6-3-2019

The Divided Labor of Attack Advertising in Congressional Campaigns

Kenneth M. Miller

University of Nevada, Las Vegas, kenneth.miller@unlv.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/political_science_articles

Part of the [American Politics Commons](https://digitalscholarship.unlv.edu/political_science_articles), and the [Political Theory Commons](https://digitalscholarship.unlv.edu/political_science_articles)

Repository Citation

http://dx.doi.org/10.1086/703133

This Article is brought to you for free and open access by the Political Science at Digital Scholarship@UNLV. It has been accepted for inclusion in Political Science Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
The Divided Labor of Attack Advertising in Congressional Campaigns

Kenneth M. Miller, University of Nevada, Las Vegas

This article offers a theory of how party networks divide the labor of attacking opponents. Using an extensive data set of campaign advertising from the 2010 and 2012 congressional elections augmented with Nielsen television ratings data, it is shown that candidates attack opponents less when supporting outside groups attack more. Due to differences in how outside groups and candidates attack opponents, when candidates partially outsource attack advertising to independent expenditure groups, attacks in that campaign become more issue and policy based. Thus, in perhaps an unintended consequence of the divided labor of attack advertising, outside group involvement makes it more likely that an election campaign will foster citizen knowledge about policy positions of the candidates.

While independent expenditures have had a role in US campaigns for many decades, the scale of independent activity has dramatically increased since the Supreme Court decision in Citizens United v. FEC, 558 U.S. 310 (2010) and the federal court decision in Speechnow.org v. FEC, 599 F. 3d 686 (2010). In the elections since these court decisions, spending by outside groups has risen to the point that outsider advertising outpaces candidate spending in some of the closest races (Fowler and Ridout 2014). Does this more crowded environment mean that candidates have lost control of their campaigns?

The independent expenditure groups, mostly super PACs and so-called dark money groups (those with undisclosed donors, usually social welfare organizations organized under section 501[c][4], [5], or [6] of the Internal Revenue Service code) that have taken on a larger role in recent elections are viewed by many scholars as integrated pieces of a broader party network (Herrnson 2009; Koger, Masket, and Noel 2009; Skinner, Masket, and Dulio 2012). Candidates, parties, and outside groups within these networks all share an interest in electoral success and should cooperate with one another to the degree that campaign law will allow (Dwyre and Kolodny 2014; Magleby, Monson, and Patterson 2007).

Recent studies of independent group advertising have found that these actors tend to cooperate with candidates by emphasizing the same issues as the advertising of the candidates they support (Franz 2014; Franz, Fowler, and Ridout 2016). This study posits that the various actors within these party networks are more sophisticated when it comes to the positive or negative sentiment of advertising, and that they engage in a compensatory style of cooperation by dividing the labor of attack. Using a data set created by merging existing data of congressional advertising from the Wesleyan Media Project with television ratings data from Nielsen, this study shows that candidates have a lower proportion of their own advertising devoted to attack when they benefit from more outside group attacks on their opponent. This division of labor allows candidates to reduce attacks that carry the risk of public backlash and instead run more positive, self-promoting advertising.
The rise of new actors and the successful absorption of these actors’ activities into a cohesive team effort suggests the emergence of a new system of network-centered campaigns with features different from the candidate-centered campaigns of the last several decades. Cooperation between candidates, parties, and independent expenditure groups reveals how party networks operate in elections.

A division of labor by candidates and outside groups would be an interesting but unimportant story if there were no consequences for democratic deliberations. But when a greater responsibility for attack advertising is shifted to super PACs and dark money groups, the types of attacks change. Outside groups often have policy goals and a less candidate-specific perspective than candidates. Because of these differences, outside groups compared to candidates are more likely to air policy-based instead of personal attacks. Contrary to concerns that outside groups, who are unaccountable to voters, will degrade the quality of campaign discourse, when outside groups participate in campaigns the attacks in the campaigns become more policy based and less focused on attacks on candidates’ personal characteristics.

THE RISK AND REWARD OF ATTACK ADVERTISING

In any campaign advertisement, the sponsor chooses to air attack messaging about the opponent, advocacy messaging about the supported candidate, or often a combination of both. While candidates may profess to prefer mostly positive messaging about the supported candidate, or often a combination of advocacy messaging and attacks, advocacy messaging frame the candidate in the preferred context and reduce voters’ backlash effect from attack advertising, where viewers of attack ads lower their evaluations of the attacker instead of the target of the message (Allen and Burrell 2002; Brooks and Murow 2012; Dowling and Wichowsky 2015; Garramone 1985; Garramone and Smith 1984; Lau et al. 2007). Second, campaigns must still balance multiple communications objectives in their advertising. Besides attacking opponents, campaigns seek to define their own candidates in favorable terms to voters. Advocacy messages frame the candidate in the preferred context and reduce voters’ uncertainty about candidates (Alvarez 1997; Alvarez and Franklin 1994; Shea and Burton 2006). Advertising time spent attacking the opponent is time not spent making the case for the supported candidate, so campaigns should seek a balance of both attack and advocacy messages in the advertising mix.

CAMPAIGN ACTORS AND COOPERATION

The advertising landscape is further complicated by the dramatically increased role of outside groups since 2010 (Fowler and Ridout 2012). The primary division of campaign actors is between candidates and outside groups. Outside groups are composed of party groups and three varieties of independent groups: party-adjacent groups that, like party groups, pursue legislative majorities; issue-based groups that advance policy objectives through replacing opponents and defending allies; and single-candidate groups, formed to support a single candidate (more information about how groups were coded is included in the appendix, available online). Parties and party-
adjacent groups, in particular, but all outside groups in general are rational and pragmatic in their decisions of which candidates to support (Magleby 2014; Miller 2017). These groups seek electoral victory and in as many contests as possible, thus they should prefer to cooperate with candidates as best they can.

The picture of how campaign actors cooperate with one another and provide advance signals of one another’s activities is based on numerous accounts in press, scholarly studies, and a set of eight open-ended one-on-one interviews conducted in June and July 2015 with individuals with direct experience in the current campaign landscape. The interview participants include: a former senior official from the DSCC, a television executive responsible for advertising sales to political clients in over a dozen major media markets, two campaign consultants both with extensive experience in US House and Senate races (one Democrat and one Republican), a Democratic pollster, a Democratic campaign manager, a senior official from a Republican-aligned party-adjacent super PAC, and an official from an issue-based group. Respondents were recruited via email based on referrals from previous respondents. The semi-structured interviews were conducted “on background,” since the interviews covered potentially sensitive topics of campaign strategy and techniques that push the limits of FEC regulations.

Campaign actors can cooperate without crossing the legal threshold of coordination by communicating with one another before the communications ban goes into effect (when the candidate files with the FEC to officially become a candidate) and by sending out cues to one another, through the use of public information and because actors have formed reliable expectations of how the other actors will behave. Some techniques of signaling and cooperation may appear to push or surpass the limits of FEC rules, but campaign actors have little reason to be timid. The FEC often fails to issue any guidance to campaign actors because of a frequent partisan deadlock of 3–3 among FEC commissioners when groups request advisory opinions (Corrado 2014), leading FEC chairwoman Ann M. Ravel to tell one reporter, “The likelihood of the laws being enforced is slim . . . People think the FEC is dysfunctional. It’s worse than dysfunctional” (Lichtblau 2015).3

Parties and independent expenditure groups openly communicate their intentions and their spending through press releases that announce media buys and websites that feature lists of targeted contests (Dwyre and Kolodny 2014). In addition, other less formal methods are now used by campaign actors to share strategic information with outside groups: a stand-alone corporation was created on the Republican side to disseminate opposition research among both candidates and independent expenditure groups while remaining compliant with FEC rules (Confessore 2014); Twitter accounts were created on both sides to share polling information across party, candidate, and independent groups (Blumenthal 2014; Moody 2014); and Democratic candidates and the DSCC both posted “important messages” on their websites to highlight issues that were soon taken up by ads from Senate Majority PAC and Patriot Majority USA (Sullivan 2014). The political director for a party-adjacent super PAC interviewed for this project stated that his group rarely makes media buys but instead shares information and coordinates efforts among independent allies during a campaign through research and regular conference calls with independent groups participating in the race. “We wanted to be point men and make sure there isn’t overlap.” So, while the communications ban prevents coordination between candidates and outside groups, outside groups can and (at least occasionally) do coordinate with one another.

Even if these signaling methods fail, the various campaign actors can easily track one another’s media activity during the campaign. Candidates learn of the support from outside groups before the supporting ads air, receiving warning sometimes days, and many times weeks or even months, in advance. According to interview respondents both in the television industry and in campaign management, media buying firms provide weekly and sometimes daily reports of other media buys in relevant markets.4 Thanks to these regular reports, campaign actors are aware of advertising by other actors in the race well in advance of the ads running on air. A Republican campaign consultant remarked that so much information, including ad buys, is public that running campaigns in this environment is “like playing poker with the cards face up.”5

Finally, campaign actors can synchronize their efforts because actors’ behavior is predictable. Campaign staff, Hill committee leadership, and independent group leaders frequently swap roles and have all learned their craft in the same arena. Campaign professionals expressed confidence in outside ac-

3. Ravel later resigned in frustration from the FEC in February 2017.

4. Author interview with super PAC official, June 29, 2015.

5. Author interviews with television media executive, July 9, 2015, and Democratic campaign manager, July 10, 2015.

6. Author interview with Republican campaign consultant, June 26, 2015.
A Democratic campaign consultant said that supportive advertising by outside groups is still rare further down the ballot from the presidential race because “even today b-roll is still hard to come by on most Senators and especially House members.”

But the current relationship between allied groups operating in a campaign and the candidate committee does not function as a market, characterized by self-interested, noncooperative actors making “risky exchanges among strangers” (Jung and Lake 2011, 973; Powell 1990). This outsourcing is instead more of a cooperative relationship among allies. The form of organization described by campaign professionals more closely fits the definition of a network where a “collection of actors . . . pursue repeated, enduring exchange relations with one another and, at the same time, lack a legitimate organizational authority to arbitrate and resolve disputes that may arise during the exchange” (Polodny and Page 1998, 59). A network is a middle ground between a market or hierarchy where actors match complementary strengths and make interdependent choices (Powell 1990). Networks are further characterized by reciprocity, trust, mutual understanding of norms, and a “spirit of goodwill” in the relationship (Dore 1983; Granovetter 1995).

Candidates would likely prefer a hierarchical organization with the candidate at the top, directing the advertising decisions of groups who choose to support them. But prohibitions on communication prevent such a relationship, and independent groups often have their own broader goals. So these actors instead comprise a network form of organization where reputation, expertise, and expectations of reciprocity guide actors’ decisions.

Advertising totals in the 2010 Kentucky Senate race, shown in figure 1, illustrate how candidates might adjust their advertising when they anticipate that outsiders will carry the negative. The top half of the figure displays the volume of advertising and proportion of attack and advocacy by the candidates, while the bottom half of the figure displays the total advertising for each campaign—that is, the total of candidate advertising plus all advertising supporting that candidate by outside groups. First for the candidates, Rand Paul appeared to run a more positive campaign—he attacked Conway with 47% of his advertising while Conway attacked him with 77% of his ad volume. However, moving down to the bottom half of the figure we see that including the outside group support into the total advertising changes this picture. Both campaigns devoted nearly identical proportions of advertising to attacking the opponent (84% and 85%, respectively).
This should be a broad pattern across legislative campaigns. Many voters do not connect candidates to attack advertising by outside groups (Dowling and Wichowsky 2015). Because of this disconnect, candidates can escape backlash from attacks if the attack is made by outside groups on behalf of the candidate instead of by the candidate’s own committee (Brooks and Murov 2012; Dowling and Wichowsky 2013; Weber, Dunaway, and Johnson 2012). Therefore, in a well-functioning network there should be an inverse association between outside group attacks and the candidate’s attacks:

Compensatory attack hypothesis: The greater the volume of attack advertising by supporting outside groups in a campaign, the lower the proportion of attack advertising by the candidate in that campaign.

All attack ads are not alike. Attacks can be based on issues and policies or on personal aspects of the candidates. While personal attacks are often considered a distasteful tactic in campaign communications, policy-based attacks are usually acceptable to viewers (Kahn and Kenney 1999; Mattes and Redlawsk 2014). Furthermore, policy-based attacks can be more beneficial to democratic discourse than positive advertising, since attacks carry more information about issues and candidate positions (Geer 2006).

In a network, candidates should cooperate with outside groups and have expectations about the support they will receive, but candidates do not have control over outside advertisers as they would in a hierarchical relationship. Candidates might prefer that personal attacks on opponents be made by outside groups so that the candidate will be insulated from public backlash against these more distasteful attacks.

But a recent study of independent advertising in the 2012 presidential campaign concluded that voters did not consider ads by outside groups more negative or more misleading than ads from the candidates (Dowling and Miller 2014). Outside groups have different perspectives and incentives than candidates. Issue-based groups are formed around policy goals and will likely focus on their issues of interest in their advertising. For example, the Sierra Club will be more likely to attack a candidate’s environmental record than a candidate’s honesty. Because of the groups’ objectives, we might instead expect these groups to be the most likely to base their attacks on policy considerations. Parties and party-adjacent groups have broader agendas than issue-based groups, but they may prefer to emphasize the top issues for the national party, using nearly identical advertising across numerous races—for example, “voted with Nancy Pelosi 95% of the time” (Memmott 2010). In essence, groups with broader perspectives than a single campaign (outside groups other than single-candidate groups) will have more policy-oriented agendas and not concern themselves with the minutiae of the personal characteristics of each individual opponent.

Outside agendas hypothesis: Outside groups will be more likely than candidates to engage in policy-based attacks.

Finally, the type of attacks may vary based on the groups’ organizational forms. One recent study finds that groups with undisclosed donors are more likely than groups with disclosed donors to make expenditures in opposition to candidates than in support of candidates (Chand 2017). Perhaps dark money groups are also more likely to attack on personal grounds since their donors are fully shielded from any backlash. Furthermore, many 501(c) issue-based groups with undisclosed donors are authentic social welfare groups such as the Sierra Club or the Humane Society, with members interested in advancing an issue more so than influencing elections. Party-adjacent dark money groups, however, generally organize as 501(c)s in order to offer their donors anonymity (e.g., Americans for Prosperity or Crossroads GPS). Among party-adjacent and issue-based independent groups the level of transparency may be associated with both their sensitivity to

Figure 1. Portion of ad volume devoted to attack, Kentucky Senate 2010

![Image](https://example.com/image.png)
backlash and the authenticity of their commitment to a declared issue interest and thus may be associated with the frequency of their use of personal attacks against candidates.

DATA
The campaign advertising data used here come from the Wesleyan Media Project (WMP) for the 2010 and 2012 election cycles (Fowler, Franz, and Ridout 2014, 2015). The WMP captures and codes all airings of political advertisements on broadcast television in all 210 media markets in the United States. This study includes the broadcast campaign advertising by all campaign actors in federal legislative races in the general election phase. In all, 2,382,138 airings of political advertisements by 751 House and Senate candidates and 232 outside groups are included. Furthermore, this study takes the additional step of accounting for the differences in the audience size of advertising airings occurring in different markets and at different times of day. Using television audience data obtained from Nielsen, each airing is expressed as the size of the media market (in thousands of television households) times the average portion of television households viewing broadcast television in the daypart when the ad aired (see the appendix for a detailed description of this process and an evaluation of the impact of using this measurement instead of a count of airings).

The WMP records if ads are contrast, promote, or attack spots. Using this information, the proportion of campaign advertising devoted to attack while outside groups average about 85%–90% of advertising devoted to attack. Total campaigns, the sum of all advertising by candidates as well as supporting outside groups, dedicate about two-thirds of advertising to attacking opponents.

ANALYSES
Cross-sectional models
The compensatory attack hypothesis expects that the percentage of candidate advertising devoted to attack in a campaign will have a negative association with outside group supporting attacks. Cross-sectional models are estimated for the percentage of a candidate’s advertising volume attacking opponents, separately for Senate and House campaigns. This relationship should be driven by expectations among trusted and familiar actors in a network and by signals unobserved in the advertising data (e.g., advertising buys appearing on FEC reports weeks before the spots air, or press releases from groups announcing intended or recent ad buys). If these are the means of cooperation between campaign actors, then an inverse relationship may not be observed in a lagged analysis, but it will still be present in a cross-sectional analysis of the total sum of advertising in campaigns.

The unit of analysis in the models is the campaign, defined as the total advertising activity of the candidate and all outside allies in support of the candidate in the general election phase of the race. Campaigns are included if the candidate ran 50 or more television spots and if the candidate had an opponent (Senate: N = 119; House: N = 632).10

The dependent variable in the models is the candidate attack percentage—that is, the proportion of a candidate’s advertising volume devoted to attacking the opponent(s). The independent variable of interest, supporting attacks, is measured as the total volume of attacks on behalf of the candidate by all outside groups (parties, party-adjacent groups, issue-based groups, and single-candidate groups) divided by the candidate’s total advertising volume. Expressing supporting attacks as a ratio of the candidate’s advertising volume accounts for varying sizes of campaigns, since candidates should only be interested in

<table>
<thead>
<tr>
<th>Table 1. Percentage of Advertising Attacking Opponents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Candidates</td>
</tr>
<tr>
<td>Parties</td>
</tr>
<tr>
<td>Party-adjacent groups</td>
</tr>
<tr>
<td>Issue-based groups</td>
</tr>
<tr>
<td>Single-candidate groups</td>
</tr>
<tr>
<td>Total campaign advertising</td>
</tr>
</tbody>
</table>

10. The sample is restricted to those campaigns where the candidate aired 50 or more spots because with so little of their own advertising, there would be insufficient “room” for candidates with less advertising to alter their mix of advocacy and attack, and inflated supporting attack values resulted from the candidates’ own paltry advertising volumes. As a result, not included in the House sample are the 2010 Republican campaigns in IL-11 and MN-8 and the 2012 Republican campaign in NC-7. Not included in the Senate sample are the 2010 NY Senate races, since it proved too difficult to reliably account for which candidate was supported by a given advertisement. To ensure that the results were unaffected by dropping these cases, the model was estimated with their inclusion and the results were almost entirely unaffected.
adjusting the advertising mix when the outside support is at a volume that is meaningful in their race.

The overall mix of advertising sentiment by candidates and the volume of attack advertising from outside groups supporting candidates is shown in figure 2. Since so many legislative seats are safe in any election, it is no surprise that many candidates aired no attack messages at all in their television campaigns (24 Senate campaigns and 191 House campaigns, shown in the top row of fig. 2). However, 34 candidates in House races and two in the Senate devoted all of their advertising to attacking their opponents. Within these extremes, however, the distribution of attack/advocacy mixes by candidates was highly variable. Such diverse mixes are possible since candidates on average run about nine separate creative executions in House races and over 20 in Senate races. Outside groups aired no attacks at all in 39% of Senate and 53% of House campaigns where candidates did air their own advertising and had highly variable levels of supporting attacks in those races where they did support candidates.

To isolate the independent effect of supporting outside attacks on a candidate’s attack percentage the model must also account for the other major determinants of a candidate’s choice to attack the opponent. The most important determinant is the state of the race, or the closeness of the campaign and the candidate’s prospects for winning, represented by race ratings in nine categories from the Rothenberg and Gonzales Political Report from the first week of October in each election year. The overall relationship between the strategic context of the race and a candidate’s percentage of attack should be curvilinear: candidates in closer races will be more likely to attack the opponent, while safe and hopeless campaigns will attack less. Furthermore, candidates who are behind should be more likely to attack than candidates who are ahead. Folding the scale would fail to account for this second effect. Therefore, the Rothenberg ratings are included in the models as a set of eight dummy variables with the safe seat category omitted.

The opposing attacks directed against a candidate are measured as the total advertising volume attacking the candidate from all actors divided by the total volume of the candidate’s own advertising. The status of the candidates as incumbents or challengers or in open contests is included in the model as two dummy variables (the omitted category is incumbent). In a handful of Senate contests a viable independent candidate (a candidate who eventually received 15% or more of the total vote) was also in the race. Since the strategy of attacking opponents is less beneficial in a multicandidate contest than in a two-way contest, a dummy variable for candidates running in a three-way race is included in the Senate model. Finally, because this is a pooled sample of 2010 and

Figure 2. Distribution of candidate attacks and supporting attacks

* outliers not shown in graph

11. These candidates did not have any attacks in their advertising despite having an opponent (i.e., none of the campaigns in the sample were unopposed).
13. There were no cases in the sample of campaigns where outside groups ran ads to support a candidate but the candidate herself ran none.
2012 races, an indicator for the year of the election is included in the models as a dummy variable for 2012.14

A fractional logit model is used for the cross-sectional analysis because the dependent variable is a percentage. This is a generalized linear model with a binomial distribution and a logit link estimated with robust standard errors (Wooldridge 2011). This form is suited for a fractional response variable since it allows the dependent variable to take on any value between zero and one, including the boundary values, and can accommodate the large portion of zeros in the dependent variable (Papke and Wooldridge 1996).15 Models are estimated separately for Senate and House campaigns. The basic model to measure the association between supporting outside attacks and candidates’ attack percentage can be written as follows:

\[
E(\text{candattack}) = \Lambda \left(\beta_0 + \beta_1 \text{supattack} + \sum_{j=2}^{9} \beta_j \text{rating}_j + \beta_3 \text{oppattack} + \beta_4 \text{challenger}, + \beta_5 \text{open}, + \beta_6 \text{three-way}, + \beta_7 2012 \right)
\]

The estimates from this model for House and Senate races are shown in table 2. Variables for the state of the race have the anticipated association with candidate attacks, illustrated by the marginal effects on the predicted candidate attack percentage for each category of competitiveness in figure 3.16 As expected, the highest predicted proportions of attack advertising are for candidates slightly behind in the race, though the predicted percentages of attack are similar for all candidates within two categories of a toss-up race. Safe candidates have the lowest predicted attack percentages, while their opponents (hopeless candidates) are predicted to run a moderate amount of attacks.

A greater volume of attack from the opponent is associated with a greater share of the candidate’s advertising going toward attack, though the effect is significant only in a one-tailed test in the Senate sample. No significant differences in the level of attack were observed between incumbents, challengers, and open-seat candidates. The independent effect of running in a three-way race, however, is strongly negative in

<table>
<thead>
<tr>
<th>Table 2. Fractional Logit Models of Candidate Attack Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Variable</td>
</tr>
<tr>
<td>Supporting attacks</td>
</tr>
<tr>
<td>(0.181)</td>
</tr>
<tr>
<td>Category:</td>
</tr>
<tr>
<td>2 (nearly safe seat)</td>
</tr>
<tr>
<td>(.616)</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>(.538)</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>(.539)</td>
</tr>
<tr>
<td>5 (toss-up)</td>
</tr>
<tr>
<td>(.570)</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>(.580)</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>(.671)</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>(.543)</td>
</tr>
<tr>
<td>9 (hopeless candidacy)</td>
</tr>
<tr>
<td>(.616)</td>
</tr>
<tr>
<td>Opposing attacks</td>
</tr>
<tr>
<td>(.125)</td>
</tr>
<tr>
<td>Challenging candidate</td>
</tr>
<tr>
<td>(.358)</td>
</tr>
<tr>
<td>Open-seat candidate</td>
</tr>
<tr>
<td>(.279)</td>
</tr>
<tr>
<td>Three-way race</td>
</tr>
<tr>
<td>(.344)</td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>(.219)</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>(.219)</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Bayesian information criterion</td>
</tr>
<tr>
<td>Log pseudo-likelihood</td>
</tr>
</tbody>
</table>

Note. Robust standard errors in parentheses. All two-tailed tests.

* \(p < .10 \)

** \(p < .05 \)

*** \(p < .01 \)

14. The validity of pooling 2010 and 2012 is tested using Wald tests on models fully interacted with year, provided in the appendix. No independent variable had a significantly different slope between years.

15. High frequencies of zeros or ones might suggest that a zero-one inflated beta regression model would be appropriate, however such a model assumes that the extreme values are a result of a process separate from that generating other values of the dependent variable. Such a model is inconsistent with the theory of the data generating process offered here; however, to ensure that the findings that follow are not dependent upon the choice of a fractional logit model, the models were estimated using a zero-one inflated beta model, a Tobit model, and ordinary least squares. The differences in observed associations in these models are small and do not affect any conclusions drawn in this study. These estimates are provided in the appendix.

16. All marginal effects in this study are calculated with the continuous variables held constant at their means and categorical variables at their mode.
Senate contests. When there are three viable candidates, the candidates in those races run much less attack advertising. House candidates, but not Senate candidates, were much less likely to attack in 2012, perhaps because this was a redistricting year and even incumbents needed to introduce themselves to new electorates.

After controlling for these factors, the results of the models support the compensatory attack hypothesis. A greater volume of supporting attacks from outside groups is negatively associated with the percentage of attack advertising from the candidate, in both Senate and House races. The marginal effects of outside group attacks on the candidate’s predicted mix of attack and advocacy are shown in figure 4. The model predicts that in Senate contests an increase of one standard deviation in the supporting attack ratio is associated with a decrease of candidate attacks of 8.3 percentage points. In House races the relationship is smaller. An increase of one standard deviation in the supporting attack ratio in House contests is associated with a decrease of candidate attacks of 4.0 percentage points.\(^\text{17}\) These differences in proportion of attack advertising by candidates are equivalent differences that would be expected between a Senate candidate contest that was two categories less competitive than a toss-up and a House candidate contest that was one category less competitive than a toss-up in the Rothenberg and Gonzales Race Ratings.

Additional models interact several variables with supporting attacks, shown in table 3. In these models the difference in the slopes shown in figure 5 between Democratic and Republican campaigns approaches but does not reach the 95% confidence threshold for statistical significance in the Senate sample (\(\chi^2 = 7.71, p = .052\)) but is statistically significant in the House sample (\(\chi^2 = 19.41, p < .001\)). In the Senate, Democratic candidates are predicted to air 11.7 percentage points less attacks when there is one standard deviation increase in supporting attacks (moving from a supporting ratio of 0.54 to 1.46), while Republican candidates are predicted to air 8.2 points less attacks over the same range. In the House the difference is more stark. One standard deviation increase from the mean of supporting attacks (from 0.69 to 2.22) is associated with 9.5 points less attacks by Democrats versus 2.8 points less attacks by Republican candidates.

Supporting attacks by the parties were included together with all other outside group attacks because the overwhelming majority of advertising activity by parties is conducted by their independent expenditure arms. These groups, like all other varieties of independent groups, are prohibited from direct communication or coordination with the candidates. It is possible, however, that parties and candidates can cooperate more efficiently and the inverse relationship between candidates and outside advertisers’ attacks is more pronounced when more of that support is from the formal parties. To test for this possibility cross-sectional models were estimated with a variable for the proportion of outside group attacks coming from parties versus other group types interacted with supporting attacks. In this model, shown in columns 3 and 4 of table 3, a Wald test of the interaction did not find significant differences (Senate: \(\chi^2 = 2.50, p = .11\); House: \(\chi^2 = 1.12, p = .29\)), meaning that the inverse relationship

\(^{17}\) One standard deviation change of supporting attacks (Senate = 0.92; House = 1.53) starting from the variable’s mean (Senate = 0.54; House = 0.69).
between outside group attacks and candidate attacks is not stronger when outside supporting attacks come more or less from parties versus other types of groups.

Finally, the interactive models examine differences in the slope of the coefficient for supporting attacks between incumbents, challengers, and candidates in open-seat races in columns 5 and 6 of table 3. Incumbents might be more tightly networked with outside groups and thus the slopes may be stronger. But significant differences are not observed between incumbents and challengers. In the Senate sample, however, the inverse association between supporting outside attacks and the candidate’s proportion of attacks loses statistical significance within the subsample of open-seat candidates.

Panel models
The inverse relationship in the previous models between candidate attack advertising and supporting attacks by outside groups is consistent with trusted relationships, signals, and reciprocity in a network form of organization among campaign actors. However, these patterns could also occur if candidates simply react to unexpected support from independently minded outsiders by reducing their level of attack in following weeks. If campaign actors have accurate expectations of each others’ advertising efforts in campaigns, then timing of when the advertising runs should be largely irrelevant. A former Democratic Party operative emphasized in an interview that “even if a committee hasn’t run an ad yet, the reservations are public.” Thus, candidates should be able to adjust their percentage of attack based on both past and expected future advertising by supporting outside groups.

To examine whether candidates or outsiders simply respond to ads after they run, the data are partitioned into weekly blocks and linear fixed effects panel time series models are estimated, shown in table 4. In these models candidate attacks in a given week are a function of supporting attacks and opposing attacks with both one- and two-week lags, and supporting attacks are modeled as a function of candidate attacks and opposing attacks with one- and two-week lags. The other explanatory variables from the cross-sectional models, race rating, incumbent/challenger/open, three-way race, and election year, are time invariant and thus their effects are removed by these models. The functional form of the models where the unit of analysis is each campaign (i) in each week (t) is as follows:

\[
\begin{align*}
\text{candattack}_{it} &= \beta_1 \text{supattack}_{i,t-1} + \beta_2 \text{supattack}_{i,t-2} \\
&\quad + \beta_3 \text{oppattack}_{i,t-1} + \beta_4 \text{oppattack}_{i,t-2} \\
&\quad + \alpha_i + \epsilon_{it}.
\end{align*}
\]

\[
\begin{align*}
\text{suppattack}_{it} &= \beta_1 \text{candattack}_{i,t-1} + \beta_2 \text{candattack}_{i,t-2} \\
&\quad + \beta_3 \text{oppattack}_{i,t-1} + \beta_4 \text{oppattack}_{i,t-2} \\
&\quad + \alpha_i + \epsilon_{it}.
\end{align*}
\]

These models are estimated to assess an alternative explanation that attack advertising by campaign actors is as-

19. Stationarity of the dependent variables is verified with Fisher-type unit-root tests \(p < .01 \) for each test.

20. The race ratings could vary, but Rothenberg rarely changed its ratings of a race over the course of a campaign cycle, thus the race rating had too little variation to be included as a time-variant explanatory variable in these models.
associated with the level of attack by other actors in prior weeks. The potential insight from these models should not be overstated, however. The theory offered in this study predicts null findings from these models since candidates learn of the support from outside groups before the supporting ads air and with irregular warning—sometimes days, and many times weeks or even months, in advance.21 In other words, while the theory offered in this study proposes a dynamic process between campaign actors, the dynamic should not be directly observable through the timing of when advertising airs. These models are unable to extract causal effects from endogenous data and are not estimated as a strategy of lag identification (see Bellemare et al. 2017 for a discussion of the limits of causal estimation possible with lagged explanatory variables).

If candidates exclusively react to supporting attacks in prior weeks, then the coefficients for supporting attacks,\(t_2 \) and supporting attacks,\(t_2^2 \) should have negative associations with the candidate attack dependent variable (cols. 1 and 2 of table 4). But the models find no relationship between the percentage of candidate advertising devoted to attack in a

\begin{table}
\centering
\caption{Interaction Models of Candidate Attack Percentage}
\label{tab:interaction_models}
\begin{tabular}{lcccccc}
\hline
Independent Variable & \multicolumn{2}{c}{Party} & \multicolumn{2}{c}{% Party Support} & \multicolumn{2}{c}{Incumbency} \\
& Senate & House & Senate & House & Senate & House \\
\hline
Supporting attacks & -.751* & -.343*** & -.648** & -.012 & .090 & -.219 \\
& (.361) & (.080) & (.210) & (.098) & (.409) & (.074) \\
Republican & .340 & -.065 & \cdots & \cdots & \cdots & \cdots \\
& (.311) & (.132) & \cdots & \cdots & \cdots & \cdots \\
Republican \times supporting attacks & .275 & .246** & \cdots & \cdots & \cdots & \cdots \\
& (.291) & (.085) & \cdots & \cdots & \cdots & \cdots \\
% party support & \cdots & \cdots & -.548 & -.258 & \cdots & \cdots \\
& \cdots & \cdots & (.509) & (.211) & \cdots & \cdots \\
Party support \times supporting attacks & \cdots & \cdots & .568 & -.157 & \cdots & \cdots \\
& \cdots & \cdots & (.359) & (.147) & \cdots & \cdots \\
Challenger & -.328 & .183 & .118 & .173 & .338 & .120 \\
& (.412) & (.153) & (.391) & (.145) & (.419) & (.173) \\
Open seat & -.540 & -.237 & -.145 & -.270 & -.270 & -.447* \\
& (.330) & (.173) & (.331) & (.337) & (.337) & (.196) \\
Challenger \times supporting attacks & \cdots & \cdots & \cdots & \cdots & -.769* & .071 \\
& \cdots & \cdots & \cdots & \cdots & (.388) & (.076) \\
Open \times supporting attacks & \cdots & \cdots & \cdots & \cdots & -.386 & .248* \\
& \cdots & \cdots & \cdots & \cdots & (.371) & (.130) \\
Intercept & -2.585*** & -1.386*** & .427 & .178 & -2.292*** & -1.311*** \\
& (.489) & (.166) & (.548) & (.230) & (.481) & (.150) \\
c test of interaction & 7.71* & 19.41*** & 2.50 & 1.12 & 6.29* & 3.73 \\
\hline
N & 119 & 632 & 119 & 632 & 119 & 632 \\
Bayesian information criterion & -438.06 & -3,711.26 & -438.06 & -3,711.26 & -427.56 & -3,365.76 \\
Log pseudo-likelihood & -49.80 & -288.79 & -49.80 & -288.79 & -47.32 & -263.98 \\
\hline
\end{tabular}
\end{table}

Note. Models calculated with full set of regressors. For compactness, only interactive components shown in table. Robust standard errors in parentheses. All two-tailed tests.

* \(p < .10 \).

* * \(p < .05 \).

* ** \(p < .01 \).

* *** \(p < .001 \).

\[\text{21. Bellemare, Masaki, and Pepinsky (2017) caution that lagging explanatory variables “will lead analysts working in the mainstream approach to hypothesis testing to reject null hypotheses that are true and to find too many estimates of causal effects that are spurious” (956). In this case a type I error is of somewhat less concern than a type II error because the purpose} \]
given week and the volume of outside group supporting attacks in prior weeks.

Going in the other direction, if outside groups reduce their volume of supporting attacks in response to the supported candidates airing more attacks, then coefficients for candidate attacks_{t-1} and candidate attacks_{t-2} should have negative associations with the supporting attack ratio (cols. 3 and 4 of table 4). The models find mixed evidence for such a relationship. On the House side, more attack-oriented advertising by candidates in the prior two weeks is associated with less supporting attacks from outsiders. Specifically, a House candidate running 100% attacks in a week versus zero

Table 4. Fixed Effects Linear Models of Attacks

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>DV: Candidate Attack</th>
<th>DV: Supporting Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Senate (1)</td>
<td>House (2)</td>
</tr>
<tr>
<td>Supporting attacks_{t-1}</td>
<td>.005 (0.004)</td>
<td>-.003 (.005)</td>
</tr>
<tr>
<td>Supporting attacks_{t-2}</td>
<td>-.001 (.007)</td>
<td>.003 (.005)</td>
</tr>
<tr>
<td>Candidate attacks_{t-1}</td>
<td>... (1.357)</td>
<td>... (.138)</td>
</tr>
<tr>
<td>Candidate attacks_{t-2}</td>
<td>... (1.287)</td>
<td>... (.132)</td>
</tr>
<tr>
<td>Opposing attacks_{t-1}</td>
<td>.001 (.003)</td>
<td>.009* (.004)</td>
</tr>
<tr>
<td>Opposing attacks_{t-2}</td>
<td>.003 (.004)</td>
<td>.009* (.005)</td>
</tr>
<tr>
<td>Intercept</td>
<td>.426*** (.009)</td>
<td>.389*** (.005)</td>
</tr>
<tr>
<td>N</td>
<td>1,012</td>
<td>3,531</td>
</tr>
<tr>
<td>Overall R²</td>
<td>.01</td>
<td>.03</td>
</tr>
</tbody>
</table>

Note. Standard errors in parentheses. All two-tailed tests. DV = dependent variable.

* p < .10.
* * p < .05.
** p < .01.
*** p < .001.
attacks is associated with about 30% less volume of supporting attacks in following weeks (−0.291 and −0.348). On the Senate side, however, no significant association is observed between candidates’ attack percentage and supporting attacks by outside groups.

Type of attack

When outside groups take on a larger role of attack in a campaign, what impact does this have on the substance of the attacks in the race? The outside agendas hypothesis expects that while outsiders are better positioned to make personal attacks, their own internal characteristics will instead make them more likely to emphasize policy matters in their attacks. A straightforward evaluation of this hypothesis is to compare the proportions of attack advertising by each group devoted to personal attacks versus policy-based attacks. The percentage of attacks based on personal attributes is also examined between dark money groups and groups with disclosed donors. Single-candidate groups were not included here since they represented only a trivial amount of advertising in the 2010 and 2012 congressional elections.

Table 5 shows the percentage of all attacks for each category of actors that were on personal characteristics versus policy matters. Because these percentages reflect the proportion of personal attacks in all attack advertising by each category of actor, all differences are significant at \(p < .001 \) in two-tailed proportions tests.

Candiates (30% Senate, 28% House) followed by parties (27% Senate, 21% House) were the most likely campaign actors to base their attacks on personal characteristics instead of policy considerations. Issue-based independent groups rarely made personal attacks (all issue-based groups combined: 9% Senate, 14% House), but even party-adjacent groups with both disclosed and undisclosed donor support made mostly policy-based attacks against opponents when compared to candidates (all party-adjacent groups combined: 15% Senate, 13% House). Furthermore, while the differences were modest, dark money groups were less likely than transparent groups to air personal attacks. These findings offer support for the outside agendas hypothesis, as outside groups of all varieties and independent groups in particular (both dark money and transparent) were more likely than candidates to engage in policy-based attacks. In House contests but not in Senate races, anonymously funded party-adjacent groups were the least likely to use personal attacks (7%).

The difference in types of attacks by different groups suggests that campaigns with greater independent group activity are more policy focused, not less. However it is also possible that, just as with the mix of attack versus advocacy, an inverse association is present in the type of attacks by campaign actors. To look for evidence of such an association, a model was estimated with the percentage of a candidate’s attacks based on personal characteristics as the outcome variable. No association was found between the proportion of personal attacks by candidates and outside supporting policy-based attacks (full model results provided in the appendix). So candidate advertising does not feature more personal attacks in campaigns where outside groups’ attacks are more policy based. Thus, when outside groups make more attacks in a campaign overall, advertising in that campaign tends to be more policy based.

CONCLUSION

This study has offered a theory of how the network form of organization of candidates, parties, and outside groups enables campaigns to coherently manage their efforts despite legal barriers to communication. Holding other factors constant, the proportion of attack advertising by a candidate is inversely associated with the volume of attack advertising supporting that candidate. This observed relationship is consistent with statements from campaign professionals in interviews that candidates expect outside groups to attack on their behalf. In addition, the combination of weak findings in panel models and significant relationships in cross-sectional models is consistent with cooperation between campaign actors occurring through legal communication and the use of publicly available ad buy data. It is also due to reliable expectations of each other’s strategies, rather than adjustments made after the observed occurrence of ads airing.

An important caveat to these findings is that if candidates, parties, and other outside groups effectively cooperate as
networked actors in the mix of attack and advocacy advertising, it is through a dynamic process that is only indirectly observable though the campaign advertising data used here. The analyses by themselves do not demonstrate a causal relationship of outside attack advertising on candidates’ advertising mix.

When outside groups take on more of the load of attacks in a campaign, the policy content of advertising in campaigns increases. This could be because personal attacks are more customized attacks that require more localized knowledge. Another possibility is that even party-adjacent outside groups are motivated by policy interests, and they prefer to champion those policy perspectives in their advertising. Since candidates are the most likely campaign actors to engage in personal attacks, this also suggests that backlash is not a major consideration in the choice to attack opponents on personal versus policy grounds.

Finally, these findings inform some normative concerns about independent group advertising in congressional races. When outsiders are attacking candidates, the attacks are more likely to be of the type that citizens have judged to be fair game in campaigns. Outsiders are more attack oriented than candidates, but the ratio of attack advertising for candidates is biased downward by safe candidates running purely advocacy spots in their contests. Furthermore, because greater attack advertising by outsiders is associated with less by candidates, the net effect of outside group attack advertising on the negativity of the campaign is partially muted. These findings do not mitigate concerns about the lack of accountability of independent group advertising and of the distortive effect of unlimited independent expenditures. And the conclusions here are based solely on television advertising and do not include other forms of mass communication such as robocalls, direct mail, and web ads that may carry more vitriolic messages by various groups. But at least in terms of advertising sentiment and the substance of attacks on the still-dominant form of campaign communication—television—the increased role of independent groups in campaigns has not had a corrosive effect on campaign discourse.

ACKNOWLEDGMENTS

Thanks to Daron Shaw, Brian Roberts, and Christopher Weizen at the University of Texas at Austin for valuable feedback and support on this project. Thanks also to the anonymous reviewers for their constructive feedback that greatly improved this work.

22. In an average Senate campaign a candidate’s shift toward advocacy in response to outside attacks reduces the total percentage of attack advertising in a campaign from 63% to 57%.

REFERENCES

