AMPHETAMINE EFFECTS AND THE POSSIBLE ROLE OF SENSITIZATION IN PATHOLOGICAL GAMBLING

Martin Zack, PhD
Neuroscience Research Department
Centre for Addiction and Mental Health
Toronto, Ontario Canada M5S 2S1
E-mail: martin.zack@camh.ca
Addiction is a brain disorder caused by chronic exposure to drugs (Leshner, 1997)

Pathological Gambling (PG) shares many features of drug addiction (Holden 2001; Petry, 2006; Potenza, 2006)

PG may be caused by chronic exposure to gambling

Neuroplasticity (Tamminga and Nestler, 2006) ➔ Sensitization (increased dopamine; DA) response to drug or environmental signals for reward (Robinson and Berridge, 2001)

Robust sensitization: Repeated low-dose amphetamine
Hypotheses

• Acute effects of gambling activity resemble those of a stimulant drug (amphetamine)

• Chronic effects of gambling (i.e., PG) resemble those of chronic amphetamine exposure

• Both of these effects are mediated by DA

• Correspondence closest for low doses (which do not induce supra-physiological levels of DA)
Study 1:
Slot Machine and Amphetamine (20 mg) Effects in PG and Controls: Pre-treatment with D1-D2 DA Receptor Blocker, Fluphenazine
Mean Desire to Gamble (0-10)

<table>
<thead>
<tr>
<th>Group</th>
<th>Healthy Control</th>
<th>Pathological Gamblers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Desire to Gamble</td>
<td>0.25</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>7.68</td>
</tr>
</tbody>
</table>

Diagram:

- **Baseline**
- **Post-Slot Machine**

Text:

15-min Slot Machine Game Primes Desire to Gamble
Effects of DA D1-D2 Receptor Antagonist

Pre-Treatment:

Placebo

Drug
Fluphenazine (3-mg) Pre-treatment in Gamblers

Pre-Treatment: Placebo Drug
A Low Dose of Amphetamine Primes Desire to Gamble

<table>
<thead>
<tr>
<th></th>
<th>Group</th>
<th>Pathological Gamblers</th>
<th>Healthy Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Desire to Gamble (0-10)</td>
<td>Baseline</td>
<td>6.00</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Post-Amphetamine</td>
<td>3.90</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Amphetamine (20 mg)
Effects of DA D1-D2 Receptor Antagonist

Pre-Treatment: Placebo Drug
Effects of DA D1-D2 Receptor Antagonist

Fluphenazine (3-mg) Pre-treatment in Gamblers

Pre-Treatment:

Placebo

Drug

Mean Desire to Gamble (0 - 10)

PRE

Amphetamine

POST

3.90

3.75

6.00

5.50
Primed Desire to Take Amphetamine Again

Effects of Fluphenazine (3-mg) Pre-Treatment on Desire for Amphetamine

- **Amphetamine (20 mg)**
 - Pathological Gamblers: 5.15
 - Healthy Control: 2.90

Mean Desire to Take Capsule Again (0-10)

- **Group**: Pathological Gamblers, Healthy Control
- **Pre-Treatment**: Placebo, Drug
Conclusions

• Slot machine and amphetamine both increase or “prime” desire to gamble in PGs but not controls

• Blockade of DA receptors reduces priming effects of slot machine and amphetamine on Desire to Gamble and to Take Amphetamine Again

• Effects are modest but reliable
Chronic Exposure to Gambling and Response to Amphetamine: PET Study of PGs and Controls
Baseline (Drug-Free) Striatal DA D2/D3 Receptor Binding

Striatal Dopamine D2/3 Receptor Levels at Baseline

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline Tracer Binding to D2/D3 Receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Control</td>
<td>2.515, 3.221, 2.612</td>
</tr>
<tr>
<td>Pathological Gamblers</td>
<td>2.450, 3.083, 2.663</td>
</tr>
</tbody>
</table>

Cluster Analysis
- **Associative**
- **Limbic**
- **Sensorimotor**
Post-Amphetamine Striatal DA D2/D3 Receptor Binding

Displacement of Tracer by Amphetamine (0.4 mg/kg): Dopamine Release

Mean % Change from Baseline in Tracer Binding

-0.119
-0.246
-0.181
-0.244
-0.191
-0.276

Healthy Control
Pathological Gamblers

Associative
Limbic
Sensorimotor
Post-Amphetamine Binding in Limbic Striatum (Nucleus Accumbens)

Correlation of Amphetamine-Induced Dopamine Release with PG Severity on SOGS

R Sq Linear = 0.241

South Oaks Gambling Screen Score
After Large Wins on a Slot Machine Game in Limbic Striatum (Nucleus Accumbens)

Conclusions

• No difference in baseline availability of D2/D3 DA receptors in PG vs. Controls

• Amphetamine causes significantly more DA release in associative and motor compartments of striatum in PG

• Amphetamine causes graded increase in DA release in limbic striatum as a function of PG severity

• A parallel relationship was reported for DA release in response to large rewards in a slot machine game
Study 3

Correlation or Cause?

Induction of hyper-reactivity to amphetamine in animals by chronic exposure to gambling-like schedule of reinforcement
DA neuron response to conditioned cue for reward (juice) in 3 monkeys: Effects of reward uncertainty

Discrete coding of reward probability and uncertainty by dopamine neurons Christopher D Fiorillo; Philippe N Tobler; Wolfram Schultz
Science; Mar 21, 2003; 299, 5614; pg. 1898
Probability of reward delivery (Payoff > 0 vs. Payoff = 0) over 1000s of spins on a commercial slot machine is 45.8% (Tremblay et al., 2011)

Fiorillo et al. model (50% = maximal uncertainty) has high ecological validity

Present Study (Chronic Version of Fiorillo et al):

Treatment: 15 sessions @ 45 min under different conditioned (light) schedules of sucrose delivery from 0-100% (n =8/group)

Test: Response (locomotor activation) to repeated weekly low doses of amphetamine
Post-treatment Locomotor Response - No Drug
Post-treatment Locomotor Response – 3RD Dose of Amphetamine
Study 3b: Include 75% conditioning group, placebo and low dose challenge
Test Response to Low Dose Challenge (0.5 mg) after 5 Weekly Doses (1 mg/kg)
Gambling and Amphetamine have parallel acute and chronic incentive motivational effects in PG subjects as reflected by ‘cross-priming’.

DA mediates these effects.

Effects not seen in Controls, consistent with Sensitization.

Similar effects can be induced by chronic exposure of naïve animals to gambling-like reinforcement schedules.

Chronic exposure to gambling may induce PG much like chronic exposure to amphetamine induces stimulant addiction.
Acknowledgements

Aditi Kalia
Bindiya Chugani
Daniel Tatone
Kelly Smart
Sarah Mathewson

Dr. Isabelle Boileau
Dr. Paul J. Fletcher
Dr. Doris Payer
Dr. Robert Featherstone
Dr. Steve Kish
Dr. Daniela Lobo
Dr. Daniel Digiacomo