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Convergent roles of de novo mutations
and common variants in schizophrenia in
tissue-specific and spatiotemporal co-
expression network
Peilin Jia1, Xiangning Chen2, Ayman H. Fanous3,4,5,6 and Zhongming Zhao 1,7,8

Abstract
Genetic components susceptible to complex disease such as schizophrenia include a wide spectrum of variants,
including common variants (CVs) and de novo mutations (DNMs). Although CVs and DNMs differ by origin, it remains
elusive whether and how they interact at the gene, pathway, and network levels that leads to the disease. In this work,
we characterized the genes harboring schizophrenia-associated CVs (CVgenes) and the genes harboring DNMs
(DNMgenes) using measures from network, tissue-specific expression profile, and spatiotemporal brain expression
profile. We developed an algorithm to link the DNMgenes and CVgenes in spatiotemporal brain co-expression
networks. DNMgenes tended to have central roles in the human protein–protein interaction (PPI) network, evidenced
in their high degree and high betweenness values. DNMgenes and CVgenes connected with each other significantly
more often than with other genes in the networks. However, only CVgenes remained significantly connected after
adjusting for their degree. In our gene co-expression PPI network, we found DNMgenes and CVgenes connected in a
tissue-specific fashion, and such a pattern was similar to that in GTEx brain but not in other GTEx tissues. Importantly,
DNMgene–CVgene subnetworks were enriched with pathways of chromatin remodeling, MHC protein complex
binding, and neurotransmitter activities. In summary, our results unveiled that both DNMgenes and CVgenes
contributed to a core set of biologically important pathways and networks, and their interactions may attribute to the
risk for schizophrenia. Our results also suggested a stronger biological effect of DNMgenes than CVgenes in
schizophrenia.

Introduction
Schizophrenia is a chronic and socially disabling dis-

order whose pathophysiology remains unsolved1. During
the past decade, a large body of genetic and genomic
studies have demonstrated that genetic components sus-
ceptible to schizophrenia are highly heterogeneous and
may involve a wide spectrum of risk factors, including

common, rare, and de novo variants with effect sizes
ranging from small to large2–4. Common variants (CVs),
which are mainly investigated through genome-wide
association studies (GWAS), and de novo mutations
(DNMs), which are mainly discovered through next-
generation sequencing of family trios, are two major
groups of genetic variants. So far, more than a hundred
CVs have been reported to be associated with schizo-
phrenia5–8. CVs individually have small effect and, in
combination, they explained a moderate proportion of the
heritability of schizophrenia (less than 2%)9. Secondary
analyses of GWAS data have revealed genomics and
functional characteristics of CVs, highlighting their
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regulatory roles3,10,11 and enrichment in biological path-
ways12–14 and networks15,16. In contrast to CVs, DNMs
are considered to have large effects and could presumably
replenish the genetic variants that are wiped out by nat-
ural selection17,18. Under this hypothesis, complex disease
like schizophrenia could keep a stable prevalence in
population19,20, despite their reduced fecundity. Indeed,
elevated rates of damaging DNMs have been reported in
schizophrenia patients when compared to the unaffected
controls18,21, as well as in other psychiatric disorders
including autism3 and severe intellectual disability22.
DNMs are highly heterogeneous, with a small number of
DNMs recurrently found in more than one schizophrenia
patient23. Except a few DNMs occurred in known schi-
zophrenia candidate genes (e.g., GRIN2A24, NRXN125, and
SHANK326), the majority have unknown implications for
schizophrenia.
While insightful but inclusive results have reported for

CVs and DNMs separately, little effort has been made to
investigate whether and how these two types of variants
interact at the gene, pathway, and network levels and
share the contribution to disease onset or progression.
We hypothesize that it is unlikely that these variants act
independently, or through unrelated biological processes,
to cause the disease. Accordingly, we hypothesize that
these variants likely share functions in common biological
pathways or processes. In this work, we examined the
features of genes harboring DNMs (denoted as
DNMgenes) and genes with CVs (denoted as CVgenes)
based on evolutionary and network measurements. We
introduced a schizophrenia gene network that could
optimally link DNMgenes and CVgenes through co-
expression-weighted protein–protein interactions (PPIs),
where the co-expression profiles were obtained using
spatiotemporal brain expression data or tissue-specific
expression data.

Methods
DNM data
We downloaded the DNMs from NPdenovo23 for schi-

zophrenia. NPdenovo is a recently developed database that
curates DNMs from thousands of trios across multiple
types of neuropsychiatric disorders including schizo-
phrenia. The likelihood of each gene that contributes to
the corresponding diseases was pre-calculated by the
TADA program27 and the p-values were available on the
NPdenovo website. After filtering by the p-value and
expression profile (see Figure S1 for detailed filtering
steps), we obtained a total of 254 genes with p-value < 0.05
in schizophrenia and were also expressed in at least one
spatiotemporal site (see below, “Brain expression data”),
referred as DNMgenes. Among them, one DNMgene
(LAMA2) had three DNMs, eight genes had two DNMs
(TAF13, ESAM, RB1CC1, MKI67, PHF7, NIPAL3, and

LPHN2, ordered by TADA p-value), and the remaining
genes had one DNM.

CVs from GWAS data
The summary GWAS data were downloaded from the

Psychiatric Genomics Consortium5. We selected variants
with p-value < 5 × 10−8 and mapped them to genes if a
variant was located in the gene body or within gene
boundaries, which were defined as −35 kb upstream or
downstream of each gene12. After requiring genes to be
expressed in at least one spatiotemporal site, we identified
410 genes and referred them as CVgenes. In further
analyses, we separated the CVgenes into 7 subgroups by
their –log10(p) values (ranged between 7.30 and 29.75)
and each required group has roughly similar number of
genes (median 60, ranged between 34 and 83).

Gene expression data
Schizophrenia is commonly considered as a brain dis-

order. Therefore, we downloaded a comprehensive brain
expression dataset from BrainSpan Atlas28, which con-
tained gene expression for multiple brain regions in
multiple developmental stages. Following a previous
work29, we grouped the samples into 12 categories based
on their distinctive spatial and temporal features, ranging
in three developmental stages (stage 1 (ST1), stage 2
(ST2), and stage 3 (ST3)) and four brain regions (FC:
frontal cortex; SC: sub-cortical regions; SM: sensory-
motor regions; and TP: temporal–parietal cortex) (Table
S1). At each spatiotemporal site, we considered a gene
was expressed if it had its RPKM (Reads Per Kilobase of
transcript per Million mapped reads) value greater than
one in one or more samples. We tested more stringent
cutoff values, but the results in our following analyses
were similar.
Tissue-specific gene expression data were downloaded

from GTEx (version 6) to investigate the tissue-specific
expression patterns30. A total of 27 tissues were con-
sidered, each with ≥30 samples. For each gene, we defined
a z-score to measure its tissue specificity:
zi ¼ expri �meanðExprÞ

sdðExprÞ , where expri is the average gene
expression of the gene in the ith tissue, Expr represents
the collection of its average gene expression in all tissues,
and sd is the standard deviation of Expr. A higher z-score
indicates the gene to be more specifically expressed in the
investigated tissue.

PPI and CoPPI networks
We built the reference human PPI network by com-

bining data from the Human Protein Reference Data-
base31 and the STRING32 database (hereafter referred as
the HS network)33. After removing self-interactions and
isolated nodes, the final HS network included 10,314
nodes (i.e., proteins) and 51,637 edges (i.e., interactions).
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A CoPPI is defined an edge-weighted PPI, in which each
edge was weighted by the co-expression of the two nodes
using the expression data generated for the specific spa-
tiotemporal site. We used the absolute value of Pearson
Correlation Coefficient (PCC) to measure the co-
expression level between a pair of nodes. Edges invol-
ving unexpressed nodes were removed from the network.

Network characteristics
We utilized three measurements in network analysis:

node degree, shortest path, and betweenness centrality.
Node degree is defined as the number of direct interactors
of a node. The shortest path between two nodes was
measured as the minimum length required for one node
to traverse to another node in the network. The
betweenness centrality measures the importance of a
node. It is calculated by the number of shortest paths
going through a node in the network. A high betweenness
centrality value indicates that the corresponding node has
a strong influence on the transfer of information in the
network.

Construction of subnetworks to link DNMgenes and
CVgenes in spatiotemporal CoPPIs
To build a subnetwork that links the largest number of

DNMgenes and CVgenes in the context of CoPPIs, we
developed the following method. In a given CoPPI, we
defined the union of DNMgenes and CVgenes in the HS
network as the seed genes, i.e., genes of our interest. Our
ultimate aim was to link seed genes using linker genes in a
reference CoPPI. Theoretically, the linker genes can be
any genes in the reference network except the seed genes.
An exhaustive search within a large network would be
very time consuming; therefore, we introduced two
parameters (r1 and r2) to optimize our search of candidate
linker genes with high probability. We first collected all
other nodes that interacted with at least two genes of
interest. For each of these candidate nodes (denoted by

canN), we define r1 ¼ meanðecanN intN Þ
meanðecanN Þ , where intN denotes

our genes of interest and e is the edge weight. Here
meanðecanN intN Þ is the average weight of edges between a
candidate gene and a gene of our interest and
meanðecanN Þ is the average weight of all edges that the
candidate gene is involved. Thus, r1 measures the co-
expression specificity between a candidate gene and our
genes of interest. To control the impact of nodes with

high degree in the network, we define r2 ¼
r1 ´ #ðinteractors\ intNÞ

#interactor for each candidate node, where
#ðinteractors\ intNÞ

#interactor measures the specificity of a candidate

gene’s interactors overlapping with our genes of interest.
Based on our parameter evaluation, we applied r1 � 1:2
and r2>0:1 to our candidate gene selection (see Results).

These thresholds of r1 and r2 resulted in selection of ~25%
most promising nodes in the network being candidate
genes and ~5–10% nodes interacting with two or more
DNMgenes or CVgenes. We give a subnetwork score

s ¼ r3 ´meanðesubnetworkÞ, where r3 ¼ #linkedðDNMgenes;CVgenesÞ
#unionðDNMgenes;CVgenesÞ.

Here, r3 measures the proportion of DNMgenes and
CVgenes that are connected in the subnetwork. Our aim is to
link the DNMgenes and CVgenes in the context of spatio-
temporal (e.g., the 12 sets in brain expression) or tissue-
specific (e.g., the GTEx data) CoPPI networks with a goal to
maximize the proportion of linked seed genes (DNMgenes
and CVgenes) and the within-subnetwork co-expression
values. Starting with the seed genes, we iteratively choose
nodes from the candidate gene list that can maximize s, until
the increase ratio of s is less than 0.5%. We applied the
method to each of the 12 spatiotemporal points and 27
GTEx tissues. In each application, we also conducted a
randomization test by selecting a random set of seed genes
with the same size as our genes of interest. Starting with each
random set of seed genes, we applied the method in the same
way and using the same threshold set to maximize the
connection of seed genes, resulting in 100 random subnet-
works. The code to construct the subnetworks is available at
https://github.com/bsml320/VariantSubnetwork.

Results
Temporal and spatial expression patterns of DNMgenes
and CVgenes
To test the tissue-specific expression of these genes, we

selected three tissues that are related to psychiatric dis-
eases (brain, nerve, and pituitary) and selected the blood
tissue as a control for analyses. All four tissues were from
GTEx data. As shown in Fig. 1a, DNMgenes showed
significantly higher tissue-specific expression in nerve (p
= 6.39 × 10−4, pBH= 7.67 × 10−3, one-sided t-test com-
paring DNMgenes versus non-DNMgenes in each tissue;
multiple testing correction using the Benjamini & Hoch-
berg (BH) method34 on all 27 tissues and 4 gene groups)
but not in brain, pituitary, or blood. CVgenes showed no
tissue-specific expression in any of these tissues; the same
for each subgroup of CVgenes (Figure S2). In addition, by
analyzing the spatiotemporal brain expression data, we
observed that both DNMgenes and CVgenes tended to be
expressed in stages 1 and 3 than in stage 2. Particularly,
69.0–71.0% DNMgenes were expressed in stage 1 and
72.6–73.4% DNMgenes were expressed in stage 3, com-
pared to 59.5–65.0% DNMgenes expressed in stage 2 (Fig.
1b). Meanwhile, 53.9–58.3% CVgenes were expressed in
stage 1 or stage 3, much higher than in stage 2
(50.5–52.0%). A heatmap of both groups of genes in
12 spatiotemporal points is presented in Figure S3.
Comparing co-expression patterns of each group of genes,
we found a significant overload of high co-expression
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among DNMgenes in stages 2 and 3 (Fig. 1c). Such a
pattern of DNMgenes was universally observed in all
four brain regions. In contrast, CVgenes did not show
significant co-expression in any stage or any region
(Fig. 1c).

Network characteristics of DNMgenes and CVgenes
Characteristics of genes in PPI networks may reflect

their functional importance. We first examined the
betweenness centrality of the four gene sets in the HS
network. DNMgenes had significantly higher betweenness
values (n= 177 DNMgenes, average log(betweenness):
6.982, p= 1.217 × 10−8, Wilcoxon Rank-Sum test) than
other genes (n= 7932, average: 5.450) in the HS network,
but CVgenes (n= 274, average: 6.083, p= 8.47 × 10−3)
showed only marginal significance (Fig. 2a–c). We also
conducted a randomization test by selecting the same
number of DNMgenes or CVgenes from the network
10,000 times and calculated an empirical p-value as the
proportion of random gene sets exceeding the average
betweenness in DNMgenes or CVgenes, respectively. This
randomization test proved that the observed betweenness
of DNMgenes was significantly higher than randomly
expected (pempirical < 1 × 10−4), but the observed

betweenness of CVgenes failed in the randomization test
(pempirical= 0.222).
Node degree, also called node connectivity, measures

the number of direct interactors of a node in a network. A
node with a high degree often implies important functions
in a biological system. DNMgenes had substantially high
node degree (average= 13.26), nearly twice of the other
genes (average: 7.90; p= 9.73 × 10−9, Wilcoxon Rank-
Sum test, Fig. 2d; pempirical= 0.014, the randomization
test, Fig. 2e). For CVgenes, although we observed statis-
tically higher node degree (average: 10.47, p= 3.84 ×
10−4) than other genes, its p-value became insignificant
after the randomization test (pempirical= 0.310, Fig. 2f). As
a comparison, essential genes had the highest degree
(average: 18.32), which was significantly higher than the
other genes (p= 6.11 × 10−129).
To further validate our results, we conducted the same

analyses in the reference network from Pathway-
Commons (PC)35, which encompasses various sources of
PPIs including both physical interactions and interactions
in signaling pathways. In the PC network, we confirmed
that both DNMgenes and CVgenes had significantly
higher betweenness and higher node degree values than
other genes (Fig. 2g–l), all of which were validated in

Fig. 1 Temporal and spatial expression patterns of DNMgenes and CVgenes. a Tissue-specific gene expression of the three gene sets using the
three tissues that are related to psychiatric diseases (brain, nerve, and pituitary) and the blood tissue as control. b Proportion of DNMgenes (left) or
CVgenes (right) that were expressed in 12 spatiotemporal points ranging in three developmental stages (stage 1 or ST1, stage 2 or ST2, and stage 3 or
ST3) and four brain regions (FC frontal cortex, SC sub-cortical regions, SM sensory-motor regions, and TP temporal-parietal cortex). c Co-expression
patterns among DNMgenes (red), CVgenes (green), random genes with the sample size of the union set of DNMgenes and CVgenes (black), and all
genes (gray) in 12 spatiotemporal points. X-axis: average co-expression of the investigated genes, y-axis: proportion of genes for the particular gene
set
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randomization tests. A trend toward higher betweenness
values was also observed in most subgroups of CVgenes
(Figure S4), while the high node degree values of CVgenes
were mainly driven by those with strongest statistical
significance, i.e., the subgroups whose –log10(p) values
were between 18 and 30 (Figure S4).

Connections between DNMgenes and CVgenes were
conditionally insignificant
Several studies have previously proved that DNMgenes

tended to interact with each other more often than ran-
domly expected29. We first explored the interactions and
shortest paths between two individual DNMgenes, two
individual CVgenes, and any of a DNMgene and a
CVgene. For the 254 DNMgenes (177 in the HS network)
and 410 CVgenes (274 in the HS network), there were
only 15 genes overlapped and ten were in the HS network:
ALAS1, CACNA1I, CUL3, FKBPL, GRIN2A, HIST1H1E,
LRP1, SGSM2, STAG1, and SYNGAP1. To explore the
shortest path among different groups of genes, we
excluded these ten genes from each group. As a result, we
observed that 35 DNMgenes directly interacted with each
other through 20 edges (Fig. 3a, b), which were nominally
significantly higher than random gene sets in the HS
network (p= 0.047, Fig. 3c, top panels) and significant in
the PC network (p < 1 × 10−4, data not shown in Fig. 3).
CVgenes significantly interact with each other more often
than the random expectation in both the HS network (p <
1 × 10−4) and the PC network (p < 1 × 10−4). The PPIs
between DNMgenes and CVgenes were marginally

significant in the HS network (p= 0.079) but significant in
the PC network (p < 1 × 10−4). Collectively, these results
implied that DNMgenes and CVgenes significantly
interacted within their groups and with each other.
However, considering that both DNMgenes and

CVgenes had higher degree values than the other genes,
we conducted a conditional resampling by requiring the
random sets to have the same degree distribution. To this
end, we ordered the nodes in the whole HS network
according to their node degree and categorized them into
four groups with approximately equal sizes. For each
random set, we choose the same number of DNMgenes
from each of the four degree groups when evaluating the
edges between DNMgenes, and similarly applied to the
edges between CVgenes or the edges between DNMgenes
and CVgenes. In this conditional resample analysis, the
overrepresentation of PPIs within the CVgene group
remained significant in both the HS network (p= 5 ×
10−4) and the PC network (p < 1 × 10−4). However, the
PPIs within the DNMgene group (p= 0.647) or between
DNMgenes and CVgenes (p= 0.673) were no longer
significantly higher than random expectation (Fig. 3c,
bottom panels). This degree-matched randomization test
thus implied that we should be cautious when interpreting
the interactions among DNMgenes or between
DNMgenes and CVgenes.
The interactions between two individual DNMgenes,

between two individual CVgenes, and between any of a
DNMgene and a CVgene all displayed different co-
expression trend in a spatiotemporal way. Particularly,

Fig. 2 Network characteristics of four gene sets: DNMgenes, CVgenes, essential genes, and other genes. a Distribution of the node
betweenness in the HS protein–protein interaction network. b, c Randomization test of the betweenness for DNMgenes (b) and CVgenes (c) in the
HS network. The dotted red line indicates the actual betweenness of DNMgenes (b) or CVgenes (c) in the HS network. d Comparison of the node
degree. e, f Randomization test of the node degree for DNMgenes (e) and CVgenes (f). g–i Distribution and randomization test of the node
betweenness in the PathwayCommons (PC) network. j–l Distribution and randomization test of the node degree in the PC network
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Fig. 3 (See legend on next page.)
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PPI pairs between DNMgenes tended to be significantly
highly co-expressed than other PPI pairs in the HS net-
work in all 12 spatiotemporal points (Fig. 3d). Interest-
ingly, CVgenes showed opposite trend of co-expressed
PPIs in stage 1 and stages 2–3 and were only marginally
significant. PPIs between DNMgenes and CVgenes were
significantly highly co-expressed than other PPIs. How-
ever, none of the PPI groups had tissue-specific co-
expression as evaluated using the GTEx data (Fig. 3e).

Building subnetworks enriched with DNMgenes and
CVgenes
To investigate the links between DNMgenes and

CVgenes in cellular system, we developed a spatio-
temporal network-assisted approach with an aim of
identifying high co-expression and high connection
between these two groups of genes. We applied the
approach in each of the 12 spatiotemporal points (Fig. 4a)
and in 27 GTEx tissues (Fig. 4b). We referred the sub-
network achieved in each case as the stable subnetwork.
As shown in Fig. 4a, a larger number of genes were
connected in stage 1 (232 in FC, 239 in SC, 232 in SM,
and 218 in TP) than in other stages, whereas in stages 2
and 3, higher co-expression was achieved (s > 0.35).
Importantly, the connected DNMgenes and CVgenes
were largely overlapped in all regions and in each stage
(bottom Venn diagram in Fig. 4a). In all 12 spatiotemporal
points, the stable subnetworks (red cross in each panel in
Fig. 4a) obtained using the actual data showed elevated
co-expression and connection than those observed in
100 subnetworks (gray crosses in each panel in Fig. 4a)
obtained using random seed genes. Notably, the 100 sub-
networks in each case were not simply random subnet-
works by matching the size. Only the seed genes were
randomly selected from the network while the subnet-
works were obtained using the same method. Thus, these
100 subnetworks were also optimized toward high co-
expression and high connection between their random
seed genes. When applying the same method in the 27
GTEx tissues, we observed a subnetwork with the most
connected genes and the highest module score in brain.

The connected seed genes and the co-expression level of
this subnetwork from GTEx brain were comparable with
the subnetworks from 12 spatiotemporal data (Fig. 4b).
In our subnetwork construction, we employed three

parameters: r1 and r2 to determine the candidate genes
being included in the subnetwork, and an increase ratio to
control the stop of subnetwork expansion. We tested a
range of these parameters, including r1= [1.0, 1.1, 1.2, 1.3,
1.4, 1.5] and r2= [0.05, 0.1, 0.15] (Figure S5). We finally
chose r1 � 1:2 and r2>0:1 to have ~25% of nodes in the
subnetwork being considered as candidate genes and
~5–10% nodes being interacted with two or more
DNMgenes or CVgenes. These proportions were vali-
dated in all 12 spatiotemporal CoPPIs as well as 12 ran-
dom seed gene sets (Figure S6). A different threshold for
the increase ratio, 0.2%, was also tested. As shown in
Figure S7, the same results were observed, that is, a larger
number of genes were connected in the stable subnetwork
than the size-matched random genes.
Functional enrichment analysis36 of the component

genes in the stable subnetwork (FC, stage 1) highlighted
histone binding genes (pBonferroni= 8.72 × 10−6), MHC
class II protein complex binding (pBonferroni= 8.57 ×
10−4), chromatin DNA binding (pBonferroni= 4.00 × 10−3),
glutamate receptor activity (pBonferroni= 0.025), and neu-
rotransmitter receptor genes (pBonferroni= 0.027) (Fig. 4c).
Note that the histone and MHC genes were readily
detectable in the original DNMgene and CVgene lists (Fig.
4d), while the neurotransmitter genes were only sig-
nificant in our stable subnetwork. Genes with function in
the neuronal transmitter activities were found including
AXIN1 (a link gene), CNKSR2 (a CVgene), DLG2 (a
DNMgene), DRD2 (a CVgene), CACNA1C (a CVgene),
EPB41L1 (a link gene), GRID2 (a DNMgene), GRIA1 (a
CVgene), GRIN2A (a CVgene and a DNMgene), GRIN1 (a
link gene), NRGN (a CVgene), RYR2 (a link gene), and
SYNGAP1 (a CVgene and a DNMgene). The gene sets,
namely histone binding (mainly histone genes), chromatin
DNA binding (CHD4, EP300, FOXO3, HIST1H1B,
HIST1H1C, HIST1H1E, MECP2, MTA2, SMARCC1,
SMARCC2, SRF), and histone deacetylase binding

(see figure on previous page)

Fig. 3 Connections between DNMgenes and CVgenes. a, b Distribution of the proportion of genes that can be directly connected (a) and the
proportion of gene pairs stratified by the shortest path among them (b). c, d Randomization test for the direct interactions among DNMgenes,
between DNMgenes and CVgenes, and among CVgenes. In c, the randomization test was conducted using 10,000 random sets with the same
number of genes in the corresponding test settings. In d, the randomization test was conducted using 10,000 random sets that have matched
degree distribution as in the actual case. e Co-expression of the edges between DNMgenes (red bars in the top panel), between CVgenes (green bars
in the middle panel), and between DNMgenes and CVgenes (purple bars in the bottom panel). In all panels, gray bars indicate other edges excluding
those in investigation; t-test was conducted to compare the co-expression levels between edges involved in a particular gene group and other
edges. Adjusted p-values after Bonferroni correction were labeled for each test (***padjust < 0.001; **padjust < 0.01; *padjust < 0.05). Y-axis: average co-
expression as measured by absolute Pearson Correlation Coefficient. f Co-expression of the direct interactions among DNMgenes, among CVgenes,
and between DNMgenes and CVgenes in GTEx tissues
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(DDX20, DNMT1, GLI3, HIF1A, HIST1H1B, HSPA1A,
HSPA1B, MAPK8, MECP2, MTA2, NIPBL, SRF), can all
be considered as chromatin remodeling pathways. The
subnetwork in FC, stage 1 was shown in Figure S8 as a
demonstration, where DNMgenes and CVgenes were all
mixed together, implying that the two groups of genes are
likely functionally connected.

Discussion
The genetic architecture underlying schizophrenia has

been proved as highly heterogeneous, involving a wide
range of genetic variants. While each type of the variants
is characterized with unique features in terms of effect

sizes, causal roles, and functional interpretations, it is
unlikely that different types of variants disrupt unrelated
biological processes to cause the same diseases. In this
work, we characterized genes harboring different types of
variants and made links among these genes. We unveiled
that both DNMgenes and CVgenes had comparable,
evolutionary conservation levels and protein ages as
essential genes, suggesting their critical functional
importance. Although DNMgenes and CVgenes appeared
sparsely connected, we found that they could be linked in
a tissue-specific fashion. The subnetworks they formed
had significantly higher co-expression levels than expec-
ted from random genes and displayed similar tissue co-

Fig. 4 Schizophrenia subnetwork analysis. a Comparison of the stable subnetwork obtained in each of the 12 spatiotemporal points (red) with
100 random subnetworks (gray). X-axis: the number of genes of interest (i.e., the union of DNMgenes and CVgenes) in the stable subnetwork; y-axis:
score of the subnetwork (see main text for details). In each panel, the 100 random subnetworks were identified using random seed genes in the
same size as our genes of interest and were obtained using the same method. Comparison of the DNMgenes and CVgenes in the stable subnetwork
is shown in Venn diagrams. b Comparison of the 12 subnetworks obtained using 12 spatiotemporal brain data from BrainSpan Atlas (red) with
subnetworks obtained using GTEx tissue-specific expression. The GTEx brain, nerve, and pituitary are shown in blue while other tissues are shown in
gray. c Gene Ontology enrichment analysis of component genes in FC, stage 1. Significantly enriched (pBonferoni < 0.05) Gene Ontology Molecular
Function were obtained using ToppFun. d Gene Ontology enrichment analysis of the original genes of interest, i.e., the union of DNMgenes and
CVgenes
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expression pattern to brain but not the other tissues.
Importantly, the network analysis showed the con-
vergence of DNMgenes and CVgenes toward pathways of
chromatin remodeling, MHC protein complex genes, and
neuronal transmitter activities.
Although it has been widely accepted that both CVs and

DNMs contribute to the genetic components of schizo-
phrenia, it has been essentially unknown to us how they
affect the function and lead to the diseases. Our results
provided insights into the roles of CVgenes and
DNMgenes in schizophrenia. The DNMs considered in
our work included truncation mutations and deleterious
missense mutations, both of which were expected with
severe impact on protein products. In contrast, most CVs
are located in non-coding regions while increasing lines of
evidence have indicated that these variants play regulatory
roles on target gene expression levels to contribute to
diseases37,38. The fact that DNMgenes have higher
betweenness indicates that DNMgenes themselves have
important roles in the networks, because many paths in
the network go through these DNMgenes according to
the definition of betweenness. Removal of these genes,
e.g., through nonsense mutations, would likely result in
severe impact on the whole network.
While the previous findings of CVs (CVgenes) and DNMs

(DNMgenes) are important for future studies, some of these
mutations (genes) do not necessarily contribute to schizo-
phrenia. Therefore, selection of these candidate mutations/
genes is critical in our future investigation of their risk to
schizophrenia. In our study, we hypothesize that these two
types of variants (and genes) will share similar biological
processes and interact in the network. With this rationale,
our approach may pinpoint more promising candidate
genes for schizophrenia, as well as their possible molecular
mechanisms. Our results resembled risk factors critical to
pathogenesis of schizophrenia that had been previously
implicated. Genes of the MHC complex12,39 and regulation
of neurogenesis have long been implicated in schizophrenia,
while genes from chromatin remodeling pathways have
been recently reported40. Growing evidence has suggested
that chromatin organization, especially epigenetic dysregu-
lation, is likely an important mechanism in the pathogenesis
of schizophrenia. Genes reported in GWAS results, which
function in epigenetic regulation, are mainly histone genes.
Genes with DNMs in schizophrenia patients, such as
CHD2, MECP2, and HUME1, have converged molecular
functions in epigenetic regulation of transcription18.
Recently, a large-scale whole-exome sequencing study using
>4000 schizophrenia and >1000 trios revealed the gene
SETD1A as a risk gene for schizophrenia40, which further
proved the potential roles of chromatin organization.
To provide additional biological insights, we also

investigated the evolutionary features of DNMgenes and
CVgenes (Figure S9). We used the dN/dS ratio and the

evolutionary rate, both of which are commonly used for
studying molecular evolution and inferring the functional
importance. Our results showed that DNMgenes and
CVgenes had significantly low dN/dS ratio and low evo-
lutionary rate compared to other genes. In addition, we
found that DNMgenes and CVgenes were significantly
older than other genes, but similar to essential genes, as
measured by the average protein age. Notably, DNMgenes
had the oldest age among the four gene groups
(DNMgenes, CVgenes, essential genes, and other genes).
Because previous reports have shown that disease genes
tended to be ancient41–43, these results indicated that
DNMgenes and CVgenes likely had critical functions.
In conclusion, we studied CVs and DNMs in schizo-

phrenia using evolutionary measurements, the human PPI
network, and disease-relevant spatiotemporal co-
expression networks. Our results revealed different pat-
terns of genes harboring the two types of variants. These
genes, although appeared distant, were more accessible to
each other and formed a convergent network enriched in
three functional groups. Future validation will warrant the
impact of our work.
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