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Nevada 89154 (USA) 
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SUMMARY 
This paper focuses on the implementation of a 
dual-mode controller for the maneuver of a single link 
flexible robotic arm. The joint angle trajectory tracking 
is accomplished by a proportional and derivative PD and 
a feedforward controller. Based on the pole placement 
technique, a linear stabilizer is designed for elastic mode 
stabilization. The stabilizer is switched on when the 
trajectory reaches the vicinity of the terminal state, and 
the effect of . switching time on arm vibration is 
investigated. An optical deflection sensor is used for 
on-line measurements of elastic deflections, and also 
used for the prediction of the static deflection of the arm 
in the target position. The robustness of the linear 
stabilizer at varying payloads is presented. 

KEYWORDS: Flexible arm; Dual-mode controller; Trajec­
tory tracking; Static deflection. 

1. INTRODUCTION 
Light weight robotic arms have many advantages over 
bulky, rigid ones: higher speed of operation, less energy 
consumption, smaller actuator size, to name a few. 
However, a light weight arm also makes its controller 
much more complicated than that of a rigid one because 
of its inherent structural flexibility. 

Since the early 70's, efforts have been made in this 
area of dynamics and control of elastic robotic systems. 
The dynamic modeling of a robot with elastic link has 
?een investigated by many researchers. 1- 3 Equally 
tmportant are the various control schemes proposed 
using adaptive, self-tuning, and inversion techniques. 4-s 
While much has been done in the analytical field, 
relatively little has been done in the laboratory. 

We present in this paper a control system design for 
the control of a single link elastic robotic arm based on a 
dual-mode control technique and on the results of 
laboratory experiments. In the dual-mode control 
approach, the trajectory evolves in two phases: In the 
~rst phase of maneuver, the joint angle is controlled, and 
tn the second phase vibration damping is accomplished. 

For a joint angle trajectory control, a PD controller is 
constructed based on an experimentally identified 
servomotor model. An input shaping filter is designed in 
the feedforward loop so that a ramp command trajectory 
can be tracked. Interestingly, the joint angle PD 
controller does not use elastic mode feedback in contrast 
to the dual-mode controllers. 7 This is due to the fact that 
the interacting torque at the joint due to the elastic 

oscillation of the link is small compared to the torque 
developed by the PD controller. Using the joint angle 
controller, the arm can be maneuvered to follow a given 
joint angle trajectory command accurately. However, 
this excites the elastic modes, and it becomes necessary 
to damp the elastic motion. 

The advantage of using the joint angle controller is 
that when the joint angle reaches the vicinity of the 
terminal state, the only significant motion remaining in 
the system is due to elastic vibration. Thus in the 
terminal phase, the system is well represented by a linear 
model, since in the robotic arm model only significant 
nonlinearity is due to the rigid mode. Based on an 
asymptotically linearized model, a stabilizer is designed 
using a pole placement technique. For the synthesis of 
the controller, only measured variables are used. The 
elastic mode is obtained by an optical deflection sensor 
consisting of a diode laser and a position photodiode. 
The derivative of the elastic mode feedback is obtained 
by digitally differentiating the measured deflection signal 
of link tip position. 

The complete closed-loop system is designed in the 
laboratory and experiments are performed to verify joint 
angle tracking and vibration stabilization capability to 
follow various command trajectories. The sensitivity of 
the controller to payload variations is also examined. 
The effect of choice of a smooth command trajectory on 
elastic deflection is examined. Although the stabilizer has 
been designed for the terminal phase, experimental 
results indicate that the control system is quite robust, 
and one can leave the stabilizer loop closed throughout 
and still obtain a stable response. Selected experimental 
results are presented to show that precise tracking and 
elastic mode stabilization are accomplished in the 
closed-loop system in spite of the payload variation. 

The organization of the paper is as follows. Section 2 
presents the PD controller and the feedforward filter 
design. The mathematical model and the stabilizer design 
are presented in Section 3. A description of experimental 
setup is given in Section 4, and 5 presents experimental 
results. 

2. EXPERIMENTAL SETUP 
As shown in Figure 1, the mechanical assembly consists 
of a rigid stand, a bracket, and a flexible link with a 
lumped mass at its tip. A DC servo motor (Inertial 
Motors Co., model D30-S) with a speed reducer ( 1:80, 
Harmonic Drive, model PCR3C) is used for the second 
joint actuator (Note: the first motor is not used in this 
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Fig. I. Experimental setup of a flexible robotic arm. 

research). The value of parameters used for a flexible 
arm is as follows: 

lumped mass at link tip (m) = 0.728 kg 
link length (/) = 0.609 m 
Modulus of elasticity (E)= 2 x 1011 psi 
area moment of inertia (/) = 4.26 x w-10 m4 

A~ .. IBM compatible microcomputer with data 
acqutsltton system (Burr-Brown PCI-20041 carrier with 
AID. Dl A. and counter) is used for signal measurement 
a~d con~rol. A lateral effect photodiode (UDT LSC30D) 
with a ~Jade laser generator (780 om) is used as a link tip 
dcflcc~Jon sens?r9 as shown in Figure 2, and a bandpass 
filter IS used m front of the photodiode to filter out 
amhi~nt light. The photodiode is connected to a 
translll~pedance amplifier and calibrated for link tip 
dcftcc~10n .. An. encoder signal is fed to the counter via a 
decodmg cucmt and the synchronization of controller is 
based on the pacer clock (8 MHz) on the carrier. 

3. JOINT ANGLE CONTROLLER 
The joint angle controller, designed to track the 
reference joint angle trajectory, consists of a PD 

diode laser generator 

elastic rod laser beam 

Fig. 2. Optical deflection sensor, 
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controller and an input shaping filter in the feedforward 
loop. The transfer function of the servomotor is 
identified experimentally. Based on this transfer 
function, feedback gains of the controller are obtained. 

3.1 Plant modeling 
Since the amplifier is designed for the velocity servo 
controller, the velocity feedback gain kd is adjusted on 
the amplifier such that there is no joint velocity 
overshoot. The transfer function of the system shown in 
Figure 3 including the velocity feedback loop of gain kd is 
experimentally determined by applying a unit step input. 
Assuming a first order plant, the difference equation of 

the system becomes, 

Wn = aWn-1 + fJVn-1 + E (1) 

where a and {3 are the coefficients to be determined, E 

denotes the error signal, w is the angular velocity, and v 

is the input signal. 
Using the least squares method/0 the value of the 

coefficients are found to be a= 0.9 and f3 = 1.65. Thus 

equation (1) gives 
(2) 

A 
photodiode 
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Fig. 3. Joint velocity control loop. 

Taking the z-transform of equation (2) gives 

Q(z) = G(z) = 1.65z-
1 

V(z) 1- 0.9z- 1 

3.2 PD controller 

(3) 

Figure 4 shows the block diagram of the system with PD 
controller. Using the relation of O(z)/Q(z) = Tz- 1/(1-
z-1) with T = 0.01 sec and equation (3}, the transfer 
function of Figure 4 becomes, 

O(z} 

X(z) 1-1.9z-l + (0.9 + 0.0165kp)z-2 (4) 

For the stability of the closed-loop system, the value of 
kP must satisfy 

Os kP:::; 6.06 

The value of kP used in this experiment is 0.8 and the 
sampling frequency are chosen to be 100Hz. 

An experiment was performed to examine the joint 
angle tracking ability of the closed-loop system. A 
command joint angle trajectory was chosen as shown in 
Figure 5 where the arm moves to the target position and 
returns to the original position after a specified interval. 
It was experimentally found that the PD controller 
designed by the servomotor accomplished the trajectory 
tracking of the arm. However, a small steady state joint 
angle tracking error exists as shown in Figure 5. In order 
to eliminate the tracking error, either an integrator or a 
feedforward loop must be included in addition to the PD 
controller. Because of an unacceptable joint angle 

COMPUTER 

Fig. 4. Joint position control loop. 
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overshoot with an integrator, a feedforward filter is 
chosen. The design of the feedforward filter is presented 
below. 

3. 3 Feedforward filter 
A first order filter of the form F(z) = f(1- z- 1

} is used 
in the forward path as shown in Figure 6; f is a constant 
to be determined later. The transfer function including 
F(z) with kP of 0.8 is 

O(z) _ 0.0132z-2(1 + F(z)) 

X(z)- (1- 0.9z-1}(1- z- 1} + 0.0132z-2 

and the error transfer function is 

E(z) _ (1- 0.9z- 1}(1- z- 1
)- 0.0132z-2F(z) 

X(z)- (1- 0.9z 1}(1- z- 1
} + 0.0132z-2 

(5) 

(6) 

The controller will be designed to follow ramp and 
step commands. We assume that any command 
trajectory can be obtained by piecing together the ramp 
and step functions. The filter parameter f is chosen such 
that the steady state error for a ramp input is zero. For a 
ramp input X(z) = Tz- 1/(1- z- 1

}
2

, the error equation 
becomes 

E(z) 
{(1-0.9z 1)(1-z 1)+0.0132z 2}(1-z-1) (

7
) 

Using the final value theorem, 

ess =lim (1- z- 1)E(z) 
z--+1 

(0.1- O.Ol32f)T 

0.0132 
(8) 

From equation (8) ess becomes zero if and only iff= 7.6. 
Figure 7 shows the experimental result of the joint 

angle control. We notice that unlike Figure 5, the steady 
state error vanishes in the closed-loop system including 
the feed forward controller. 

4. STABILIZER DESIGN 
Using the derived controller, including the PD loop and 
the input shaping filter, one can follow precisely a 
desirable joint angle command trajectory. However, the 
maneuver of the arm excites the elastic modes of the 
link, and it becomes necessary to damp the elastic 
vibration. For the design of stabilizer it is essential to 
obtain the mathematical model of the arm. 

, 
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Fig. 5. Joint angle trajectory tracking without feedforward filter. 

4.1 Dynamic modeling 
Using the assumed-modes method, 1 we can express the 
link deflection w due to elasticity as follows: 

(9) 

where . Y; is the admissible function and q; is the 
generalized coordinate. Using the Lagrange's equations, 
the dynamic equations of a single link shown in Figure 8 
becomes 

(10) 

where K is the kinetic energy, U is the potential energy, 
p=!O,q~oq2, ... ,qnf, Q=[r,O,O, ... ,Of, and ris 
the actuator torque. 

For simplicity, only one mode of vibration will be 
considered, i.e. n = 1 in equation {9). The admissible 

f(z)=l(1-1/z) 
D/A 

Xn 

A/0 

COMPUTER 

Fig. 6. Joint position control loop with feedforward filter. 

functions, Yi• chosen here are based on the mo.de shapes 
of a fixed-free beam with lumped mass at the tip. 

Using equation (9) and (10), one can easily derive the 

following equations: 

M/J + Mz{j + QJqi:J + G1 = r (ll) 

Mi) + M4ij + Qzqi:J + G2 0 (l
2
) 

where 

Mt = pqz J: Yz dr + myz(/)q2 + pe /3 + ml3 

M2 = p J: yr dr + mly(l) 

M3=M2 

M4 = p J: y2 dr + mf(l) 

Q1 = 2pq { f dr + 2my
2
(l)q 

PLANT J 
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Fig. 7. Joint angle trajectory tracking with feedforward filter. 

Q2 = - pq [ y2 dr - mqy2(1) 

G1 -mgqy(l) sin fJ 

- pgq sin () [ y dr + {pgP/2 + mgl} cos fJ 

G2 = qEI f y"2 dr + mgy(l) cos 8 + pg cos 8 I: ydr 

p = mass per unit length 

g= gravity 

4. 2 Linearization 
For an appropriate joint angle command trajectory 
terminating at fJ ()*, we note that in the closed~loop 
system, including the PD and feedforward controller, 
fJ(t)~ ()* and O(t)~ 0 as t~ oo. As the trajectory of 
the system enters a small neighborhood of the terminal 
state ( () = ()*, iJ = 0) after a finite time, the closed-loop 
system is well approximated by a linear system. Thus, 
the design of stabilizer based on the asymptotically 
linearized model is adequate. 

Let w * and () * be the static deflection of the arm and 
the terminal value of the joint angle, respectively. (They 

flexible arm 

j 

Fig. 8. Model of a single link flexible arm. 
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constitute the equilibrium point of the system.) Then the 
actual arm deflection and joint angle around the 
equilibrium point can be expressed by 

w==w*+~w or q=q*+~q (13) 

0=0*+~(} (14) 

where q* = w• /y and ~q. ~(} denote the deviation of q 
and 0 from q • and 0*. Also, 

(15) 

(16) 

Using equations (13) to (16), we can expand equations 
(II) and ( 12) in the Taylor series at the equilibrium point 
( W, q*). Ignoring the second order terms, equations 
(II) and (12) become 

Mt ~jj + M; ~ii + R1(q*, 8*) ~q + R2(q*, 8*) ~q = ~r: 

(17) 

M.r ~jj + M1 ~ii + RJ(q*, (}*) ~8 + R4(q*, 8*) ~q = 0 

(18) 

M: = M;(O*, q*) 

R 1 = ~~~ = - [ { mgy(!) + pg J 'Y dr} 

X q* cos 8* + (pgl2/2 +mgt) sin 8* J 

R2 = 00~1 = -{ mgy(l) + pg f y dr} sin(}* 

oG2 
R1=-=R2 · ae 

Ro~ = oGz =Elf y"z dr 
aq 

or in matrix form, 

and ~ r = r- r*, where r is total torque applied and r:* 
is the torque holding the arm at 8* position. 

4.3 Pole Placement Method 
Solving equation (19), gives 

{~!} = A{!;J + ii ~r: 
where 

(20) 

_ (Mt M~)- 1 (R 1 R2), B = (M! M!)-1 {1} 
A=- At~ At; R1 R4 MJ Mo~ 0 

equation (20) can be written in a state space form given 

by 
x=Ax+B~r (21) 

where 
X= [MJ ~q ~iJ ~qf 

A=(1 
(,><2) { 0} (1 0) •
0 

, B = B , l2x2 = O 1 

Robot control 

If we choose the control law of the form 

~T: = -Kx = -[ktkzk3k4]x 

then equation (21) becomes, 

x =(A- B[ktkzk3k4])x (22) 

The poles of the feedback system described by 
equation (22) can be placed arbitrarily by choosing 
suitable values of the state feedback gain vector K. 
However, the feedback gain vector K should be chosen 
carefully so as not to exceed the allowable input torque. 

The system without stabilizer has two poles in the 
left-hand side of s-plane and the other are on the 
imaginary axis if we neglect small structural damping. A 
reasonable choice of new pole locations including the 
stabilizer is to keep the stable pole associated with joint 
PD controller where they are, and move the elastic poles 
on the imaginary axis to the left-hand side of the s plane 
so that the complete system is stable. 

From equation (4), we know that the stable poles in 
the z-plane are z1 , z2 = 0. 95 ± 0. 035j. With a sampling 
period of T = 0.01 sec, the pole locations in s plane 
become 

512 = -5.13 ± 3.68j (23) 

Without the stabilizer, the other two poles which are 
on the imaginary axis can be calculated from equation 
(21). Table I shows the values of poles on the imaginary 
axis for different arm configurations. The new pole 
locations for the stabilizer consists of the poles of a joint 
controller (equation 23) and the poles shifted to the left 
from the imaginary axis. Table II shows the value of the 
gain vector K for various pole locations. 

As shown in Table II, there is a little change in the 
magnitude of state feedback gains, K. However, the gain 

Table I. Location of poles for various arm positions 

Arm position Pole location 

0° (horizontal position) 
25° 

±159j 
±162.5j 
±165.3j 
±167.7j 

50° 
75° 

Table II. Feedback gain vector K for various pole locations 

Pole location 

-2 ± 165.3j 
-2±2j 
-10 ±2j 

State feedback gain K 

[0.155 68.39 0.0065 -0.029] 
[0.146 68.42 0.0049 -0.030] 
[0.220 67.85 0.0250 -0.048] 

Table III. The value of K for various arm positions 

Arm position 

[0.0912 
[0.1110 
[0.126 
[0.138 
[0.146 
[0.151 

State feedback gain K 

65.136 0.00346 
66.074 0.00387 
66.984 0.00427 
67.731 0.0046 
68.427 0.0050 
68.911 0.0051 

-0.0326] 
-0.0321] 
-0.0316] 
-0.0311] 
-0.0307] 
-0.0304] 
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changes drastically if the real part of the poles becomes 
less than -50, which causes an actuator torque 
saturation. In our experiment, the poles of ( -5.13 ± 
3.68j) and (-2 ± 2j) are assigned to the system of 
equation (22). Table III shows the value of K of the 
stabilizer for different arm positions. 

It should be pointed out that the feedback gains shown 
in Table II and III have been obtained for the stability of 
equation (22). Since the feedback gains kP and kd have 
been already used in the PD controller, and a power 
amplifier is present in the loop, the gain vector required 
in the stabilizer needs to be modified. Furthermore, 
these gains only guarantee stability. In order to obtain 
good performance, these stabilizer gains were adjusted 
by observing the experimental results. 

5. CONTROLLER IMPLEMENTATION 
Since the velocity feedback signal from motor is directly 
fed to the amplifier, the realization of a joint controller is 
nothing more than implementing the following difference 
equation: 

v, = kpen 

e,=x, e,+x,l(l-z-1
) 

(24) 

Hence v, is the signal input to the amplifier and kP is 
the proportional gain. The x, is a command signal, and 
the feedforward gain I and the proportional gain kP were 
set to kP = 0.8 and I 7.6. 

As discussed previously, the vibration stabilizer can be 
realized by the control law 

dt" -[k1k2 k3k4]x 

X [80 dq AO Aq] 
(25) 
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The At" is an actuation torque needed to suppress the 
arm vibration which is superimposed on the joint torque 
£. The values of AO and q are obtained using the 
encoder and deflection sensor, respectively. The value of 
q* is obtained by on-line calibration at the initial arm 
position. Since AO = 0 and Aq = q, 80 is obtained by 
using the tachometer output with A/D converter and dq 
is calculated on-line by differentiating a q. For on-line 
differentiation, a second order backward difference 
equation is used 

3q,- 4q,_I + q,_z 
2T 

where T = sampling time, 0.01 sec 

(26) 

Figure 9 shows the block diagram of an overall system 
implemented for the flexible robotic arm. 

6. EXPERIMENTAL RESULTS 
6.1 Arm control: Nominal payload 
The experiment was done to maneuver the arm from 
0(0) = oo to 0* 60° and then was brought back to 
0* = 0°. The chosen command trajectory was the same as 
that of Fig. 7. The stabilizer was switched only for 
t E [tel, loz] and t;::: lcz when the trajectory researched the 
vicinity of the terminal state. For the chosen command 
input the stabilizer is closed only during the interval 
[tel, loz] and for t;::: tcz· The result of the experiment is 
presented in Figure lO(a) and (b) for the comparison of 
the deflection of the arm with and without stabilizer. 
When the stabilizer loop is open, we observe bounded 
oscillation (Figure lO(a)). Figure lO(b) clearly show a 
damping of the elastic mode. 

tl: arm position 

80386 
- ••••••••• 9 •• 

COMPUTER 

Fig. 9. Block diagram of overall control system. 

q: arm deflection 
r: command input 

pole placement 
technique 

.J 

q* 
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Fig. 10. (a) Plot of link deflection without stabilizer; (b) Plot of link deflection with stabilizer loop closed. 
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Fig. 11. (a) Plot of link deflection with m = 0.372 kg; (b) Plot of link deflection with m = 1.1 kg. 
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Fig. 12. Link deflection with trajectory vibration control with a ramp command trajectory. 
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Fig. 13. Link deflection with trajectory vibration control with a parabolic command trajectory. 
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6.2 Arm control: Payload sensitivity 
An experiment was done to examine the sensitivity of 
the controller to payload variations. The controller 
designed for the nominal payload was retained and an 
estimate of new q*, i.e. static deflection at the final 
target position, was obtained from the deflection sensor 
mounted on the tip before the arm was maneuvered. 
Figure ll(a) and (b) show the effect of link tip load 
variation on the link deflection using the vibration 
controller designed for m = 0.728 kg. Two different 
masses of 0.372 kg and 1.1 kg are used. In this 
experiment, the value of q* is updated for a given link 
tip load using the deflection sensor to calculate the 
correct value of l:!.q. The joint angle control and the 
damping of vibration are observed in each case. 

6. 3 Arm control: Effect of switching instant of stabilizer 
and smoother command trajectory 
In the cases of Section 6.1 and 6.2, the stabilizer-loop 
was closed only over certain intervals of time. 
Experiments were done by keeping the stabilizer-loop 
closed all the time. In this case the vibration suppresion 
was found to be relatively better than the previous case, 
as shown in Figure 12. 

It is seen that at those instants where the reference 
trajectory has corners (see Figure 7) larger elastic 
oscillations occur. It is expected that these peaks in 
oscillations can be reduced, if the command trajectory is 
smoother than the one used in Figure 12. In order to 
examine this, a smoother parabolic command 
trajectory12 was used in the experiment. As shown in 
Figure 13, a smoother joint angle command trajectory 
improves vibration damping as expected. 

7. CONCLUSION 
The paper presents a control system design and 
experimental results for a one-link flexible robotic arm. 
In the closed-loop system, a PD controller, a 
feedforward filter, and a linear stabilizer were included 
for joint angle trajectory tracking and damping of the 
structural vibration of the flexible arm. The feedforward 
filter was designed for input shaping so that a ramp joint 
angle command trajectory can be followed. The optical 
deflection sensor was used for the synthesis of the 
vibration stabilizer and for the on-line prediction of the 

145 

static deflection (q*) of the arm for an unknown payload 
at the tip. The experimental results showed that with the 
dual-mode control system, accurate joint angle tracking 
and elastic mode stabilization can be accomplished. 
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