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A B S T R A C T

S ta rtin g  from  th e  a n a ly tic a l so lu tio n  to  th e  T im e-In d ep en d e n t Schrodinger E q u a

tion , and  ex p lo itin g  th e  ana logy  betw een th e  tran sm iss io n  line eq u a tio n s  an d  th e  

tim e -in d ep en d en t S chrod inger w ave eq u a tio n , an  a n a ly tic a l expression  for th e  A v

erage P a rtic le  T raversa l (A P T ) tim e , t a p t , th ro u g h  a  re c tan g u la r p o ten tia l b a rrie r 

region, u n d er no bias, is derived , in  te rm s of th e  b a rr ie r  w id th , p o ten tia l, an d  th e  

inc iden t energy  of th e  e lec tro n . T h is  app roach  is ex te n d e d  to  derive  an  an a ly tica l 

expression  for th e  A P T  tim e  th ro u g h  a  resonan t tu n n e lin g  s tru c tu re , tw o sy m m etri

cal rec tan g u la r p o te n tia l  b a rrie rs  sandw iching  a  p o te n tia l well, u n d er no bias. T h e  

resu lts  of th e  single p o te n tia l b a rrie r  trav e rsa l tim e  are  co m p ared  w ith  th a t  of o th e r 

approaches. T h e  A P T  tim e  is inversely  p ro p o rtio n a l to  th e  tran sm issio n  coefficient, 

and  satisfies physically  in tu itiv e  energy  lim its . For th e  re so n an t tu n n e lin g  s tru c tu re , 

th e  A P T  tim e  is m in im u m  a t  re so n an t energies, an d  th e  t a p t  is inversely  p ro p o rtio n a l 

to  th e  tran sm issio n  coefficient. T h e  m ax im u m  frequency  of o scilla tion  is e s tim a ted  

an d  co m p ared  for som e of th e  ex p e rim en ta lly  s tu d ied  re so n an t tu n n e lin g  s tru c tu re s  

based on th e  A P T  tim e . T h e  ag reem en t is excellen t.
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C hapter 1

INTRODUCTION

1.1 Q uantum  M echanics and Schrodinger’s W ave Equation

T he S c h ro d in g e r  E q u a tio n  is analogous to  a classical energy conservation equation, and 

describes the dynamics of a quantum  particle. A quantum  particle is one whose wave

length is very small compared to  the dimensions of the system. W hen the dimensions of 

the dynam ic system  of the particle are extrem ely small, the classical mechanics does not 

explain m any of the experim ental observations, such as diffraction and tunneling. The 

Schrodinger equation was developed to explain these physical phenomena. The time- 

dependent Schrodinger equation in one-dimension for a quantum  particle subjected to a 

potential, V (x ) ,  is given by:

+  * (■ > *< *»= « =

where m m is the effective mass of the particle, h is the modified P lanck’s constant, and 

E  is the energy of the particle. T he tim e-independent Schrodinger equation which holds 

good when the to ta l energy of the particle is independent of tim e, is given by:

d2iS{x)  , , lT / .
_ i i  +  _ r [ £ - n i )W x )  =  0



The boundary conditions are: ^ n(a: — ± 0 0 ) =  0 and \I/nU’) and are continuous

everywhere, —0 0  <  x < 0 0 . The number of solutions to  this equation are infinite. The eigen 

values and functions are denoted with n as the index - E n and The physical meaning

of ^ n i x )  is th a t \ ^ n(x ) \2dx  provides the probability of finding the quantum  particle between 

x  and x + dx  with unity probability of finding the particle in —00  < x  < 0 0 .

1.2 T unneling P henom ena

In a single potential barrier comprising of G a A s / A l A s / G a A s ,  conduction band edge profile 

shown in F igu refl.l], as the height of the potential barrier is finite, is now zero a t the 

A l A s / G a A s  barrier interface. $ n and 'n are continuous and non-zero a t each boundary of 

the barrier, and and U>'n are non-zero within and beyond the potential barrier. Since 

has a non-zero value to  the right side of the barrier as shown in F igurefl.l], is non

zero, implying th a t the  probability of finding the particle with E  < V 0 beyond the barrier 

region is finite. According to  classical mechanics, the probability of finding the particle with 

E  < V0 beyond the  first A l G a A s / G a A s  interface is zero, since such a  real space transfer 

of the particle through a  potential barrier region is p rohibitted  classically. The physical 

mechanism by which the particle, with E  < V0, penetrating  a  finite potential barrier is 

called quantum  m echanical tunneling through the barrier. The tunneling probability is 

directly related to  the  energy of the particle, E ,  relative to  V0 and the barrier w idth, d.

The first device proposed, based on the tunneling phenom ena, was the tunnel diode. 

The Tunnel diode is often called the Esaki diode after L. Esaki [20, 23], who in 1973 

received the Nobel prize for his work on this effect. The basic structure is a p+n + diode 

with p  and n  regions are degenerately doped so th a t the depletion layer region is very thin. 

Due to thin depletion layer, electrons in the conduction band can tunnel through the thin 

depletion region to  the  valence band electrons. A tunnel diode exhibits the critical feature 

of negative differential resistance (NDR), over a portion of i t ’s I  — V  characteristics, as 

shown in Figure[1.2]. In NDR region, the I  — V  characteristics exhibits a negative slope,

i.e., the quantity  is negative.
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(a)

L + W

E xponential decrease 
inside barrier

i/' t6 0 beyond  barrier
<b)

Figure 1 .1 : Quantum  mechanical tunneling: (a ) potential barrier of height V0 and thickness 
W ; (b )  wave function $  for an electron with energy E  < F0, indicating a non zero value of 
the wave function beyond the barrier

Figure 1.2: The I-V characteristics of a  tunnel diode, a -b  is the linear resistance region; 
b -c  is the negative differential resistance, (NDR), region; and c-d  is the exponential region. 
I p and I v are the peak and valley current. Vp and V/  are the  peak and forward voltage, 
respectively.
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Resonant  E n e rg y  Levels

w

Figure 1.3: Q uantum  mechanical tunneling in a resonant tunneling structure with a  barrier 
width of b and well width of w.

1.3 R esonant T unneling P h en om en a

W ith the advent of Molecular Beam E pitaxy (M B E), it is possible to grow th in  layers of 

A lA s  sandwiched between GaAs,  thus creating a po tential barrier in the conduction band 

edge profile, as shown in F igure[l.l]. The thickness of the A l A s  layers can be as small as 

lOA, which is 4 mono layers of AlAs .  Double barrier structures as shown in Figure[1.3], 

successfully grown by M BE, in which a  G a A s  layer (well) is sandwiched between two A l A s  

barrier layers, quantized energy levels, d ictated  by quantum  mechanics, exist w ithin the 

well region. W hen the incident energy of the particle in the free propagating region ou t side 

the potential barrier equals one of the quantized energies, the transm ission probability is 

unity, i.e., resonant tunneling results. For energy values o ther than  the resonant ones, the 

transm ission probability is less th an  unity. This is referred to  as non-resonant tunneling 

phenomena.

R. Tsu and L. Esaki[20] proposed a  superlattice structu re  in 1969 for application in 

negative differential resistance (NDR) devices. In 1972, L.Esaki et. al. reported  for the 

first time, the observation of NDR in a  G a A s / A l G a A s  superlattice[22]. Two years later
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L.L. Chang et. a l ., observed NDR at tem peratu re below 77°K  in a double barrier resonant 

'  tunneling diode, i.e. two periods of a G a A s / A l G a A s  superlattice.

In 1983, Sollner et. al .[48] reported a large NDR region in the I  — V  characteristics 

of G a A s / A l G a A s  double barrier resonant tunneling device, with a  peak-to-valley ratio  of 

6:1 a t 25°K . Moreover, the current response m easured at a  driving frequency of 2.5 THz 

was rem arkably similar to the response expected from DC m easurem ents, indicating the 

potential for high frequency applications[25]. A year later, Sollner et. al. reported the first 

high frequency oscillations generated by a resonant tunneling device at frequencies up to  18 

GHz[47]. In 1985, Shewchuk et. al. reported the first room tem perature observation of the 

NDR in a G a A s / A l G a A s  system[43, 44].

The dem onstration of resonant tunneling phenom ena has led to  a num ber of proposals for 

devices with a third term inal to control the NDR characteristics. Capasso et. al. proposed a 

heterojunction bipolar transistor with a  single quantum  well in the base region [13, 14, 15]. 

T here are o ther resonant tunneling devices proposed by Luryi et. al .[34], Ray et. al.[42] 

using M OCVD a t 300° K. Tsuchiya et. al .[49] reported room -tem perature observations of 

negative differential resistance in 1985.

Bonnefoi et. al .[5, 6 ], proposed a  device; Negative Resistance S tark  Effect T ransistor 

(N E R SET). This is a double barrier resonant tunneling device with an ex tra  (base) contact. 

Since this base is shielded by a  thick 1000 — 1500A potential barrier, the base current is 

negligible. N akata et. al. proposed a triode w ith a m etal-insulator superlattice in the base, 

acting as an artificial semiconductor[35]. This device, called resonant electron transfer triode 

(R E T T ), is excted to  perform well in high-speed applications because of low resistivity of 

m etal contacts. Due to  the periodicity of the  m etal-insulator superlattice, an artificial 

conduction band in the base region is formed. W hen the device is biased such th a t em itter 

Fermi level is aligned with the artificial conduction band in the base, electrons resonantly 

tunnel from em itte r to  collector.

M agnetic-field-induced resonant tunneling was discussed by Ram aglia et. al .[39]. Recent 

paper by Glazer et. al. discusses the case of tunneling through highly transparen t double 

barriers[24]. Ranfagni et. al. reported delay-tim e m easurem ents in narrow  wave guides as 

a test of tunneling through single barrier[40, 41]. A thorough recount of the history of
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resonant tunneling can be found in Reference[2 1 ].

In the context of tunneling devices, the two physical quantities of interest to  device 

physicists and engineers are the tunneling current and the tunneling time. The subject of 

this thesis is the la tte r  quantity, the tunneling time. Specifically, based on average particle 

velocity during tunneling, the tunneling time for a single and double barrier are studied. 

Henceforth, this tunneling time is called the Average Particle Traversal tim e or A PT  time.

1.4 O verview  o f th e  T hesis

A brief literature survey, discussing various theoretical approaches to  tunneling times is 

presented in C hapter 2. The analogy between the solutions to  the one-dimensional time- 

independent Schrodinger equation and transmission line equations is exploited and the 

derivation of A P T  tim e based on the analogy are discussed in C hapter 3. Analytical ex

pressions for A PT  tim e for the case of a single potential barrier and a symmetrical double 

barrier under no bias are derived in Chapters 4 and 5, respectively. Results and discus

sion are presented in C hap ter 6 . Conclusions along with the proposal for future work are 

presented in C hapter 7.



C hapter 2

LITERATURE OVERVIEW

The prospect of high-speed devices based on resonant tunneling structures has brought new 

urgency to  understand every aspect of tunneling phenom ena for the form ulation of the the

ory of dynamics of such systems. The question which is relevant to  the dynamics of such a 

system and th a t has resulted in a wealth of literature is “ H o w  long  d o e s  it  ta k e  fo r  a  

p a r tic le  to  tu n n e l? ” .

The recent theoretical work on the tunneling times has centered around one-dimensional 

models. W ithin this limited area of research, there are atleast six different approaches sug

gested in the literature. These approaches are : the dwell time[45], the phase-delay time[26, 

50], the B uttiker-Landauer traversal time[7, 8 , 9, 10], the complex traversal time[37, 38, 46], 

the Collins-Barker M onte-Carlo sim ulation tim e[16 ,17,18], and the Average Particle Traver

sal (A PT ) tim e. No two of these approaches agree[27, 28, 29, 32, 33]. . In this chapter, five 

approaches are reviewed and contrasted.

2.1 D w ell T im e

The dwell time[45] is, in the context of the scattering of particles with fixed energy, the time 

spent in any finite region of space, averaged over all the incoming particles. Thus, the dwell



tim e can serve as a  reference point in any discussion on tunneling times. This describes the 

average tim e a particle dwells within the barrier irrespective of it either reflects or transm its 

at the  end of i t ’s stay. The dwell tim e, T d w e u ,  is defined as:

N
T d w e l i  —  j

where N  is the number of particles within the barrier region and J  is the incident flux of 

the particles. The Tdweu for a single rectangular barrier can be shown to be equal to[7]:

_  m ' k  , 2 a d ( a 2 — k 2) +  k 2 sinh(2 ad ) 
dweil h a  1 4k2a 2 +  k% sinh2 (ad )

where m* is the  effective mass, h is the modified Planck’s constant, k = 

a  = y j 2m ancj ko = with  E  being the energy of the incident electrons. V0

and d are the barrier height and w idth, respectively. The dwell tim e in a  resonant tunneling 

s tructu re  is discussed by Pandey et. al. [36].

2.2 P hase-delay  T im e

T he other well established tunneling tim e concept is the phase-delay time[26, 50]. A time 

delay for the scattering process can be calculated by following the peak of a  wave packet 

via. the m ethod of stationary phase[26]. Phase-delay time is the tim e interval between 

the tim e the peak of the incident wave enters the barrier and the time the peak of the 

transm itted  wave appears beyond the barrier. The expression for the phase-delay tim e for 

single rectangular barrier is given by[7]:

_  m* 2 a d k 2( a 2 — k 2) +  k* sinh(2 ad ) 
phase h k a  4k 2a 2 +  k* sinh2(ad )

A strong deform ation of the wave packet will result when the wave packet in teracts with 

a  thick barrier. This deformation m ay shift the peak of the wave from k  in the incident



wave to  k'  in the transm itted  wave, with k ^  k ' . Thus, the traversal time calculated by this 

m ethod of following the  peak of the  wave packet becomes meaningless, as the same particle 

is not used for the time delay measurem ent.

2.3 B uttiker-L andauer T im e

B uttiker and Landauer[7, 8 , 9, 10] considered tunneling through tim e-dependent rectangular 

barrier with a small oscillating com ponent added to  the sta tic  barrier height. For a  slowly 

varying potential, the additional time dependence of the transm itted  wave is caused by the 

variation of the transm ission probability with the height of the barrier. If the potential 

oscillates fast com pared to  the traversal tim e (u> >> 1 / r ) ,  then  the particles see a time- 

independent barrier of average height V0. For slowly varying potential (u> << 1 / r ) ,  the 

tunneling particles see an effective tim e-dependent sta tic  barrier of height V(t) .  Identifying 

the transition  frequency at which the static  barrier becomes an oscillating barrier for the 

particles, provides one with the inverse of a  traversal tim e. T he expression for B uttiker- 

Landauer traversal tim e for a single rectangular barrier is given as:

T B - L  =  (T~dwell +  Tz ) ^

where rz is given by:

_  m ’k 2 (a 2 -  k 2) sinh2 (ad ) +  (k 2d a / 2 ) sinh(2 ad) 
z h a 2 4 k2a 2 + k% sinh2 (ad )

In this approach, the particles th a t are tunneling and those which are reflected are 

differentiated.

2.4 C ollins-B arker M onte-C arlo S im ulation  T im e

In this approach, a  Gaussian wave packet with a particular standard  deviation k,  is made 

to  impinge on a potential barrier and the time delay associated between the entrance of
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the peak of the incident wave and the appearance of the peak of the transm itted  wave be

yond the potential barrier, is com puted numerically [16, 17], using the conventional Monte- 

Carlo approach. Based on excellent agreem ent of M onte-Carlo tim e and phase-delay time, 

it was concluded th a t the phase-delay time result originally obtained by Wigner[50] and 

Hartman[26] is the best expression to use for a wide param eter range of barriers, energies 

and wave packets.

2.5 A verage P artic le  Traversal (A P T ) T im e

In this approach, an average tunneling velocity at steady s ta te  is defined as v av(x) = 

with J  being independent of x,  and j ) | 2 is the probability density function a t any 

point x along the barrier[31]. The analogy between the solution to the tim e-independent 

Schrodinger equation and the steady s ta te  transm ission line equation for a  loss-less homoge

neous transm ission line with a load, is exploited. A quantity  analogous to  the characteristic 

impedance of the  transm ission line called, Q uantum  Mechanical Wave Im pedance (QM W I), 

Z (x ) ,  is derived in term s of the complex coefficients of the solutions to the wave function 

as a function of a:[3, 31]. T he v av{x) is then related to  Z (x )  and the A P T  time, t a p t , is 

obtained as:

where d is the w idth of the barrier.

The integral expression given by Eq.[2.1] was used to  obtain the tunneling time through 

a delta function by Anwar et. al .[4] numerically. The tunneling through an em itter-base

t a p t ( 2 . 1 )

junction of a H eterojunction Bipolar T ransistor was investigated by Cahay et. al. using 

numerical in tegration of the Eq.[2.1][ll, 12].
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C hapter 3

THEORETICAL  

FORMULATION

3.1 In troduction

In this chapter, a discussion of the  analogy between the the solution to  the tim e-independent 

Schrodinger equation and transm ission line equations in one-dimension are presented. Ex

ploiting this analogy, a  quan tity  called the Q uantum  Mechanical Wave Im pedance (QM W I) 

is derived in term s of the  wave function solutions. Using QM W I, the average tunneling 

velocity is derived and is used to  derive the A PT  t im e ,^ / ^ .

3.2 Form alism

Let a  flux of electrons, w ith energy E ,  be incident on the potential barrier, as shown in 

Figure [3.1]. The dynam ic equation governing the electron system  is the tim e-dependent 

Schrodinger equation. T he Schrodinger equation at steady s ta te  is given by:

d2$(a:) 2m *r „  T_.
- 3^  + -i F [ r - r W J * W  = o (3 .1)
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V,
In c id e n t E le c tro n s

R e fle c te d  E le c tro n s

R e g io n  1 R e g io n  2

i  =  0

(a ) (b )

Figure 3.1: Transmission line analogy: (a ) transm ission line circuit equivalent with a  load 
impedance of Z l , (b )  quantum  mechanical system  with a potential step barrier configura
tion.

The solution to  this time-independent Schrodinger equation in region 1 with conduction 

band edge potential profile, as shown in Figure[3.1], can be w ritten as:

®(ar) =  A +(eax -  pe~ax) (3.2)

where a  =  7  +  j(3 = j \ J 2n}̂ xH E  -  V0)

p is the wave am plitude reflection coefficient, a  is the  propagation constant, and E  is the 

energy of the  incident electrons. 7  and (3 are the real and im aginary parts of the propagation 

constant a,  respectively.

In particular, the wave equation for regions 1 and 2 can be w ritten as:

$ i ( s )  =  A i ( e aiX -  pe~aix)  x < 0 (3.3)

* 2 (a ) =  A+e° 21 x > 0 (3.4)



respectively,

where a { = j -  W) = l i  +  j d ,

m* (z),V i,(i =  1 , 2 ) are the effective mass, and the potential, respectively, for the i th 

region. Here, 7 ; and Qt are the real and im aginary parts of the propagation constant a,- for 

the ith region.

There is no reflection of the wave in region x  > 0, because the region is homogeneous 

and of infinite extent. Applying the boundary conditions at x  =  0, $ 1 (2  =  0) =  =  0)

and ^ ( a :  =  0 )/m ^ =  $ '2(x = 0 ) ! m \ ,  an expression for p is obtained as:

D ifferentiating Eq.[3.2] with respect to  x  and m ultiplying both sides of the equation by

3.3 T ransm ission  Line A nalogy

The expressions for voltage, V(a;), and current, I ( x ) ,  along the homogeneous lossless tran s

mission line w ith generalized d istributed im pedance, are given by:

_  [q 2 / ^ 2  ~  oil/ml] 
[a 2/m"2 +  a i l m ,{]

(3.5)

a factor an expression for $ (x )  is obtained as:

(3.6)

where Z0 =  -M-

I ( x )  = I +(eax -  T te~ax) (3.7)

V{ x)  = I +Z 0(eax +  Yte~ax) (3.8)

where
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where I \  is the wave am plitude reflection coefficient.

Z l and Zo  are the load and characteristic impedance of the  transm ission line, respec

tively. Com paring the expressions for \P(.r) and $ (x ) given by Eqs.[3.2] and [3.6] respec

tively, with the expressions for / ( x)  and V ( x )  for transm ission line given by Eqs.[3.7] and 

[3.8], respectively, it is observed th a t they are analogous. Zo in Eq.[3.2] and [3.6] is the 

quantum  mechanical analog of the characteristic impedance of the transm ission line, Zo  

given by, - \ / Z ] Y  where Z  and Y  are the series impedance and the shunt adm ittance, per 

unit length of the transm ission line, respectively.

3.3.1 The Quantum M echanical Wave Im pedance

At any plane x , the Q uantum  Mechanical Wave Impedance (QM W I) [31] can be obtained 

from Eq.[3.2] and [3.6] as:

« * >  =  i 5 5  <»•»>

Z ( x )  can be re-w ritten as:

2 h V' (x)
j m* ( x )  $ (x )

= Z( x )  = R(x)  + j X { x )  (3.10)

where R ( x ) and X ( x )  are the real and im aginary parts of Z( x )  a t any point x,  looking in 

the positive x  direction.

M ultiplying both  sides of Eq.[3.10] by jm2/[— , Eq.[3.10] modifies to:

= j'k(x ) + V(x)  (3.11)

where k ( x )  =  m and rj(x) = m are the propagation and attenuation  constants

of the wave function, respectively.

Integrating Eq.[3.11] from x = 0 to  any x,  \P(a:) can be w ritten as:

« (* )  =  9 0efo v^)dxej f gz K(x)dx (3.12)



15

where 4/(a;) is the wave function at any point x.  and is the incident wave function at 

the x = 0 boundary.

3.3.2 Steady State Probability Current D ensity

The wave function, ^(a:), can be used to  express the probability current density, J{x)  as 

follows. Using Eq.[3.12], the steady s ta te  probability current density, J ( x ) ,  a t any point x  

can be w ritten in term s of R( x )  and rj(x) as:

where ^ " ( x )  is the complex conjugate of the wave function, ®(x). At steady s ta te , the 

current continuity equation necessitates th a t the probability current density everywhere 

along the barrier be equal in the absence of any generation or recom bination mechanisms. 

Using Eqs.[3.12] and [3.13], J{x)  can be w ritten as:

The current density, J ( x ) ,  can be defined in term s of an average steady sta te  velocity, 

v av(x),  and probability density as:

$ ' ( * ) $ ( * ) ]  =  | | ® 0 | 2R ( x ) e 2f o r,{x)dx (3.13)

J  = ± R ( x ) M x ) \ 2 (3.14)

(3.15)

This equation is similar to  the drift current density equation in term s of the drift velocity, 

and charge density. Considering the  probability current density again:

(3.16)

J ( x )  can be modified to:

J{x )  = A fle[S (*)**(*)] =  ±Re[ V{ x )F{ x ) ]  (3.17)

Thus, J ( x )  is analogous to  the average power in the transm ission line. V ( x )  is the
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voltage, I ' ( x )  is the complex conjugate of the current a t any x  along the transm ission line.

3.3.3 Average Particle Traversal T im e

Comparing Eqs.[3.14] and [3.15], vav(x)  can be w ritten as :

v av{x) =  ^-R(z) (3.18)

In o ther words, the average velocity of the particle at any x  is one half the real part 

of the QM W I. The t a p t  required for a particle to  move an elemental distance, d x , a t any 

point x  is given by[3]:

dx
dTa p t  = ---- -r-; (3.19)

V a v ( x )

Using Eqs.[3.16] and [3.19], an integral expression for the time required to  traverse a 

distance L  can be obtained as[3]:

t a p t  = f  d r  = 2 f  (3.20)
Jo Jo R{x)

where R( x )  is the real part of the Q uantum  Mechanical Wave Im pedance, Z(x) .  It is 

noted th a t using Eq.[3.10], Z( x )  can be obtained from the wave function solution to  the

Schrodinger equation, given by Eq.[3.3]. Identifying the real p a rt, R(x) ,  and using Eq.[3.20],

t a p t  cai* be obtained for any structure.
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C hapter 4

SINGLE BARRIER

In this chapter, the A PT  tim e, t a p t , through a  single rectangular potential barrier is 

considered. Based on the theoretical form ulation, discussed in C hapter 3, an analytical 

expression for the  t a p t  is derived. In order to  calculate the t a p t  for the  barrier region, 

the real p a rt of the QM W I should be known. T he real p art of the quantum  mechanical 

wave im pedance can be obtained from the wave solution to  the Schrodinger equation in 

th a t particu lar region. By knowing the real part of the QM W I, and using Eq.[3.20], an 

analytical expression for the t a p t  is derived in term s of the incident energy, barrier height 

and width.

4.1 C alcu lation  o f th e  C om plex C oefficients o f  W ave Func

tio n  Solutions

The solutions to  the tim e-independent Schrodinger equation for a rectangular potential 

barrier s tructu re  shown in Figure[4.1] is given by:

* i ( a r )  =  e ikx +  A e ~ i k x . . . . . . . . . . . . . . . . . . X < 1 T



18

fcl II

B e ux -f- C'c~a~

eikx _|_ A e-ikx D e ikx

£  — 0  R egion  1 ' {Region 2 R egion  3

x  = 1 H II O H li. d 
' 2

Figure 4.1: Conduction band edge profile for a single rectangular potential barrier w ith the 
corresponding wave function solution ‘for different regions.

$ 2(z ) =  B e ax +  C e~a x .................. -£■ < x  < ^  (4.2)

V z {x) = D eikx ..................x > ^  (4.3)

where A, B , C, and D  are the complex coefficients, a  is the attenuation  constant given by 

\ J 2m k  is the propagation constant given by \ J 2rr/*iE , V0 and d are the height and

width of the potential barrier, respectively, and E  is the incident energy of the particle.

Boundary Conditions

The boundary conditions a t i  =  y  and x  =  |  are th a t the wave function, $ ( 2 ), and the 

derivative of the wave function, $ ’(x) be continuous, which are given by:

« ! (*  =  - d / 2 )  = $ 2(a; =  - d / 2 ) .................* = (4.4)
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J
$ 2 ( 2  =  d/2)  =  ^ 3(x  =  d / 2 )  x  =  -  (4.5)

^ ( a :  =  - d / 2 )  -  'S>2(x = ~ d / 2 ) .................x = - -  (4.6)

=  d/2)  = $  '3(x = d / 2 )  * =  ^  (4.7)

Substitu ting the respective wave function solutions from Eqs.[4.2] and [4.3] in Eqs.[4.4] - 

[4.7], a t the interface x — | ,  an analytical expression for B  and C  can be obtained as:

D e ' W ( a  + ik)
2  ae<*d!2  ̂ *

c =  (4 .9)
2ae~ad/ 2

An expression for the complex coefficient A  can be obtained by using the  continuity condi

tion on ̂ (a:) and ^ ( z )  a t the interface x  =  — |  as follows:

e - i k d /2 +  A e i k d /2 _  B e - a d /2 +  C e c d /2 ^ 4 1 0 )

ike~ ikdf2 -  i k A e ikd/2 = a B e ~ adl 2 -  a C e ad/2 (4.11)

Solving Eqs.[4.10] and [4.11] simultaneously and using Eqs.[4.8] and [4.9], the complex 

coefficient A  can be obtained in term s of the the complex coefficient D  as:

A = D ( a 2 +  k 2) sinh(ad) 
i2ka

Using Eqs.[4.8],[4.9], and [4.12] in Eq.[4.10], an analytical expression for the complex con

stan t D  can be w ritten as:
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D — '2ika% ,kd
(k 2 — a 2) sinh(ad) +  i 'lka  cosh(ad)

4.2 A P T  T im e E xpression  for th e  S ingle Barrier

The solution to the Schrodinger equation in the potential barrier region is given by:

tf2(*) =  B e ax + C e~ ax (4.14)

R eiterating the definition of Q uantum  Mechanical Wave Impedance (QM W I) given by 

Eq.[3.10]:

Z ( x ) =  (4.15)
j m '  $ 2 (3;)

Considering the fractional p a rt of Z( x )  and using Eq.[4.14] and [4.15], an analytical expres

sion for can be obtained as:

^ ( a )  a[Be°*  -  Ce~°*]
®2(a) [Beax + C e~ ax] K }

Substitu ting  for B  and C  in term s of D  from Eqs.[4.8] and [4.9] an expression for the QM W I 

can be w ritten  in term s of the attenuation  constant a  and the propagation constant k  as:

$ 2(2 )̂ _  <*[(<* +  ik )ea(x -  (a  — ik)e a x̂ d/ 2)] 
®2(a ) [(a +  ik)ea(x~dl 2> +  ( a  -  i k ) e - Q(x~d/ 2)}

Eq.[4.17] can be modified to:

$ 2 (2 ) _  a fa s in l^ a a /)  +  ^ c o s ^ a a / ) ]
$ 2 (1 ) [a cosh(aa:') +  ifcsinh(ax ')]

where x  =  x — |

Eq.[4.18] can also be w ritten  as:

’5P2(a:) _  a[(a2 +  k 2) s i n ^ a s 1) cosh(aa;/) +  ika] 
$ 2 (2 ) [a 2 cosh2(aa:') +  k 2 sinh2 (aa;')]

(4.17)

(4.18)

(4.19)
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Multiplying by the real part of Z(x) ,  R(x) ,  can be obtained as:

Re[Z(x  )] = ■ (4.20)

The t a p t  through the barrier can be obtained by substitu ting  Eq.[4.20] into Eq.[3.20] as 

follows:

„ r m * ir
J - ^ 2 h a > k ^

The above expression for t a p t  is analytically integrable for all values of incident energy of

the particle.

4 .2 .1  T h e  A P T  T i m e  fo r  E  < V0.

When the energy of the incident electron, E , is less than  the barrier height, V0, the a tten 

uation constant, a,  is a  real quantity, and the electron wave function is decaying in nature. 

Then, Eq.[4.21] can be integrated to  obtain t a p t  given by:

4 .2 .2  T h e  A P T  T im e  fo r  E  > V0.

W hen the energy of the incident electron, E ,  is more than  the barrier height, V0, a  is an 

im aginary quantity, and the electron wave function is propagating in nature. Then Eq.[4.21] 

can be analytically integrated  to  obtain  the following expression for t a p t -

t APT = ( 7 T 3 r ) P 2 +  Q2) sinh(2ad) +  2a d (a 2 -  fc2)]4 ha3k
(4.22)

t $ F  = ( ^ k ) [ 2 k B d { k 2  +  ^  ~  k B ) s™(2kBd)] (4.23)

where kp  is the  propagation constant given by y 2m* ^  V°K



4.3 Various energy  lim its o f t a p t

The limiting values for the  t a p t  for three cases of the incident energy of the particle, viz. 

E  —> 0, E  —*• V0, and E  —- oo can be com puted analytically. The derivation of these limits 

are discussed in this section.

E  — 0.

When the incident energy of the particle approaches zero, E  — 0, from Eq.[4.22] the 

propagation constant k tends to  zero, hence t \ p t  given by Eq.[4.22], tends to the following 

limit:

tA p t  — oo (4.24)

E  —* oo.

W hen the incident energy of the particle approaches infinity, E  oo, the propagation 

constant in the barrier, kp  — oo. The corresponding limit of t a p t  is:

*

TAPT (4.25)
B

m 'd
t a p t  t — Tciass{cai (4.26)

The ta p t  tends to  the classical tim e which is defined as the tim e it takes for a particle of 

same energy and effective mass to  traverse a  distance equal to  the barrier w idth, d, in the 

absence of the barrier.

E - ^ V 0.

W hen the incident energy, E,  of the particle tends to  the barrier height, V0, the limiting 

values for the t a p t  can be obtained from either Eqs.[4.22] or [4.23] as follows[19]:



From Eq.[4.‘29], the t a p t  is finite when E  —*■ V0 as k  is finite. The limiting values of Tdweii, 

Tphase -  delay, TB-L aad Tciassicai were obtained for three cases of limiting energies, E  0, 

E  — oo and E  — V0 and listed in Table I for comparison of these values. A detailed 

comparison is made in C hapter 6 .

Table I. The limits for the traversal times; the dwell time, Tdweii, the phase-delay time, 

Tphase—d e l a y > the Buttiker-Landauer tim e. r p - L , th e  classical traversal tim e, Tcia s s ica) ,  and 

the A PT  time, t a p t ■, for various incident energy limits.

01

E  —► oo E ^ V 0

Tdweii 0 m* d 
T\k

m* k 0 / 4d3 +6d/fcp . 
h V 12+ 3 k ld *  >

Tphase —delay oo m* d 
hk

m "  k„ ( 4d3 + 6 d / k 3 , 
h I 12+ 3 k ld *  >

t b - l
/ m "  k* \ ( a 2 — k 2) s in h 2(ad)+ (ofdfc^ /2 )s inhf2Qd) 
'  h a 2 / 4 k 2a 2+ k* s in h 3(a d )

m ' d
hk y J d S  +  r ?

Tciassicai OO m* d 
hk

m* d 
hk

t a p t OO m* d 
hk

m * d r i  , ( ^ d ) 2 i
T F  L1 +  3~J
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C hapter 5

DOUBLE BARRIER

In this chapter, an analytical expression for the t^ p t  through a sym m etrical double rectangu lar 

po ten tia l barrier s truc tu re  is obtained by using an approach sim ilar to  th a t used for a  single barrier 

case in C hap ter 4.

T he conduction band edge profile of a sym m etrical double rectangular po tential barrier is shown 

in Figure [5.1]. Firstly, the solution to the Schrodinger equation is obtained analytically. T hen  the 

solution is used to  ob ta in  the real p art of the Q M W I, which in tu rn  is used to ob ta in  v av(x). vav(x) 

is used to  ob ta in  an analytical expression for the t ^p t  ■

5.1 C alcu lation  o f th e  C om plex C oefficients o f W ave Func

tio n  Solutions

T he wave function solution to  Schrodinger equation  in the five regions shown in Figure[5.1] is given 

by:

$ 1(a:) =  ei i l  +  A e -a 'x a: <  0 (5.1)



•25

y o

B e ax -1- C e~ax F e ax + G c~ax

eikx £ e-ikx
l l l l l l l l l l l l l l ! D eikx +  E e~ ikx

l l l l l l l l l i l l l
H e 'kx

Region  1
0

Region 2 Region  3 Region  4 Region  5

x  = 0 x  =  d x  =  d + di x  = 2 d d\

Figure 5.1: Conduction band edge profile for a sym m etrical double rectangular potential 
barrier with the wave function solutions for different regions.

<$2(x) = B ea x + C e - a x  0 <  x < d (5.2)

* 3(a:) =  Deikx +  E e~ ikx ................. d < x < ( d + d i )  (5.3)

$ 4(z) =  Feax + Ge~a x  (d + di) < x  <  (dj +  2d) (5.4)

^ 5(®) =  H e ik x ................. x > (di + 2d) (5.5)

where d and d\ are the barrier and well w idths, respectively, and V0 is the height o f the barrier. 

A pplying the boundary  conditions viz.  the wave function, ^ (a :), and the derivative of the wave 

function, (x), are continuous a t the interfaces x  =  0, x  =  d, x  =  d +  d\ , and a t x = 2d +  d \ t 

analytical expressions for the com plex coefficients A, B, C, D, E, F, and G, can be ob tained in
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term s of the com plex constan t H, which is the wave function transm ission coefficient. The analytical 

solutions to  the com plex coefficients are:

piZkd i f Lt /y | 4 L*
A = — ----- -r(------- -)[[(Jb2 — a 2) +  (a  — i&)2e,2fcd|] sinh(a(i) +  i2fcarcosh(ard)] — ( ------ — )(5.6)

i2koteaa a  — ik a  — ik

B =  ^ ’̂ / ^ [[(fc2 — q2 ) +  e,2kdl(a — ffc)2] s in h (ad ) +  t2fcacosh(o-d)] (5.7)

TTpi2kd(n  _
C  =  — i4 /.Q2 e- ad— [[(k2 — « 2) +  e’2 d l(ar +  ifc)2]s in h (a d )  +  i2fcacosh(ad)] (5.8)

Heikd
D  =  — [(fc2 — a 2) s inh (ad ) +  i2ka  cosh(ad)] (5.9)

i i j k ( 3 d + 2 d i )

E =  f t k a  (<*2 +  k ) si nil (ad )  (5.10)

H e i H 2 d + d l ) ( a  +  i k )  

2 aea(2d+d,)

H e i k (  2 d + d l ) ( a _ i k )

2 a e - “ (2d+d*)  ̂ ^

5.2 T he t a p t  for a R esonant T unneling S tructure

In order to  derive an ana ly tica l expression for the t a p t < the Q uan tum  M echanical Wave Im pedance 

(QM W I) should be com puted. T he QM W I can be ob tained from the wave function solution involving 

the com plex constan ts B , C , D , E, F,  and G. T he analytical expressions for the real and im aginary 

parts  of the com plex coefficients are given in A ppendix A. T he real p a rts  are subscripted ‘1’ and the
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im aginary  parts  are subscripted ‘2 ’. In order to  calculate the to ta l t a p t  through the structu re , the 

t a p t 's for the two barriers and the well region are calculated individually and added up as follows:

_ t o t a l    —lb . —w e l l  , —rb  /  c  i o \
t APT — t APT +  r APT + A P T  (5.13)

where t^ p t , t^ p p , and t ’ ap t  are the traversal tim es in the left barrier region, well region, and right

barrier region, respectively. T he t a p t 's , t^ p t , t%p p  and r r̂ PT are calculated using the integral

expression for t a p t  given by Eq.[3.20].

5.2.1 The tapt for the Left Barrier Region

In order to  calculate the t a p t  tim e for the barrier region, the real p a rt of the Q M W I should be 

com puted. Once the the real p a r t of the QM W I, Re[Z(x)],  is known, it can be substitu ted  into 

Eq.[3.20] to  ob ta in  an integral expression for the t a p t  for the barrier region.

T he solution  to  the tim e-independent Schrodinger equation for the left barrier region is given

by:

tf(x ) =  { B x +  i B 2)eax +  (C i +  iC2)e~ax (5.14)

where B y ,  C y  are the real parts  and B 2 , C 2  are the  im aginary parts  o f the  com plex constants B  and

C , respectively. The ^ ( x )  can be ob ta ined  from  E q .[5.14] as:

tf '(x )  =  a [ { B y  +  iB 2)eax -  (Ci +  iC2)e~ax} (5.15)

Re[Z{x) \  can be obtained from  Eq.[5.14], Eq.[5.15] and E q .[3.19] as:

fi>„r71 m _   2 (g;C i -  ByCo)__________ .
[ )[( £ 2 +  B !)e2“* +  (Cf +  C |) e - 2ai +  2{ByCy +  B 2C 2)  ̂ ( J

ta p t  can be ob ta ined  from Eq.[5.16] and Eq.[3.20] as:



•28

lt „ f d, m ’d x , t (B\  + +  (C? +  C | ) e - 2QI +  2(BxCx + B2C2),
Ta p t  = 2 J 0 {- 2 M )[---------------------------2(BiC\  — B~C2)--------------------------- ] (5 -1 0

Integrating  Eq.[5.17]:

= W ^ - ^ c 3)][(^ )Ieaad- 1]- [̂ ] [ e" aa,,- i ] + M (fllC l+ g> C a)] (5-18)

5.2.2 The t A p t  for the Potential W ell Region

T he solution to  the tim e-independent Schrodinger equation  for the well region is given by:

* (x )  =  (Dx +  iD2)eikx + ( E x +  i E 2)e~ikx (5.19)

where Dx, Ex are the real parts  and D 2, E 2 are the  im aginary  parts  of the com plex constan ts D  

and E,  respectively. T he expressions for all the coefficients are given in appendix A. T he V ( x )  is 

obtained from  E q .[5.19] as:

« '( x )  =  iJk[(Z>i +  iD2)eikx -  (Ex + iE 2)e~ikx] (5.20)

T he tAp t  in the po ten tia l well region can be w ritten  as:

r d + d x  J

Ta p p =2 1  R ^ ) ]  (5-21)

Using Eq.[5.19] and Eq.[5.20] in Eq.[3.9], and w riting  the exponentials in term s of trignom etric  

functions, m ultip ly ing by in the expression for Re[Z(x)\  in term s of the com plex coefficients, an 

expression for the t a p t  for the well region can be ob ta ined  as:
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f d + d  j

T%px = j  [p +  q cos(2fcx) +  rsm(2kx)]dx  (5.22)

where p, q, and r are given by:

D\ +  D\ +  E\  +  El  
P ~  Dl + D l - E l - k l  (5'23)

+ D2E2 , e nA^
q ~  D l  +  D l -  E \ ~  E l  ( ^

_  D xE 2 - D i E i

D\ + D'l — E'l — E l  (5 5)

In tegrating  Eq.[5.22], an analy tical expression for the tap t  in the well region, is ob ta ined  as

follows:

=  (S i )[pdl +  ( ^ ) [ sin[2fc(rf+  * ) ]  -  8in(2W )] -  (^ ) [ c o s [2 * (d  +  * ) ]  -  cos(2W)]] (5.26)

5.2.3 The t a p t  for the Right Barrier Region

T he solution to  the tim e-independent Schrodinger equation  in the baarrier region is given by:

9( x )  =  (Ft + iFn)eax +  (G j +  iGo)e~ax (5.27)

where Ft, G 1 are the real p a rts  and F2, G 2 are the im aginary  p a rts  o f the com plex constants F  and 

G,  respectively, ^ ’(x) can be obtained from Eq.[5.27] as:

# '( * )  =  a  [(Ft +  iF2)eax -  (G j +  iG 2) e " “*] (5.28)
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Re[Z(x)] can be ob ta ined  from  Eq.[5.27] and Eq.[5.28] as follows:

r  !7( n  HF3G 1 - F 1G2)________________ ,
1 m* ) l ( F ?  +  W ) e 2ax +  (G? +  G l ) e ~ 2ax +  2 ( F i G i  +  F 2G 2) J

and the r ^ pT can be obtained as follows:

.rb n f 2d+d' , m ’ d x , r(F? + F?)e2ax + {G\  +  Gl)e~2ax +  2 (F : G i +  F 2G 2) 1
TAPT J d+dl ( 2ha )[ 2(E2G 1 - F 1G 2) J

Integrating Eq.[5.30]:

[   ]
4 f i a ( F 2G i  -  F i G 2)

^ F 1 +  Fn  j ^ 2a (r f i+2 r i )  _  e 2 a ( d ! + d ) j  _  ^ 1  +  G o  j

^ - 2 a ( d 1+2d) _  e -2ofd+ d,)]  +  2d(ir1G 1 +  F 2G 2)]

(5.29)

(5.30)

(5.31)



Chapter 6

RESULTS, COMPARISONS and 

DISCUSSIONS

In th is chapter, the tapt  ob ta ined  from  the analytical expressions are com pared w ith previous 

work reported in the litera tu re  for the single and double barrier cases. The tapt  for single barrier 

is com pared w ith the dwell time[7, 45], the phase-delay time[7, 16, 26, 50], the  B uttiker-L andauer 

traversal time[7, 8, 9], and the classical traversal tim e. T he double barrier tapt  is com pared w ith the 

experim entally  ob tained m axim um  frequency of oscillation of som e of the structu res experim entally  

grown and tested by Sollner et. al. [25, 47, 48].

6.1 Single Barrier

A plot of t a p t  and transm ission coefficient vs. the norm alized incident energy for a  rectangular 

po ten tia l barrier is shown in Figure[6.2] for a  barrier o f height 0.3eV and w idth of 200A as shown in 

Figure[6.1], for the case of incident energy of the particle less th an  the barrier height, i.e., E  < V0. 

T he transm ission coefficient increases w ith  incident energy, E,  as expected. T he t a p t  decreases with 

increasing energy. It is noted th a t the t a p t  reaches infinity in the lim it o f zero energy like a  classical



particle. A p lo t of t a p t  and transm ission coefficient vs. the normalized incident energy is shown in 

Figure[6.3] for the s truc tu re  shown in Figure[6.1], where the incident energy of the particle is more 

than  the barrier height, i.e., E  >  V0. In the lim it of incident energy of the particle tending to  the 

barrier height, i.e. E  —. V0, the t a p t  is large bu t finite as given by E q.[4.29]. T he t a p t  decreases 

w ith the increasing incident energy. It is also noted th a t  the t a p t  oscillates slightly for large barrier 

thicknesses. In the lim it of E  —- oo, t a p t  reaches the classical lim it as given by Eq.[4.26],

6.1.1 Com parison of Dwell tim e, Phase-delay tim e, Buttiker-Landauer 

tim e, t a p t , and the Classical tim e for, E  <  V0

A p lo t of the dwell tim e, the phase-delay tim e, the B uttiker-L andauer tim e, the tapt  and the 

classical traversal tim e vs. norm alized incident energy is shown in Figure[6.4], for a rectangular 

po ten tia l barrier w ith a  barrier height of 0.3eV  and  a w idth of 200A  as shown in Figure[6.1], when 

E  < V 0.

t a p t  is always g rea ter than  the classical tim e, t a p t  >s infinity in the lim it o f no energy, E  =  0, 

im plying th a t  the  particle takes infinite tim e to traverse the distance when the particles possess no 

energy a t all. For all incident energy values below the  barrier height, Voi the dwell tim e and  the 

phase-delay tim e are less than  the classical traversal tim e as shown in Figure[6.4]. W hereas, the 

B uttiker-L andauer tim e is below the classical tim e for a range of incident energy, and above the 

classical tim e for the rest of the incident energy interval.

6.1.2 Com parison of Dwell tim e, Phase-delay tim e, Buttiker-Landauer  

tim e, t a p t , and the Classical tim e for E  >  V0

A plot of the  dwell tim e, the phase-delay tim e, the B uttiker-L andauer tim e, the tap t  and the 

classical traversal tim e vs. norm alized incident energy are shown in Figure[6.5], for a rectangular 

po ten tia l barrier w ith a  barrier height o f O.SeV and  a w idth of 200A as shown in Figure[6.1], when 

E  > V0. In th is case, all the traversal tim es are above the classical traversal tim e. A p lo t o f the
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dwell tim e, the phase-delay tim e, the B uttiker-L andauer tim e, the  t a p t ,  and the classical tim e w ith 

the transm ission coefficient is shown in Figure[6.6], The dwell tim e, the phase-delay tim e and the 

B uttiker-L andauer tim e a tta in  a  m axim um  value when the transm ission coefficient is m axim um , and 

reaches a  m in im um  when the transm ission is m inim um . W hereas, the t a p t  a tta in s  a  m inim um  when 

the transm ission coefficient is m axim um , and reaches a  m axim um  when transm ission is m inim um . In 

other words, A ccording to  t a p t , the particle travels fastest a t  resonant energies, whereas according 

to  the approaches, the particle travels fastest a t non-resonant energies. All the traversal tim es 

approach the classical tim e lim it a t very high incident energies.

6.1.3 Effect of th e barrier width on the t a p t

The dependence of t a p t  on the barrier w idth w ith E  < V0 is shown in Figure[6.7], for a barrier 

height of l .OeV and for a  barrier w idth in the range of 25A  to  250A.

The t a p t  decreases as the incident energy of the particle increases and the t a p t  is inversely related 

to  the transm ission coefficient. T he t a p t  is finite when the  incident energy of the particle is equal 

to  the barrier height V0.

T he dependence of t a p t  on barrier w idth, w ith incident energy of the particle m ore th an  the 

barrier height is shown in Figure[6.8], for a barrier height o f l.OeV' and for a  barrier w idth in the 

range from 25A to 250A. Sm all oscillations in the t a p t  can be seen as the w idth of the po ten tia l 

barrier increases.

The t a p t  decreases as the incident energy of the particle increases. It is to  be noted th a t as the 

barrier thickness increases, sm all oscillations in the t a p t  can be observed. These oscillations are 

inversely p roportional to  th e  transm ission coefficient, i.e. t a p t  valleys a t resonant energies whereas 

the transm ission coefficient peaks.
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6.2 D ouble Barrier

T he plot of the transm ission coefficient and t a p t  is shown in Figure[6.10] for the structu re  shown 

in Figure[6.9], Five quasi-bound energy s ta tes can be observed below the barrier height. The 

transm ission coefficient is unity  a t these resonant energies levels. It is to be noted th a t t a p t  is 

m inim um  a t the resonant energies. T hus the transm ission coefficient is inversely related to  t a p t -

6.2.1 Comparison of tap t w ith Experim ental R esults

Structure 1: Barrier width =  50A,  Well width =  50A, and Barrier height =

0 .23eV \

T he plot of t a p t  and the transm ission coefficient vs. the incident energy of the particle is shown 

in Figure[6.12], T he s truc tu re  considered was a sym m etrical rectangular double potential barrier 

w ith a  barrier height of 0.23eV, barrier w idth of 50A and a well w idth  of 50A as shown in Figure 

[6.11]. T his sam e structu re  is chosen as it is well characterized experim entally  in term s of the 

I  — V  characteristics and high frequency studies[47, 48]. It was reported  by Sollner et. al.[47, 48] 

th a t the m axim um  frequency of operation  of the resonant tunneling  device is l .2THz.  It was also 

observed th a t there is one quasi-bound resonant energy s ta te  a t 0.079leV  which is less than  the 

barrier height. This value of 0.0791eVr agrees w ith th a t obtained from  our analy tical solutions. A t 

this resonant energy value, the t a p t  is a  m inim um  and also th e  transm ission coefficient a tta in s  

unity. T he estim ated  m axim um  frequency of operation, from  analy tical expression for t a p t < is 

0.8T Hz ,  i.e., frequency corresponding to  the resonant energy, which is in good agreem ent w ith the 

experim ental value of 1.2T Hz .  T h is m axim um  frequency of opera tion  was estim ated  taking into 

consideration only the t a p t • T he capacitance charging tim es a t  the depletion layers are not taken 

into consideration.



Structure 2: Barrier width =  25A, Well width =  45A, and Barrier height =  

l.OeV.

T he plot o f tap t  and the transm ission coefficient vs. the incident energy of the particle is shown in 

Figure[6.14], T he structu re  considered was asym m etrica l rectangular double po ten tia l barrier w ith  a 

barrier height o f l.OeV, barrier w idth of 25A and a well w idth of 45A as shown in Figure [6.13]. This 

stru c tu re  was fabricated and experim entally  studied  for high frequency oscillations by Sollner el. 

al.[25, 47]. It was reported by Sollner et. al., th a t the m axim um  frequency of operation  of the above 

resonant tunneling  device is '2ATHz.  It was also reported th a t there are two quasi-bound resonant 

energy sta tes, one a t 0 .154eF and the o ther a t  0 .581eF below the barrier height. These values 

agree well w ith the values obtained from  other num erical solutions. T he transm ission coefficient is 

m axim um  and a tta in s  the value o f un ity  a t these resonant energy levels and tap t  a t these resonant 

energy levels is a  m inim um . T he estim ated  m axim um  frequency of operation  is I A T  H z  which is in 

good agreem ent w ith the experim ental results. T he m axim um  frequency of operation  was estim ated  

by tak ing  in to  consideration the t a pt  only.

6.2.2 Effect of barrier w idth on the A PT  tim e

A 3-dim ensional surface p lot of the t a pt  is shown in Figure[6.16], for a range of the barrier w idths 

from  30A to 100A, well w idth of 30A, and for a barrier height of 0.3eK, as shown in Figure[6.15]. The 

ta p t  approaches infinity when E  —<■ 0. T he t ap t  is inversely related to the transm ission coefficient. 

T he form ation  of troughs in the t ap t  a t resonances indicate th a t  a t these resonant energy levels, 

the  t a pt  is m inim um . As the barrier thickness is increased, the form ation of the resonant energy 

levels is m ore pronounced and tap t  for a  very thick barrier, a t the resonance, is m ore th an  th a t  for 

a  th in  barrier.



6.2.3 Effect of well w idth on the A PT  tim e

A 3-dim ensional surface plot of the t a p t  is shown in Figure[6.18], for a range of well w idths from  30A 

to  110A and a barrier w idth of 30A, and f t r  a barrier height of l.OeV as shown in Figure[6.17]. A 3- 

dim ensional surface plot of the t a p t  along w ith the transm ission coefficient is shown in Figure[6.19] 

for the sam e s truc tu re  shown in Figure[6.17]. More quasi-bound s ta te s  w ith E  < V0 appear as the 

well w idth increases, as shown in Figures[6.18] and [6.19]. T he form ation  of troughs in the t a p t  a t 

resonances indicate th a t a t these resonant energy levels, the t a p t  is m inim um , t a p t  is m inim um  a t 

resonant energies. W hen the w idth of the po ten tia l well is sm all, the num ber of resonant energies is 

sm all w ithin the po tential well. As the w idth of the po ten tia l well increases, the num ber of resonant 

energy levels increase and the energy spacing between any two adjacen t resonant energy levels w ithin 

the p o ten tia l well, A E,  decreases.
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0.3eV

200A

Figure 6.1: The conduction band edge profile of a  single rectangular potential barrier of 
width 200A and height 0.3eV
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Figure 6.2: P lot of the (a) Transmission Coefficient, and the (b )  A P T  tim e, for a  single
rectangular potential barrier for E  < V0, with barrier width 200A and barrier height 0.3el^
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Figure 6.3: P lot of the (a) Transmission Coefficient, and the (b ) A PT  time, for a single
rectangular potential barrier for E  > V0, with barrier width 200A and barrier height 0.3eV
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Figure 6.4: P lot of the Traversal Times : (a )  Dwell Time, (b )  Phase-Delay Tim e, (c)
B uttiker-L andauer Tim e, (d )  A PT  time, and (e )  Classical Time for E  < V0, with barrier
width 200A and barrier height Q.SeV.
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Figure 6.5: P lot of the Traversal Times : (a )  Dwell Tim e, (b )  Phase-Delay Tim e, (c )
B uttiker-Landauer Tim e, (d )  A PT  time, and (e )  Classical T im e for E  > Va, w ith barrier
width '200A and barrier height 0.3eV.
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Figure 6.6: P lot of the  Traversal Tim es : (a)  Dwell Tim e, (b )  Phase-Delay Time, (c)
B uttiker-Landauer Tim e, (d )  A P T  tim e, (e ) Classical T im e, and th e  ( f )  Transmission
Coefficient for E  > V0, with barrier w idth 200A and barrier height 0.3eV.
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Figure 6.7: 3-Dimensional surface plot of the A PT  tim e, for the case of E  < V0 w ith the
barrier height l .OeV and barrier w idth in the range 25A to  250A.
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; ■ x - 2 i

Figure 6.8: 3-Dimensional surface plot of the A P T  time, for the case of E  > V0 w ith the
barrier height l.OeV and barrier width in the range 25A to 250A.
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Figure 6.9: The conduction band edge profile of a sym m etrical double rectangular potential 
barrier s tructu re with a barrier height of 0.956eV, barrier w idth of 30A and a well width of
100A.
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Figure 6.10: P lot of the (a )  Transmission Coefficient and the (b )  A P T  tim e for a  sym m et
rical double rectangular potential barrier s tructu re with a barrier height 0.956eV, barrier
width 30A and a well w idth 100A, for E < V 0.
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Figure 6.11: T he conduction band edge profile of a  sym m etrical double rectangular potential
barrier s tructu re with a barrier height 0.23eV,  barrier w idth 50A and a  well w idth 50A.
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Figure 6.12: P lo t of the  (a )  Transmission Coefficient and the (b )  A PT tim e for a sym m et
rical double rectangular potential barrier s tructu re  with a barrier height 0.23eV,  barrier
width 50A and a  well w idth 50A, for E < V0.
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Figure 6.13: The conduction band edge profile of a  sym m etrical double rectangular potential
barrier structu re  with a  barrier height l.OeV, barrier w idth 25A and a  well width 45A.
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Figure 6.14: P lot of the (a )  Transmission Coefficient and the (b )  A P T  tim e for E < V 0 for
a sym m etrical double rectangular potential barrier structu re  with a barrier height l.OeV',
barrier width ‘25A and a  well width 45A.
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Figure 6.15: The conduction band edge profile of a sym m etrical rectangular double potential
barrier structu re  of barrier height 0 .3eF , barrier width in the range from 30A to lOOA and
well w idth 30A, for E  < V0.
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Figure 6.16: 3-Dimensional surface plot of the A P T  tim e for E < V0. The barrier height is
0.3eV and the barrier width in the range from 30A to 100A and the well width is 30A.
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Figure 6.17: The conduction band edge profile of a  sym m etrical rectangular double potential 
barrier structu re  of barrier height l.OeV, barrier width 30A and the well w idth in the range 
from 30A to 110A.
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Figure 6.18: 3-Dimensional surface plot of the A PT  tim e for E  < V0. The barrier height is
l.OeV and barrier w idth 30A and the well width in the range from 30A to  llOA.
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Figure 6.19: 3-Dimensional surface plot of the (a )  A PT  time and the (b )  transm ission 
coefficient for E  < V 0. The barrier height is l.OeV and barrier width is 30A and well width 
in the range from 30A to 110A.
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C hapter 7

CONCLUSION

S tarting  from  the analytical solution to  the tim e-independent Schrodinger equation in one-dim ension, 

and exploiting the analogy between the transm ission line equation and the solution to  the Schrodinger 

equation , an analytical expression for the Average Particle Traversal (A PT ) tim e, t a p t , was derived 

in term s of the real p a rt o f the Q uan tum  Mechanical Wave Im pedance (QM W I). This approach was 

used to  derive an analytical expression for the t a p t  through a single rectangular po ten tia l barrier 

under zero bias, and the results were com pared w ith the dwell tim e, the phase-delay tim e, the 

B uttiker-L andauer tim e, the Collins-Barker num erical traversal tim e and the classical traversal tim e. 

T he A P T  tim e is inversely proportional to  the transm ission coefficient, t a p t  approaches infinity as 

the incident energy tends to  zero and as the energy goes to  infinity, t a p t  tends to the classical tim e. 

T he A P T  tim e is always more th an  the classical traversal tim e. T he sam e approach was extended 

to  ob ta in  an analytical expression for the t a p t  through a sym m etric double rectangular po ten tia l 

barrier s truc tu re  under zero bias. T he A P T  tim e is inversely proportional to the transm ission 

coefficient and  the t a p t  a tta in s  a m inim um  a t resonant energies when the transm ission coefficient is 

unity. T he m axim um  frequency of oscillation of some of experim entally  studied resonant tunneling 

structures were com pared w ith those obtained using A P T  tim e. T he agreem ent is good.

T he capacitance charging tim e a t the depletion regions were not taken into consideration. T he
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effective masses were assum ed to  be constant th roughout the struc tu re . T he tapt  in the free 

propagation regions, ahead and beyond the barriers, were not taken in to  consideration. T he effect 

of the effective m ass can be incorporated  in this approach and an analy tical expression for the 

tapt  for a. barrier s truc tu re  w ith different outer edges can possibly be derived. An analytical 

expression can possibly be derived for the tapt  through unsym m etrical double potential barriers. 

Coupled-quantum -w eils effect can also be incorporated. As the pre-free-propagating region may 

play an im portan t role, the traversal tim e through the pre-free-propagating region also should be 

considered, especially when com parison w ith experim ents are m ade.
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C hapter 8

A PPE N D IX  A

8.1 C om plex  C oefficients o f  W ave Function Solutions

T he com plex constan ts involved in the solutions to  the  Schrodinger Equation are given in th is section. 

T he suffix 1 and  2 indicate the real and im aginary  p arts  o f the constants, respectively.

A = i2kaead^a ~ f k ^ k2 ~  +  "  *i') 2c ,2 id‘] sinh (ad ) +  i '2 iacosh (od )] -  (8-1)

f i pik2d(n  I :L)
B  =  — t'4 fca 2ead— ~  ®2) ^  e'2k<i' ( a  ~  *’&)2]s in h (ad )  +  i'2^acosh(ad)] (8.2)

f r ei2kd(n  _  :l \
C  = — i4 f ^ 2 e-ad— tt(^2 — a 2 ) e'2kd' (Q +  l^ )2] s in h (ad ) +  i2ka  cosh(ad)] (8-3)

H eikd
D =  — [(fc2 — a 2)s in h (a d )  +  i2ka  cosh(ad)] (8.4)
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f j e i k ( 3 d + 2 d i )

( a 2 +  k 2) s inh(ad) (8.5)

H e ikV d+d' ) ( a  +  i k )
2 a e a(2d+di) ( 8 .6 )

f f e i k ( 2 d + d l ) ( a  _  j f . )

2&e~ai2d+dl )
(8.7)

B i =  a ( k 2 — a 2) ( l  — e ~ 2ad) s i n2(k d \ )

+ 2a 2fc(l — e ~ 2ad) s i n ( kd i )  cos ( kd i )  

+ k ( k 2 — a 2) ( l  — e - 2“ d)sin(&di)cos(&di)  

+ a fc 2( l  — e_2“ d) ( l  — 2 sin 2(k d i ) )

- a k 2( l +  e ~ 2ad)

B 2 =  k ( k 2 - a 2) ( l - e ~ 2ad) s i n2( k d ^

+ 2a £ 2( l  — e ~ 2ad) s i n ( k d i )  co s( kd \)  

—a ( k 2 -  a 2) ( l  -  e ~ 2ad) s i n ( k d i )  co s( kd i )  

—a 2fc(l — e ~ 2ad) ( l  — 2 sin2( t d i ) )

+ a 2fc(l +  e ~ 2ad)

(8 .8 )

(8.9)
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C\ — a ( k 2 — a 2)(e2ad — 1) cos2(kdi)

—2a2k(e2ad — l)sin(fct/i) cos(fcdi)

+fc(fc2 — a 2)(e2ad — l)sin(fc<ii) cos(fcdi) 

+ a k 2{e2ad -  1 ) ( - 1  +  2 c o s 2 ( M i ) )  

+ a k 2(e2ad + 1)

Ci  =  a ( k 2 — a 2)(e2ad — l)cos(&<fi)sin(fc(fi) 

+ 2  a k 2(e2ad — l)s in (£ c fi)co s(M i) 

—k(k2 — a 2)(e2ad — 1) cos2(kd\)  

+ a 2k(e2ad — 1)(—1 +  2 cos2(kdi))  

+ a 2k(e2ad+ 1)

2ka  cos(kd) cosh(ad) +  (k2 — a 2) sin(kd)  sinh(arf) D l =   -----------------------------

2 k a  cosh(atf) sin(fcd) — (k2 — a 2) cos (kd)  s in h (ad )D2 = ---------------------------- ---- -----------------------------

( a 2 +  k 2) sin[£(3<i +  2.d\ )] s in h (o d ) 
El =  2^ --------------------

(8 . 10)

(8 . 11)

( 8 . 12)

(8.13)

(8.14)
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—( a 2 +  &2)cos[&(3<f +  2<fi)]sinh(ad)

a  cos[k(2d -f <fi)] — fcsin[fc(2d +  rfi)]
2 a e o(2d+di)

k cos[k(2d -f d \ )] +  asin[£(2f/ +  rfi)] 
2 a e “ (2d+d' )

a  cos[£(2c/ +  d i )] +  k sin[£(2d +  d \ )] 
2 a e - a l2d+d l1

a  sin[&(2d +  d i )] — k cos[fc(2<f +  d \ )] 
2txe~ “ (zd+di)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)
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