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Abstract 

The authors discuss the volatility of table games using Baccarat as an example. The 
expected deviation from the win, in percentage terms, will decrease as the number of 
decisions is increased. In absolute terms, the deviation is likely to increase as decisions 
increase. Through the formulas presented in the article the author shows there is no 
natural evening-up process. That is if a casino lost one million dollars on Baccarat play 
last month, the casino manager cannot expect to make the theoretical win plus an 
additional one million next month. The article will help managers understand and plan 
for fluctuations in table game play. 
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A question often asked by Analysts and Senior Management within the casino 
industry is: '" ... when will we hit our theoretical win percentage?" 

This question is generally reserved for when results are below expectation and pressure is 
being exerted for the results to "tum" in the casinos favour. 

Some labour under the impression results must "tum" so that the average will be achieved 
over time. "A run of ill fortune means that it is "our tum" and we are more likely to win." 
Such thoughts should obviously be reserved for those on the other side of the gaming tables. 
There is no "evening up". The game has no memory, with each result being effectively 
independent. What will occur as the number of decisions is increased is that the "expected" 
deviation from the mean in percentage terms will decrease. In absolute terms, however, the 
deviation will increase as decisions increase. This can best be shown in Table 2: 

Number of One Standard Percentage Theoretical 
Decisions Deviation Deviation Win 

n >111 1!1 TW=(Axn)1 

n 
100 10 10% 1.25 

1000 31.6 3.16% 12.5 
10,000 100 1.0% 125 

1,000,000 1000 0.1% 12,500 

Where n equals the number of decisions and the square root of n represents one standard 
deviation from the expected result and where the expected result equals 1.25% x n for the 
game of Baccarat. 

An interesting further point is that if we were to conduct an experiment where an 
unbiased coin were to be thrown 100 times with the results of each throw recorded and the 
experiment temporarily stopped after the first 10 throws with 10 heads having been thrown, 
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it would now of course be more likely for heads to still be ahead at the conclusion of the 100 
trials. Remember, the coin has no memory so for the 90 throws we would expect a 45/45 
split with a standard deviation from the mean being the square root of the number of decisions 
multiplied by the probability of winning multiplied by the probability of losing. 

Probability (Heads) 0.5 X 90 45 

One Standard Deviation = ,j npq ,j 90 X 0.5 X 0.5 4.74 

Where p = the probability of a win and q = the probability of a loss. 

95% of results will fall within+/- 1.96 standard deviations of the mean. 

Therefore, for the next 90 throws we would expect the following: 

45 hands +/- 1.96 x 4.74 

ie. 95% of results will fall between 35.70 and 54.30 

Add this to the first 10 heads and it becomes obvious that at the conclusion of the 100 
coin tosses it is highly likely heads will still outweigh tails if the first 10 results were all 
heads. No evening up, in fact the ability only to project that if we start out behind we are 
more likely to end up behind and if we start out ahead we are more likely to end up ahead. 

What is useful to understand for casinos conducting high end play is how many decisions 
would be required for a certain departure from theoretical to occur for a given confidence 
interval. 

The purpose of this paper is therefore to establish and verify a formula to determine the 
number of hands played which would result in a specified tolerance level of departure from 
the mean win percentage at the game of Baccarat for a given confidence interval. 

Determination based upon the above of a level of turnover which should generate results 
replicating the theoretical win percentage at the game. 

The number of decisions (n) at which the win percentage will deviate by a given fraction 
from the mean may be calculated using the following formula: 

n= 

~ 1 d Tolerance level 2 

Confidence interval) 

where n 

tolerance level (T) 

confidence interval (C) 

Variance (V) 

x Variance of the game 

resolved decisions (hands) 

dispersion from the mean in %. 

the z score relative to the desired 
confidence interval of a normal 
distribution curve (z = 2.33 for a 
98% confidence interval) 

the variance of the game in question 
(ie the average squared result)2 
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Therefore: 
n = X V 

A desirable level of tolerance for which to calculate may be one where breakeven is 
achieved for the specified confidence limit. 

Breakeven may be calculated as follows: 

Costs divided by turnover 
Gaming Tax 
Breakeven 

E 
G 
E/(1-G) 

To consider this issue further it may also be useful to consider game bet distribution 
patterns and actual results derived over time. 

The number of hands (resolved decisions) required based upon the above may be 
calculated as follows: 

n= ~-1......----)J' ~(1-G) 
2.33 

X 0.975 

The number of decisions played for the theoretical win% to be achieved within 0.04% 
on the same basis is astronomical. 

n = 0.975 x 2.33 2 I 0.00042 

n = 33,082,359 for the theoretical win % to fall within 1.225% and 1.305% at a 
98% confidence limit. 

If flat bets of $200,000 were considered, the volume of turnover required to generate 
such results would be: 

For n = 33,082,359 turnover= $6,616,4 71,800,000 
(ie. $6.62 tn) 

Clearly not all bets occur at the table maximum and thus it may be appropriate to 
consider both the average bet likely to be achieved and the variance of the associated bet 
distribution. 
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If the following bet distribution is considered indicative of future playing patterns then 
it is possible to forecast the level of turnover which needs to be generated for results to fall 
within a certain tolerance level of the mean, with a particular degree of certainty. 

Bet Size % ofWagers Weighted Average 
$200,000 0.5% $ 1000 
$150,000 0.5% $ 750 
$100,000 1.0% $ 1000 
$ 75,000 4.0% $ 3000 
$ 50,000 4.0% $ 2000 
$ 25,000 9.0% $ 2250 
$ 10,000 11.0% $ 1100 
$ 5,000 70.0% $ 3500 
TOTAL 100.00% $14600 

The number of decisions required may be calculated using the additional variable of 
the variance of the bet distribution which for the above is 3.86. (The second moment over 
the squared mean of wagers= Vb). 

n~ ~ i n XV X Vb 

=VVbC" IT" 

If the degree oftolerance which is desired is equal to 0.04% then: 

n = 0.975 x 3.86 x 2.331 I 0.00041 

With an average bet of $14,600 as described previously, a turnover of $1.86 tn is 
required. 

To calculate the period required to generate this volume of turnover it is a simple case 
of dividing this number by the future forecast annual turnovers volumes. 

Based on forecast annual turnover volumes, this degree of certainty would be achieved 
after $1.86tn divided by the annual turnover volumes. 
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Conclusion 

It is clear, based upon the above calculations that the variation in win percentage from 
theoretical should decrease as turnover volumes increase. The quantum of turnover required 
for the actual win percentage achieved to fall within a certain level of tolerance can be 
calculated based on the following formula: 

where n 
T 
c 
v 
Vb 

turnover 

number of decisions 
absolute deviation from the mean 
z score associated with a desired confidence interval 
Variance of a single game (average squared result) 
Second moment over the squared mean of wagers 

n x average bet 

This same formula may be modified depending on which variables may be known. 
For example, it is useful if full play details are known to calculate the probability of the 
result. To do this the formula is solved to determine the value C. 

T 
c 

--J VxVb 
n 

Once C is calculated a z score has been established representing the standard deviation 
from the mean of a normal distribution curve. z score statistical tables may then be reviewed 
to determine the probability of the actual result occurring. 

This information once calculated can be very useful in establishing that the games are 
being conducted legitimately. A highly improbable result may be worthy of follow up and 
investigation. 

As has been shown, the actual win percentage will tend to converge on the theoretical 
percentage over time. The level of turnover required for the actual win percentage to fall 
within a small level of tolerance from the mean can, however, be astronomical, so Analysts 
and Senior Management need to have very strong stomachs if involved in Baccarat high 
end play. 

1 TW = Theoretical Win 
A= House Advantage 
n = Decisions 

2 The Theory of Blackjack- author: Peter A. Griffin (page 167) 
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