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ABSTRACT

Starting from the analytical solution to the Time-Independent Schrédinger Equa-
tion, and exploiting the analogy between the transmission line equations and the
time-independent Schrédinger wave equation, an analytical expression for the Av-
erage Particle Traversal (APT) time, 74pr, through a rectangular potential barrier
region. under no bias. is derived, in terms of the barrier width, potential, and the
incident energy of the electron. This approach is extended to derive an analytical
expression for the APT time through a resonant tunneling structure, two symmetri-
cal rectangular potential barriers sandwiching a potential well, under no bias. The
results of the single potential barrier traversal time are compared with that of other
approaches. The APT time is inversely proportional to the transmission coefficient,
and satisfies physically intuitive energy limits. For the resonant tunneling structure,
the APT timeis minimum at resonant energies, and the T4p7 is inversely proportional
to the transmission coefficient. The maximum frequency of oscillation is estimated
and compared for some of the experimentally studied resonant tunneling structures

based on the APT time. The agreement is excellent.
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Chapter 1

INTRODUCTION

1.1 Quantum Mechanics and Schrodinger’s Wave Equation

The Schrodinger Equation is analogous to a classical energy conservation equation, and
describes the dynamics of a quantum particle. A quantum particle is one whose wave-
length is very small compared to the dimensions of the system. When the dimensions of
the dynamic system of the particle are extremely small, the classical mechanics does not
explain many of the experimental observations, such as diffraction and tunneling. The
Schrédinger equation was developed to explain these physical phenomena. The time-
dependent Schrodinger equation in one-dimension for a quantum particle subjected to a

potential, V(z), is given by:

R 920 (z) o R 0E(1)
o gar o) + V(2)¥(2)=(1) = —}\I’(z)T

where m™ is the effective mass of the particle, % is the modified Planck’s constant, 2—"1;, and
E is the energy of the particle. The time-independent Schrédinger equation which holds
good when the total energy of the particle is independent of time, is given by:

d*¥(z) 2m"

TaZ + —Ez—[E - V(@))¥(z)=0
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The boundary conditions are: ¥,(z — +o00) = 0 and ¥,(z) and 11’:1(:1:) are continuous
everywhere, —0o < & < oo. The number of solutions to this equation are infinite. The eigen
values and functions are denoted with n as the index - E;, and ¥,(z). The physical meaning
of ¥, (z)is that [¥,(2)|?dz provides the probability of finding the quantum particle between

z and 2 + dz with unity probability of finding the particle in —00 < z < 0.

1.2 Tunneling Phenomena

In a single potential barrier comprising of GaAs/AlAs/GaAs, conduction band edge profile
shown in Figure[l.1], as the height of the potential barrier is finite, ¥, is now zero at the
AlAs/GaAs barrier interface. ¥, and ¥, are continuous and non-zero at each boundary of
the barrier, and ¥, and \Il; are non-zero within and beyond the potential barrier. Since ¥,
has a non-zero value to the right side of the barrier as shown in Figure[1.1], ¥% ¥, is non-
zero, implying that the probability of finding the particle with £ < V, beyond the barrier
region is finite. According to classical mechanics, the probability of finding the particle with
E < V, beyond the first AlGaAs/GaAs interface is zero, since such a real space transfer
of the particle through a potential barrier region is prohibitted classically. The physical
mechanism by which the particle, with £ < V,, penetrating a finite potential barrier is
called quantum mechanical tunneling through the barrier. The tunneling probability is
directly related to the energy of the particle, £, relative to V, and the barrier width, d.
The first device proposed., based on the tunneling phenomena, was the tunnel diode.
The Tunnel diode is often called the Esaki diode after L. Esaki [20, 23], who in 1973
received the Nobel prize for his work on this effect. The basic structure is a ptn* diode
with p and n regions are degenerately doped so that the depletion layer region is very thin.
Due to thin depletion layer, electrons in the conduction band can tunnel through the thin
depletion region to the valence band electrons. A tunnel diode exhibits the critical feature
of negative differential resistance (NDR), over a portion of it’s I — V characteristics, as
shown in Figure{1.2]. In NDR region, the J — V characteristics exhibits a negative slope.

i.e., the quantity j—{,— is negative.



o0
1} Vv
V(x) 0
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Figure 1.1: Quantum mechanical tunneling: (a) potential barrier of height V;, and thickness
W: (b) wave function ¥ for an electron with energy I < V,, indicating a non zero value of
the wave function beyond the barrier

Figure 1.2: The I-V characteristics of a tunnel diode. a-b is the linear resistance region;
b-c is the negative differential resistance, (NDR), region; and c-d is the exponential region.
I, and I, are the peak and valley current. V, and V; are the peak and forward voltage,
respectively.



Resonant Energy Levels

Figure 1.3: Quantum mechanical tunneling in a resonant tunneling structure with a barrier
width of b and well width of w.

1.3 Resonant Tunneling Phenomena

With the advent of Molecular Beam Epitaxy (MBE), it is possible to grow thin layers of
AlAs sandwiched between GaAs, thus creating a potential barrier in the conduction band
edge profile, as shown in Figure[l.1]. The thickness of the AlAs layers can be as small as
104, which is 4 mono layers of AlAs. Double barrier structures as shown in Figure[1.3],
successfully grown by MBE, in which a GaAs layer (well) is sandwiched between two AlAs
barrier layers, quantized energy levels, dictated by quantum mechanics, exist within the
well region. When the incident energy of the particle in the free propagating region out side
the potential barrier equals one of the quantized energies, the transmission probability is
unity, i.e., resonant tunneling results. For energy values other than the resonant ones, the
transmission probability is less than unity. This is referred to as non-resonant tunneling
phenomena.

R. Tsu and L. Esaki[20] proposed a superlattice structure in 1969 for application in
negative differential resistance (NDR) devices. In 1972, L.Esaki et. al. reported for the

first time, the observation of NDR in a Gads/AlGaAs superlattice[22]. Two years later



L.L. Chang et. al., observed NDR at temperature below 77°A" in a double barrier resonant
tunneling diode, i.e. two periods of a GaAs/AlGaAs superlattice.

In 1983, Sollner et. al.[48] reported a large NDR region in the I — V' characteristics
of GaAs/AlGaAs double barrier resonant tunneling device, with a peak-to-valley ratio of
6:1 at 25°K. Moreover, the current response measured at a driving frequency of 2.5 THz
was remarkably similar to the response expected from DC measurements, indicating the
potential for high frequency applications[25]. A year later, Sollner et. al. reported the first
high frequency oscillations generated by a resonant tunneling device at frequencies up to 18
GHz[47). In 1985, Shewchuk et. al. reported the first room temperature observation of the
NDR in a GaAs/AlGaAs system[43, 44].

The demonstration of resonant tunneling phenomena has led to a number of proposals for
devices with a third terminal to control the NDR characteristics. Capasso et. al. proposed a
heterojunction bipolar transistor with a single quantum well in the base region [13, 14, 15].
There are other resonant tunneling devices proposed by Luryi et. al.[34], Ray et. al.[42]
using MOCVD at 300° K. Tsuchiya et. al.[49] reported room-temperature observations of
negative differential resistance in 1985.

Bonnefoi et. al.[5, 6], proposed a device; Negative Resistance Stark Effect Transistor
(NERSET). This is a double barrier resonant tunneling device with an extra (base) contact.
Since this base is shielded by a thick 1000 — 1500A potential barrier, the base current is
negligible. Nakata et. al. proposed a triode with a metal-insulator superlattice in the base,
acting as an artificial semiconductor[35). This device, called resonant electron transfer triode
(RETT), is excted to perform well in high-speed applications because of low resistivity of
metal contacts. Due to the periodicity of the metal-insulator superlattice, an artificial
conduction band in the base region is formed. When the device is biased such that emitter
Fermi level is aligned with the artificial conduction band in the base, electrons resonantly
tunnel from emitter to collector.

Magnetic-field-induced resonant tunneling was discussed by Ramaglia et. al.[39]. Recent
paper by Glazer et. al. discusses the case of tunneling through highly transparent double
barriers(24]. Ranfagni et. al. reported delay-time measurements in narrow wave guides as

a test of tunneling through single barrier[40, 41]. A thorough recount of the history of



resonant tunneling can be found in Reference[21].

In the context of tunneling devices. the two physical quantities of interest to device
physicists and engineers are the tunneling current and the tunneling time. The subject of
this thesis is the latter quantity, the tunneling time. Specifically, based on average particle
velocity during tunneling, the tunneling time for a single and double barrier are studied.

Henceforth, this tunneling time is called the Average Particle Traversal time or APT time.

1.4 Overview of the Thesis

A brief literature survey, discussing various theoretical approaches to tunneling times is
presented in Chapter 2. The analogy between the solutions to the one-dimensional time-
independent Schrédinger equation and transmission line equations is exploited and the
derivation of APT time based on the analogy are discussed in Chapter 3. Analytical ex-
pressions for APT time for the case of a single potential barrier and a symmetrical double
barrier under no bias are derived in Chapters 4 and 5, respectively. Results and discus-
sion are presented in Chapter 6. Conclusions along with the proposal for future work are

presented in Chapter T.



Chapter 2

LITERATURE OVERVIEW

The prospect of high-speed devices based on resonant tunneling structures has brought new
urgency to understand every aspect of tunneling phenomena for the formulation of the the-
ory of dynamics of such systems. The question which is relevant to the dynamics of such a
system and that has resulted in a wealth of literature is “How long does it take for a

particle to tunnel?”.

The recent theoretical work on the tunneling times has centered around one-dimensional
models. Within this limited area of research, there are atleast six different approaches sug-
gested in the literature. These approaches are : the dwell time[45], the phase-delay time[26,
50], the Buttiker-Landauer traversal time[7, 8, 9, 10], the complex traversal time[37, 38, 46],
the Collins-Barker Monte-Carlo simulation time[16, 17, 18], and the Average Particle Traver-
sal (APT) time. No two of these approaches agree[27, 28, 29, 32, 33]. . In this chapter, five

approaches are reviewed and contrasted.

2.1 Dwell Time

The dwell time[45] is, in the context of the scattering of particles with fixed energy, the time

spent in any finite region of space, averaged over all the incoming particles. Thus, the dwell
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time can serve as a reference point in any discussion on tunneling times. This describes the
average time a particle dwells within the barrier irrespective of it either reflects or transmits

at the end of it’s stay. The dwell time, Tgyey, is defined as:

<=

Tdwell =

where VN is the number of particles within the barrier region and J is the incident flux of

the particles. The T4y for a single rectangular barrier can be shown to be equal to[7]:

- 3 (m"k 2ad(a? — k?) + k2 sinh(2ad)
dwell = e T 4k%a? + k3 sinh?(ad)

where m* is the effective mass, # is the modified Planck’s constant, 2—';;, k= ,/2—"%,

a = \/MF%’—'—EI and &, = ,/3-"%;!2 with E being the energy of the incident electrons. V,

and d are the barrier height and width, respectively. The dwell time in a resonant tunneling

structure is discussed by Pandey et. al. [36].

2.2 Phase-delay Time

The other well established tunneling time concept is the phase-delay time[26, 50]. A time
delay for the scattering process can be calculated by following the peak of a wave packet
via. the method of stationary phase[26]. Phase-delay time is the time interval between
the time the peak of the incident wave enters the barrier and the time the peak of the
transmitted wave appears beyond the barrier. The expression for the phase-delay time for

single rectangular barrier is given by([7]:

e = () 2000 — ) + kg sinh(20)
phase = Rk 4k2a? + kg sinhz(ad)

A strong deformation of the wave packet will result when the wave packet interacts with

a thick barrier. This deformation may shift the peak of the wave from k in the incident
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wave to k' in the transmitted wave, with & # k'. Thus. the traversal time calculated by this
method of following the peak of the wave packet becomes meaningless, as the same particle

is not used for the time delay measurement.

2.3 Buttiker-Landauer Time

Buttiker and Landauer|7, 8, 9, 10] considered tunneling through time-dependent rectangular
barrier with a small oscillating component added to the static barrier height. For a slowly
varying potential, the additional time dependence of the transmitted wave is caused by the
variation of the transmission probability with the height of the barrier. If the potential
oscillates fast compared to the traversal time (w >> 1/7), then the particles see a time-
independent barrier of average height V,. For slowly varying potential (w << 1/7), the
tunneling particles see an effective time-dependent static barrier of height V(). Identifying
the transition frequency at which the static barrier becomes an oscillating barrier for the
particles, provides one with the inverse of a traversal time. The expression for Buttiker-

Landauer traversal time for a single rectangular barrier is given as:
2 2y
TB-L = (Tdyen + Tz)2

where 7, is given by:

. (m'kg (a? — k?)sinh?(ad) + (k2da/2) sinh(2ad)
*7 ) ha? 4k2a? + k4 sinh?(ad)

In this approach, the particles that are tunneling and those which are reflected are

differentiated.

2.4 Collins-Barker Monte-Carlo Simulation Time

In this approach, a Gaussian wave packet with a particular standard deviation k, is made

to impinge on a potential barrier and the time delay associated between the entrance of
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the peak of the incident wave and the appearance of the peak of the transmitted wave be-
yond the potential barrier, is computed numerically [16, 17], using the conventional Monte-
Carlo approach. Based on excellent agreement of Monte-Carlo time and phase-delay time.
it was concluded that the phase-delay time result originally obtained by Wigner[50] and
Hartman(26] is the best expression to use for a wide parameter range of barriers, energies

and wave packets.

2.5 Average Particle Traversal (APT) Time

In this approach, an average tunneling velocity at steady state is defined as v,,(z) = T\IJ(JT)F’
with J being independent of z, and |¥(z)|? is the probability density function at any
point z along the barrier[31]. The analogy between the solution to the time-independent
Schrodinger equation and the steady state transmission line equation for a loss-less homoge-
neous transmission line with a load, is exploited. A quantity analogous to the characteristic
impedance of the transmission line called, Quantum Mechanical Wave Impedance (QMWI),
Z(z), is derived in terms of the complex coefficients of the solutions to the wave function

as a function of z[3, 31]. The v4,(2) is then related to Z(z) and the APT time, 74pr, is

obtained as:

d
TAPT =/0 Z (2.1)

vav(x)

where d is the width of the barrier.

The integral expression given by Eq.[2.1] was used to obtain the tunneling time through
a delta function by Anwar et. al.[4] numerically. The tunneling through an emitter-base
junction of a Heterojunction Bipolar Transistor was investigated by Cahay et. al. using

numerical integration of the Eq.[2.1][11, 12].
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Chapter 3

THEORETICAL

FORMULATION

3.1 Introduction

In this chapter, a discussion of the analogy between the the solution to the time-independent
Schrédinger equation and transmission line equations in one-dimension are presented. Ex-
ploiting this analogy, a quantity called the Quantum Mechanical Wave Impedance (QMWTI)
is derived in terms of the wave function solutions. Using QMWI, the average tunneling

velocity is derived and is used to derive the APT time,74pT.

3.2 Formalism

Let a flux of electrons, with energy E, be incident on the potential barrier, as shown in
Figure [3.1]. The dynamic equation governing the electron system is the time-dependent

Schrédinger equation. The Schrédinger equation at steady state is given by:

;’(2) - M V(2))9(z) = 0 (3.1)
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Va
O Incident Electrons I
Reflected Electrons
- e - -—- b
Z, ZL
Region 1 Region 2
2]
O ! i
z=10 N

(a) (b)

Figure 3.1: Transmission line analogy: (a) transmission line circuit equivalent with a load
impedance of Zy, (b) quantum mechanical system with a potential step barrier configura-
tion.

The solution to this time-independent Schrodinger equation in region 1 with conduction

band edge potential profile, as shown in Figure{3.1], can be written as:

U(z) = At (e*® — pe~ %) (3.2)

wherea='y+j[3=j\/2_”Lﬁ'§£l(E_Vo)

p is the wave amplitude reflection coefficient, a is the propagation constant, and E is the
energy of the incident electrons. v and 3 are the real and imaginary parts of the propagation
constant a, respectively.

In particular, the wave equation for regions 1 and 2 can be written as:

Ty(z) = A (€% - pe™™1%)...... z<0 (3.3)

Uy(z) = ATe*?®...... x>0 (3.4)
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respectively,

where ¢o; = j\/%;-(E -Vi)=7+7Bi

mi(z),V;,(i = 1,2) are the effective mass, and the potential, respectively, for the it*
region. Here, v; and §; are the real and imaginary parts of the propagation constant ¢; for
the ** region.

There is no reflection of the wave in region 2 > 0, because the region is homogeneous

and of infinite extent. Applying the boundary conditions at z = 0, ¥;(2 = 0) = ¥s(z = 0)

and ¥i(z = 0)/m] = ¥s(z = 0)/m3, an expression for p is obtained as:

_ lag/m5 — a1 /mj]
= laz/ms ¥ o fmi] (3:5)

Differentiating Eq.[3.2] with respect to  and multiplying both sides of the equation by

a factor 3%, an expression for ¢(z) is obtained as:

_h_d¥(z)

T dg = AT Zo(e7 + pe™™) (3.6)

O(z) =

where Zy = j‘:‘:.

3.3 Transmission Line Analogy

The expressions for voltage, V(z), and current, I(z), along the homogeneous lossless trans-

mission line with generalized distributed impedance, are given by:

I(z) = I (e** — T e %) (3.7)
V(z) = It Zy(e** + e %) (3.8)
where
21— 2
rt — [ L O]

ZrL+ Zo
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where I'y is the wave amplitude reflection coefficient.

Zr, and Zp are the load and characteristic impedance of the transmission line, respec-
tively. Comparing the expressions for ¥(z) and ®(z) given by Egs.[3.2] and [3.6] respec-
tively, with the expressions for I(z) and V/(z) for transmission line given by Egs.[3.7] and
[3.8], respectively, it is observed that they are analogous. Zp in Eq.[3.2] and [3.6] is the
quantum mechanical analog of the characteristic impedance of the transmission line, Zgp
given by, —\/Z/Y where Z and Y are the series impedance and the shunt admittance, per

unit length of the transmission line, respectively.

3.3.1 The Quantum Mechanical Wave Impedance

At any plane z, the Quantum Mechanical Wave Impedance (QMWTI) [31] can be obtained

from Eq.[3.2] and [3.6] as:

Z(z) = % (3.9)

Z(z) can be re-written as:

2n  W'(x)

@) Ua) ~ 27 = B+ @) (3.10)

where R(z) and X (z) are the real and imaginary parts of Z(z) at any point z, looking in
the positive z direction.

Multiplying both sides of Eq.[3.10] by jm;ﬁ(z), Eq.[3.10] modifies to:

¥'(2)
U(z

= jk(z) + n(z) (3.11)

where k(z) = 1"1%);—("”) and n(z) = E—%)rlxﬁl are the propagation and attenuation constants
of the wave function, respectively.

Integrating Eq.[3.11] from z = 0 to any z, ¥(z) can be written as:

‘I‘((II) — ‘I’er: n(a:)d:z:ej j: w(z)dz (312)



where ¥(z) is the wave function at any point z. and ¥q is the incident wave function at

the 2 = 0 boundary.

3.3.2 Steady State Probability Current Density

The wave function, ¥(z), can be used to express the probability current density, J(z) as
follows. Using Eq.[3.12], the steady state probability current density, J(z), at any point z
can be written in terms of R(z) and 7(z) as:

1 2h

/= §Re[jm"(z)

¥ (2)8(2)] = £ Wl R(z)e?s 741 (3.13)

where ¥*(2) is the complex conjugate of the wave function, ¥(z). At steady state, the
current continuity equation necessitates that the probability current density everywhere
along the barrier be equal in the absence of any generation or recombination mechanisms.

Using Eqgs.[3.12] and [3.13], J(z) can be written as:

J = %R(x)l'l’(a:ﬂz (3.14)

The current density, J(z), can be defined in terms of an average steady state velocity,

Vau(2), and probability density as:

J = vay(2)|¥(2)|? (3.15)

This equation is similar to the drift current density equation in terms of the drift velocity,

and charge density. Considering the probability current density again:

R d¥(z) _ d¥*(z)

J(z) = (Qj—m.(x—))[‘l’*(x) I T (2] (3.16)
J(z) can be modified to:
J(z) = %Re[fb(z)\ll*(a:)] = %Re[V(w )I*(2)] (3.17)

Thus, J(z) is analogous to the average power in the transmission line. V(z) is the
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voltage, I*(z) is the complex conjugate of the current at any z along the transmission line.

3.3.3 Average Particle Traversal Time

Comparing Egs.[3.14] and [8.15], veu(2) can be written as :

vas(@) = 3 B(z) (3.18)

In other words, the average velocity of the particle at any z is one half the real part
of the QMWTI. The T4pr required for a particle to move an elemental distance, dz, at any

point z is given by[3]:

dz

Vay()

drapr = (3.19)

Using Eqs.[3.16] and [3.19], an integral expression for the time required to traverse a

distance L can be obtained as[3]:

Pir—o [f 3.20
7’APT—/0 T= ./(;R_(;)- ( )

where R(z) is the real part of the Quantum Mechanical Wave Impedance, Z(z). It is
noted that using Eq.[3.10], Z(z) can be obtained from the wave function solution to the
Schrédinger equation, given by Eq.[3.3]. Identifying the real part, R(z), and using Eq.[3.20],

T4PT Ccan be obtained for any structure.
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Chapter 4

SINGLE BARRIER

In this chapter, the APT time, T4pT, through a single rectangular potential barrier is
considered. Based on the theoretical formulation, discussed in Chapter 3, an analytical
expression for the T4pr is derived. In order to calculate the 74pr for the barrier region,
the real part of the QMWI should be known. The real part of the quantum mechanical
wave impedance can be obtained from the wave solution to the Schrédinger equation in
that particular region. By knowing the real part of the QMWI, and using Eq.[3.20], an
analytical expression for the T4pr is derived in terms of the incident energy, barrier height

and width.

4.1 Calculation of the Complex Coefficients of Wave Func-

tion Solutions

The solutions to the time-independent Schrédinger equation for a rectangular potential

barrier structure shown in Figure[4.1] is given by:

Ui(z) = e + Ade=#= ..ol T < — (4.1)
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eika: 4+ Ae—ikm Deik:c

E =0 Region 1 Region 3

DR,

Figure 4.1: Conduction band edge profile for a single rectangular potential barrier with the
corresponding wave function solution for different regions.

1112(3;) = Be®*T 4 Ce™ % ..o . —Td <z < .g (4.2)
thz d
Ta(a) = De*eoiiig > 2 (4.3)

where 4, B, C, and D are the complex coefficients, a is the attenuation constant given by

W2 E) ,:/ 2=E) & is the propagation constant given by /22:E, V, and d are the height and

width of the potential barrier, respectively, and F is the incident energy of the particle.

Boundary Conditions

The boundary conditions at z = =2 and z = % are that the wave function, ¥(z), and the
)

2
derivative of the wave function, \Il/(a: be continuous, which are given by:

Uz = —d/2) = Pa(z = _.d/2) ......... = — (4.4)
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Up(z =d/2) = Us(z =d/2) - n--- z= g (4.5)
, : d

U (z=—-df2)=V(z=—-d/2) - .. z=-3 (4.6)
Uo(z =d/2) = Us(z =d/2) -+ - T = g (4.7)

Substituting the respective wave function solutions from Eqs.[4.2] and [4.3] in Egs.[4.4] -

[4.7], at the interface 2 = %, an analytical expression for B and C can be obtained as:

Det*/2( o + ik)

B = 20exd/?

(4.8)

Deikd/2( — if)
¢= 2ae~d/2 (49)

An expression for the complex coefficient A can be obtained by using the continuity condi-

tion on ¥(z) and ¥'(z) at the interface z = —-% as follows:
e—ikd/‘Z + _4€ikd/2 — Be—-ad/? + Cead/? (4.10)
ike~ ™2 _ ik Ae*? = qBemU? _ oCe¥? (4.11)

Solving Egs.[4.10] and [4.11] simultaneously and using Eqs.[4.8] and [4.9], the complex

coefficient A can be obtained in terms of the the complex coefficient D as:

D(c? + k?)sinh(ad)

A=
12ka

(4.12)

Using Eqs.[4.8],(4.9], and [4.12] in Eq.[4.10], an analytical expression for the complex con-

stant D can be written as:



2ikae~kd A
b= (k? — a?)sinh(ad) + i2ka cosh(ad) (4.13)
4.2 APT Time Expression for the Single Barrier
The solution to the Schrédinger equation in the potential barrier region is given by:
To(z) = Be®® + Ce™>" (4.14)

Reiterating the definition of Quantum Mechanical Wave Impedance (QMWI) given by
Eq.(3.10):

Z(z) = ].i:l,_ izg; (4.15)
Considering the fractional part of Z(z) and using Eq.[4.14] and [4.15], an analytical expres-
sion for -\%5—3— can be obtained as:

U,(z) _ a[Be*® — Ceo7]

‘I’z(.’b‘) - [Beal' + C’e—az‘] (416)

Substituting for B and C in terms of D from Eqs.[4.8] and [4.9] an expression for the QMWI

can be written in terms of the attenuation constant « and the propagation constant & as:

Uy(z) _ af(e+ ik)e==42) — (o — ik)e=o(==d/2)]

Uy(2) ~ [+ ke EaD + (a — ik)e-ole-/2)] (4.17)
Eq.[4.17] can be modified to:
Uy (z) _aa sinh(az') + ik cosh(az')] (4.18)
Uo(z)  [acosh(az') + iksinh(az')) :
where z' = z — %
Eq.[4.18] can also be written as:
U,y(z) _ af(a® + k?)sinh(az’) cosh(az') + ika] (4.19)

Uo(z) (@2 cosh?(az’) + k2 sinh?(az")]
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Multiplying by -2&, the real part of Z(z), R(z). can be obtained as:

_]m‘ 3

2h a?k
Re[Z
el (:z: = m‘[a2 cosh?(az') + k2 sinh?(az’)

] (4.20)

The T4p7 through the barrier can be obtained by substituting Eq.[4.20] into Eq.[3.20] as
follows:
TAPT = 2/0 [—mm-—][a2 cosh?(az') + k? sinh?®(az’))dz’ (4.21)
: -d 2ha?k -
The above expression for 74pr is analytically integrable for all values of incident energy of

the particle.

4.2.1 The APT Time for £ < V,.

When the energy of the incident electron, E, is less than the barrier height, V,, the atten-
uation constant, a, is a real quantity, and the electron wave function is decaying in nature.

Then, Eq.[4.21] can be integrated to obtain T4pr given by:
rhelow — (4h 3L)[(L2 + a?)sinh(2ad) + 2ad(a® — k?)] (4.22)

4.2.2 The APT Time for F > V,.

When the energy of the incident electron, F, is more than the barrier height, V,, a is an
imaginary quantity, and the electron wave function is propagating in nature. Then Eq.[4.21]

can be analytically integrated to obtain the following expression for Tap7:

roboye = <4hk3 ) [2bpd(k? + k) - ( ~ k) sin(2kpd)] (4.23)

where kp is the propagation constant given by vV 'ﬂ—lzm'(f =te),
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4.3 Various energy limits of 74p7

The limiting values for the 74p7 for three cases of the incident energy of the particle, viz.
E—0,E -V, and E — oo can be computed analytically. The derivation of these limits

are discussed in this section.

L —0.

When the incident energy of the particle approaches zero, £ — 0, from Eq.[4.22] the
propagation constant k tends to zero. hence 74p7 given by Eq.[4.22], tends to the following

limit:

TAPT — OO (4.24)

E — ~.

When the incident energy of the particle approaches infinity, £ — oo, the propagation

constant in the barrier, kg — oo. The corresponding limit of T4pr is:

*

m

TAPT = g (2hnd(2kB)] (4:25)
m*d

TAPT — hkg = Telassical (426)

The T4pT tends to the classical time which is defined as the time it takes for a particle of
same energy and effective mass to traverse a distance equal to the barrier width, d, in the

absence of the barrier.

E-V,.
When the incident energy, I, of the particle tends to the barrier height, V,, the limiting

values for the T4pr can be obtained from either Eqgs.[4.22] or [4.23] as follows[19]:

(2ad)?
6

(2 ~ )
4

4

TAPT — Fhod )[Qad + 2ad] (4.27)

1+



m* 5, 8aid?
TAPT — poapl® 6

*d kd)?
TAPT — n,;k [1+( 3) )

]
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(4.28)

(4.29)

From Eq.[4.29], the T4pr is finite when £ — V| as k is finite. The limiting values of 74y,

Tphase—delay, TB—L aNd Telassical Were obtained for three cases of limiting energies, £ — 0,

E — oo and E — V, and listed in Table I for comparison of these values.

comparison is made in Chapter 6.

A detailed

Table I. The limits for the traversal times; the dwell time, T4y, the phase-delay time,

Tphase~delay, the Buttiker-Landauer time. 75_r, the classical traversal time, Tcigssicar, and

the APT time, 74pT, for various incident energy limits.

E—=0Q E — oo E-YV,
m*d 4d>+6d/ k2
Tdwell 0 TE Boke (st TrraEa)
Tphase—delay S n;:‘kd _m—.hin( 41d23-:-36}.2/:’2)
oL n;mk: ) (a=_k’)s;x;r;:(;xfz;mg%‘/x:;))sinh(zad) md \/mi
Telassical S &ﬁ;—d r_"fx—.l-g
TAPT oo e 2R+ ’(“k:‘si—)z]
Fre = (B0)(3204) and 7y = (Toke)(Soiadlts
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Chapter 5

DOUBLE BARRIER

In this chapter, an analytical expression for the 74pr through a symmetrical double rectangular
potential barrier structure is obtained by using an approach similar to that used for a single barrier
case in Chapter 4.

The conduction band edge profile of a symmetrical double rectangular potential barrier is shown
in Figure [5.1]. Firstly, the solution to the Schrédinger equation is obtained analytically. Then the
solution is used to obtain the real part of the QMWTI, which in turn is used to obtain vgy (). vay(z)

is used to obtain an analytical expression for the r4p7.

5.1 Calculation of the Complex Coefficients of Wave Func-

tion Solutions

The wave function solution to Schrédinger equation in the five regions shown in Figure[5.1] is given

by:

U (z) = eFT 4 de~ikT Ll z<0 (56.1)



Deikz + E'e—ik:v Heikz
Region 3 Region 5

Figure 5.1: Conduction band edge profile for a symmetrical double rectangular potential
barrier with the wave function solutions for different regions.

Ua(x) = Be*™ + Ce™ et 0<z<d (6.2)

Ua(z) = De'*® 4+ Ee™* .. ..., d<z<(d+d) (5.3)
Uy(z) = Fe®™ 4+ Ge™ o ovvvnnnn (d+di) < z < (dy +2d) (5.4)
Us(z) = He®®.ooovns z > (dy + 2d) (5.5)

where d and d; are the barrier and well widths, respectively, and V, is the height of the barrier.
Applying the boundary conditions viz. the wave function, ¥(z), and the derivative of the wave
function, ¥'(z), are continuous at the interfaces z = 0, ¢ = d, ¢ = d + d;, and at = = 2d + dj,

analytical expressions for the complex coefficients A, B, C, D, E, F, and G, can be obtained in
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terms of the complex constant H, which is the wave function transmission coefficient. The analytical

solutions to the complex coeflicients are:

A= gi2kd (a+ilc

2 kaed MNIk? = @) + (o = ik)?e*2*N ) sinh(ad) + i2ka cosh(ad)] — (

o — itk

He*2d(o 4 ik)

idkolead

B = [[(k? = a®) + &'*9'(a — ik)?]sinh(ad) + i2ka cosh(ad)]

Hei2*d(q — ik)

iAkale-ad [[(k* — &®) + ' (o + ik)?] sinh(ad) + i2ka cosh(ad)]

C =

_ [{eikd

T i2ka [(k* ~ a®)sinh(ad) + i2ka cosh(ad)]

H eik(3d+2d1)

2, L2\ o
E = oFa (a” + k*) sinh(ad)

P Heik(2d+d) (o 4 k)
- 2ae0(2d+dl)

_ Hett(2d4d) (o — k)
= T ome-ol(2atdr)

5.2 The 14pr for a Resonant Tunneling Structure

a+ ik
o —ik

)(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

In order to derive an analytical expression for the 74p7, the Quantum Mechanical Wave Impedance

(QMWI) should be computed. The QMWI can be obtained from the wave function solution involving

the complex constants B, C, D, E, F, and G. The analytical expressions for the real and imaginary

parts of the complex coefficients are given in Appendix A. The real parts are subscripted ‘1’ and the
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imaginary parts are subscripted ‘2’. In order to calculate the total 74p7 through the structure, the

Tapr's for the two barriers and the well region are calculated individually and added up as follows:

total . _1b well rb
TAPT = TAPT + TAPT + TaPT (5.13)

where 7/¢pr, 7984 and 7% are the traversal times in the left barrier region, well region, and right
barrier region, respectively. The 74pr’s, TX’PT, Tx’fs’,} and TQ‘},T are calculated using the integral

expression for 74pp given by Eq.[3.20].

5.2.1 The 74p7 for the Left Barrier Region

In order to calculate the 74pr time for the barrier region, the real part of the QMWI should be
computed. Once the the real part of the QMWI, Re[Z(z)], is known, it can be substituted into
Eq.[3.20] to obtain an integral expression for the T4pr for the barrier region.

The solution to the time-independent Schrodinger equation for the left barrier region is given
by:

Y(z) = (By + iB2)e®® + (C) + iCy)e™ %" (5.14)
where By, Cy are the real parts and Ba, C» are the imaginary parts of the complex constants B and
C, respectively. The ¥'(z) can be obtained from Eq.[5.14] as:

U'(z) = a[(By + iB2)e®® — (Cy + iCy)e~°7) (5.15)

Re[Z(z)] can be obtained from Eq.[5.14], Eq.[5.15] and Eq.[3.19] as:

2(BaC) — B1Cs)

5 3 .16
(BT + B+ (CT + Che"= + AB G + Bacw) 19

RelZ(2)] = (22

b can be obtained from Eq.[5.16) and Eq.[3.20] as:
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(5.17)

b /d(m'dx)[(Bf + B2)e? 4 (C} + C3)e=?*% 4+ 2(B,C, + Bgcg)]
APT = 2 |, ' 2ha 2(BsC; — B;1Ca)

Integrating Eq.[5.17]:

b m" B'iz + Bg

T — [ ][( M
APT = Uha(BsCy — B, Ca) Qo

o lle™2*¢=1]+2d(B;Cy+B2C3)] (5.18)

ed=1)-[

5.2.2 The 74p7 for the Potential Well Region

The solution to the time-independent Schrédinger equation for the well region is given by:

U(z) = (D +iD2)e'*™ + (B, + iEp)e e (5.19)

where Dy, E, are the real parts and D, E, are the imaginary parts of the complex constants D
and E, respectively. The expressions for all the coefficients are given in appendix A. The ¥'(z) is

obtained from Eq.[5.19] as:

U'(z) = ik[(Dy + iD2)e™* — (E) + iEy)e™ 7] (5.20)

The T4pr in the potential well region can be written as:
d+dy dz
) / — 5.21
APT B RC[Z(l‘)] ( )

Using Eq.[5.19] and Eq.[5.20] in Eq.[3.9], and writing the exponentials in terms of trignometric

functions, multiplying by r’;"" , in the expression for Re[Z(z)] in terms of the complex coefficients, an

expression for the 74pp for the well region can be obtained as:
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d4-d;
TV = / [p+ qcos(2kz) + rsin(2kz)]dz {5.22)
d

where p, ¢, and r are given by:

_ D}+ DI+ E}+ E2

= 2 ! 5.2

P= DIty DI-Ei-E2 (5:23)
DVE, + Dy E,

1= DI+ DI-EI - E3 (5.24)
DiEr -~ D2y (5.25)

r= o3
D} + D3 — E? — E}

Integrating Eq.[5.22), an analytical expression for the 74pr in the well region, 1',‘{’;,'7’,, is obtained as

follows:

Y = (%)[pdl + (é%)[sin[?k(d—i— dy)] — sin(2kd)] — (-2%)[cos[2k(d+ dy)] — cos(2kd)]] (5.26)

5.2.3 The r4pr for the Right Barrier Region

The solution to the time-independent Schrodinger equation in the baarrier region is given by:

U(z) = (Fy + iF3)e®® + (G +iG2)e™ " (5.27)

where F1, G are the real parts and F,, G are the imaginary parts of the complex constants F and

G, respectively. \Ill(z) can be obtained from Eq.[5.27] as:

¥'(z) = a[(F) + iF2)e®® — (G + iGa)e™ "] (5.28)



Re[Z(x)] can be obtained from Eq.[5.27] and Eq.[5.28] as follows:

Re[2(z)] = ( ha)[ 2(F2Gy — F1Gh) ]
(FZ 1 FR)eer + (G2 + Go)e=20% + 2(F,G1 + F2Ga)

and the 7% can be obtained as follows:

o [P mrde, (FR+ FEe*™® + (G} + G3e™ 2% + 2(Fi1Gy + FaGa)
TapT =2 p

+d, 2ha )[ Q(Fgcl - Fng) ]

Integrating Eq.[5.30):

wer = g )
APT 4ha(F2G, — FGa)

Fi + F3. satdibad) p20(di+d) G} +G3
(52l J= =51

[8—20(d|+2d) _ e—2a(d+d;)] + 2d(F1G1 + FgGg)]

30

(5.29)

(5.30)

(5.31)
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Chapter 6

RESULTS, COMPARISONS and

DISCUSSIONS

In this chapter, the t4pr obtained from the analytical expressions are compared with previous
work reported in the literature for the single and double barrier cases. The 74p7 for single barrier
is compared with the dwell time[7, 45], the phase-delay time[7, 16, 26, 50], the Buttiker-Landauer
traversal time[7, 8, 9], and the classical traversal time. The double barrier 74 pr is compared with the
experimentally obtained maximum frequency of oscillation of some of the structures experimentally

grown and tested by Sollner et. al. [25, 47, 48].

6.1 Single Barrier

A plot of T4pr and transmission coefficient vs. the normalized incident energy for a rectangular
potential barrier is shown in Figure[6.2] for a barrier of height 0.3eV and width of 2004 as shown in
Figure[6.1], for the case of incident energy of the particle less than the barrier height, i.e., £ < V.
The transmission coefficient increases with incident energy, E, as expected. The 74p7 decreases with

increasing energy. It is noted that the 74 pp reaches infinity in the limit of zero energy like a classical
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particle. A plot of 74pr and transmission coefficient vs. the normalized incident energy is shown in
Figure[6.3] for the structure shown in Figure[6.1], where the incident energy of the particle is more
than the barrier height, i.e., £ > V. In the limit of incident energy of the particle tending to the
barrier height, i.e. £ — V,, the t4pr is large but finite as given by Eq.[4.29]. The 74pr decreases
with the increasing incident energy. It is also noted that the 74 pr oscillates slightly for large barrier

thicknesses. In the limit of £ — oo, 74pr reaches the classical limit as given by Eq.[4.26].

6.1.1 Comparison of Dwell time, Phase-delay time, Buttiker-Landauer

time, T4pr, and the Classical time for, F < V,

A plot of the dwell time, the phase-delay time, the Buttiker-Landauer time, the 74p7 and the
classical traversal time vs. normalized incident energy is shown in Figure[6.4], for a rectangular
potential barrier with a barrier height of 0.3e¢V and a width of 2004 as shown in Figure[6.1], when
E <V,

TapT is always greater than the classical time. 74pr is infinity in the limit of no energy, E = 0,
implying that the particle takes infinite time to traverse the distance when the particles possess no
energy at all. For all incident energy values below the barrier height, V,, the dwell time and the
phase-delay time are less than the classical traversal time as shown in Figure[6.4]. Whereas, the
Buttiker-Landauer time is below the classical time for a range of incident energy, and above the

classical time for the rest of the incident energy interval.

6.1.2 Comparison of Dwell time, Phase-delay time, Buttiker-Landauer
time, T4p7, and the Classical time for £ > V,

A plot of the dwell time, the phase-delay time, the Buttiker-Landauer time, the 73p7 and the
classical traversal time vs. normalized incident energy are shown in Figure[6.5], for a rectangular
potential barrier with a barrier height of 0.3eV and a width of 2004 as shown in Figure[6.1], when

E > V,. In this case, all the traversal times are above the classical traversal time. A plot of the
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dwell time, the phase-delay time. the Buttiker-Landauer time, the r4p7, and the classical time with
the transmission coefficient is shown in Figure[6.6]. The dwell time, the phase-delay time and the
Buttiker-Landauer time attain a maximum value when the transmission coefficient is maximum, and
reaches a minimum when the transmission is minimum. Whereas, the 74 pr attains a minimum when
the transmission coefficient is maximum, and reaches a maximum when transmission is minimum. In
other words, According to 74pr, the particle travels fastest at resonant energies, whereas according
to the approaches, the particle travels fastest at non-resonant energies. All the traversal times

approach the classical time limit at very high incident energies.

6.1.3 Effect of the barrier width on the 74p7

The dependence of T4pr on the barrier width with £ < V, is shown in Figure[6.7), for a barrier
height of 1.0eV and for a barrier width in the range of 254 to 250A4.

The 74p7 decreases as the incident energy of the particle increases and the 74 pr is inversely related
to the transmission coeflicient. The 74p7 is finite when the incident energy of the particle is equal
to the barrier height V.

The dependence of 74pp on barrier width, with incident energy of the particle more than the
barrier height is shown in Figure[6.8], for a barrier height of 1.0el” and for a barrier width in the
range from 25A to 250A. Small oscillations in the T4pp can be seen as the width of the potential
barrier increases.

The T4pr decreases as the incident energy of the particle increases. It is to be noted that as the
barrier thickness increases, small oscillations in the 74pr can be observed. These oscillations are
inversely proportional to the transmission coefficient. i.e. 74pr valleys at resonant energies whereas

the transmission coefficient peaks.
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6.2 Double Barrier

The plot of the transmission coefficient and 74pr is shown in Figure[6.10] for the structure shown
in Figure[6.9]. Five quasi-bound energy states can be observed below the barrier height. The
transmission coefficient is unity at these resonant energies levels. It is to be noted that r4pr is

minimum at the resonant energies. Thus the transmission coefficient is inversely related to r4p7.

6.2.1 Comparison of 74pr with Experimental Results

Structure 1: Barrier width = 504, Well width = 504, and Barrier height =
0.23el".

The plot of T4pr and the transmission coefficient vs. the incident energy of the particle is shown
in Figure[6.12]. The structure considered was a symmetrical rectangular double potential barrier
with a barrier height of 0.23¢V/, barrier width of 504 and a well width of 504 as shown in Figure
[6.11]. This same structure is chosen as it is well characterized experimentally in terms of the
I — V characteristics and high frequency studies[47, 48]. It was reported by Sollner et. al.[47, 48]
that the maximum frequency of operation of the resonant tunneling device is 1.2THz. It was also
observed that there is one quasi-bound resonant energy state at 0.0791eV which is less than the
barrier height. This value of 0.0791eV agrees with that obtained from our analytical solutions. At
this resonant energy value, the 74pr is a minimum and also the transmission coefficient attains
unity. The estimated maximum frequency of operation, from analytical expression for r4pr, is
0.8THz, i.e., frequency corresponding to the resonant energy, which is in good agreement with the
experimental value of 1.2THz. This maximum frequency of operation was estimated taking into

consideration only the T4ppr. The capacitance charging times at the depletion layers are not taken

into consideration.
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Structure 2: Barrier width = 254, Well width = 454, and Barrier height =

1.0eV.

The plot of 74 pp and the transmission coefficient vs. the incident energy of the particle is shown in
Figure[6.14]. The structure considered was a symmetrical rectangular double potential barrier with a
barrier height of 1.0eV, barrier width of 254 and a well width of 454 as shown in Figure [6.13]. This
structure was fabricated and experimentally studied for high frequency oscillations by Sollner et.
al.{25, 47]. It was reported by Sollner et. ai., that the maximum frequency of operation of the above
resonant tunneling device is 2.4T Hz. It was also reported that there are two quasi-bound resonant
energy states, one at 0.154eV and the other at 0.581eV below the barrier height. These values
agree well with the values obtained from other numerical solutions. The transmission coefficient is
maximum and attains the value of unity at these resonant energy levels and 74pr at these resonant
energy levels is a minimum. The estimated maximum frequency of operation is 1.4T H z which is in
good agreement with the experimental results. The maximum frequency of operation was estimated

by taking into consideration the 74pr only.

6.2.2 Effect of barrier width on the APT time

A 3-dimensional surface plot of the T4pr is shown in Figure[6.16], for a range of the barrier widths
from 304 to 1004, well width of 304, and for a barrier height of 0.3¢V/, as shown in Figure[6.15]. The
T4pr approaches infinity when E — 0. The 74p7 is inversely related to the transmission coefficient.
The formation of troughs in the 74pr at resonances indicate that at these resonant energy levels,
the T4pr is minimum. As the barrier thickness is increased, the formation of the resonant energy
levels is more pronounced and 74 pr for a very thick barrier, at the resonance, is more than that for

a thin barrier.
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6.2.3 Effect of well width on the APT time

A 3-dimensional surface plot of the 74 pr is shown in Figure[6.18], for a range of well widths from 304
to 1104 and a barrier width of 304, and fer a barrier height of 1.0¢V as shown in Figure[6.17). A 3-
dimensional surface plot of the 74pr along with the transmission coefficient is shown in Figure[6.19]
for the same structure shown in Figure[6.17]. More quasi-bound states with E < V, appear as the
well width increases, as shown in Figures[6.18] and [6.19]. The formation of troughs in the T4p7 at
resonances indicate that at these resonant energy levels, the T4 pr is minimum. 74p7 is minimum at
resonant energies. When the width of the potential well is small, the number of resonant energies is
small within the potential well. As the width of the potential well increases, the number of resonant
energy levels increase and the energy spacing between any two adjacent resonant energy levels within

the potential well, AF, decreases.
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Figure 6.1: The conduction band edge profile of a single rectangular potential barrier of
width 2004 and height 0.3eV
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Figure 6.2: Plot of the (a) Transmission Coefficient, and the (b) APT time, for a single
rectangular potential barrier for £ < V,, with barrier width 2004 and barrier height 0.3eV



39

X 10'15
T ;
180.00 |- < 1.00
170.00 |- _ 095
160.00 |~ _| 090
150.00 - - 085
14000 1 (a) _| 0.80
0.75
130.00 |- —
0.70
8 110.00 -1 0.60 Eg
[3)
% 100.00 - T 055 9
E 90.00 |~ — 0.50 c;
orm Q
H 80.00 - 045 -3
= 0.40 '8
; 000 1 0as 5
% 60.00 4 ™" 4
z 030 &
50.00 |- _
0.25
40.00 r == 0.20
3000 |(a) (b) -1 015
20.00 |- — 0.10
10.00 |- - 005
| | | ! ! !
1.00 1.20 1.40 1.60 1.80 2.00

Normalized Energy (above the barrier)

Figure 6.3: Plot of the (a) Transmission Coefficient, and the (b) APT time, for a single
rectangular potential barrier for E > V,, with barrier width 200A and barrier height 0.3eV
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Buttiker-Landauer Time, (d) APT time, and (e) Classical Time for E < V,, with barrier
width 2004 and barrier height 0.3eV.
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Buttiker-Landauer Time, (d) APT time, and (e) Classical Time for E > V,, with barrier
width 2004 and barrier height 0.3eV.
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Figure 6.7: 3-Dimensional surface plot of the APT time, for the case of £ < V, with the
barrier height 1.0eV and barrier width in the range 254 to 250A.
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Figure 6.8: 3-Dimensional surface plot of the APT time, for the case of £ > V, with the

barrier height 1.0eV and barrier width in the range 254 to 250A4.



45

0.956eV

1004 _>| 304

Figure 6.9: The conduction band edge profile of a symmetrical double rectangular potential
barrier structure with a barrier height of 0.956eV, barrier width of 304 and a well width of
1004,
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Figure 6.11: The conduction band edge profile of a symmetrical double rectangular potential
barrier structure with a barrier height 0.23eV, barrier width 504 and a well width 50A4.
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454

Figure 6.13: The conduction band edge profile of a symmetrical double rectangular potential
barrier structure with a barrier height 1.0eV, barrier width 254 and a well width 45A.
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Figure 6.14: Plot of the (a) Transmission Coefficient and the (b) APT time for E < V, for
a symmetrical double rectangular potential barrier structure with a barrier height 1.0eV,
barrier width 254 and a well width 454.



Figure 6.15: The conduction band edge profile of a symmetrical rectangular double potential
barrier structure of barrier height 0.3eV, barrier width in the range from 30A to 1004 and
well width 304, for E < V.
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Figure 6.17: The conduction band edge profile of a symmetrical rectangular double potential
barrier structure of barrier height 1.0eV, barrier width 304 and the well width in the range
from 304 to 110A.
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Figure 6.18: 3-Dimensional surface plot of the APT time for £ < V,. The barrier height is

1.0¢V and barrier width 304 and the well width in the range from 304 to 110A.
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Figure 6.19: 3-Dimensional surface plot of the (a) APT time and the (b) transmission
coefficient for E < V,. The barrier height is 1.0eV and barrier width is 304 and well width

in the range from 304 to 110A.



Chapter 7

CONCLUSION

Starting from the analytical solution to the time-independent Schrédinger equation in one-dimension,
and exploiting the analogy between the transmission line equation and the solution to the Schrédinger
equation, an analytical expression for the Average Particle Traversal (APT) time, 74 p7, was derived
in terms of the real part of the Quantum Mechanical Wave Impedance (QMWI). This approach was
used to derive an analytical expression for the r3pr through a single rectangular potential barrier
under zero bias, and the results were compared with the dwell time, the phase-delay time, the
Buttiker-Landauer time, the Collins-Barker numerical traversal time and the classical traversal time.
The APT time is inversely proportional to the transmission coefficient. 74p7 approaches infinity as
the incident energy tends to zero and as the energy goes to infinity, 74pr tends to the classical time.
The APT time is always more than the classical traversal time. The same approach was extended
to obtain an analytical expression for the r4pr through a symmetric double rectangular potential
barrier structure under zero bias. The APT time is inversely proportional to the transmission
coefficient and the T4 pp attains a minimum at resonant energies when the transmission coefficient is
unity. The maximum frequency of oscillation of some of experimentally studied resonant tunneling
structures were compared with those obtained using APT time. The agreement is good.

The capacitance charging time at the depletion regions were not taken into consideration. The
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effective masses were assumed to be constant throughout the structure. The 74p7 in the free
propagation regions, ahead and beyond the barriers, were not taken into consideration. The effect
of the effective mass can be incorporated in this approach and an analytical expression for the
Tapr for a barrier structure with different outer edges can possibly be derived. An analytical
expression can possibly be derived for the 74p7 through unsymmetrical double potential barriers.
Coupled-quantum-wells effect can also be incorporated. As the pre-free-propagating region may
play an important role, the traversal time through the pre-free-propagating region also should be

considered, especially when comparison with experiments are made.



58

Bibliography

(1]

(2]

(3]

(5]

(6]

(8]

ALAM, M. A., AND KHONDKER. A. An efficient self-consistent model for resonant tunneling

structures. Journal of Applied Physics 68, 12 (December 1990), 6501-6503.

ANDO, Y., aAND IToH, T. Calculation of transmission tunneling current across arbitrary

potential barriers. Journal of Applied Physics 61, 4 (February 1987), 1497-1502.

ANWAR, A., KHONDKER, A., AND KHAN, M. Calculation of the traversal time in resonant

tunneling devices. Journal of Applied Physics 65, 7 (April 1989), 2761-2765.

ANWAR, A., LaACowmB, R., , AND CaHaY, M. Influence of impurity scattering on the traversal
time and current-voltage characteristics of resonant tunneling structures. Superlattices and

Microstructures 11, 1 (1992), 131-135.

BonnEFOI, A., AND CHow, D. Inverted base-collector tunnel transistor. Applied Physics

Letters 47, 8 (1985), 888-890.

BoNNEFOI, A., AND McGiLL, T. Resonant tunneling transistors with controllable negative

differential resistances. IEEE Eleciron Device Letters EDL-6, 12 (1985), 636-638.

BUTTIKER, M. Lamor precession and the traversal time for tunneling. Physical Review B 27,

10 (May 1983), 6178-6188.

BUTTIKER, M., AND LANDAUER, R. Traversal time for tunneling. Physical Review Letters 49,

23 (December 1982), 1739-1742.



(9]

[10]

[11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

59
BUTTIKER, M., AND LANDAUER, R. Traversal time for tunneling. Physica Scripta 32 (1985),

429-434.

BUTTIKER, M., AND LANDAUER, R. Traversal time for tunneling. IBM Journal of Research

and Developmeni 30, 5 (September 1986), 451-454.

CaHay, M., DaLToN, K., AND FIsHER, G. Tunneling time through resonant tunneling devices

and quantum mechanical bistability. Superlatiices and Microstructures 11, 1 (1992), 113-117.

CaHay, M., DicHIARO, T., THANIKASALAM, P., AND VENKATASUBRAMANIAN, R. Quantum
mechanical tunneling time and it’s relation to Tsu-Esaki formula. Proceedings of the SPIE

Conference, New Jersey (April 1992).

Caprasso, F., aNnpD KiEHL, R. Resonant tunneling transistor with quantum well base and
high-energy injection: A new negative differential resistance device. Journal of Applied Physics

58, 3 (1985), 1366-1368.

CaPasso, F., AND MoHAMMED, K. Quantum photoconductive gain by effective mass filtering

and negative conductance in superlattice P-N junctions. Physica 134B (1985), 487-493.

Capasso, F., AND MoHAMMED, K. Resonant tunneling through double barriers, perpendicular
quantum transport phenomena in superlattices, and their device applications. IEEE Journal

of Quantum FElectronics QE-22, 9 (1986), 1853-1869.

CoLLIns, S., Lowg, D., AND BARKER, J. The quantum mechanical tunneling problem-

revisited. Journal of Physics C: Solid State Physics 20 (1987), 6213-6232.

CoLLINs, S., Lowe, D., AND BARKER, J. R. A dynamic analysis of resonant tunneling.

Journal of Physics C: Solid State Physics 20 (1987), 6233-6243.

CoLLINS, S., Lowg, D., AND BARKER, J. R. Resonant tunneling in heterostructures: Nu-
merical simulation and qualitative analysis of the current density. Journal of Applied Physics

63, 1 (January 1988), 142-149.



[19]

[20]

(21}

(22)

(23]

(24]

[25]

[26]

[27]

(28]

(29]

60

DE MoOURA, M. A., AND DE ALBUQUERQUE, D. F. Remarks on the traversal time in a

tunneling process. Solid State Communications 74, 5 (1990), 353-354.

Esaki, L. Superlattice and negative conductivity in semiconductors. IBM Research notes
RC-2418 (1969).

Esaki, L. A bird’s eye view on the evolution of semiconductor superlattices and quantum

wells. IEEE Journal of Quantum Elecironics QE-22, 9 (1986), 1611-1624.

Esaki, L., Howarp, L., AND RIDEOUT, V. Transport properties of a GaAs-AlGaAs superlat-
tice. Proceedings of the 11th International Conference on Physics of Semiconductors, Warsaw,

Poland (1972), 431-436.

Esak1, L., AND Tsu, R. Superlattice and negative differential conductivity in semiconductors.

IBM Journal of Research and Development (1970), 61-65.

GLAZER, Y., AND GITTERMAN, M. Tunneling through highly transparent symmetric double

barriers. Physical Review B 43, 2 (January 1991), 1855-1858.

GooDHUE, W., AND SOLLNER, T. Large room-temperature effects from resonant tunneling

through AlAs barriers. Applied Physics Letters 49, 17 (October 1986), 1086-1088.

HarTMAN, T. E. Tunneling of a wave packet. Journal of Applied Physics 33, 12 (December

1962), 3427-3433.

HauGE, E., AND ST, J. Tunneling times: A critical review. Reviews of Modern Physics 61, 4

(October 1989), 917-936.

HuaNg, Z., AND CUTLER, P. Model studies of tunneling time. Journal of Vacuum Science

and Technology A 8,1 (Jan/Feb 1990), 186-191.

Jauno, A. P., AND JoNsoN, M. Tunneling times in heterostructures. Superlattices and

Microstructures 6, 3 (1989), 303-307.



(30)

[31)

(32]

[33]

(34)

(35]

[36]

37]
(38]

[39]

(40}

61

KHONDKER, A. A model for resonant and sequential tunneling in the presence of scattering.

Journal of Applied Physics 67, 10 (May 1990), 6432-6437.

KHONDKER, A., KHAN, M., AND ANWAR, A. Transmission line analogy of resonant tunneling
phenomena: The generalized impedance concept. Journal of Applied Physics 63, 10 (May 1988),

5191-5193.

LEAVENS, C. Transmission, reflection and dwell times within Bohm’s causal interpretation of

quantum mechanics. Solid State Commaunications 74 (1990), 923-928.

LEAVENS, C. Traversal times for rectangular barriers within Bohm’s causal interpretation of

quantum mechanics. Solid State Commaunications 76, 3 (1990), 253-261.

Luryt, S., AND Caprasso, F. Resonant tunneling of two-dimensional electrons through a
quantum wire: A negative transconductance device. Applied Physics Lelters {7, 12 (1985),

1347-1349.

NAKATA, Y., AND AsaDA, M. Analysis of novel resonant electron transfer triode device using
metal-insulator superlattice for high speed response. IEEE Journal of Quantum Electronics

QE-22, 9 (1986), 1880-1886.

PANDEY, L., AND SaHU, D. Dwell time and average speed in a resonant tunneling structure.

Solid State Commaunications 72, 1 (1989), 7-11.
PoLrak, E. Journal of Chemical Physics 83 (1985), 1111.
PoLLAK, E., AND MILLER, W. Physical Review Letlers 53 (1984), 115.

RaMAGLIA, V. M., AND TAGLIAC0ZZO, A. Magnetic-field-induced resonant tunneling across

a thick square barrier. Physical Review B 43, 3 (January 1991), 2201-2212.

RANFAGNI, A., AND MUGNaAI, D. Semiclassical tunneling time in presence of dissipation: An

optical model. Physica Scripta 42 (1990), 508-512.



(41]

(42]

[43)

[44)

(45]
[46)

[47]

[49]

(50]

62

RANFAGNI, A., AND MuGNAI, D. Delay-time measurements in narrow wave guides as a test

of tunneling. Applied Physics Letters 58, 7 (February 1991), 774-776.

RAY, S., RUDEN, P., AND SokoLov, V. Resonant tunneling at 300° k in GaAs-AlGaAs
quantum wells grown by metalorganic chemical vapor deposition. Applied Physics Letters 48,

24 (June 1986), 1666-1668.

SHEWCHUK, T., CHAPIN, P., AND COLEMAN, P. Resonant tunneling oscillations in GaAs-
AlGaAs heterostructure at room temperature. Applied Physics Letters 46, 5 (March 1985),

508-510.

SHEWCHUK, T., CHAPIN, P., AND CoLEMAN, P. Stable and unstable current-voltage mea-
surements of a resonant tunneling heterostructure oscillator. Applied Physics Letters 47, 9

(November 1985), 986-988.
SMITH, F. T. Lifetime matrix in collision theory. Physical Review 118, 1 (April 1960), 349-356.
SokoLovskl, D., AND BASKIN, L. Physical Review A 36 (1987), 4604.

SoLLNER, T., BRowN, E., AND GooDHUE, W. Observation of millimeter-wave oscillation
from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits.

Applied Physics Letters 50, 6 (February 1987), 332-334.

SoLLNER, T., AND GOODHUE, W. Resonant tunneling through quantum wells at frequencies

up to 2.5THz. Applied Physics Letlers 43, 6 (September 1983), 588-590.

TSUCHIYA, AND MASAHIRO. Room-temperature observation of differential negative resistance
in an AlAs/GaAs/AlAs resonant tunneling diode. Japanese Journal of Applied Physics 24, 6

(1985), 466-468.

WIGNER, E. P. Lower limit for the energy derivative of the scattering phase shift. Physical

Review 98, 1 (April 1955), 145-147.



Chapter 8

APPENDIX A

8.1

Complex Coefficients of Wave Function Solutions

63

The complex constants involved in the solutions to the Schrédinger Equation are given in this section.

The suffix 1 and 2 indicate the real and imaginary parts of the constants, respectively.

A=

ei!.’lcd

B =

a+zlc 9

raged (o Ik - a®) + (a — ik)2e* 9] sinh(ad) + i2ka cosh(ad)] — (

_ He'*%d(q 4 ik)
i4ka2ead

_ He?*(a — ik)
T i{dkale—od

Heikd
b= 2ka

(k% — a®) sinh(ad) + 2k cosh(ad))

a + ik
a— ik

[[(k% — a?) 4 "2 (& — ik)?] sinh(ad) + i2ka cosh(ad)]

[[(k? = &®) + "> (a + ik)?] sinh(ad) + i2ka cosh(ad)]

)

(8.1)

(8.2)

(8.3)



B,

B,

Heik(3d+2d1)

E = "————(a® + k*)sinh(ad)

12ka

_ Het#(2d+di)(q 4 ik)
- Jea(2d+d)

_ He*(dtdi) (g — k)
- 2ae—0(2d+dl)

a(k? — a®)(1 — e~ sin?(kd,;)

+2a%k(1 — e72*?) sin(kd; ) cos(kdy)

+k(k? — a?)(1 — e~?*%)sin(kd, ) cos(kd,)

+ak?(1 - e=?24)(1 - 2sin*(kdy))

—ak?(1 4 e~229)

k(k% — a®)(1 - e~29%) sin?(kd);)

+2ak?(1 — e~22%)sin(kd; ) cos(kd;)

—a(k? - a)(1 — e~?*%) sin(kd; ) cos(kd) )

—a?k(1 — e~2%4)(1 — 25in®(kd,))

+a2k(1 + e )
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(8.5)

(8.6)

(8.7)

(8.8)

(8.9)
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C: = a(k®-a®)(e®*? - 1)cos®(kd;)
~2a%k(e?*% — 1) sin(kd,) cos(kd;)
+k(k? — a®)(e®*? — 1) sin(kd;) cos(kd,)
+ak?(e?*? — 1)(—1 + 2 cos?(kd;))

+ak2(e2ad + l)

(8.10)
Cy = a(k®-a?)(e?® - 1) cos(kd,)sin(kd;)
+2ak?(e*@? — 1) sin(kd; ) cos(kd,)
—k(k? — a?)(e??? ~ 1) cos®(kd,)
+ak(e®*® = 1)(=1 + 2cos®(kd,))
+a2k(e'zad+ l)
(8.11)
3 2 _ 2 . .
D, = 2k cos(kd) cosh(ad) + (k% — a?) sin(kd) sinh(ad) (8.12)
2ka
D, = 2ka cosh{ad) sin(kd) — (k* — a®) cos(kd) sinh(ad) (8.13)

2ka

2 4 B2y gk i
E = (a® + &k )Slll[k(gf+ 2d,)] sinh(ad) (8.14)
b




=

Fy

Gy =

Ga =

~(a? + k?) cos[k(3d + 2d,)] sinh(ad)
2ka

a cos[k{2d + d,)] — ksin[k(2d + d1)]
Saec(2d+dr)

k cos[k(2d + d)] + asin[k(2d + d})]
= 2aea(2d+dr)

a cos[k(2d + dy)] + ksin(k(2d + d})]
2ae—a(2d+d1)

asin[k(2d + dy)] — k cos[k(2d + d,)]
2ae—0(2d+dl)
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(8.15)

(8.16)

(8.17)

(8.18)

(8.19)
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