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ABSTRACT 
 

 
 The Mojave Desert is affected by fire every year.  With each fire comes the removal 

of old growth and, in its place, new growth – consisting primarily of those species which 

thrive in disturbed areas.  The focus of my research is to look at plant communities that have 

been disturbed by fire, and examine the successional pathway of these disturbed 

environments.  The seven environments I analyzed were burned within the last twenty years 

and are found in the Coleogyne ramosissima ecotone throughout the Spring Mountain range 

near Las Vegas, Nevada.  The data was collected with randomly chosen circle plots in the 

burned environments, as well as the neighboring unburned environments.  There was no 

correlation found between the length of time since the fire and the level of diversity of the 

environment.  However, the degree of evenness is higher in the burned environments as 

compared to the unburned environments.  It appears that there was not enough time between 

the fires to see a difference in the composition of the community.
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INTRODUCTION 

 
The environment is constantly changing.  This change is natural and usually subtle. 

However, the rate at which an environment changes may increase as a result of disturbances.  

Succession is defined as a directional temporal change in species composition or relative 

abundances following a disturbance (Holt 1995), and plays an important role in changing 

community composition.  The mechanisms that drive succession have been debated 

throughout this century, and it seems that for every theory introduced, there are experiments 

to contradict it.  The reason for this is that these theories only focus on a limited number of 

aspects, but in actuality succession is based on a complex web of interactions.   

The focus of my research will be to look at desert plant communities that have been 

disturbed by fire.  I will be examining the successional pathways of these communities 

following fire disturbance.  The research will include fires of both high and low intensities, 

which were started by natural causes as well as human negligence. 

The vegetation analysis will examine seven different plant communities of the 

Mojave Desert, near Las Vegas, Nevada, which have been affected by fire between the years 

1979 and 1994.  All seven occur in the Spring Mountain range to the West of Las Vegas and 

within the Coleogyne ramosissima (blackbrush) ecotone.  The fires occurred at:  First Creek, 

Cottonwood Valley, Zipper, Ice Box, Willow, Dear Pasture, and Newer Deer Pasture.  The 

location and descriptions of each fire can be found in Table 1, and Figures 1and 2 are maps 

showing the fire locations. 

Coleogyne communities appear to dominate at an elevation of 4000 to 5000 feet in 

the Mojave Desert (Beatley 1969), and form nearly monospecific stands in much of its range 



 
 

(Lei and Walker 1997).  These monospecific stands will provide a reference to which 

disturbed areas will be compared;  fully recovered disturbed areas should closely resemble 

the monospecific blackbrush stands.   

The aim of this study is to examine burned environments of different time intervals 

within the Coleogyne ecotone to determine if plant succession occurs along a specific time 

sequence.  We expected to find:  1) higher diversity and evenness in burned areas than in 

areas that have never experienced burns;  2) greater cover but lower diversity in areas that 

fire occurred many years ago as compared to areas that were burned in recent years;   and 3) 

no chronological time sequence in the recovery of a fire disturbed environment. 

The forces which drive plant succession vary greatly and depend on many different 

factors that come together to influence the vegetation within particular environments.  There 

are three different stages in which primary succession is influenced:  initial biotic 

community, in which influential factors include the state of the vegetation prior to the 

disturbance;  the abiotic world, which is influenced by the intensity or frequency of 

disturbance and the condition of the parent material following the disturbance;  and the biotic 

realm, where colonization is an important factor.   

The initial biotic community plays an important role in plant succession.  It is the 

template by which all future communities will be measured.  Initial plant communities 

display the species and relationships that inhabit an environment for extended periods of time 

with little to no disruption.  These plants can also have a dramatic affect on the pathway of 

succession.  The original floristic composition is often the first factor to influence succession.  

However, the extent of the influence original floristic composition has on succession 

ultimately depends on the type of disturbance (Glenn-Lewin et al. 1992). 



 
 

Disturbance can have many different appearances, ranging from volcanic eruptions, 

deglaciation, fire, agricultural fields or toppled trees (as well as many more).  Disturbance to 

the environment can be characterized by two different variables:  frequency and intensity, 

each of which can have drastically different effects.  Disturbance frequency is the number of 

times a particular environment is disturbed.  As a result of repeated disturbances, species 

richness is reduced due to altering habitat structure and the elimination of intolerant species 

(Collins 1995).  Disturbance intensity is a measure of magnitude of the disturbance, such as 

how hot or long a fire burns.  In many cases, this one time disturbance is found to benefit the 

existing community as far as species richness is concerned, and in the case of fire, it is often 

required for the removal of ground litter and propagation of some species. 

 Disturbance plays a huge role in the state of parent material.  Parent material is what 

is left in the soil following the disturbance.  This often dictates what type of species returns 

to the disturbed environment first.  If the parent material is left largely intact, then shrubs and 

woody plants may colonize quickly, as a result of some plants resprouting since they were 

not completely destroyed.  Also, the soil is already suitable for sustaining these types of 

species.  But if the parent material is severely altered, then it may take many years for 

succession to begin, and when it finally does it may be dominated by a trophic species such 

as lichens.   

Colonization may occur through many different means.  It may be the result of a plant 

that was not totally removed from the disturbed environment, in which case it may be able to 

reestablish a population relatively quickly with respect to succession time.  Succession may 

also begin as the result of seed banks that have been in the soil.  These seeds may begin to 

germinate and colonize the disturbed area.  These seed banks may have remained dormant 



 
 

permanently, except that the disturbance provided them the opportunity to become 

established in a newly modified environment.   

 The size of the disturbance can also be important in colonization.  Recovery is 

strongly affected by the degree of initial destruction and by the degree of isolation (Del 

Moral 1993).  If the disturbance is of large scale, it may inhibit the colonization of the habitat 

based solely on the amount of distance that must be traveled by seeds to reestablish the area.  

However, if the disturbance is on a small scale, the surrounding vegetation can influence 

initial colonization relatively quickly.  A pool source of plants that are near the disturbance 

will continue to disperse seeds, and with the newly available habitat, these seeds may be able 

to germinate and take root.  In such a case, succession would occur relatively quickly, with 

old growth species getting a jump-start on colonization.  However, when the pool source is 

relatively distant from the disturbed area, then seeds may not reach the new habitat and 

succession may occur quite slowly.   

There is strong positive correlation between seed size and establishment success, and 

an inverse correlation between seed size and dispersal ability (Del Moral 1993).  These 

results imply that isolated, highly disturbed sites recover slowly because well dispersed 

species are rarely successful, while those that could establish, rarely colonized (Del Moral 

1993).  

 The role of seed dispersal in succession is one based on strategies of surrounding 

vegetation and the means by which they are able to disperse their seeds.  Seeds that are 

capable of being dispersed over long distances may have an advantage in colonizing new 

habitat.  These seeds tend to be wind dispersed and fairly small in size, with relatively low 

survival rates.  Seeds that are capable of being transported over long distances are able to 



 
 

escape the influence of the parent plant, in which mature trees and shrubs may inhibit 

germination or growth of seedlings.  For instance, mature vegetation shades the areas 

surrounding the base of the tree, thus preventing seedlings from reaching maturity.  Mature 

trees also tend to attract a lot of seed predators, and therefore the farther away from the 

parent a seed gets, the better its chances of survival.  But the seeds that have short dispersal 

distances tend to be heavier and better suited for survival.  So ultimately each dispersal 

strategy has the potential to be successful, but the majority of seeds never germinate. 

Just because a plant is successful in dispersing it seeds into the disturbed habitat, does 

not guaranteed a successful colonization.  It is not just the dispersal of the seed that is 

important to colonization, but the location where the seed lands may be equally important.  

Each environment has space within it that is suitable for life, but much of these newly 

disturbed areas consist of inhospitable terrain.  These disturbed lands contain 

microenvironments that are capable of sustaining growth.  The size, distribution and 

frequency of these microenvironments ultimately determine where a species may grow.  

Some environments contain very small microenvironments, which may be just large enough 

for one small shrub or grass.  This microenvironment may be on the down slope side of a 

rock, or in a depression on a hillside which prevents the seedling from being removed by 

winds or erosion.  The result of this fragmented environment is a mosaic of microsites and 

early colonizers.   

A microsite may also be created within a preexisting forest where a recently fallen 

tree provides a disturbance.  This allows for a sufficient new environment in which 

germination may occur.  This new environment may be based on a new opening in the 

canopy, which allows penetrating sunlight to reach the forest floor.  Competition may then 



 
 

occur among many seedlings in order to fight for the available sunlight.  These seedlings not 

only have to compete with each other for this sunlight, but also with established adults who 

may begin to branch in the direction of the new light.   

As a result of this competition for new habitat, seedlings must compete with one 

another in order to capitalize on the limited resources available.  It is here in the dynamics of 

succession that life histories can make the difference.  Each species of plant has a life history 

that has evolved through time, and it is this strategy of life that can ultimately dictate whether 

the plant will survive primary succession.  The plants which tend to do best as early 

colonizers are those with particular life history traits.  The traits that tend to infer early 

colonization are things such as seed size, growth rate, age at first reproduction, maximum 

height and longevity (Chapin et al. 1994).  Plants that have the ability to grow quickly may 

take advantage of the available sunlight.  However, this is not enough, as is seen in Glacier 

Bay, Alaska, where Picea sitchensis (spruce) may have initially colonized a recently 

deglaciated habitat but could not withstand the competition from Alnus sinuata (alder) 

(Fastie 1995).  A. sinuata is able to reproduce nearly 20-40 years sooner than P. sitchensis 

(Fastie 1995).  In this way, A. sinuata is able to surround P. sitchensis in a dense thicket and 

not allow any new seedlings of P. sitchensis to reach maturity. 

Even though primary succession will eventually occur, the length of time it takes and 

the vigor with which it occurs is unknown.  Succession is based on a complex web of biotic 

and abiotic factors, of which it is difficult to say which will be the most influential at any 

particular site.  Each microsite is established as the result of any number of successional 

factors combining to provide a survivable environment for new vegetation. 



 
 

 Succession needs to be examined across a wide array of disturbances, and at each of 

these sites information needs to be recorded detailing the specific environmental conditions 

unique to that site.  Even with detailed studies of succession it will still remain impossible to 

fully determine the pathway of succession for any one environment.  Each environment has a 

set of conditions which are unique, such as wind direction, soil content, seed pool source and 

level of disturbance (just a few of the many).  The relative importance of mechanisms and 

processes differs among successional environments (Chapin et al. 1994), and thus makes 

predicting a pathway complex to say the least. 

Fire is an important part of many environments and it plays a significant role in 

ecosystems (Crutzen 1993).  A fire’s greatest attribute to the environment is its effectiveness 

in removing ground litter, potential allelochemicals, and reducing competitors; it is the 

habitat changes following fires that can potentially provide successful conditions for 

reproduction (Crutzen 1993).  Fire can be caused by a natural event such as lightning, or it 

may be a result of human negligence. Natural fires tend to be annual and occur during the 

arid times of year following a desert plants seasonal growth, such as Coleogyne ramosissima 

(Lei and Walker 1997).  Fires started by people are perhaps the most harmful because of the 

time of year in which they may occur.  Fires that are a result of human negligence can occur 

during peak reproductive periods of the year, having a much greater ecological impact than 

natural fires.  Fires can also influence the dispersal of species in an environment.  “High 

intensity fires tend to homogenize landscapes, whereas low intensity fires lead to mosaics of 

ecosystems of differing composition and structure” (Crutzen 1993). 

 

MATERIALS AND METHODS 



 
 

 At each site a 50-meter transect was set, avoiding washes and slopes when possible.  

Then randomly chosen circle plots were used to collect the data.  These circle plots were 

picked randomly with the use of a random number table.  The number was used to determine 

the distance between each plot and how far from the line transect they would be centered.   

The sample plots alternated from right to left along the line transect to ensure they did not 

overlap.  Each of these circle plots was created with the use of a rope, which was attached to 

a wooden stake that was placed at the center of each circle.  There were a total of three plots 

taken at each site, with each circle having a radius of 5.642 meters, a circle with a radius of 

5.642 meters yields a circle with an area of 100 meters square (Area of a Circle = πr2).  Data 

collection was repeated in an unburned region near each site so that it could be compared to 

the burned data.  Data summaries are shown in Tables 2 and 3. 

 The number of individuals for each perennial species was counted in each 

plot, and then length, width and height measurements were taken for each individual plant.  

The calculated areas for the most abundant species are shown graphically for each study site 

(Figures 5 and 6).  The distribution of all of the species at each site was analyzed graphically 

using proportional abundance, species richness, and diversity, the data can be seen in Figures 

3-6, 9 and 10.  The method used to calculate the diversity of each site is based on a formula 

known as the Shannon function (Krebs 1972).  This formula takes into account both number 

of species, as well as equitability or evenness of allotment of individuals among the species.  

The higher the index value is a result of a higher level of diversity. 

 



 
 

RESULTS 

The results of the burned area show a higher species diversity when compared to the 

unburned environments in all but two of the locations, First Creek and Deer Pasture.  This 

can be seen visually by comparing the diversity graphs for both the burned and unburned 

environments, Figures 3 and 4.  The degree of evenness is also highest in the unburned areas 

as compared to the burned areas.  This is determined based on a visual comparison of the 

slopes of the curves from the proportional abundance, Figures 5 and 6, the greater the slope 

the lower degree of evenness.   

The analysis of vegetation cover for the burned environments resulted in a downward 

trend with respect to age of fire.  The sites where fire occurred more recently resulted in a 

lower percentage of vegetative cover.  However, this study of cover did provide one area of 

the burned environments that did not follow this trend.  The fire at First Creek, which is the 

oldest, had the lowest percentage of cover than any of the other sites (Figure 7).  The amount 

of diversity did not seem to be affected by the length of time since the fire (Figure 3). 

There was not a time sequence evident in the recovery of an environment following a 

fire.  However, the species richness at a site that has not been affected by fire is on average 

higher than an environment that has been disturbed by fire (Figures 9 and 10).  At the same 

time there are no other time-related trends developing in the burned areas with regard to 

species richness. 

 

DISCUSSION 

 The higher levels of evenness and diversity in the burned areas as compared to the 

unburned areas of the same sites were anticipated.  The reason for this is that with higher 



 
 

levels of disturbance there would be a greater opportunity for more species and more 

individuals of a species to find an environment that is suitable for establishment.  The 

unburned environments tend to have a higher percentage of cover, therefore providing less 

available habitat for new species, as a result of competition for resources. 

The cover of these unburned environments is dominated by a single species, 

Coleogyne ramosissima, usually comprising of more than half of the total coverage (Figure 

8).  Although this domination by Coleogyne ramosissima does have a smothering effect it is 

interesting to note that the unburned environments did have a higher level of species 

richness.  However, these other species that tend to be scattered amongst the C. ramosissima 

are rarely found in any significant numbers.  This may be attributed to the lower percentage 

of available habitat, as well as an increase in competition for available resources. 

The burned environments go through a change of species during the succession 

process.  Through the course of succession different plants will dominate disturbed habitat, 

this was seen in the all of the different burned sites of this study (Figure 7).  However, certain 

species specialize in colonizing disturbed environments.  For instance, Gutierrezia sarothrae, 

which is known to thrive in areas disturbed by fire or grazing, (Bowers 1993), dominated the 

vegetation cover by more than 75 percent at the Ice Box fire (Figure 7).  But each of the 

other sites was dominated by a different species, except for Cottonwood Valley and Deer 

Pasture which were both dominated by Encelia Farinosa.  There was no particular order in 

which plant species returned.  The reason for this is a result of the many different 

characteristics that are unique to each environment.  These characteristics may range from 

water and nutrient availability in the soil to grazing pressure from wild horses and burros.  



 
 

However, the most important characteristic may be the availability of near by seeds to be 

dispersed onto the newly disturbed habitat.   

  Several errors are inherent to the data collection process.  For instance, the number 

of sites analyzed was limited due to the location of fires; most sites require a fair amount of 

hiking or the use of an off-road vehicle.  One problem with the sites analyzed was the 

number of sample plots that were taken at each site, which in this case may have not been 

enough; this too was a function of location and time.   

Another major factor that has a strong influence on the recovery of a plant 

community following a fire, is the intensity of the fire.   

“A fire characterized by high intensity results in extensive mortality of ground 
cover.  Fire intensity is the rate at which heat is given off by the flame, and is 
more important than the flame temperature.  Plant mortality depends on the 
amount of heat transferred to the plant and how much is absorbed, so as to 
raise the plant’s temperature to the lethal level.”  (Johnson 1992).  
 
 Unfortunately, these measurements need to be taken at the time of the fire and there 

were no records found which provided this information, thus we were not able to analyze 

them with the rest of the data. 



 
 





 
 
 
This figure is an indication of diversity at each of the burned sites.  There are no definitive patterns of diversity that emerge in the 
burned sites. 
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The species diversity has a wide range of values in the unburned sites, and this may be the result of a wide range of conditions that are 
unique to each site.
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The species composition at the burned sites has a higher degree of evenness then the undisturbed sites.  The degree of evenness is 
determined from a visual comparison of the slopes at each site. The proportional abundance is a ranking of each species in its relation 
to the other species at the site. 
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An abundant species as well as a low degree of evenness characterize the species composition at the unburned sites. 
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The dominant vegetation in burned environments varies greatly, with nearly each site having a different species dominate the 
vegetation cover.  However, the dominant species does not imply the only species, the cover at most disturbed sites is comprised of 
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many species.



  

 



  

The unburned land is dominated by nearly monospecific stands of Coleogyne ramosissima.  This leaves a minimal amount of 
resources for other species.  
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Areas that have been burned recently show similar results in species richness.  These burned sites also had many of the same species 
in common.  The species at these sites are profiting from newly available habitat.
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Areas that have remained relatively undisturbed can have varying characteristics, such as species richness.  For instance, First Creek 
which has 13 different species, this is more than double both Willow and Deer Pasture.
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