 0 2  G fZ 

if 0 2  ^  0. Using a theorem of Lyapunov [19], 0 2  =  0 of (75) is asymptotically 

stable. Then the closed-loop system for any trajectory beginning in the 

region fZ, 0 2  —> 0 as t ^  0, and from (20), 0 2  —> 0, at f —> 0 0 . In view of 

the relation y2 = « 2 0 2  +  0 2  +  6̂ 2 , and since 2/2 (Z) —> 0  as t —> 0 0 , then the

angular momentum 6 2  —>■ 0  as t 0 0 .
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4.3b Yaw and Roll Zero Dynamics

The zero dynamics representing yaw and roll motion is y{t) =  0. Since 

0 2 {i) converges to zero, ^ 2  =  0 in (73) and (74). Using equations for yi =  0, 

Î/3  =  0, yi =  0, and 2 /3 from (73) and (74),

oiidi ~i~ ^h\ =  0 (78)

0 :3 ^ 3  +  ^ 3  +  = 0 (79)

Oixé\ — 4 /j — 7 3 ) ^ 1  4" ^(7i — ^ 2  4- Iz)03 4- tiI i ^hz =  0 (80)

0 3 ^ 3  — 7g ^n^[l2 — Ii)&3 ~  iT'̂ z ^(7i — 7g 4" lz)0i ~  niz ^h\ =  0 (81)

Solving for hz and hi from (80) and (81) and then substituting in (78) and

(79),

{I2 — Iz)ti9x +  nlxO-xOx 4* Izoiz^s ~  ^^(72 — Ix)03 =  0 (82)

—IxCüxéx 4* 4n^(72 — Iz)9x 4- ti(72 — lx)0s 4- nlzcxzGs =  0

The stability of the equilibrium state ( ^ 1  =  0, ^ 3  =  0) of (82) can be 

examined by determining the characteristic polynomial p(A) associated with
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(82) which is the determinant of the matrix L, where

L  =
A(/2 — 7s)^ 4* nliotx IzoizX +  n^{Ii — J2 )

—Ixo>iX — 4n^(/3 — I 2 ) n(/2 — ii)A 4- nizctz

The characteristic polynomial is

p(A) =  [cïiQs 4" n^{l2 — 7s)(72 — 7i)]A^ 4- 3 / 3 ( 7 3  — l 2 )oizn^\

(83)

4-4n^(7i — 7 2 )(7s — 72) 4- oi\azn^I\Iz

=  4- oiA +  oq =  0 (84)

where ai is determined from (84). The second order polymonial is a Hurwitz 

polynomial if and only if a, > 0, i =  0,1,2. For the inertia parameters 

of the space station, one has I 3 > Ii, I 3 > I 2 and I\ > I 2 . Choosing 

« 1  >  0 and 0 3  >  0 then a,- >  0, i =  0,1,2, and the equilibrium point 

( ^ 1  =  0, ^ 3  =  0) of (82) is globally asymptotically stable and in the closed- 

loop system &z{t)) —> 0 as t —> 0 0 .

In view of (82) this implies that (^i(t), ^s(t)) 0 at t —>• 0 0  since v?{l2 —

7 3 )(72 — 7i) +  IxIzCixaz ^  0 and (26) is uniquely solvable for Bx and §z- Using
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(80) and (81), then ^3 (2 )) —>• 0  as < —>■ 0 0 .

The equilibrium point (^ =  0,^ =  0, A =  0, $ 3  =  0) of the closed-loop 

system (5) and (67) is asymptotically stable and (#(t), h{t)) —> 0 as t  —»• 0 0 . 

Since the closed-loop system is asymptotically stable, for small disturbance, 

the trajectory of the closed-loop system remains bounded for t >  0 .
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4.4 Simulation Results

The Space Station Parameters are: (Inertia slug-ft^)

/ i i =23.22E6,

722=1-30E6,

7s3=23.23E6,

The elements /,-j of the command generator are chosen such that the 

characteristic polynomials associated with in (16) are (z =  1,2,3)

(s 4- Aci)(s^ 4- 2C«w„ciS 4- wLO =  0

with the parameters.

•Aej =0 .0008, Cc: = 0 .707  

Ac2  = 0 .008 , (^c2=0.707 

A3 3  = 0 .0008, Cc3  = 0 .707

^nci — .
Cet
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The elements of the diagonal matrices P{ in (70) are chosen that the 

characteristic polynomials associated with y,- in (74) are

(s +  Ae,-)(s  ̂+  2CeiWne:'5 +  Ŵ,-) =  0 

with Ce« =  0.707, and w^e, =  Agi/Ce,, Ag,- =  0.2, i = 1,2,3.

In order to meet the control requirements for the simulation 4.4a the 

parameters ai, az, and 0 3  were all chosen to equal unity. The purpose of 

a i ,  0 (2 , and « 3  gains are to control the convergence rate. This was verfied 

by computer simulation. When a disturbance was added to the system, the 

best perfomance was achieved for the above a  gains equal to unity.

4.4a Attitude Regulation: Small Pitch Angle

The complete closed-loop system was simulated with the initial condition 

0(0) =  (10°,30°,8°) 0(0) =  0, A(0) =  0, Æs(0) =  0. The matched initial 

conditions for the command generator according to (71) were set. Selected 

responses are in Figures 2 (a)-(i). Smooth trajectory tracking and ÿ{t) = 0 

occured. The attitude angles and the CMG momenta converge to the origin. 

For the chosen control parameters convergence of hz and 0 2 .
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4.4b Attitude Regulation with Large Pitch Angle

A large pitch angle perturbation of 02(0) =  60° instead of 02(0) =  30° of 

case 4.4a was considered. The reference trajectory, the feedback gains and 

the remaining initial conditions of case 4.4a were retained. Selected responses 

are in Fig. 3(a)-(c). Inspite of large perturbation in the pitch angle, there 

was smooth regulation to the origin.

4.4c Attitude Regulation: Effect of Disturbance

To examine the sensitivity of the control system to a disturbance in­

put, wi =  sin{nt) 4- .5sin{2nt), wz =  sin{nt) 4- .5sin{2nt), and wz = 

sin{nt) 4- .5sin{2nt) (Ib-ft) were applied at each axis. The command gener­

ator parameters were set the same as in 4.4a. Attitude angles were set to 

0(0) =  (10°, 30°, 8°) and the remaining initial conditions and feedback gains 

were the same as in case 4.4a. A small effect of disturbance was observed. 

As expected bounded oscillations for 0 and h were observed. Oscillatory re­

sponses for 0 remained in the neighborhood of 0 =  0. A decaying average 

value of 0 2  is observed in the figure that oscillates about the time axis given 

a longer simulation. The figures are shown in 4(a)-(c).
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CONCLUSION

Based on feedback linearization and ultimate boundedness theory, a new 

attitude control system was designed for controlling the orientation of the 

space station using CMG’s. Feedback linearization gave rise to three decou­

pled controllable linear systems which describe the nonlinear, coupled pitch, 

yaw and roll dynamics. The control law is derived based on the linear system 

representation in the new state space. An ultimate boundedness controller 

was designed to compensate for the unknown torques acting on the space 

station. In the closed-loop system, the trajectories are uniform and ultimate 

bounded in a small neighborhood of the origin.

Using feedback linearization of an input-output map, a second attitude 

control system was designed for controlling the orientation of the space sta­

tion using CMG’s. A controlled output vector is made for the derivation of 

the control law. This output vector is a linear function of the attitude angles, 

angular rates and the CMG momenta. Nonlinear inversion theory was used 

to obtain a linear input-output map and the independent control of each 

output variable. Zero dynamics of the closed-loop system were derived and 

their stability property was examined. For the space station parameters, the
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origin of the zero dynamics are stable, and in the closed-loop system attitude 

angles and the CMG momenta converge to the origin.

Both methods were able to provide simulations that could regulate the 

pitch axis. The second method was able to handle a 3 axis manuever with 

a disturbance. The theoretical limit of an angle that could be regulated by 

the first method, was a 45° angle. The reason for this limit was that the 

denominator of the control law was equal to zero at 45°. On the computer 

simulation for the first method, the limit of an angle which could be regulated 

was 30°. At that 30° limit the momentum and control torque were within 

the limits allowed (20,000 ftx lbsxsec and 150 ftx lb ). At approximately 33° 

the system could not converge. The theoretical limit of the second method 

was 90°. This is because at that point the sin26 term was equal to 0. Be­

cause of this a large pitch angle manuever was simulated at |  the theoretical 

limit. The manuever converged, but the control torque and momentum re­

quirements were exceeded. For a small manuever convergence to the origin 

occured, and the control requirements were met. Because of the robustness 

of the second method, a disturbance was simulated. The disturbance was 

regulated to a neighborhood of the equilibrium point. Further studies of this 

paper include: disturbance rejection, and trajectory planning.
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APPENDIX

Functions g i { x ) :

I i 9 i ( x )  =  {3szn202020i — (1 4- 3cna^02)0i x

(—2cos2020203 — szn20203)1.5}n^(/2 — I3 ) 

4-n.(7i — 72 4- 73)A(^) ~  n^hi 

7 2 5 2 (2:) =  Zn^{Iz -  7i)cos20202 

7 3 5 3 (2:) =  —{3sZ7i2020203 4* (1 4" 3 3 *71 0̂ 2 ) 0 3  

4-1.5(2cos2020201 4" sz7z2020i)}7i^(72 — 7%) 

—n{I\ — 72 4- Iz)f i{x)  — rPhz
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