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Abstract

The central limit theorem, in simple terms, states that the probability distribution of
the mean of a random sample, for most probability distributions, can be approximated
by a normal distribution when the number of observations in the sample is ‘sufficiently’
large. Most applied statistics books recommend using the normal approximation for the
probability distribution of the sample mean when the number of observations exceeds 30.
It is commonly known in the discipline of statistics that larger samples will be needed
when the underlying probability distribution is heavily skewed. However, the minimum
number of samples needed for the CLT to yield a reasonable approximation, when the
distribution being sampled is heavily skewed, is not known. The Berry-Esseen theorem
does provide an upper bound on the error in approximating the probability distribution
of the sample mean by the normal distribution, but this upper bound turns out to be of no
value when applied to slot games. The pay-out probability distributions of many casino
games such as slots are heavily skewed, yet the CLT is used for calculating ‘confidence
limits’ for total casino win, or rebates on losses, for these games. We will use Monte
Carlo experiments to simulate the play of a few slot games and the table game of baccarat
to estimate the probability distribution of the mean payout for sample sizes as large as
4,000, and compare it to the normal distribution.

Introduction

The law of large numbers (LLN) and the central limit theorem (CLT) are the
cornerstones of inferential statistics. The LLN ensures that as the number of random
samples collected from a probability distribution is increased, the sample mean converges
to the true population mean, and the CLT guarantees that the sampling distribution
of the mean will be Gaussian, provided there are a sufficient number of independent
observations. The law of large numbers was utilized by the Chevalier de Mere (1607 -
1684), an astute gambler (see Maxwell, 1999), and first proven by Jakob Bernoulli in
1713 (Bauer, 1996). In 1733, Abraham de Moivre introduced the concept of the Gaussian
distribution as an approximation to the binomial distribution. This result, now called the
theorem of de Moivre — Laplace (Feller, 1968), is a special case of the CLT. The CLT is
invoked in deriving formulas for confidence intervals in estimation problems and critical
regions in hypothesis testing problems.

There are many practical applications of the central limit theorem. The CLT provides
justification for many procedures in statistical process control and statistical quality
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control. The concept of Six Sigma derives from the central limit theorem. The best-
known practical application of the LLN and the CLT is the casino gaming industry. The
profitability of all of the casino games is guaranteed by the LLN and the CLT. In other
words, these two theorems ensure that, in the long run, any casino game will result in a
positive casino win, provided the game carries a positive expected value. For example,
some video poker games have offered a positive expected value for the player, if played
perfectly.

Applications of the central limit theorem exist in the gaming literature as well.
Johnson (2006) used the central limit theorem to calculate optimal keno strategies.
Ethier and Levin (2005) have derived a variation of the central limit theorem and
provided a simplified proof of Thorp and Walden’s theorem of card counting.

The approximate normality of the sample mean for large samples is routinely used
for calculating confidence limits on actual casino win from a table game, or actual
casino win from a given player (Hannum and Cabot,2005). The PAR (probability
accounting report) sheet of every slot game on a casino floor includes, among other
things, confidence limits of payback percentage for given numbers of games played
(Hannum and Cabot, 2005; Harrigan and Dixon, 2009). The CLT is also used for
calculating rebate on actual loss (Hannum and Cabot, 2005).

The probability distribution of the payouts from a typical slot game, however, is
heavily skewed, and the number of samples (i.e., the number of pulls or spins) would
need to be larger than 30, the magic number recommended by most applied statistics
textbooks (Webster, 1998; Ott and Longnecker; 2010; Devore, 2012, to name a few)
for the normal approximation to yield accurate results. In this article, we use Monte
Carlo simulation experiments from a few slot games and the table game of baccarat to
compare the approximate results obtained from the CLT to the results from simulation
experiments.

By way of examples, this study seeks to demonstrate the applicability of the LLN
and the CLT to common problems facing modern gaming operators. In doing so,
the findings will shine a light on the viability of popular heuristics that are routinely
employed in the gaming industry. The outcomes of play are simulated and analyzed at
sample sizes that are meaningful to gaming operators.

CLT and the Berry-Esseen Theorem

The CLT states that the probability distribution of the mean of a random sample
from a population with mean p and finite standard deviation ¢ approaches the normal
distribution as the sample size n is increased:

P( X/ < x) = O(x), where () is the standard normal cumulative distribution.

o/~n

The Berry-Esseen Theorem (see, for example, Gut, 2012) provides an upper bound

on the error in the above approximation:
3
max|F_, (x)=®(x) | < C—L—, where y'=E(| X - u[')
i o\
o < is the standard deviation, and C is a constant.

Much work has been done to accurately determine the value of the constant C; the
best value of C in 1972 was 0.7975 which was replaced by 0.7655 in 1986 (Gut, 2012).
The current best value is 0.4784, due to Shvetsova (2007). We have calculated the
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Berry-Esseen upper bound for the sample size n of 100000 in the error of approximation
provided by the CLT for the four slot games considered in this paper (see Appendix A);
these results are shown in Table 1 below.

Table 1: Berry-Esseen upper bound in the error of approximation provided by CLT

Slot game i Standard deviation ¢ v3 Upper bound
1 0.88 11.28 1263630 1.33
2 0.91 11.28 1263693 1.33
3 0.94 11.28 1236563 1.33
4 0.97 11.28 1263550 1.33

Clearly the upper bound provided by Berry-Esseen theorem for a sample size of
100000 is of no practical value in the present situation.

Methodology

Monte Carlo simulation was used to simulate the play of n hands for a slot game and
also the table game of baccarat, and the probability distribution of the simulated payback
(for slot games) or player win/loss (for baccarat) was estimated by the histograms of the
simulated means. The coefficients of skewness and kurtosis (Sharma, J.K., 2007; Rupert,
2004), which equal 0 for any normal distribution, are useful measures for assessing
departures from normality and have been included in the descriptive statistics of the
simulated results. The R programming language (R Core Team, 2012) was used to code
all of the simulation experiments utilized in this study. All graphs in this paper were
programmed using the ggplot2 package in R.

In Nevada, for the calendar year ended December 31, 2012, over 63% of the State’s
total gaming win came from slot machines (Nevada Gaming Control Board, 2012).
During the same reporting period, baccarat produced more win than any other table
game. Both slots and baccarat serve as perennial revenue juggernauts for Nevada casinos.
Because of these contributions, this study examines the effects of the LLN and CLT on
these two areas of the casino.

Slot Games

In an earlier study (Lucas and Singh, 2011), the pay table of an actual slot game was
modified to create twelve different versions of the same slot game, with four payback
percentages (88%, 91%, 94%, and 97%) and three standard deviations (6, 11, and 15
coins); Monte Carlo simulation was used to show the inability of players to detect
differences in the payback percentages. In this study, we have used four of these slot
games corresponding to the standard deviation of 11 coins, and investigated the effect
of an increase in the number of spins on the actual payback to a player who wagers one
credit and plays one line on each spin. The four pay tables examined in this study can be
found in Appendix A.A brief description of the simulation follows:

1) Generate n random numbers from the slot game pay table, which represent the
actual amounts paid back to a player after n spins.

2) Calculate the mean X of the sample of size n obtained in Step 1. This sample
mean represents the actual average payback to a player after n spins.

A large number (N) of iterations of the above two steps yields N values of the sample

mean, X,;,X,,...,Xy.. The probability distribution or the sampling distribution of the

UNLV Gaming Research & Review Journal « Volume 17 Issue 2 47



sample mean is estimated from these N sample means. The number of iterations N
used in this study was 100,000 and six values of the sample size n were included in this
study: 100, 250, 500, 750, 1000, 2000, and 4000. Using 500 as the average number of
trials or slot pulls per hour (Hannum and Cabot, 2005), the above sample sizes cover
the average slot play time range of 12 minutes (100 spins) to 8 hours (4000 spins). The
descriptive statistics, histograms, and normal quantile-quantile (q-q) plots were used to
assess the normality of the probability distribution of the sample mean in each case.

As mentioned earlier, the PAR sheet of a slot game includes 95% confidence limits
of the payback percentage for n games played, calculated from the following CLT-based
approximate formula:

Payback Percentage + VI/n,

where VI is the 95% volatility index of the slot, given by VI=1.96 x standard
deviation. It should be noted that in the above formula, the true expected payback and
true sd are being used, and therefore the result is not a ‘confidence interval’ but in fact
behaves rather like a set of quality control limits for the actual average payback from n
hands.

In this paper, the 95% approximate control limits obtained from the above formula
are compared to the equal-tailed non-parametric 95% confidence limits obtained from
simulations. Any differences highlight the extent to which the simulated sample sizes
produced results deviate from those calculated by the popular formula.

Baccarat

In the standard form of baccarat, the dealer deals two cards each to the Bank
hand and the Player hand, and a gambler can bet on either of the two hands to win, or
that a tie will occur. Of course, when dictated by the rules, either or both of these two
hands may receive a third card, before a winning outcome is determined. The payout
on the Player hand is 1 to 1, while winning Bank wagers are paid at a rate of 0.95 to 1,
assuming the standard 5% commission on winning Bank wagers. Winning tie bets are
paid at a rate of § to 1. In the event of a tie hand, a bet on either the Bank or the Player
will push, i.e., the bet will neither win nor lose. The probabilities of a winning Player
bet, a winning Bank bet, and a winning tie bet are known (See Kilby, Fox, and Lucas,
2004):

Probability that the Player hand wins = 0.4462466
Probability that the Bank hand wins = 0.4585974
Probability that the two hands are tied = 0.0951560

The expected value of a single unit wager on the Player hand in baccarat is
-0.01235, and the per unit standard deviation is 0.9512.

In order to generate results of a sequence of n hands of baccarat, in which a
player wagers 1 unit each time on the Player hand, n random numbers were generated
from the above probability distribution and the sample mean was calculated. By
repeating the above steps a large number (N) of times, N values of the sample mean,

X4, Xy,..., Xy , were obtained. The number of iterations N used was 100,000 and the
same six values of the sample sizes n (i.e, hands) were included in this study: 100, 250,
500, 750, 1000, 2000, and 4000. The descriptive statistics, histograms, and normal
quantile-quantile (q-q) plots were used to assess the normality of the probability
distribution of the sample mean in each case. In addition, the CLT based 95%
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confidence limits are compared to the non-parametric 95% confidence limits obtained
from simulations, to highlight any relevant differences. That is, the limits computed by
the CLT-based formula and are compared to those produced by the simulations, for each
sample size.

Results

The results of our simulation experiments with the slot games and baccarat are
summarized in this section.

Slot Games

Tables 1-4 show the descriptive statistics, including the sample skewness and
kurtosis, of simulated average paybacks. Figures 1, 3, 5 and 7 show the sample
histograms of observed payback values, and Figures 2, 4, 6 and 8 show the corresponding
normal g-q plots. It should be kept in mind that the true skewness and kurtosis values for
a normal distribution are both equal to 0, and the normal g-q plot of a sample generated
from a normal distribution should fall along the 45° line. It can be seen from Tables 1-4
that:

(1) for each of the four slot games, the observed average payback from n slot pulls
equals the corresponding true payback percentage for a 1-credit wager; for example, the
sample mean of simulated paybacks from Game 2 equals the true payback of 0.91 even
for 100 slot pulls, keeping in mind that this 100-pull average was computed from the
results of 100,000 trips, each comprised of 100 pulls (see Table 2),

(i1) for each of the four slot games, the observed median payback from n slot pulls is
smaller than the corresponding true mean, with the gap between the two values (observed
median and true payback) decreasing as the number of slot pulls n is increased,

(ii1) both the skewness and the kurtosis values decrease as n is increased, but even
for samples of size 4000, both skewness and kurtosis are quite far from 0, indicating a
serious departure from normality in the probability distribution of sample mean of n slot
pulls from any of the four games considered in our simulation, and

(iv) the range of average observed paybacks shrinks as the number of spins is
increased as can be seen from the minimum and maximum average paybacks.

Figure 1 shows that, for slot game 1, the sample histograms of observed paybacks
for the six sample sizes considered are highly skewed; the same can be seen from the
corresponding normal q-q plots of observed paybacks, shown in Figure 2.

Figures 3-8 show that the same conclusions can be drawn for all of the other three
slot games included in this simulation study.

Table 5 shows the 95% confidence limits for payback percentage calculated from the
CLT-based approximate formula (CLT column) and the same obtained from simulated
payback averages (SIM column) by calculating their lower and upper 2.5% quantiles. It
can be seen from Table 5 that, in each case, the 95% confidence intervals obtained from
simulations are narrower (i.e., more accurate) than the ones obtained from the CLT-based
approximate formula.
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Table 2: Descriptive statistics of average payback from n slot pulls from slot game 1

n Minimum Maximum Mean  Median sd Skewness  Kurtosis
100 0.10 111.14 0.88 0.8 1.21 83.46 7604.75
250 0.28 45.24 0.88 0.84 0.78 51.69 2904.15
500 0.37 23.16 0.88 0.85 0.46 41.9 1987.55
1000 0.53 12.14 0.88 0.86 0.37 27.16 810.42
2000 0.6 6.62 0.88 0.86 027 18.62 377.93
4000 0.67 6.39 0.88 0.87 0.18 13.84 212.74

Table 3: Descriptive statistics of average payback from n slot pulls from slot game 2

n Minimum Maximum Mean  Median sd Skewness  Kurtosis
100 0.10 112.37 0.91 0.84 1.21 883.26 7578.93
250 0.32 45.53 0.91 0.87 0.70 56.11 3499.88
500 0.41 23.40 0.91 0.88 0.55 36.46 1445.98
1000 0.53 12.21 0.91 0.89 0.3 27.72 850.14
2000 0.62 6.58 0.91 0.89 0.25 19.65 425.96
4000 0.69 3.79 0.91 0.90 0.17 14.16 222.11

Table 4. Descriptive statistics of average payback from n slot pulls from slot game 3

n Minimum Maximum Mean  Median sd Skewness  Kurtosis
100 0.10 112.30 0.94 0.87 1.25 80.76 7070.17
250 0.34 45.49 0.94 090 0.74 53.85 3180.98
500 0.47 23.48 0.94 091 0.56 36.32 1430.57
1000 0.57 12.49 0.94 092 0.34 28.67 915.89
2000 0.65 6.66 0.94 093 024 20.25 455.95
4000 0.70 6.49 0.94 093 0.19 13.74 212.47

Table 5: Descriptive statistics of average payback from n slot pulls from slot game 4

n Minimum Maximum Mean  Median sd Skewness  Kurtosis
100 0.13 111.26 0.97 090 1.25 81.02 7100.48
250 0.34 46.10 0.97 093 0.73 54.63 3286.07
500 0.50 23.32 0.97 0.94  0.50 39.80 1756.69
1000 0.57 12.22 0.97 095 0.34 28.55 907.30
2000 0.70 6.67 0.97 096 0.26 19.42 414.37
4000 0.76 6.57 0.97 096 0.18 13.74 213.49
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Table 6: Comparison of 95% confidence limits for payback% from n slot pulls
calculated from the CLT-based formula (CLT column) and the same obtained from
100,000 simulations (SIM column)

Game 1 Game 2 Game 3 Game 4
n CLT SIM CLT SIM CLT SIM CLT SIM
100 L95% -1.33 0.39 -131 042 -1.27 044 -1.24 047
Uu9s% 3.09 1.71 3.11 1.73  3.15 1.76 3.18 1.78
250 L95% -0.52 0.53 -0.50 0.56 -046 0.58 -043 0.61
U95% 2.28 1.38 2.30 1.41 234 144 237 148

500 L95% -0.11 0.61 -0.09 0.64 -0.05 0.67 -0.02 0.7
U9s% 1.87 1.24 1.89 1.27 193 129 196 132
1000 L95% 0.18 0.68 0.20 0.71 024 0.74 027 0.77
U95% 1.58 1.12 1.60 1.15 164 1.18 1.67 1.21
2000 L95% 0.39 0.73 0.41 0.76 045 0.79 048 0.82
U95% 1.37 1.04 1.39 1.07 143 1.1 146 1.13
4000 L95% 0.53 0.77 0.55 0.8 0.59 0.83 0.62 0.86

U95% 1.23 099 1.25 1.02 129 1.05 132 1.08

Baccarat

The simulation results for baccarat are very different from the ones previously
reported for the slot games. Table 6 shows the descriptive statistics of average payback
for n wagers of 1 unit each on the player hand. Per Lucas & Kilby (2012), the true
house advantage of the player hand bet in baccarat is 0.0124, and the average simulated
player win of n wagers is very close to -0.0124 for each n; moreover, the simulated
skewness and kurtosis values are very close to 0. The histogram plots (Figure 9) and
the normal g-q plots (Figure 10) of simulated average player win also indicate that the
probability distributions of the average player win from simulation are quite close to the
normal distribution. Table 7 shows that the 95% confidence limits for the true payback
percentage computed using the CLT based formula are quite close to the corresponding
values obtained from simulations.

Conclusions and Limitations

It is generally known that statistics in general and statistical simulation in particular
do not provide proof of a hypothesis or a rule of thumb (see, for example, Ehninger and
Brockriede, 2008); simulation can only be used to provide evidence in favor of a rule of
thumb, or to demonstrate that the rule of thumb does not always work. The simulations
used in this paper clearly show that the thumb rule of 'n > 30' for the CLT to provide
a good normal approximation to the probability distribution of the sample mean does
not work in the case of a heavily skewed probability distribution such as a typical slot
game, and that the normal approximation is valid even for moderate sample sizes when
the game has a symmetric probability distribution of payouts (e.g., the table game of
baccarat).
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Table 7: Descriptive statistics of average player win from n 1-unit wagers on the
player hand in baccarat

n Minimum  Maximum Mean Median Skewness  Kurtosis
100  -0.4300 0.4500 -0.0120 -0.0100 0.0010 0.0100
250 -0.2700 0.2500  -0.0120 -0.0120 -0.0030 0.0200
500 -0.1900 0.1700  -0.0120 -0.0120 -0.0040 -0.0100
1000 -0.1400 0.1100  -0.0130 -0.0130 -0.0070 -0.0100
2000 -0.1000 0.0800  -0.0130 -0.0130 -0.0070 -0.0100
4000 -0.1000 0.0500  -0.0120 -0.0130 -0.0030 0.0100

Table 8: Comparison of 95% confidence limits for payback percentage from n
1-unit wagers on player hand in baccarat calculated from the CLT-based formula
(CLT column) and the same obtained from 100,000 simulations (SIM column)

n

CLT

SIM

100
250
500
1000
2000
4000

-0.1740
-0.1056
-0.0710
-0.0466
-0.0294
-0.0172

0.1986
0.1302
0.0956
0.0712
0.0540
0.0418

-0.2000
-0.1300
-0.1000
-0.0700
-0.0500
-0.0400

0.1700
0.1000
0.0700
0.0500
0.0300
0.0200
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Figure 1: Histograms of average paybacks from Slot Game 1 for n slot pulls
(n =100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 2: Normal g-q plots of average paybacks from Slot Game 1 for n slot pulls
(n=100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 3: Histograms of average paybacks from Slot Game 2 for n slot pulls
(n=100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 4: Normal g-q plots of average paybacks from Slot Game 2 for n slot pulls
(n=100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 5: Histograms of average paybacks from Slot Game 3 for n slot pulls
(n=100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 6: Normal g-q plots of average paybacks from Slot Game 3 for n slot pulls
(n=100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 7: Histograms of average paybacks from Slot Game 4 for n slot pulls
(n =100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 8: Normal g-q plots of average paybacks from Slot Game 4 for n slot pulls
(n =100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 9: Histograms of average player win for n wagers of 1 unit on the player hand in
baccarat. (n = 100, 250, 500, 1000, 2000, and 4000); results of 100,000 simulations.
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Figure 10: Normal g-q plots of average player win for n wagers of 1 unit on the
player hand in baccarat. (n = 100, 250, 500, 1000, 2000, and 4000); results of 100,000
simulations.
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Figure 11: Plots of the CLT-based formula and simulated control limits for the four slot
games and number of slot pulls =100, 250, 500, 1000, 2000, and 4000.
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Figure 12: Plots of the CLT-based formula and simulated control limits for the player
hand bet in baccarat, and number of hands played = 100, 250, 500, 1000, 2000, and 4000.
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Appendix A

Probability distributions of the four slot games

PAYOUT FOR 1 CREDIT WAGER

EVENT Probability [ 88% Game |[91% Game | 94% Game [ 97% Game
1 0.000259 1 1 1 2
2 0.020926 1 2 2 3
3 0.018136 1 2 3 3
4 0.015545 3 3 4 5
5 0.001395 7 4 5 4
6 0.001196 7 5 5 4
7 0.001036 6 5 5 4
8 0.000199 6 5 5 4
9 0.000173 6 5 5 4
10 0.000013 15 5 5 9
11 0.000080 15 11 15 9
12 0.009347 10 12 11 10
13 0.000257 10 10 10 10
14 0.001315 20 20 20 20
15 0.000110 20 20 20 20
16 0.000427 40 40 40 40
17 0.000053 40 40 40 40
18 0.000051 100 60 60 60
19 0.000009 100 60 60 60
20 0.000140 75 75 75 75
21 0.000004 75 75 75 75
22 0.000046 100 100 100 100
23 0.000004 100 100 100 100
24 0.000010 250 300 250 250
25 0.000001 11000 11000 11000 11000
26 0.002591 2 2 2 3
27 0.021126 2 2 2 2
28 0.018309 2 2 2 2
29 0.015545 2 2 2 2
30 0.001408 5 5 5 5
31 0.001196 4 4 4 4
32 0.001036 4 4 4 4
33 0.000173 4 4 4 4
34 0.000173 4 4 4 4
35 0.000013 4 4 4 4
36 0.000080 4 4 4 4
37 0.009578 9 9 9 9
38 0.000263 10 10 10 10
39 0.001315 20 20 20 20
40 0.000110 40 40 40 40
41 0.000456 40 40 40 40
42 0.000057 40 40 40 40
43 0.000051 40 40 40 40
44 0.000009 40 40 40 40
45 0.000119 40 40 40 40
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Appendix A
Probability distributions of the four slot games
PAYOUT FOR 1 CREDIT WAGER
EVENT Probability [ 88% Game |[91% Game | 94% Game [ 97% Game
46 0.000003 4o 40 40 40
47 0.000034 50 50 50 50
48 0.000003 50 50 50 50
49 0.000010 150 150 150 150
50 0.000001 250 250 250 250
51 0.002616 2 2 2 1
52 0.018485 2 2 2 2
53 0.018485 2 2 2 2
54 0.015695 2 2 2 2
55 0.001232 6 4 2 4
56 0.001046 6 4 3 5
57 0.001046 6 4 3 5
58 0.000174 6 4 3 4
59 0.000174 6 4 3 4
60 0.000012 15 8 8 8
61 0.000070 15 8 8 8
62 0.009787 10 9 10 10
63 0.000269 10 10 10 10
64 0.001378 20 20 20 20
65 0.000115 20 20 20 20
66 0.000456 40 40 40 40
67 0.000057 40 40 40 40
68 0.000051 60 60 60 60
69 0.000009 60 60 60 60
70 0.000119 75 75 75 75
71 0.000003 75 75 75 75
72 0.000034 100 100 100 100
73 0.000003 100 100 100 100
74 0.000010 250 250 250 250
75 0.000001 250 250 250 250
76 0.784281 0 0 0 0
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