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ABSTRACT 

Empirically Derived Formulas to Predict Indoor Maximum, Average, and 
Minimum Temperatures in Roofpond Buildings Using Minimum Climatic 

Information  
 

By 
 

Ibrahim Kivarkis Kako 
 

Alfredo Fernández-González, Examination Committee Chair 
Associate Professor of Architecture 
University of Nevada, Las Vegas 

This thesis introduces an empirically developed formula to predict the 

comfort conditions and thermal performance of a Skytherm™ Southwest 

Roofpond placed over a light-weight un-insulated structure built at the School of 

Architecture at the University of Nevada, Las Vegas. 

The predictive formula introduced in this study may be used in different 

parts of the world (particularly developing nations where insulation and air-

conditioning are rarely used) to predict the performance of a Skytherm™ 

Southwest Roofpond using minimal climate data.    

The data collected in the experimental setup at the Natural Energies 

Advanced Technologies Laboratory included outside and inside temperatures of 

various surfaces of two different test cells built on the site (i.e. a Skytherm™ 

Southwest Roofpond test cell and a control room).  For the purposes of this 

thesis, only outdoor climatic data and indoor air and ceiling temperatures were 

used to analyze the performance of the system.  The period covered by this 

study was October of 2004 through September of 2006 and March of 2009 

through October of 2009. 
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The predictive formula developed in this study may be used along with 

similarly developed formulas to identify and suggest the most appropriate 

locations for the installation of the roofpond system. 
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CHAPTER 1 

INTRODUCTION 

Sustainability is defined as meeting the needs of the present without 

compromising the ability of future generations to meet their own needs 

(Bruntland, 1987). Sustainability is more than a compromise, it can also be 

determined as a natural approach to maintain ecological processes and 

functions, which, in turn will help to balance different ecosystems. Sustainability 

represents many professions such as science, chemistry, engineering and 

architecture, to name a few, working together to make sure our planet is in 

constant balance.  These scientists and scholars research new methods of 

creating products that are cleaner and more environmentally friendly for humans. 

Architecture is deeply involved with sustainability due to the fact that 35 percent 

of the energy is traditionally consumed by buildings (Reynolds, 2001) and more 

recent data put together by Edward Mazria for Architecture 2030 shows that 

building energy consumption has gone up to 48 percent (Mazria),(Fig. 1.1). The 

United States is experiencing an intense growth, as seen in the development of 

cities through upward construction and urban sprawl, for example. But this 

intensive growth has also brought about many negative, albeit unintended, 

consequences such as deforestation, land degradation, and shortage of water. 

Sustainable architecture focuses on issues that concern with the environment, 

such as improving the design and construction of building. Sustainable 

Issues our Society is Facing 
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architecture also trains architects to tackle issues that are critical in the designing 

of buildings, communities and cities. 

 

  

Figure 1.1     US Energy Consumption  
(Source: Architecutre2030.com) 

 
 
 
 

 

Figure 1.2     US Electricity Consumption  
(Source: Architecutre2030.com) 
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Buildings need energy to function and provide comfort to their users. In 

today’s urban environment buildings function to provide comfort at the expense 

of our environment. The source of most of the energy comes mainly from fossil 

fuels such as oil, gas, and coal (Smith, 2001). While these natural resources 

provide great source of energy, human use of these non-renewable materials 

has contributed to the current climatic changes of the planet. The burning of 

fossil fuels adds more carbon to the atmosphere and creates a greenhouse 

effect, which warms the earth’s surface (Smith, 2001). By burning fossil fuels, 

humans alter the natural carbon cycle by adding 6 billion tons of carbon to the 

earth’s atmosphere per year (Smith, 2001) (Fig. 1.3). Sustainable architecture 

offers a new way in which humans construct their built environment; a clean built 

environment in which buildings contribute to the regeneration of our planet Earth. 

 

 

 

Figure 1.3     Fossil Fuel Resources & CO2 Emissions 
(Source: Architecutre2030.com) 
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Architects have come to the conclusion that most of the energy used by 

buildings goes to cooling and heating purposes (Fig. 1.2). Mechanical cooling 

and heating units use billions of kilowatts of energy to maintain comfortable 

indoor temperatures. Since the Industrial Revolution and well into the second half 

of the 20th century, architecture was not as concerned with the consumption of 

energy because energy was cheap and believe to be abundant (Maiellaro, 2002).  

As a result of this thinking, designs did not need to meet any simple 

environmental basics such as shading, natural ventilation, heat storage, and 

other principles that have been used for thousands of years (Gissen, 2003). Even 

though buildings have evolved to become better spaces, buildings still function 

with technology that was conceived forty years ago. For example, air conditioning 

and heating units still run on the same principle since it was invented in early 20th 

century (Maiellaro, 2002). With the rise of environmental awareness and the 

human impact on our environment, which includes our dependence on non-

renewable energy sources frequently located outside of our national borders, 

architects and other building professionals in the US and elsewhere have 

realized that we must design structures that are less dependent on fossil fuels. 

The first priority is to design and build buildings that are energy efficient. 

There are many different ways to address the issue of buildings depending on 

fossil fuels, for example designing buildings that use a renewable source of 

energy, such as the solar energy. Solar energy is an abundant source that 

architects have omitted from their designs due to several reasons such as high 

cost and material availability. For example, photovoltaic panels are a great way 
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to collect solar energy and convert it to electrical energy. Even though there is 

the technological infrastructure available, today only a very small percentage of 

buildings use such technology due to its high cost.  Researchers have 

demonstrated, however, that despite the high initial cost of these technologies, 

passive solar heating works and is cost effective in the long run (Balcomb 1992). 

Nature offers an immense variety of resources for architects to manipulate 

and integrate within the buildings.  Renewable natural resources such as sun, 

wind, and light are currently not being utilized fully by architects. With advent of 

the air conditioning, architects were able to design buildings which did not take 

into consideration important factors such as site orientation and materials used, 

for instance.  

One of the main challenges of sustainability is that our society does not 

have the mindset to think about our environment when consuming energy. The 

first step towards a sustainable world is to teach our generation that our energy 

choices have direct consequences on our environment. We can choose to burn 

coal until the last ton is extracted, or we can choose to harness energy from the 

sun and convert it into clean electrical energy.  If given the opportunity, we can 

choose to recycle the solid waste and treat gray water in our homes.  

Sustainable architecture is one of the many professions that can 

contribute towards a more sustainable world. Humans can live more 

environmentally conscious lives in harmony with nature, but at the moment there 

are other capitalistic interests in our society that have not let this new age to 

evolve. Our planet is run by capitalist corporations whose financial interests take 
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into consideration neither the environment nor the human beings. Fortunately, 

enough people are being more conscious about our environment and are 

developing measures to address these critical issues; engineers, chemists, 

scientists and architects, among many others, are inventing new ways to live 

healthier and “lighter” (environmentally speaking) on our planet. Our environment 

is the responsibility of all humans and both the wealthy and the poor nations 

need to show their commitment to improve the lives of all while conserving our 

environment for the generations to come.   The technologies and resources are 

available for us to either destroy or to help improve our environment. Sustainable 

architecture is just one way in which architects can contribute to the improvement 

of the environment using different technologies and methods available in today’s 

world. 

Sustainable architecture should be taken more into consideration by the 

new age architects; buildings that are built sustainable will provide a sense of 

comfort and be more energy efficient. When we talk about sustainable 

architecture, we refer to the new way of designing buildings in which the building 

itself is not only energy efficient but it is also more adaptable and responsive to 

its respective region. A society is considered sustainable when its members’ 

needs are fulfilled without compromising the needs of the generations to come.  

In such environment, people reuse, preserve and restore conscious of the 

benefits that can derive in present and future. As Lechner explains in his book 

“heating, cooling, and lighting: a design is sustainable when architects try to 
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apply the four R’s into their design, Reuse, Recycle, Reduce, and Regenerate.” 

(Lechner 2001, p. 13) 

With the term Reuse, we refer to the event of utilizing something again 

and again, maintaining its integrity in structure and material; there is no 

destruction and reproduction. When a building is reused, its shell usually remains 

intact or it is partially renovated, in order to better its habitability. Factors such as 

natural lighting, efficient cooling and heating systems are kept in consideration in 

the renovation process, and the building becomes more suitable for new use, 

without wasting any materials. In the event of Recycling instead, the actual 

structural elements are deconstructed and they become reusable individually as 

building materials, such as concrete, wood, steel, etc. Such materials would 

require a great amount of energy if they had to be produced from scratch. 

Furthermore, Reduce is another important factor of sustainable design. 

The key is in reducing the amount of energy needed for the functioning and life of 

the building through cooling, heating and lighting the space with natural and more 

conservative strategies. Last but not least, Regenerative design is the ultimate 

option for a more environmental architecture; through regeneration, the building 

becomes a machine able to maintain itself collaborating with nature in the 

creation of an environment that continuously regenerates without the use of new 

resources. This option represents a step beyond sustainability and it is not yet 

accepted by society because of its controversial philosophy of creating life from 

waste.  
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Therefore, Reducing remains the ultimate answer to sustainable 

architecture in its capability to incorporate factors so important such as lighting, 

cooling and heating at the very early stages of the design of a building. 

Upon the above mentioned factors depends the life of a building, its 

inhabitants and the surroundings. Lighting can be both artificial and natural. 

Artificial lighting can create great dramatic special experiences with its 

multifaceted properties in color, ambiance and direction and this is definitely a 

plus if we strictly think about design features. In actuality, artificial lighting 

requires the extensive use of energy and, in addition, it heats up the building. 

The heat generated from artificial lighting can actually be beneficial if used wisely 

during the cold periods of the year. Therefore, the use of artificial lighting does 

not need to be avoided but it has to integrate the use of natural lighting 

resources. 

This is when the importance of sun orientation and its radiated light comes 

into play. In order to get the best lighting, most of the building windows have to 

face north because the sun is angled in a way that only indirect light is radiated at 

such orientation. Although, using proper shading devices blocking the south 

lighting, which is the direct light and the strongest in heating qualities, can bring a 

good source of lighting into the space when used efficiently. “For most climates 

and many building types, day lighting can save energy. For example, a typical 

office building in southern California can reduce its energy consumption 20 

percent by using day lighting”(Lechner 2001, p 46). 



   

9 
 

Cooling is another key element in this equation. The rule of thumb for 

proper cooling is to shade before you cool; as Lechner states, “shading is the key 

strategy of achieving thermal comfort” (Lechner 2001, p 207). Orientation is 

critical when designing shading devices; for example, horizontal overhangs over 

windows located on the south side are very effective during the summer. These 

devices block direct sun light from coming into the building but simultaneously 

allow diffuse light to reach the building openings. Assuming that shading is 

appropriately used, cooling is then the next step. Depending on the location of 

the site, a building can be cooled with many different sustainable strategies. 

For example, Las Vegas, NV is located in a region with limitless methods 

that can be used to create a very comfort place yet have minimal effect on the 

climate and the environment. This means that its climate “is characterized by 

extremely hot and dry summers and moderately cold winters. The skies are clear 

most of the year…;” (Lechner 2001, p.102). In order to cool a building in such 

climate different strategies can be used, such as thermal mass, stack ventilation, 

evaporative cooling, roofpond, and others. 

Thermal mass consists of a thick massive separation between outside and 

inside, which can be made of water, concrete, adobe, rammed earth, or other 

vernacular materials. This wall structure blocks the sun radiation from penetrating 

the building and heating up the interior spaces. Stack ventilation is a method 

through which the hot air present in a room is attracted toward the ceiling and 

outside of the building. This event is possible with the use of a metallic surface 



   

10 
 

above the ceiling structure which, when heated up, sucks the warm air out of the 

room. 

Evaporative cooling is another very effective strategy. In dry climates the 

evaporation of water is used to cool the ambient. In his book, Ed Melet classifies 

evaporative cooling into two main categories: “direct evaporation and indirect 

evaporative cooling. In direct evaporation, water is sprayed into the air entering 

the building. This lowers the air’s temperature but raises its humidity.” (Melet 

1999, p. 115). On the other hand, in indirect evaporative cooling, the evaporation 

cools either the building or the incoming air without changing the level of indoor 

humidity, for example the use of a roofpond system.  

Additionally, heating is another factor that influences the amount of energy 

used in a building. In heating strategies, insulation is the most used method. 

Through insulation, the air is trapped inside the walls of the structure; there are 

no gaps for the cold air to enter and the warm air to exit the space. As Elizabeth 

Wilhide suggests in her book, “ideally, that heating, as well the domestic power 

supply, should come from a renewable source, such as wind, wave, tidal, or solar 

energy” (Wilhide 2003, p.32). Such methods are very effective in dry and hot 

climates such as the one in Las Vegas and surroundings, but every region has 

different strategies that can be combined to both cool and heat buildings without 

the waste of energy. 

These are the foundations for Sustainable Architecture and all of them 

represent great ideas and solutions, but they will only remain as such unless 
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architects and designers decide to take a more aggressive approach to the issue 

of environmental degradation and begin to apply these rules to their creations. 

There are many reasons why sustainable architecture is not accepted in 

our society, such as cost, psychological issues, and the fact that architects are 

not responsive to the matter. 

First of all, the cost of building materials used in sustainable design is still 

very high on the market, due to the fact that not many manufactures are yet 

producing such materials and if they are it is just on an experimental level. 

Therefore, since the industry offer is not wide spread, the price is considerably 

high.  

In regards to psychological factors, people have always seen and thought 

of sustainable architecture as the creation of spaces that are uncomfortable and 

unpleasant, believing that they would lose the commodities such as air 

conditioning and heating. Architects, on the other hand, do not actively respond 

to the issue. This is due to their lack of knowledge in the subject which keeps 

them from being able to design using sustainable methods. Additionally, the thirst 

for money and fame takes over their reason for designing. As Stanley Port 

states, “most architects believe that the solutions are known and straightforward, 

and that their implementation requires only an act or will and the commitment of 

a few extra dollars” (Port 1989, p. 83). This leads the architects to rely on 

mechanical systems to maintain the comfort of the building, using great amounts 

of energy at the expense of the environment. 
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Finally, a change in the attitude with which architects approach design and 

sustainability is at the base of the possible solution. Architecture shapes spaces, 

but more importantly it affects people and feelings. Ultimately, what will influence 

society perception of sustainable architecture is in the hands of architects and 

their will to better our environment and create spaces that will provide a better 

sense of comfort and be more energy efficient. 

With this in mind, both our present generation and the ones to come will 

benefit from such approaches and our environment will be more sound and 

stable. Herein lay the foundation for Sustainable Architecture. 

 

The experimental results obtained from the research project investigating 

the heating and cooling potential of roofpond in Las Vegas and the Southwest 

climates.  In the experiment the control test cell and the roofpond test cell were 

extensively monitored to better understand the role that each of the roofpond 

components (the water bag and the movable insulation) play role in the heat 

transfer process between the experiment and the surroundings.  As the roofpond 

strategy is known it’s the one of the only passive strategy that works for cooling 

and heating because it mimics the ways in which nature tempers and controls the 

earth’s climate. Therefore, the roofpond can be categorized as a two operational 

system one,” Heating Mode” for the cold seasons, and one for “Cooling Mode” for 

the hot seasons.   

Roofpond Fundamentals 
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The roofpond in its heating mode (Fig. 1.4a), solar radiation heats a body 

of water covering the roof.  If there isn’t enough solar radiation during the day, 

movable insulation will covers the body of water acting much in the same way as 

a cloud cover that minimizes the radiation losses to the sky.  Similarly, at night 

the movable insulation helps minimize heat losses so that the energy collected 

during the day remains in the water bag so that it can be radiated to the space 

below the roofpond (Brown and DeKay 2000; Haggard et al. 1975; Hay 1984; 

Overbey 2007).   

Roofpond Heating Mode 

 

In its cooling mode (Fig. 1.4b), the movable insulation covers the water 

bag during the daytime to avoid undesirable solar gains.  At night, the roofpond 

will act just the opposite mimicking exactly how nature does it planet atmosphere 

will re-radiate the heat back to the space.  Therefore, the roofpond radiates the 

heat to the sky that was absorbed and accumulated from the inside of the space 

during the daytime (Brown and DeKay 2000; Haggard et al. 1975; Hay 1984; 

Overbey 2007).     

Roofpond Cooling Mode 
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(a) (b) 

Figure 1.4     Diagrammatic Section of a Roofpond Under 

(a) Heating Mode and (b) Cooling Mode 

(Source: Ramsey et al. 2000 / Overbey 2007) 

 

The purpose of this research is to develop predicting formulas for the 

roofpond to examine its performance in different parts of Nevada and the 

southwest region of the United States and its climates.  The outcomes of this 

research will also be viable for other parts of the United States and even other 

parts of the world.  The research will look at different formulas that already have 

been used to predict other passive heating and cooling systems such as direct 

gain, sunspace, trombe-wall, water-wall and roofpond.  In addition, other 

roofpond predicting formulas will be developed from the data collected from the 

two test cells at the NEAT Lab at UNLV. The data have been collected from the 

Purpose of the Research 
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research in two phases: in the first phase, the test cell walls were left without 

insulation, and in the second phase the test cells were equipped with 2 inches 

aluminum sheeted rigid insulation with 1.5 inches air gap on both sides of the 

rigid insulation.  Different part of Nevada (cities and towns) will be selected to test 

each formula with the local climate to come up with the ideal roofpond system 

that will fit the area and the climate for the best performance. The research will 

conclude with a discussion on the future use of the predicting formulas for the 

roofpond and how these could be used throughout the different parts of the world 

and in all the different climates zones.   
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CHAPTER 2 

LITERATURE REVIEW 

The concept of the “roofpond” system has been used throughout the past 

two centuries. As mentioned in the Department of Energy (DOE) 

Roofpond Brief History 

Roof Pond 

Systems

 According to Harold R. Hay, inventor of the roofpond system, the present 

energy and pollution crises necessitates the development of practical methods 

for heating and cooling buildings (Hay, p.3).  While Hay’s statement is relevant 

today, he stated this back in the 1970s, anticipating the same problem we are still 

facing over thirty years later today.  We have advanced building technologies 

over the past three decades, yet our buildings use more energy per dwelling in 

spite of being more efficient.  It is clear that we are in desperate need of action to 

better the way in which we heat and cool our buildings.  The roof pond concept 

has been the only passive system that can be used to heat and cool buildings.  

The roof pond is an excellent system because it not only heats passively in 

winter but can also give effective passive cooling in the summer” (Lechner, 

p.166).  “In many respects thermal storage roofs (roofponds) are similar to 

thermal storage walls: the collector and heat storage are part of the same unit” 

(Balcomb et al., p. C4-194). 

 Report “many 19th century structures exist that incorporated it, such as 

Colonel Joshua Yong’s “Sebastopol House” built in the 1850 in Seguin, Texas” 

(Marlatt et al., p. 2-1).    

 



   

17 
 

 Different types of roofpond have been developed to achieve the maximum 

performance level in different climatic regions.  However, all the different 

roofpond types have the same fundamental principles yet they differ in the 

configuration of the roof assemblies to accommodate climatic locations and 

reach the highest performance level possible for passively heating and cooling.   

As mentioned by Marlatt a roofpond can be classified in three different system 

types Dry, Wet, and Open: 

Roofpond Types and Uses 

• Dry roof pond:

• 

 a roof pond system in which the water is 
contained in plastic bags, and no water is exposed to the 
environment. This type of roof pond may or may not be 
glazed and is adaptable to both heating and cooling 
applications. 
Wet roof pond:

• 

 a roof pond system in which water is 
contained in bags which are flooded or sprayed so that the 
surfaces of the bags are wetted. This type of roof pond is 
used only for cooling purposes, but may be adaptable for 
heating if the water is covering the surface is drained.  
Open roof pond:

 

 a roof pond system in which the water is not 
contained in bags but exists as an open pool within the 
boundaries of the roof parapet. This type of roof pond is 
used only for cooling applications. (Marlatt et al., p. 1-3). 

The three characteristic of the roofpond system can be configured structurally in 

two different ways.  The configurations are based on the construction methods to 

accommodate the climatic location.  Therefore, the roofpond can be configured 

as a two operational system one, for warmer climate which it’s called the 

“Southwest Application” (Fig. 2.1) and one used for the colder climate which it’s 

called “North Application” (Fig. 2.2).  The roofpond Southwest application is 

usually constructed with a flat roof with the water bags placed on top of the roof. 

The water bags are covered by movable insulation.  The roofpond North 
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application follows the same principles as the Southwest yet the only different is 

the water bag is house within the attic area with the glazing on the south side of 

the sloping roof for the solar radiation exposure requirement.  As stated in the 

Marlatt Report: 

• Exposed roof pond

• 

: A roof pond system in which the 
movable insulating panels are the only barrier between the 
pond and the environment, this configuration is used in both 
heating and cooling application. Any one of the three types 
of roof ponds mentioned above may be employed with this 
configuration.  
Enclosed roof pond

 

:  A roof pond system that is totally 
enclosed in an attic space with a clerestory-type roof, in 
which the clerestory is a permanent barrier between the 
ponds and the environments, this configuration is mainly 
used in applications where heating loads predominate and 
primarily dry roof ponds are employed. (Marlatt et al., p. 1-3). 

There are several other types of roofs that use water to passively heat or 

cool the space under it; however, they are not related to the roofpond systems 

described.  As explained in greater details in the US Department of Energy 

(DOE) Roof Pond Systems Report there are other roof system types that uses 

water for heating and cooling such as: “The Energy Roof, Skybird, Cool pool, 

Water-retaining roof, trickle roof, and Intermittent Water Spray” (Marlatt et al., p. 

1-5, 6), which are not covered in this thesis. 
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Figure 2.1     Diagrammatic Section of a Roofpond System 

(Southwest Application) 
Illustration by Daniel J. Overbey 

 

 
Figure 2.2     Diagrammatic Section of a Roofpond System 

(North Application) 
Illustration by Daniel J. Overbey 
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Over the past four decades, the few buildings with roofpond were built in 

the U.S in spite of the effectiveness the system.  Several examples will be 

presented to show how well roofponds have performed for heating and cooling in 

different climates and regions. As Marlatt mentioned “Results have shown that 

this system, with minor modification discovered through this evaluation, is 

workable from an architectural, a thermal, an economic, and an occupancy 

standpoints at the present time, and that this system could play an important role 

in energy conservation in the United States without further prototype 

development” (p. 2-2). 

Roofpond Implementation 

The information provided below about the roofpond prototypes are 

described in greater detail in the US Department of Energy (DOE) Roof Pond 

Systems

 

 Report.  A summary for each of the prototypes reported in Marlat 1984 

and Fernandez Overbey 2007 is provided below. 

In 1967 through 1968 the Phoenix prototype was constructed by Harold R. 

Hay and John E. Yellott at Arizona State University in Phoenix, AZ (Fig. 2.3).  

The Phoenix prototype was a 120 ft2 test-cell structure, and was the first 

evaluation of the “southwest” roofpond system application. The result of a full 

year of monitoring the prototype indicated that the building performance without 

supplementary heating and cooling was excellent, maintaining the air 

temperature inside the building between 68 ºF to 82 ºF where the outdoor 

Phoenix Prototype 
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ambient air temperature spanned from subfreezing to over 110 ºF (Fig. 2.4), (Hay 

1984, 1989; Marlatt 1984; Givoni 1994; Fernandez Overbey 2007).   

 

 
Figure 2.3     Harold Hay and John 
Yellott standing before the Phoenix 

prototype 
(Source: Hay and Yellott, 1968) 

 
 
 
 
Figure 2.4     Thermal performance 

data of the Phoenix prototype 
(Source: Hay and Yellott, 1968) 

 
 

As described by Overbey “The 100% Natural thermal comfort provided by 

the Phoenix prototype was later confirmed by the Atascadero House (Fig. 2.5), 

built in 1973 (Haggard et al. 1975; Hay 1989)” (p.57).  This project was 

constructed and evaluated by the California Polytechnic State University for its 

performance.  However, in the Marlatt Report majority of the evaluation was for 

its heating performance due to the climatic location of the house where the 

temperatures are extreme in the winter season and are in the comfort level in the 

summer season. As mentioned by Givoni “So, in practice, just the thermal mass 

of the water and the walls, even if insulated by fixed insulation, could maintain a 

comfortable indoor temperature most of the time under the climatic conditions of 

Atascadero House 
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the site” (p. 103).  During the cooling season where electricity was not used at all 

the system performance averaged 72 ºF all of the summer season.  Also in the 

winter, for the heating seasoned “supplemental space heating” was not used to 

achieve indoor temperature between 66 and 74 ºF (Fig. 2.6), (Marlatt 1984; 

Givoni 1994) 

 

 
Figure 2.5     The Atascadero 

residence  
(Photograph: John Reynolds) 

 
Figure 2.6     Year long record of 

internal temperatures versus outdoor 
conditions at the Atascadero 

residence 
 (source: Haggard, et al., 1975)

 

The Pala Passive Solar Project consisted of eight side-by-side test cell.  

Seven of the test cell incorporated different passive heating and cooling 

strategies: roofpond (Fig. 2.7), direct gain, clerestory direct gain, high-mass 

concrete walls, trombe-wall, water wall, and sun space. However, the eighth cell 

was constructed to be the “conventional” cell to serve as a comparison to the 

other seven cells (Clinton 1984; San Diego Gas & Electric and Southern 

California Gas Company 1981).  The project data was collected and monitored 

starting from early 1981 and ran through middle of 1984. The project concluded 

Pala Passive Solar Project 
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and verified the effectiveness of such systems to be used in mild climate such as 

Pala, CA would reduce the heating and cooling cost by up to 50 to 75 % annually 

(Fig. 2.8), (Clinton 1984; Overbey 2007). 

 

 
Figure 2.7     The Pala Version of the 

“skytherm” system  
(source Givoni 1994) 

 
 

Figure 2.8     Cooling Performance of 
the Pala version of the “Skytherm” 

system  
(source: Givoni 1994)

 

In 2002 a similar project to Pala Passive solar Project was conducted at 

Ball State University in Muncie, Indiana (Fig. 2.9) with multiple test cells looking 

at different strategies such as direct gain, trombe-wall, water-wall, sunspace, and 

roofpond; however, this project only looked at the effectiveness of the system in 

heating  due to the nature of the cold climate of Muncie, IN.  The north 

application of the roofpond was used in this project due to the annual snow fall in 

this region. Where, north application it differs from the typical flat roofpond is the 

water bag (thermal mass) is located under the pitched roof housed within the 

attic where the south facing side of the roof is equipped with clerestory and an 

Ball State University Passive Solar Project 
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operative garage door is also housed within the attic act as a movable insulation 

and block the clerestory when needed.  The project’s results concluded that all 

systems where effective for heating with the roofpond being the most effective 

during prolonged overcast periods typical of many winter locations in the 

continental U.S as stated by Fernandez-Gonzalez “given the experimental results 

obtained in the first phase of this research project, it would be fair to say that the 

thermal stability of the RP [Roofpond] can be compared with that of a 

mechanically air-conditioned building” (p.592).  Also the result of this project 

concluded the combination of the roofpond system and one of the passive 

systems mentioned above would serve at its highest performance needed in 

such climate zone (Fig. 2.10), (Fernandez-Gonzalez, 2007). 

 

 
Figure 2.9     View of the six test 

cells from the east during the second 
phase 

(Source: UNLV NEAT Lab) 

 
 
 

Figure 2.10     Extreme and mean 
conditions found during the 60-day 

study 
(Source: UNLV Neat Lab)
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The performance results for the roofpond system are when compared to 

other passive strategies and it has proven over the years to have the biggest 

advantages over the other systems due to its high mass heating and cooling 

capabilities.  However, the roofpond system had struggled with many issues on 

the operational and standardization side of the system hindering its common 

uses.  One of the major problems the roofpond system encountered over the 

years was the movable insulation operation.  As stated by Givioni “the Main 

problem encountered with the various variations of the Skytherm system 

[Roofpond system] seems to concern the movable insulation” (p. 107).  Also 

stated by Clinton “uncertain reliability of operation of the movable insulation” 

(Clinton 1984; Givoni 1994).  However, Professor Alfredo Fernandez-Gonzalez 

while teaching at Ball State University during his research in 2002, he introduced 

the use of insulated garage door in place of the movable insulation due to the low 

cost of the product, its availability of different component with options for 

modification to fit the need of the system requirement, and the reliability of the 

technology due to its massive use in almost every house hold.  

Roofpond Issues 

 

A generalized mathematical model for predicting indoor temperature can 

be developed using either the climatic data or the thermal properties of the 

building (Givoni 1999).  Givoni has developed simple experimental predictive 

formulas to measure indoor maximum, average and minimum temperature based 

Description of Predicting Formulas 
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on the climatic data measured extensively in Pala, southern California.  He 

demonstrated that indoor maximum and daily average temperatures of any 

unoccupied and specific building type can be predicted on the basis of only the 

daily outdoor temperatures (Givoni 1994). Givoni tested different numbers of 

climatic parameters in the derivation of a set of predictive formulas and found 

adding daily solar energy data did not add greatly to the prediction accuracy. In 

fact, the most important climatic parameter in predicting the indoor maximum, 

under various conditions (shading, ventilation, envelope color), was found to be 

the outdoor daily average temperature (Givoni 2004). Givoni further evaluated 

the agreement between the measured and the computed temperatures with the 

various climatic parameters used in the derivation by statistical correlation (Fig. 

2.11). Using the outdoor temperatures alone resulted in a correlation of 0.9674 

while adding the solar radiation date established a correlation of 0.9760 (Givoni 

2004). 
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Figure 2.11     Correlation between measured and computed indoors average 

temperatures 
(Source:Givoni, Vecchia 2001) 

 

Vecchia used the same methodology, prescribed by Givoni, to predict 

indoor maximum, average and minimum temperatures recognizing that 

incorporating the solar radiation can slightly improve the prediction of indoor 

maximum temperature while incorporating the diurnal swings slightly improved 

the prediction of indoor minimum (Givoni, Vecchia 2001). He further validated the 

formulas he derived by collecting data for another extended period of time from 

the same buildings and putting the data in the formulas. 

Givoni also used the observation of the experimental research to develop the 

methodology for formula to predict indoor maximum (Givoni 1994): 
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1. The climatic parameter best correlated with the indoor maximum is the 

outdoors average. 

2. Under steady climate conditions, when the outdoor average is about 

constant, the elevation of the indoor maximum above the outdoor average 

depends on the thermal mass of the buildings.  

3. Under dynamic climate, when outdoor average rises or falls, the indoor 

maximum of the high-mass building changes at a rate about one half of 

the change in the outdoor average. The rate of the low-mass buildings 

maximum is about 0.8 of the change in the outdoor average 

The observations were expressed mathematically in the general form of the 

predictive formula (Givoni 1994): 

Tmax = GTavg + DelT + K*(Tavg - GTavg) 

Tmax = Indoor maximum temperature in a particular day 

GTavg = Grand average of the outdoor temperature 

DelT =  Average elevation of the indoor maximum above the outdoor 

average (Fig. 2.12) 

Tavg = Outdoor temperature average in a particular day 

K = Ratio of the rates of daily changes of the indoor maximum to 

the rate of change of the outdoor average, depending on the 

mass level (Fig. 2.12) 
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Figure 2.12     Experimentally Derived Values of The K and DelT Variables 

(source: Givoni 1994) 

 

Givoni develop another methodology to predict the indoor daily maximum, 

average, and minimum which excludes the thermal properties of a building “DelT, 

and K” (Givoni 2004) (Fig. 2.13, 2.14, and 2.15). In developing the formulas for 

predicting the indoor temperature as Givoni stated “functions of the outdoors’ 

climatic conditions, it is necessary to find out what parameter of the outdoor 

climate could best serve as a basis for prediction. It is performed visually by 

plotting the indoor parameter of interest over the background of the outdoor daily 

maximum, average and minimum temperatures to observe the fine details of their 

relationship” (Fernandez-Gonzalez, Givoni 2007) (Fig. 2.13).  Therefore, the 

relationship then can be analyzed to find similarity in patterns demonstrated by 
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different temperature data set. Once a given pattern is observed, it is relatively 

simple to express it in a formula (Fig. 2.14).  Hence, the general suggestion is, “if 

experimental data on the outdoor and indoor conditions, measures over several 

weeks, are available, it is possible to predict the performance of that building in 

conditions different from the climate under which the original data was collected” 

(Givoni 2004) (Fig. 2.15). 

 

 

Figure 2.13     Maximum and minimum temperatures in the Roofpond cell, over 
the background of the corresponding outdoor temperatures. 

(Fernandez-Gonzalez, Givoni 2007)  
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Figure 2.14     Measured and calculated indoor maximum temperatures of 

the low-mass building, together with the maxima, minima, and averages of the 
outdoor temperature 

(Source: Givoni 1994) 
 
 

 
 

Figure 2.15     Measured and calculated indoor maximum temperatures of 
the high-mass building, together with the maxima, minima, and averages of the 

outdoor air temperature 
(source: Givoni 1994) 
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 The importance predicting formulas has brought to the table many 

opportunities in establishing an overall framework that will help to designing of 

building without leaving room for errors.  However, one should understand how 

valuable it is to have information such as indoor temperature and a performance 

of different system implementation in passive heating and cooling in such early 

stage of planning and designing. As Givoni and Vecchi has described:  

Implementation of Predicting Formulas 

When the day to day indoor daily minimum and maximum 
temperatures are known it is possible to reconstruct an 
approximate hourly pattern of the indoor temperatures during a 
given period. This information would be sufficient for evaluating the 
expected comfort conditions of persons living in un-conditioned 
buildings under given climatic conditions. Furthermore, once the 
indoor hourly temperature patterns are reconstructed, and when the 
upper and the lower boundaries of the comfort zone for a given 
regions are specified, it would be possible to estimate the number 
of hours in which operation air conditioning would be needed or 
probable (Givoni, Vecchi 2001). 
 
 

Also these formulas can be very useful for locations where climatic 

information are limited to just the daily temperatures.  As mentioned by 

Fernandez-Gonzalez, and Givoni “in many Developing Countries available 

climatic information for their different districts is very scarce, often limited only to 

air temperature” (Fernandez-Gonzalez, Givoni 2007).  Furthermore, one can use 

such information generated by the predicting formulas and really develop an 

understanding of how different systems can work effectively and if modifications 

are needed to enhance the system and reach it maximum best performance 

possible in such locations.  As Fernandez-Gonzalez, Givoni, talks about 

developing formulas to be used to predicted indoor temperature for buildings 
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using different passive systems with an objective of having the minimum required 

data analysis for the climate information to enables the use of such thing in 

different climatic circumstances (Fernandez-Gonzalez, Givoni 2007) (Fig. 2.16).  

Further information can be found in greater detail describing the procedure of 

developing such formulas in and its uses Givoni 1994; 1999; and 2004.   

 

 
Figure 2.16     Maximum, average and minimum temperatures and solar radiation 

(Source: Givoni, Vecchi 2001) 
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1.  Prediction of thermal performance of occupied houses (Givoni, Vecchi 

2001): 

Examples of Predicting Formulas 

The indoor maximum temperature (Fig. 2.17) 

 Tmax = 1.0894 * Avg DBT + 4.4 

 Maximum = 1.0894 * Avg DBT + 0.0018 * Solar + 3.8 

The indoor average temperature (Fig. 2.18) 

 Average = 0.9887 * DBT + 0.0009 * Solar + 2.9 

The indoor minimum temperature (Fig. 2.19) 

 Minima = DBT – 0.2 * (Tmax - Tmin) + 0.15 (DBT – G_DBT) 

+ 2.3 

 

 
Figure 2.17     Measured and computed indoors maximum temperatures 

(Source: Givoni, Vecchi 2001) 
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Figure 2.18     Measured and computed indoors average temperatures 

(Source: Givoni, Vecchi 2001) 
 

 
Figure 2.19     Measured and computed indoors minimum temperatures 

(Source: Givoni, Vecchi 2001) 
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2. Prediction of indoor temperatures (Givoni, Kruger 2003): 

The indoor maximum temperature (Fig. 2.20) 

T(in)max = GTmax + 0.6 + 0.69(Tmax − GTmax) 

The indoor average temperature 

T(in)avg = GTavg + 4.1 − 0.067 × GTavg + 0.74(Tavg − 

GTavg) 

The indoor minimum temperature (Fig. 2.20) 

T(in)min = GTmin + 5.4 − 0.116 × GTmin + 

0.75(Tmin−GTmin) + 0.1374(Tavg(n−1) − Tmin) 

 
 

Figure 2.20     Indoor minimum and maximum temperatures in the Kurten house. 
Comparisons between measured, simulated and computed data 

(Source: Givoni, Kruger 2003) 
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3. Prediction of indoor temperatures (Givoni 2004): 

The indoor maximum temperature (Fig. 2.21) 

Tin (max) = GTavg + (2.7 + 0.1637 * GTavg) + 0.0859 * 

(Tmax –Tmin - 1.2) + 1.156 * (Tavg - GTavg) 

The indoor minimum temperature (Fig. 2.21) 

Tin (min) = GTmin + (0.9 + 0.2547 * GTmin) + (0.149 * 

(Tmax – Tmin) - 2) + 0.808 * (Tmin - GTmin) 

 

 
Figure 2.21     Measured and computed maximum and minimum temperatures 

(Source: Givoni 2004) 
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4. Prediction of indoor temperatures (Fernandez-Gonzalez, Givoni 2007): 

The indoor maximum temperature (Fig. 2.22) 

Maximum = 11.4 + 0.0275*Tmax + 0.3608*GTavg + 

0.5121*RunAvg + 0.0018*RunSolar + 0.0663*(Tmax - Tmin); 

The indoor average temperature 

Average = 11.06 + 0.3505*GTavg + 0.5509*RunTavg + 

0.0016*RunSolar - 0.0044*(Tmax - Tmin); 

The indoor minimum temperature 

Minimum = 12.39 + 0.9885*Tmin + 0.5058*(Tmax(n-1) - 

Tmin) 

 

 

Figure 2.22     Measured and computed indoor maximum and minimum 
temperatures of test cell 

with Roofpond system (°F) 
(Source: Fernandez-Gonzalez, Givoni 2007) 
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CHAPTER 3 

METHODOLOGY 

This chapter will describe how each of the formulas are developed based 

on what have been learned from the literature review in the previous chapter and 

the data collected and analyzed at the UNLV School of Architecture test-cell.  

Multiple formulas will be developed to predict the performance of the roofpond in 

Nevada and the west coast region of the United States.  Also the finding of this 

thesis will be applicable for further research in the future based on the formulas 

generated by pervious work and this thesis to accomplish a simulation of the 

maximum performance of the roofpond using the predicting formulas. 

Development of the Predicting Roofpond Formulas 

The research started when the data of the roofpond test-cell (RP) and the 

controlled test-cell (CC) was monitored, collected, and analyzed in the period of 

2004 through 2006 (first phase) and May of 2009 through October of 2009 

(second phase).  The only importance why the data was collected during the both 

phases of the research stated above was to see how the test-cell would perform 

without (first phase) and with (second phase) wall insulation. The data was 

collected for every five minutes and was analyzed on a weekly bases due to 

understand the performance of the two test-cells and to catch any multifunction 

of the equipments, this will provide the research with the most accurate data 

possible and also one can understand the performance of the test-cells on a 

weekly bases.  
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Therefore, after the weekly data was analyzed by taking the collected 

data, that consist of every five minutes intervals and averaging it to hourly 

averages to be organized based on a twenty four hours day for example from 

12:00 AM to 11:00 PM.  That said now the weekly data consist of seven days 

with average indoor hourly temperature for the two test-cells.  Thereafter, the 

weekly data was compiled together to establish continues hourly averaged data 

for all the days were collected and the hourly data from the weather station also 

was included side-by-side at this point to establish the connection between the 

indoor and the outdoor temperatures.  Furthermore, the data was analyzed by 

using pivot-tables to accurately establish daily average, maximum, and minimum 

temperatures for the particular day is being analyzed.  At this point of the 

research all of the data (indoor and outdoor) is compiled in one spread-sheet 

showing daily maximum, average, and minimum of all the data.  See Figures 3.1 

and 3.2 showing data plotted in a chart for the first phase of the research and 

also understanding the data visually by the pattern generated by the chart.  Also 

the Figures 3.3 and 3.4 showing exactly the same thing describe above; 

however, the charts is only during second phase of the projects.   
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Figure 3.1     Maximum, average, and minimum of the control test-cell 
(CC) measured air temperatures and the outdoor dry bulb temperatures for first 

phase 2004-2006 

 

Figure 3.2     Maximum, average, and minimum of the roopond test-cell 
(RP) measured air temperatures and the outdoor dry bulb temperatures for first 

phase 2004-2006 
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Figure 3.3     Maximum, average, and minimum of the control test-cell 
(CC) measured air temperatures and the outdoor dry bulb temperatures for 

second phase summer 2009 

 

Figure 3.4     Maximum, average, and minimum of the roofpond test-cell 
(RP) measured air temperatures and the outdoor dry bulb temperatures for 

second phase summer 2009 
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At this point the data is organized in a fashion that each of the three 

values (average, maximum, and minimum) are put side-by-side in columns for 

example: dry bulb temperature has three column showing the three values this is 

done to all the values included in the pivot-table (Fig. 3.1, 3.2, 3.3, and 3.4). 

Thereafter, a correlation analysis is applied to the data to see if there is a strong 

correlation between each of the element; however, if a strong correlation is first 

found between indoor temperatures and the outdoor average the data is suitable 

to be used in generating predictive formulas. As you add additional climatic 

variable the predicted temperature becomes much more accurate.  The next step 

a Regression process is applied to the whole data where regression can be 

described as a method of determining relationships among different data in order 

to predict future result.   Examples of correlation analysis are provided in form of 

chart, each represented the linear relation between maximum, average, and 

minimum for the measured indoor air temperature and the computed indoor air 

temperature (see Figures 3.5, 3.6, and 3.7).   
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Figure 3.5     Example of correlation between the maximum measured 
temperatures and the predictive formula maximum computed temperatures  

 

Figure 3.6     Example of correlation between the average measured 
temperatures and the predictive formula average computed temperatures  

 

Figure 3.7     Example of correlation between the minimum measured 
temperatures and the predictive formula minimum computed temperatures  
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At this point three groups of values are established average, maximum, 

and minimum each group includes sets of values representing an Intercept 

values (Iavg,Imax,Imin).  Also from the same regression calculation a coefficient is 

established representing each of the elements described below for example 

(Solper.avg.cof), (Fig 3.8). The coefficient will be multiplied by its element and added 

to the others and to the intercept value of each of the three formulas presented 

below. All the values at this point are combined in one spread-sheet with all the 

elements described as (Fig. 3.9):  

1. Period average of solar radiation (w/m2) 10 days average 

(Solper.avg.): This daily period average is established by 

averaging the last ten days of the daily average solar radiation 

to that particular day. 

2. Running average of solar radiation (w/m2) 3 days average 

(Solrun.avg.): Running average is established by averaging the 

last three days of the daily average solar radiation to that 

particular day. 

3. Daily average solar radiation (w/m2) (Solavg.): The daily averages 

for the solar radiation based on the weather data.  

4. Period average of dry bulb temperature (ºF) 10 days average 

(DBTper.avg.): This daily period average is established by 

averaging the last ten days of the daily average Dry Bulb 

Temperatures to that particular day. 
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5. Running average of dry bulb temperature (ºF) 3 days average 

(DBTrun.avg.): Running average is established by averaging the 

last three days of the daily average Dry Bulb Temperatures to 

that particular day. 

6. Average dry bulb temperature (ºF) (DBTavg.) 

7. Maximum dry bulb temperature (ºF) (DBTmax.) 

8. Minimum dry bulb temperature (ºF) (DBTmin.) 

9. Maximum wet bulb temperature (ºF) (WBTmax.) 

10. Minimum dry bulb temperature (ºF) (WBTmin.) 

 

 

Table 3.1     example of the roofpond variable coefficient and intercept values 
base on a regression calculation from the weather data. 
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Figure 3.8     Example of regression analysis calculation generated by Excel® for 
each of the variable coefficient 
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Figure 3.9     Example of average calculation for period and running averages for 
each of the variable 

 

After establishing all the elements above now the formula is ready to be 

established to generate the computed values for the three predicted indoor 

temperature (Tmax, Tavg, and Tmin) and the formulas are: 

Tmax = Imax. + [(Solper.avg)(Solper.avg.cof)] + [(Solrun.avg.)(Solrun.avg.cof)] + 

[(Solavg.)(Solavg.cof)] + [(DBTper.avg. )( DBTper.avg.cof)] + [(DBTrun.avg. )( 

DBTrun.avg.cof)] + [(DBTavg. )( DBTavg.cof)] + [(DBTmax. )( DBTmax.cof)] + 

[(DBTmin. )( DBTmin.cof)] + [(WBTmax. )( WBTmax.cof)] + [(WBTmin. 

)(WBTmin.cof)] 

Tavg = Iavg. + [(Solper.avg)(Solper.avg.cof)] + [(Solrun.avg.)(Solrun.avg.cof)] + 

[(Solavg.)(Solavg.cof)] + [(DBTper.avg. )( DBTper.avg.cof)] + [(DBTrun.avg. )( 

DBTrun.avg.cof)] + [(DBTavg. )( DBTavg.cof)] + [(DBTmax. )( DBTmax.cof)] + 

[(DBTmin. )( DBTmin.cof)] + [(WBTmax. )( WBTmax.cof)] + [(WBTmin. 

)(WBTmin.cof)] 
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Tmin = Imin + [(Solper.avg)(Solper.avg.cof)] + [(Solrun.avg.)(Solrun.avg.cof)] + 

[(Solavg.)(Solavg.cof)] + [(DBTper.avg. )( DBTper.avg.cof)] + [(DBTrun.avg. )( 

DBTrun.avg.cof)] + [(DBTavg. )( DBTavg.cof)] + [(DBTmax. )( DBTmax.cof)] + 

[(DBTmin. )( DBTmin.cof)] + [(WBTmax. )( WBTmax.cof)] + [(WBTmin. 

)(WBTmin.cof)] 

Therefore, each of the computed value is put side-by-side to the actual 

measured indoor temperature to run another calculation generating correlation 

coefficient value that will show either be positive or negative determining the 

linear relation between the two to verify the accuracy of the formula.  Therefore, 

the value calculated should be between -1 and +1, having said that if the value is 

closer to -1 that will mean the correlation is oppositely matched, or closer to zero 

that will mean there are no correlation what so ever, and the closer to +1 that will 

mean the correlation is very strong and the formula is near perfect. Furthermore, 

the complied data now consisting out of the measured data, the outdoor 

temperature data, and the computed data (generated by the formulas) are plotted 

into a chart analyzing and comparing the relationship between the patterns 

established by the compiled data. See figures 3.10 and 3.11 for the first phase 

data, and figures 3.12, and 3.13 for the second phase data. 

However, different climatic variables can be added to the formulas to 

establish much more accuracy in predicting the indoor temperature as mentioned 

in the previous chapter. Therefore, looking at the examples provided in figures 

3.14, 3.15, 3.17, and 3.17 showing solar radiation applied added to the data as 

anther variable. One can see the pattern develop in the chart where the indoor 
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and the outdoor temperature have the same pattern as the solar radiation.  

Therefore, this explains how the relation between the outdoor weather and the 

indoor condition are consistent with each other, where weather can provide the 

adequate information to be used in such formulas to predict indoor conditions.  
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Figure 3.10     Maximum, average, and minimum of the control test-cell 
(CC) measured air temperatures, the outdoor dry bulb temperatures, and 

computed indoor temperatures for first phase 2004-2006 

 

Figure 3.11     Maximum, average, and minimum of the roofpond test-cell 
(RP) measured indoor air temperatures, the outdoor dry bulb temperatures, and 

computed indoor temperatures for first phase 2004-2006 
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Figure 3.12     Maximum, average, and minimum of the control test-cell (CC) 
measured air temperatures, the outdoor dry bulb temperatures, and computed 

indoor temperatures for second phase summer 2009 

 

 

Figure 3.13     Maximum, average, and minimum of the roofpond test-cell 
(RP) measured indoor air temperatures, the outdoor dry bulb temperatures, and 

computed indoor temperatures for second phase summer 2009 
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Figure 3.14     average of the control test-cell (CC) measured indoor air 
temperatures, the outdoor dry bulb temperatures, and horizontal global solar 

radiation for first phase 2004-2006 

 

Figure 3.15     average of the roofpond test-cell (RP) measured indoor air 
temperatures, the outdoor dry bulb temperatures, and horizontal global solar 

radiation for first phase 2004-2006 
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Figure 3.16     average of the control test-cell (CC) measured indoor air 
temperatures, the outdoor dry bulb temperatures, and horizontal global solar 

radiation for second phase summer 2009 

 

Figure 3.17     average of the roofpond test-cell (RP) measured indoor air 
temperatures, the outdoor dry bulb temperatures, and horizontal global solar 

radiation for second phase summer 2009 
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CHAPTER 4 

FINDINGS OF THE STUDY 

In 2004 the Natural Energies Advanced Technologies Laboratory (NEAT 

Lab) at the School of Architecture at University of Nevada, Las Vegas (UNLV) 

has constructed two identical prototype test cell.  However, one will be fitted with 

water bag on top the roof called “roofpond” (RP) and the other will serve as a 

control cell (CC) without the water bag. The two identical prototypes were built, 

each measuring 5 ft. wide, 8 ft. long, and 8 ft. high (finished floor to ceiling)(Fig. 

4.1).  The prototypes were built using wood frame construction and the same 

kind of insulation techniques used in residential construction (Fig. 4.3a-f) 

Purpose of the Test-cell Construction 

The purpose of this experimental prototype of the roofpond system was to 

provide adequate research in passive solar heating and cooling performance in 

climate such as Las Vegas and Nevada.  In addition to the research provided by 

building the two test cell at UNLV School of Architecture the students had the 

opportunity to be part of the design, construction, instrument, and monitor the 

performance of the test cell. The test cell were designed and constructed in a 

way that modification was a major part of the research to investigate the effect of 

different types of insulation and how it would thermal performance in passive 

buildings.  Students being involved in this process will give them the opportunity 

and the experience of design and construction process needed to do such thing 

in the real world, as well as learning the process of communication in the design 

and construction field requires one to understand the importance of construction 
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drawings as a vehicle to communicate ideas and information required for the 

building to be constructed (Fig.1.5a-d). 

The data for the experiment was collected in two phases, first phase the 

test-cells were monitored and analyzed without having any type of insulation 

within the wall cavities as illustrated in figure 4.1 and the data was collected from 

2004 through 2006.  However, identical modifications were done to the two test-

cells, a 2” thick aluminum facing rigid insulation with 1.5” air gap on both side of 

the insulation was added, also, each of the test cell got two 4” opening fitted with 

air fan to vent the test-cells for five minutes each hour as illustrated in figure 4.2.   
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Figure: 4.1     Construction drawing of the UNLV Test-cells first phase (without 

wall insulation and ventilation) 
(Source: UNLV NEAT Lab) 
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Figure: 4.2     Construction drawing of the UNLV Test-cells second phase (wall 
insulation and ventilation added) 

(Source: UNLV NEAT Lab) 
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Table 4.1     The wall elements R-Values and the U-Value for the north, south, 
and the west wall 
 

 

 

Table 4.2     The wall elements R-Values and the U-Value for the east wall  
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Figure 4.3a     The construction team working on the 

floor-frame. (Source: UNLV NEAT Lab) 
 
 

 
Figure 4.3c     The construction team framing the walls. 

(Source: UNLV NEAT Lab) 
 

 
Figure 4.3e     Prototypes at the end of the first day. 

(Source: UNLV NEAT Lab) 
 

 
Figure 4.3b     Students insulating the floor of both 

prototypes. (Source: UNLV NEAT Lab) 
 
 

 
Figure 4.3d     The construction team sheathing the 

prototype. (Source: UNLV NEAT Lab) 
 

 
Figure 4.3f    Prototypes completed and operational. 

(Source: UNLV NEAT Lab)
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 There are two set of predicting formulas resulting from the study, the first 

phase of the research which took place during 2004 through 2006 and the 

second phase which took place during summer of 2009.  During the first phase 

as mentioned in the previous chapters both of the test-cells were un-insulated to 

show the effect of the thermal mass (water bag) on the indoor temperature.  

However, the formulas generated for this phase will explore the effect of a 

roofpond system performance to predicted indoor temperature for different 

location within the western region of the United States.   Since the only available 

data for the second phase was analyzed during the summer of 2009 the result 

will only go over the cooling effect of the roofpond system performance for the 

specific location selected in the first phase as mentioned above.  Also it’s 

important to keep in mind that the second phase of the research are the same 

two test-cells used in the first phase with the modification of adding insulation to 

the rooms.   

Description of Roofpond Predicting Formulas 

There are three formulas established based on the research outcome for 

maximum, average, and minimum predictive indoor temperatures.  Each of the 

formula being used for both the phases and each of the phases, the formula is 

applied twice one for the Roofpond test-cell (RP) and one for the Control test-cell 

(CC).  With all the formulas corresponding to each of the climatic variable 

describe in chapter three.  However, when more climatic variables are added to 

the formulas the more of accuracy the predictive indoor temperature are.   
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Control Test-cell (CC) 

First Phase 

 The first step as described in chapter three was to gather all the weather 

data and the measured data and analyzed side-by-side. As shown in figure 4.1 

for the control test-cell (CC) configuration the result where gathered and plotted 

in a chart to study the relation between the outdoor and indoor temperature (Fig. 

4.4). Therefore, the data was ran through a correlation based on Givoni’s method 

as described in the earlier chapters (see figures 4.5, 4.6, and 4.7). Furthermore, 

based on the correlation between the two a regression calculation was 

conducted to generate all the coefficient values for all the variables required to 

establish the formulas. The formulas generated for the control test-cell for the 

maximum, average, and minimum predictive indoor temperature are: 

Maximum: with correlation coefficient at 94% with the measured data (Fig. 4.8) 

Tmax. = 12.07 + [(Solper.avg)(0.003)] + [(Solrun.avg.)(0.0015)] + 

[(Solavg.)(0.0012)] + [(DBTper.avg. )(0.3)] +  [(DBTrun.avg. )(0.07)] + 

[(DBTavg. )(-0.14)] + [(DBTmax. )(0.42)] + [(DBTmin. )(0.0052)] 

Average: with correlation coefficient at 95% with the measured data (Fig. 4.9) 

Tavg. = 6.29 + [(Solper.avg)(0.0033)] + [(Solrun.avg.)(0.0011)] + 

[(Solavg.)(0.00017)] + [(DBTper.avg. )(0.25)] +  [(DBTrun.avg. )(0.01)] + 

[(DBTavg. )(-0.14)] + [(DBTmax. )(0.21)] + [(DBTmin. )(0.32)]  

Minimum: with correlation coefficient at 93% with the measured data (Fig. 4.10) 
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Tmin. = 2.86 + [(Solper.avg)(0.0032)] + [(Solrun.avg.)(0.00076)] + [(Solavg.)(-

0.00063)] + [(DBTper.avg. )(0.26)] +  [(DBTrun.avg. )(0.018)] + [(DBTavg. )(-

0.16)] + [(DBTmax. )(0.074)] + [(DBTmin. )(0.49)] 

 

 

Figure 4.4     Maximum, average, and minimum of the control test-cell 
(CC) measured indoor temperatures and the outdoor dry bulb temperatures for 

first phase 2004-2006 
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Figure 4.5     Control test-cell (CC) maximum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.6     Control test-cell (CC) average measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.7     Control test-cell (CC) minimum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 



   

66 
 

 

Figure 4.8     Measured and computed maximum temperatures for control test-
cell (CC) during 2004-2006 

 

Figure 4.9     Measured and computed average temperatures for control test-cell 
(CC) during 2004-2006 

 

Figure 4.10     Measured and computed minimum temperatures for control test-
cell (CC) during 2004-2006 
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Roofpond Test-cell (RP) 

The same procedures were taken as the control test-cell by gathering all 

the weather data and the measured data and analyzed side-by-side. As shown in 

figure 4.1 for the roofpond test-cell (RP) configuration the result where gathered 

and plotted in a chart to study the relation between the outdoor and indoor 

temperature (Fig. 4.11). Therefore, the data was ran through a correlation based 

on Givoni’s method (see figures 4.12, 4.13, and 4.14). Furthermore, based on the 

correlation between the two a regression calculation was conducted to generate 

all the coefficient values for all the variables required to establish the formulas. 

The formulas generated for the roofpond test-cell for the maximum, average, and 

minimum predictive indoor temperature are: 

Maximum: with correlation coefficient at 93% with the measured data (Fig. 4.15) 

Tmax. = 19.5 + [(Solper.avg)(0.0021)] + [(Solrun.avg.)(0.0015)] + 

[(Solavg.)(0.0011)] + [(DBTper.avg. )(0.27)] +  [(DBTrun.avg. )(0.09)] + [(DBTavg. 

)(0.24)] + [(DBTmax. )(-0.18)] + [(DBTmin. )(0.18)] + [(WBTmax. )(0.27)] + 

[(WBTmin. )(-0.28)] 

Average: with correlation coefficient at 94% with the measured data (Fig. 4.16) 

Tavg. = 9.07 + [(Solper.avg)(0.0026)] + [(Solrun.avg.)(0.0015)] + 

[(Solavg.)(0.00012)] + [(DBTper.avg. )(0.28)] +  [(DBTrun.avg. )(0.05)] + [(DBTavg. 

)(0.23)] + [(DBTmax. )(-0.09)] + [(DBTmin. )(0.19)] + [(WBTmax. )(0.13)] + 

[(WBTmin. )(-0.19)] 

Minimum: with correlation coefficient at 93% with the measured data (Fig. 4.17) 
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Tmin. = 2.38 + [(Solper.avg)(0.003)] + [(Solrun.avg.)(0.0015)] + [(Solavg.)(-

0.0006)] + [(DBTper.avg. )(0.30)] +  [(DBTrun.avg. )(0.037)] + [(DBTavg. )(0.24)] 

+ [(DBTmax. )(-0.3)] + [(DBTmin. )(0.15)] + [(WBTmax. )(0.013)] + [(WBTmin. )(-

0.13)] 

 

 

Figure 4.11     Maximum, average, and minimum of the roopond test-cell 
(RP) measured indoor temperatures and the outdoor dry bulb temperatures for 

first phase 2004-2006 
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Figure 4.12     Roofpond test-cell (RP) maximum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.13     Roofpond test-cell (RP) average measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.14     Roofpond test-cell (RP) minimum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 
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Figure 4.15     Measured and computed maximum temperatures for Roofpond 
test-cell (RP) during 2004-2006 

 

Figure 4.16     Measured and computed average temperatures for Roofpond test-
cell (RP) during 2004-2006 

 

Figure 4.17     Measured and computed minimum temperatures for Roofpond 
test-cell (RP) during 2004-2006 
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Control Test-cell (CC) 

Second Phase 

Again as described in chapter three the first step is to gather all the 

weather data and the measured data and analyzed side-by-side. As shown in 

figure 4.2 for the control test-cell (CC) configurations for the second phase the 

result where gathered and plotted in a chart to study the relation between the 

outdoor and indoor temperature (Fig. 4.18). Therefore, the data was ran through 

a correlation based on Givoni’s correlation method (see figures 4.19, 4.20, and 

4.21). Furthermore, based on the correlation between the two a regression 

calculation was conducted to generate all the coefficient values for all the 

variables required to establish the formulas. The formulas generated for the 

roofpond test-cell for the maximum, average, and minimum predictive indoor 

temperature are: 

Maximum: with correlation coefficient at 85% with the measured data (Fig. 4.22) 

Tmax. = -4.55 + [(Solper.avg)(-0.0002)] + [(Solrun.avg.)(0.0009)] + [(Solavg.)(-

0.0002)] + [(DBTper.avg. )(0.31)] +  [(DBTrun.avg. )(0.4)] + [(DBTavg. )(0.42)] + 

[(DBTmax. )(0.11)] + [(DBTmin. )(-0.31)] + [(WBTmax. )(0.3)] + [(WBTmin. )(-

0.1)] 

Average: with correlation coefficient at 94% with the measured data (Fig. 4.23) 

Tavg. = -4.28 + [(Solper.avg)(-0.00012)] + [(Solrun.avg.)(0.00036)] + 

[(Solavg.)(0.0004)] + [(DBTper.avg. )(0.032)] +  [(DBTrun.avg. )(0.45)] + [(DBTavg. 

)(0.68)] + [(DBTmax. )(-0.0007)] + [(DBTmin. )(-0.17)] + [(WBTmax. )(-0.05)] + 

[(WBTmin. )(0.06)] 
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Minimum: with correlation coefficient at 96% with the measured data (Fig. 4.24) 

Tmin. = -2.13 + [(Solper.avg)(0.0004)] + [(Solrun.avg.)(-0.00034)] + [(Solavg.)(-

0.00032)] + [(DBTper.avg. )(-0.07)] +  [(DBTrun.avg. )(0.42)] + [(DBTavg. )(0.54)] 

+ [(DBTmax. )(-0.06)] + [(DBTmin. )(0.18)] + [(WBTmax. )(-0.19)] + [(WBTmin. 

)(0.13)] 

 

 

Figure 4.18     Maximum, average, and minimum of the control test-cell 
(CC) measured air temperatures and the outdoor dry bulb temperatures for 

second phase summer 2009 
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Figure 4.19     Control test-cell (CC) maximum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.20     Control test-cell (CC) average measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.21     Control test-cell (CC) minimum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 
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Figure 4.22     Measured and computed maximum temperatures for control test-
cell (CC) during summer 2009 

 

Figure 4.23     Measured and computed average temperatures for control test-
cell (CC) during summer 2009 

 

Figure 4.24     Measured and computed mimimum temperatures for control test-
cell (CC) during summer 2009 
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Roofpond Test-cell (RP) 

 The same procedures were taken by gathering all the weather data and 

the measured data and analyzed side-by-side. As shown in figure 4.2 for the 

roofpond test-cell (RP) configuration the result where gathered and plotted in a 

chart to study the relation between the outdoor and indoor temperature (Fig. 

4.25). Therefore, the data was ran through a correlation based on Givoni’s 

method (see figures 4.26, 4.27, and 4.28). Furthermore, based on the correlation 

between the two a regression calculation was conducted to generate all the 

coefficient values for all the variables required to establish the formulas. The 

formulas generated for the roofpond test-cell for the maximum, average, and 

minimum predictive indoor temperature are: 

Maximum: with correlation coefficient at 93% with the measured data (Fig. 4.29) 

Tmax. = -30.9 + [(Solper.avg)(0.0003)] + [(Solrun.avg.)(-0.00074)] + 

[(Solavg.)(0.00074)] + [(DBTper.avg. )(0.48)] +  [(DBTrun.avg. )(0.7)] + [(DBTavg. 

)(1.06)] + [(DBTmax. )(-0.2)] + [(DBTmin. )(-0.68)] + [(WBTmax. )(-0.25)] + 

[(WBTmin. )(0.13)] 

Average: with correlation coefficient at 95% with the measured data (Fig. 4.30) 

Tavg. = -26.6 + [(Solper.avg)(-0.00021)] + [(Solrun.avg.)(0.000009)] + 

[(Solavg.)(0.0002)] + [(DBTper.avg. )(0.45)] +  [(DBTrun.avg. )(0.5)] + [(DBTavg. 

)(0.97)] + [(DBTmax. )(-0.14)] + [(DBTmin. )(-0.43)] + [(WBTmax. )(-0.31)] + 

[(WBTmin. )(0.11)] 

Minimum: with correlation coefficient at 95% with the measured data (Fig. 4.31) 
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Tmin. = -22.24 + [(Solper.avg)(-0.0005)] + [(Solrun.avg.)(-0.0000024)] + 

[(Solavg.)(-0.0000033)] + [(DBTper.avg. )(0.47)] +  [(DBTrun.avg. )(0.29)] + 

[(DBTavg. )(1.03)] + [(DBTmax. )(-0.23)] + [(DBTmin. )(-0.2)] + [(WBTmax. )(-

0.33)] + [(WBTmin. )(0.09)] 

 

 

Figure 4.25     Maximum, average, and minimum of the roofpond test-cell 
(RP) measured air temperatures and the outdoor dry bulb temperatures for 

second phase summer 2009 
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Figure 4.26     Roofpond test-cell (RP) maximum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.27     Roofpond test-cell (RP) average measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 

 

Figure 4.28     Roofpond test-cell (RP) minimum measured indoor 
temperatures and the outdoor dry bulb temperatures correlation 
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Figure 4.29     Measured and computed maximum temperatures for Roofpond 
test-cell (RP) during summer 2009  

 

Figure 4.30     Measured and computed average temperatures for Roofpond test-
cell (RP) during summer 2009  

 

Figure 4.31     Measured and computed minimum temperatures for Roofpond 
test-cell (RP) during summer 2009 
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 Each of the charts presented above is showing the relation between the 

measured indoor temperature and the computed indoor temperature generated 

by the formulas presented in this chapter.  However, the correlation between the 

two presents a pattern that the formulas could predicate the indoor temperature 

based on the minimum climatic variables.  Therefore, based on the information 

provided by the formulas one can start looking at how a roofpond can perform in 

such climate in the early stages of design. With this kind of information a model 

can be developed to look at different options that will help the end result to 

establish the best possible performance needed for the particular project.  As 

designers we are always looking for ways and methods to study and understand 

the outcomes; therefore, these formulas are an important tool that can be use for 

such thing. Especially at times like this when the planet is facing crises and 

action must be taken quick with result that will help us overcome the future and 

its problems. 
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CHAPTER 5 

CONCLUSION  

 Based on the result of predictive formulas developed by this research, Las 

Vegas is one of the cities will be analyzed and a model will be created to 

understand the effectiveness of the roofpond in such climate.  The first phase of 

the research, when both the formulas for the roofpond test-cell (RP) and the 

control test-cell are analyzed based on the “Typical Meteorological Year “(TMY) 

data for Las Vegas.  A comparison is created to understand the performance of 

the two rooms (Fig. 5.1).  However, the outcomes shows as presented in figure 

5.1 the roofpond test-cell’s performance based on the maximums and minimums 

indoor temperatures is about 5 to 6 ºF less than the control test-cell, also the 

minimums are about  5 to 6 ºF higher than the control test-cell.  Therefore, 

choosing the roofpond over the conventional methods which most buildings are 

done this way; by using roofpond is in fact a better performance and in the long 

run it will reduce the cost of operation and maintenance of the building due to 

passive heating and cooling verse mechanically doing so.  

Applying Predicting Formulas To Las Vegas Climate 
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Figure 5.1     Computed indoor temperature for the control test-cell (CC) and the 

roopond test-cell for Las Vegas TMY based on the predictive formulas 
 

Since the second phase of the research data was collected during the 

summer; therefore, the predictive formulas were applied to the cooling season 

performance only. The result from the formulas gives a very clear statement 

when the computed maximum, average, and minimum indoor temperatures 

where plotted with the average dry bulb temperature for the Las Vegas TMY 

climate data.  As shown in figure 5.2, the chart explains how the computed 

maximum indoor temperatures are slightly higher than the average dry bulb 

temperatures and at time during the cooling season the computed maximum 

temperatures are even lower than the average outdoor dry bulb temperature.  

Furthermore, the result shows that the roofpond system performance for Las 

Vegas climate is an excellent choice for cooling strategy where one can have up 
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to 10 ºF difference between the indoors and outdoors as an result by just using 

the roofpond as cooling method.   

 From the outcome of the predictive formulas for the roofpond (RP) and the 

control (CC) test-cells for the second phase were set side-by-side for 

performance comparison with outdoor temperatures (Fig. 5.3).  The result shows 

there is a big swing between the maximum and minimum outdoor temperatures 

where it can be over 20 ºF of difference. Where, looking at the control test-cell 

(CC) it shows between 15 to 20 ºF of swings between the maximum and 

minimum temperatures. However, the roorpond shows only 5 to 10 ºF which 

explains how roofpond is a reliable system to be used for cooling for its 

consistency in maintaining the temperature at a constant level throughout the day 

and night (Fig. 5.3). See figures 5.4 through 5.9 for the correlation comparison of 

the result for the Las Vegas cooling season based on the predictive formulas.  
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Figure 5.2     Computed maximum, average, and minimum indoor temperature 
for the roofpond test-cell (RP) and average dry bulb temperature for Las Vegas 

TMY based on the second phase predictive formulas 

 
Figure 5.3     Computed maximum and minimum indoor temperature for the 

control test-cell (CC), roofpond test-cell (RP) and dry bulb temperature for Las 
Vegas TMY based on the second phase predictive formulas 
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Figure 5.4     Correlation between the computed roofpond maximum predicted 

indoor temperature and the maximum outdoor temperature of Las Vegas TMY for 
the cooling season 

 
Figure 5.5     Correlation between the computed roofpond average predicted 

indoor temperature and the average outdoor temperature of Las Vegas TMY for 
the cooling season 

 
Figure 5.6     Correlation between the computed roofpond minimum predicted 

indoor temperature and the minimum outdoor temperature of Las Vegas TMY for 
the cooling season 
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Figure 5.7     Correlation between the computed roofpond maximum predicted 

indoor temperature for the first phase and the second phase based on Las Vegas 
TMY for the cooling season 

 
Figure 5.8     Correlation between the computed roofpond average predicted 

indoor temperature for the first phase and the second phase based on Las Vegas 
TMY for the cooling season 

 
Figure 5.9     Correlation between the computed roofpond minimum predicted 

indoor temperature for the first phase and the second phase based on Las Vegas 
TMY for the cooling season 
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 The formulas generated by this study can be further developed to become 

a tool that can be used for the schematic stage of a design process.  The tool 

can consist of a developed software that contain basic weather data from 

different city around the world that one can easily see the outcomes of a 

roofpond system performance in that particular city or climate region. This will 

tool could be further develop to combine other passive design strategies to show 

the use of individual system or combination of different systems to achieve the 

highest performance possible for passively heating and cooling.  

Recommendations for Further Study 
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APPENDIX 1 

RENO, NV RESULT 

The result for the performance of roofpond based on the predicting formulas 

generated by this thesis:  

 

Figure A1.1     Computed maximum, average, and minimum indoor temperature 
for the roofpond test-cell (RP) and average dry bulb temperature for Reno TMY 

based on the second phase predictive formulas 

 

Figure A1.2     Computed maximum and minimum indoor temperature for the 
control test-cell (CC), roofpond test-cell (RP) and dry bulb temperature for Reno 

TMY based on the second phase predictive formulas 
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APPENDIX 2 

ELY, NV RESULT 

The result for the performance of roofpond based on the predicting 

formulas generated by this thesis: 

 

Figure A2.1     Computed maximum, average, and minimum indoor temperature 
for the roofpond test-cell (RP) and average dry bulb temperature for Ely TMY 

based on the second phase predictive formulas 

 

Figure A2.2     Computed maximum and minimum indoor temperature for the 
control test-cell (CC), roofpond test-cell (RP) and dry bulb temperature for Ely 

TMY based on the second phase predictive formulas 
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APPENDIX 3 

TONOPAH, NV RESULT 

The result for the performance of roofpond based on the predicting 

formulas generated by this thesis: 

 

Figure A3.1     Computed maximum, average, and minimum indoor temperature 
for the roofpond test-cell (RP) and average dry bulb temperature for Tonopah 

TMY based on the second phase predictive formulas 

 

Figure A3.2     Computed maximum and minimum indoor temperature for the 
control test-cell (CC), roofpond test-cell (RP) and dry bulb temperature for 

Tonopah TMY based on the second phase predictive formulas 
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