Effects of Radiation Field Geometry on Line Driven Disc Winds

Sergei Dyda
University of Nevada, Las Vegas

Daniel Proga
University of Nevada, Las Vegas, daniel.proga@unlv.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/physastr_fac_articles

Part of the *Astrophysics and Astronomy Commons*

Repository Citation
http://dx.doi.org/10.1093/mnras/sty2478

This Article is brought to you for free and open access by the Physics and Astronomy at Digital Scholarship@UNLV. It has been accepted for inclusion in Physics & Astronomy Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Effects of radiation field geometry on line driven disc winds

Sergei Dyda* and Daniel Proga

Department of Physics & Astronomy, University of Nevada, Las Vegas, NV 89154, USA

Accepted 2018 September 6. Received 2018 September 6; in original form 2018 August 7

ABSTRACT
We study line driven winds for models with different radial intensity profiles: standard Shakura–Sunyaev radiating thin discs, uniform intensity discs, and truncated discs where driving radiation is cut-off at some radius. We find that global outflow properties depend primarily on the total system luminosity but truncated discs can launch outflows with ~2 times higher mass flux and ~50 per cent faster outflow velocity than non-truncated discs with the same total radiation flux. Streamlines interior to the truncation radius are largely unaffected and carry the same momentum flux as non-truncated models whereas those far outside the truncation radius effectively carry no outflow because the local radiation force is too weak to lift matter vertically away from the disc. Near the truncation radius, the flow becomes more radial, due to the loss of pressure/radiation support from gas/radiation at larger radii. These models suggest that line driven outflows are sensitive to the geometry of the radiation field driving them, motivating the need for self-consistent disc/wind models.

Key words: hydrodynamics – stars: massive – stars: winds, outflows – quasars: general – X-rays: galaxies.

1 INTRODUCTION
Outflows are ubiquitous for many compact object systems with accretion discs, including cataclysmic variables (CVs), X-ray binaries (XRBs), and active galactic nuclei (AGNs). A possible mechanism for launching these outflows is radiation pressure due to spectral lines, so called line driving (Lucy and Solomon 1970; Castor, Abbott & Klein 1975). Simulating line driven winds is challenging because it requires both correctly modelling the microphysics governing the ionization state of the gas (Owocki, Cramer & Gayley 1996), and the macrophysics governing the hydrodynamics. Both are affected by the radiation field, the former most sensitive to the ionizing flux, and the latter to the flux in UV where there are many spectral lines. Correctly treating the radiation field is thus critical in modelling line driven winds.

For systems with accretion discs, an important source of UV radiation is the disc itself. The earliest stationary, thin disc models assumed that accretion energy, dissipated by an effective viscosity, is radiated as blackbody radiation (Shakura & Sunyaev 1973). This standard accretion disc model allows one to calculate the temperature and spectral energy distribution (SED) for the entire disc. The disc structure and therefore the radiation field as well, are modified when one accounts for outflows acting as a sink of mass and angular momentum in the disc. This has been shown in both the context of CVs (Knigge 1999) and AGNs (Laor & Davis 2014) where radiation is thought to drive outflows. Further, in the context of AGNs, microlensing observations suggest that optical emission regions of the lensed quasars are typically larger than expected from basic thin disc models by factors of ~3–30 (e.g. Pooley et al. 2007). Both theory and observations suggest that the standard disc model is an incomplete description of the radiation field near accretion discs.

Line driven disc wind simulations have shown that to first approximation global outflow properties (mass flux, outflow velocity, and wind opening angle) depend only on the total system luminosity (Proga, Stone & Drew 1998, hereafter PSD98). However the structure of the flow is sensitive to the geometry of the radiation field. Systems where radiation is sourced primarily from the disc have been found to have small-scale structure in both 2D axisymmetric (Proga, Stone & Drew 1999) and 3D (Dyda & Proga 2018a,b, hereafter DP18a and DP18b) simulations. This suggests that to correctly model line driven winds, we must move beyond the radiating thin disc, and compute the radiation field self-consistently.

Previous disc wind simulations used a frequency integrated disc intensity. Most spectral lines are in the UV so these models implicitly assume sufficient UV flux to drive the wind. If discs locally emit like blackbodies, there will be a range of radii for which the local disc spectrum peaks in the UV. Interior to some radii, where $T \lesssim 3000$ K and exterior to some radii where $T \gtrsim 7000$ K, the spectra will peak outside the 10 nm $\lesssim \lambda_{\text{UV}} \lesssim$ 400 nm UV wavelengths, significantly limiting the flux of photons available to drive a wind with radiation pressure due to lines. Proga & Kallman (2004) investigated this issue in the case of AGN where they showed that even if the UV to X-ray flux ratio was lowered to 1:9, line driven winds could still be launched as when this ratio is 1:1 as in Proga et al. (2000). The full problem of multifrequency radiation transfer...
is currently computationally intractable. Therefore as a first step, we investigate the effects of changing the radial intensity profile as a proxy for a diminished UV photon flux. Our goal is to correlate the geometry of the radiation field and the geometry of the outflow, to investigate the disc/wind connection in line driven disc winds.

In our previous studies of line driven disc winds, we assumed the disc radiation field was sourced by a standard accretion disc, locally emitting like a blackbody. We consider two modifications to this scenario. In one set of models, the intensity profile is as in the standard accretion disc, up until some outer truncation radius, r_c, where the disc is assumed too cold to supply sufficient UV photons and the radiation field is exponentially suppressed. In the other set of models, we assume a constant radial intensity profile interior to the cut-off and keep the total disc luminosity fixed as we vary the truncation radius. We investigate how global outflow properties as well as the geometry of the flow are altered by varying the truncation radius, while controlling for the fact that to first approximation the solution is determined by the total system luminosity.

The structure of this paper is as follows. In Section 2, we briefly describe our numerical methods and code. In Section 3.1, we describe our numerical methods and code. In Section 3.2, using uniform intensity disc models, we show that changes due to introducing a truncation radius cannot be explained solely due to a change in total disc luminosity. In Section 4, we discuss some observational implications for our models, describe some limitations of our approach and sketch some possible future directions for this work.

2 Numerical Methods

We performed all numerical simulations with the publicly available MHD code Athena++ (Gardinier & Stone 2005, 2008). The basic physical setup is a gravitating, central object surrounded by a thin, luminous accretion disc. The accretion disc sources a radiation field to drive the gas that is optically thin to the continuum. Our basic physical setup is the same as described in DP18a,b, but we outline our method here, as well as any differences from our previous work below. One of the main differences is that here we present axisymmetric, 2D simulations, and focus on understanding how the poloidal flow geometry is affected by the radiation field rather than on understanding the 3D effects as in those previous works.

2.1 Basic Equations

The basic equations for single fluid hydrodynamics driven by a radiation field are

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \quad \quad (1a)$$

$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + \mathbf{P}) = -\rho \nabla \Phi + \rho \mathbf{F}^{\text{rad}}, \quad \quad (1b)$$

$$\frac{\partial E}{\partial t} + \nabla \cdot ((E + P)\mathbf{v}) = -\rho \mathbf{v} \cdot \nabla \Phi + \rho \mathbf{v} \cdot \mathbf{F}^{\text{rad}}, \quad \quad (1c)$$

where ρ, \mathbf{v} are the fluid density and velocity, respectively and \mathbf{P} is a diagonal tensor with components \mathbf{P} the gas pressure. For the gravitational potential, we use $\Phi = -GM/r$ and $E = 1/2\rho|\mathbf{v}|^2 + \mathcal{E}$ is the total energy where $\mathcal{E} = P/(\gamma - 1)$ is the internal energy. The total radiation force per unit mass, \mathbf{F}^{rad}, primarily imparts momentum on the gas (equation 1b), but we include the work done by it on the gas (equation 1c) for self-consistency. The isothermal sound speed is $c_s^2 = P/\rho$ and the adiabatic sound speed $c_a^2 = \gamma a^2$. We use the equation of state $P = k\rho\gamma$ with $\gamma = 1.01$. The temperature is defined solely due to a change in total disc luminosity. In Section 4, we investigate the effects of changing the radial intensity profile as a function of radial distance r_d.

2.2 Radiation Force

We assume a time independent radiation field is sourced by an axisymmetric, geometrically thin accretion disc along the mid-plane. Every point in the wind experiences a radiation force

$$\mathbf{F}^{\text{rad}} = \mathbf{F}^{\text{rad}}_e + \mathbf{F}^{\text{rad}}_L, \quad \quad (2)$$

which is a sum of the contributions due to electron scattering $\mathbf{F}^{\text{rad}}_e$ and line driving $\mathbf{F}^{\text{rad}}_L$. We explain in detail how to compute the radiation force in DP18a,b. It suffices to say that in assuming that the wind is optically thin to the continuum, the radiation force is proportional to the disc intensity. The frequency integrated intensity of a Shakura–Sunyaev disc with inner radius r_\ast, as a function of radial distance r_d, is

$$I_{\text{SS}}(r_d) = I_0 \Gamma_d \left(\frac{r_\ast}{r_d} \right)^3 \left[1 - \left(\frac{r_\ast}{r_d} \right)^{1/2} \right], \quad \quad (3)$$

where the disc Eddington number

$$\Gamma_d = \frac{\dot{M}_{\text{acc}} \sigma_c}{8\pi c r_\ast}, \quad \quad (4)$$

where \dot{M}_{acc} is the accretion rate in the disc (e.g. Pringle 1981), c the speed of light, σ_c the Thompson cross section, and the fiducial intensity is

$$I_0 = \frac{3}{\pi} \frac{GM c}{r_\ast^2 \sigma_c}. \quad \quad (5)$$

It is also useful from a theoretical context to consider a uniform intensity disc where

$$I_0(r_d) = I_0 \Gamma_d. \quad \quad (6)$$

We truncate the radiation field of the Shakura–Sunyaev or uniform intensity disc by introducing a cut-off radii r_c, where the disc is assumed to be too cold to radiate in the UV band where radiation can drive line driven winds,

$$I(r_d) = \begin{cases} I & r_d \leq r_c \\ I \exp \left(\frac{(r_d - r_c)}{r_c} \right) & r_d > r_c \end{cases} \quad \quad (7)$$

where the intensity I is given by equation (3) or equation (6), respectively. In Fig. 1, we plot the intensity profile I as a function of

![Figure 1.](https://example.com/figure1.png)
disc radius r_d for each of these models. We also plot the luminosity interior to a given radius

$$L(r) = 2\pi \int_{r_d}^r I(r') r' dr', \quad (8)$$

normalized to the Shakura–Sunyaev disc luminosity, $L_{SS} = L(\infty)$ where the intensity $I = I_{SS}$.

3 RESULTS

To study the effects of the radiation field on the flow geometry, we perform a series of disc wind simulations. The fiducial models (A, B, F, and G) correspond to standard radiating discs (see equation 3) with Edington fraction $3.76 \times 10^{-4} \leq \Gamma_d \leq 1.18 \times 10^{-2}$, where the disc is cut-off at $r = 30 r_s$ for computational reasons. Models A and B correspond to simulations of the same name in DP18b and also PSD99. We continue to use the notation of these works and label our simulations using previously unexplored disc luminosities and fast-stream properties (average density $\bar{\rho}$, density-weighted mean velocity \bar{v}, and angular size $\Delta \omega$). For the three highest Eddington fraction ($\Gamma_d = 1.18 \times 10^{-3}, 3.76 \times 10^{-3}$, and 1.18×10^{-2}), we simulate discs where the cut-off radius $1.5 r_s \leq r_c \leq 4 r_s$ (see equation 7), which we denote by the letter corresponding to the model fiducial luminosity followed by the cut-off radius, i.e. B1.5, ..., B4. Finally, we perform simulations with a uniform intensity profile (see equation 6), where the cut-off again varies from $1.5 r_s \leq r_c \leq 4 r_s$ which we denote by U1.5, ..., U4.

In Table 1, we list all our model parameters, including the Edington fraction Γ_d, truncation radius r_c, and total disc luminosity multiplied by the maximum force multiplier (maximum effective number of lines) LM_{max}. For each model, we summarize the global outflow properties (mass flux \dot{M}, maximum outflow velocity v_{max}, and opening angle ω) and for the flow between streamlines with footpoints at $r = 1.5 r_s$ and $r = 3.0 r_s$, we show the mean density $\bar{\rho}$, density-weighted mean velocity \bar{v}, and angle between the streamlines $\Delta \omega$ at the outer boundary.

Table 1. Summary of wind properties for different disc wind models, including global properties (mass flux \dot{M}, maximum velocity v_{max}, and opening angle ω) and fast-stream properties (average density $\bar{\rho}$, density-weighted average velocity \bar{v}, and angular size $\Delta \omega$) at the outer boundary for parts of the wind between streamlines with footpoints at $r = 1.5 r_s$ and $r = 3.0 r_s$.

<table>
<thead>
<tr>
<th>Model</th>
<th>Γ_d</th>
<th>Parameters</th>
<th>LM_{max}</th>
<th>\dot{M}</th>
<th>v_{max}</th>
<th>ω</th>
<th>$\bar{\rho}$</th>
<th>\bar{v}</th>
<th>$\Delta \omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.76×10^{-4}</td>
<td>30</td>
<td>1.5</td>
<td>2.3×10^{-13}</td>
<td>1.700</td>
<td>42</td>
<td>1.9×10^{-18}</td>
<td>1600</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>1.80×10^{-3}</td>
<td>30</td>
<td>4.7</td>
<td>7.8×10^{-12}</td>
<td>4.200</td>
<td>55</td>
<td>5.6×10^{-15}</td>
<td>2000</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>3.76×10^{-3}</td>
<td>30</td>
<td>15.1</td>
<td>9.1×10^{-11}</td>
<td>8.400</td>
<td>68</td>
<td>6.6×10^{-14}</td>
<td>1700</td>
<td>17</td>
</tr>
<tr>
<td>G</td>
<td>1.80×10^{-2}</td>
<td>30</td>
<td>47.4</td>
<td>5.4×10^{-10}</td>
<td>14.800</td>
<td>75</td>
<td>3.2×10^{-13}</td>
<td>2200</td>
<td>22</td>
</tr>
<tr>
<td>U4</td>
<td>9.44×10^{-5}</td>
<td>4</td>
<td>15.6</td>
<td>1.9×10^{-10}</td>
<td>8.000</td>
<td>68</td>
<td>1.9×10^{-13}</td>
<td>1200</td>
<td>10</td>
</tr>
<tr>
<td>U3</td>
<td>1.48×10^{-4}</td>
<td>3</td>
<td>15.6</td>
<td>1.7×10^{-10}</td>
<td>9.100</td>
<td>71</td>
<td>1.6×10^{-13}</td>
<td>1800</td>
<td>18</td>
</tr>
<tr>
<td>U2</td>
<td>2.62×10^{-4}</td>
<td>2</td>
<td>15.6</td>
<td>1.6×10^{-10}</td>
<td>10.100</td>
<td>71</td>
<td>9.9×10^{-14}</td>
<td>2300</td>
<td>18</td>
</tr>
<tr>
<td>U1.5</td>
<td>3.78×10^{-4}</td>
<td>1.5</td>
<td>15.6</td>
<td>1.5×10^{-10}</td>
<td>10.400</td>
<td>71</td>
<td>7.7×10^{-14}</td>
<td>2500</td>
<td>17</td>
</tr>
<tr>
<td>B4</td>
<td>1.80×10^{-3}</td>
<td>4</td>
<td>3.0</td>
<td>4.3×10^{-12}</td>
<td>4.300</td>
<td>55</td>
<td>1.8×10^{-13}</td>
<td>2400</td>
<td>17</td>
</tr>
<tr>
<td>B3</td>
<td>1.80×10^{-3}</td>
<td>3</td>
<td>2.5</td>
<td>2.9×10^{-12}</td>
<td>4.100</td>
<td>52</td>
<td>8.1×10^{-16}</td>
<td>2600</td>
<td>26</td>
</tr>
<tr>
<td>B2</td>
<td>1.80×10^{-3}</td>
<td>2</td>
<td>1.9</td>
<td>1.2×10^{-12}</td>
<td>3.600</td>
<td>47</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>B1.5</td>
<td>1.80×10^{-3}</td>
<td>1.5</td>
<td>1.4</td>
<td>4.7×10^{-13}</td>
<td>3.000</td>
<td>42</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F4</td>
<td>3.76×10^{-3}</td>
<td>4</td>
<td>9.4</td>
<td>5.8×10^{-11}</td>
<td>8.100</td>
<td>64</td>
<td>3.1×10^{-14}</td>
<td>2500</td>
<td>26</td>
</tr>
<tr>
<td>F3</td>
<td>3.76×10^{-3}</td>
<td>3</td>
<td>8.0</td>
<td>4.3×10^{-11}</td>
<td>7.600</td>
<td>64</td>
<td>2.9×10^{-14}</td>
<td>2200</td>
<td>32</td>
</tr>
<tr>
<td>F2</td>
<td>3.76×10^{-3}</td>
<td>2</td>
<td>6.0</td>
<td>2.4×10^{-11}</td>
<td>7.200</td>
<td>64</td>
<td>9.1×10^{-15}</td>
<td>3000</td>
<td>32</td>
</tr>
<tr>
<td>F1.5</td>
<td>3.76×10^{-3}</td>
<td>1.5</td>
<td>4.6</td>
<td>1.3×10^{-11}</td>
<td>6.400</td>
<td>61</td>
<td>3.9×10^{-15}</td>
<td>3100</td>
<td>29</td>
</tr>
<tr>
<td>G4</td>
<td>1.18×10^{-2}</td>
<td>4</td>
<td>29.6</td>
<td>5.0×10^{-10}</td>
<td>14.500</td>
<td>75</td>
<td>4.8×10^{-13}</td>
<td>1600</td>
<td>32</td>
</tr>
<tr>
<td>G3</td>
<td>1.18×10^{-2}</td>
<td>3</td>
<td>25.2</td>
<td>3.9×10^{-10}</td>
<td>13.600</td>
<td>75</td>
<td>2.3×10^{-13}</td>
<td>2000</td>
<td>28</td>
</tr>
<tr>
<td>G2</td>
<td>1.18×10^{-2}</td>
<td>2</td>
<td>18.7</td>
<td>2.5×10^{-10}</td>
<td>12.200</td>
<td>64</td>
<td>9.1×10^{-15}</td>
<td>3000</td>
<td>32</td>
</tr>
<tr>
<td>G1.5</td>
<td>1.18×10^{-2}</td>
<td>1.5</td>
<td>14.3</td>
<td>1.4×10^{-10}</td>
<td>10.800</td>
<td>71</td>
<td>3.7×10^{-14}</td>
<td>3900</td>
<td>34</td>
</tr>
</tbody>
</table>

3.1 Truncation effects

We study the effects of radiation field geometry on the flow by varying the radius at which disc intensity is truncated, r_c. We choose Model B from DP18b as our fiducial model, and vary the cutoff radius $r_c = 1.5 r_s, 2 r_s, 3 r_s$, and $4 r_s$.

In Fig. 2, we plot the time-averaged density profile $\bar{\rho}$ (grey contours) and poloidal velocity field \bar{v}_p (black vectors) for $900 s \leq t \leq 1000 s$ for fiducial Model B and the related truncated disc models. The coloured lines indicate streamlines with footpoint at $r = 1.5 r_s$ (red), $3.0 r_s$ (orange), $4.5 r_s$ (green), and $6.0 r_s$ (blue). We place the footpoint a height $y = 0.1 r$ above the disc, so the velocity is non-zero and the streamline does not terminate prematurely. The basic structure of the winds are very similar, with a low density polar funnel at small θ, a fast-stream carrying most of the mass flux and hydrostatic disc. The wind opening angle is only weakly dependent on total disc luminosity, decreasing from $\omega = 55^\circ$ for model B to $\omega = 42^\circ$ for model B1.5. This is in line with our expectations whereby the truncated disc models opening angles are bounded from above by non-truncated models (B) and have similar opening angles to non-truncated models with similar total luminosity (model A).

These disc wind solutions are non-stationary, so to investigate the effects of disc truncation on time dependence, we consider the velocity dispersion. In Fig. 3, we plot the velocity parallel v_0 and...
Figure 2. Time-averaged density profile $\bar{\rho}$ (grey contours) and poloidal velocity field \bar{v}_p (black vectors) for $900 \, s \leq t \leq 1000 \, s$ for the different radiation models. The coloured lines indicate streamlines with footpoint at $r = 1.5 \, r_\ast$ (red), $3.0 \, r_\ast$ (orange), $4.5 \, r_\ast$ (green), and $6.0 \, r_\ast$ (blue). We only plot streamlines that exit the computational domain. Streamlines interior to the truncation radius are largely unaffected whereas those exterior no longer carry mass out the simulation domain. Streamlines near the truncation radius become more radial, launching a less dense but faster flow.

perpendicular v_\perp to the time-averaged streamlines shown in Fig. 2, (coloured lines) and the corresponding velocity dispersion (shaded region). We only plot the streamlines that exit the simulation domain, indicating that the flow is relatively stable. Truncating the disc has little effect on streamlines interior to r_\ast. For example, all models have the streamline starting at $r = 1.5 \, r_\ast$ (red line) exiting the simulation domain. The outflow velocity is relatively constant with $v_\parallel \approx 3500 \, \text{km s}^{-1}$ (model B) to $v_\parallel \approx 3000 \, \text{km s}^{-1}$ (model B2). There is little change in the structure of the fast-stream, because its structure is primarily determined by streamlines in the innermost part of the disc. This explains why the mass flux, which is primarily determined by the fast-stream, is relatively unchanged in the truncated disc models. Streamlines exterior to the cut-off radius become unstable and no longer carry mass out from the simulation domain so the line driving does not launch an outflow and only puff up the disc. Near the disc, geometric foreshortening is important and the radiation force is approximately set by the local disc field. Therefore for $r > r_\ast$, the radiation force is too weak to vertically lift the gas above the disc where it experiences a force from the interior part of the disc. When the disc luminosity is larger (models F and G) this result is not strictly true and streamlines may be launched exterior to the truncation radius (see Table 1). The exterior streamlines (not shown) typically travel radially inward, indicating that the radiation force is unable to balance gravity.

Streamlines originating at radii smaller but close to r_\ast are the most affected by the truncated disc. Gas is lifted upwards, and because gas exterior to it is not being launched, it feels a pressure gradient (relative to the non-truncated disc) that makes the streamline more radial. The flow is thus able to diverge more as the gas expands out into the region below the fast-stream. There is also a reduced radiation force from exterior parts of the disc which would also tend to make the flow more vertical. We see this most clearly from the streamline with footpoint at $r = 3 \, r_\ast$ (orange), which is exiting the domain at $\theta = 52^\circ$ for model B and $\theta = 64^\circ$ for model B3. By comparison, the $r = 1.5 \, r_\ast$ (red) streamline has only shifted from $\theta = 38^\circ$ to $\theta = 40^\circ$. Globally, the wind has changed very little between these two models, with the wind opening angle changing by only $\delta \omega \approx 5^\circ$. The change in separation between the two streamlines has
Radiation effects on line driven winds

Figure 3. Velocity parallel v_\parallel (left-hand panels) and perpendicular v_\perp (right-hand panels) to time-averaged streamlines shown in Fig. 2 (coloured lines) and the corresponding velocity dispersion (shaded region). Outflow velocity decreases very slightly with decreasing truncation radius until the footpoint is interior to the truncation radius and velocity is strongly suppressed. Note the different scales for v_\parallel and v_\perp.

changed from $\Delta \theta \approx 14^\circ$ to 26°, significantly more than the global wind opening angle.

In Fig. 4, (top panel) we plot the mass flux ρv_r (solid lines) and θ -integrated mass flux

$$m = 2\pi \int_0^\theta \rho(r_\theta, \theta') v_r(r_\theta, \theta') \sin \theta' d\theta'.$$

(dashed lines) as a function of θ at the outer boundary r_θ, time-averaged over $900 \leq t \leq 1000$ s for models B (black), B4 (red), B3 (green), B2 (blue), and B1.5 (purple). The structure of the outflows is largely the same, with larger truncation radii runs transporting away more mass and having slightly wider opening angles. In the bottom panel, we plot the velocity v_r (solid lines) and density ρ (dashed lines) as a function of θ for the same models. Decreasing the truncation radii results in a decrease in the maximum outflow velocity. The angle of the velocity peak also increases as the truncation radii decreases, consistent with the angle of the momentum density peak which also increases. This corresponds to our expectation of the flow becoming more radial as the truncation radius is decreased and the driving force becomes more radial.

We note that the velocity profile of model B and B4 are very similar, despite the total disc luminosity differing by ~ 50 per cent. The fast-stream is formed from gas launched in the innermost parts of the disc $r \leq 4 r_\ast$. The local radiation field near the inner disc is the same for these models since B4 has $r_c = 4 r_\ast$. This results in similar fast-stream structures and nearly identical velocity profiles. Despite the nearly identical velocity profiles, Model B carries more mass flux because the wind is more dense. In the outer parts of the disc, mass loading is less efficient exterior to the truncation radius where the vertical radiation force is weaker, resulting in a lower density wind. Once high enough above the disc however, the radiation force is dominated by radiation coming from the interior part of the disc, which is very similar for both models. This results in winds with comparable velocity, but different densities and hence different mass fluxes.

In Fig. 5, we plot mass flux \dot{M} at the outer boundary as a function of time (solid lines) and the time average over $200 \leq t \leq 1000$ s (dashed line) for models B (black), B4 (red), B3 (green), B2 (blue), and B1.5 (purple). The mass flux is non-stationary with deviations ranging between 16 per cent (model B) to 29 per cent (model B4). We see no clear trend between time variability of solutions and
Figure 4. Time-averaged solutions over $900 \leq t \leq 1000$ s for models B (black), B4 (red), B3 (green), B2 (blue), and B1.5 (purple) at the outer boundary $r = r_o$. Top – Momentum flux ρv_r (solid lines) and θ – integrated mass flux \dot{m} (dashed lines) as a function of θ. Bottom – Velocity v_r (solid lines) and density ρ (dashed lines) as a function of θ.

Figure 5. Mass flux \dot{M} at the outer boundary as a function of time (solid lines) and the time average over 200 s $\leq t \leq 1000$ s (dashed line). Time variability is ~ 20 per cent, irrespective of the model.

truncation radius, which tended to be ~ 20 per cent, irrespective of the model.

3.2 Luminosity scaling

To first approximation, line driven wind properties are determined by the total system luminosity. Hence to better isolate geometric effects due to the radiation field we compare outflow properties as a function of the total system luminosity.

In Fig. 6, we plot global properties of the wind solutions, the time-averaged mass flux \dot{M} (top panel) and maximum outflow velocity v_{max} (bottom panel) as a function of total disc luminosity multiplied by the maximum force multiplier LM_{max}, in units of the Eddington luminosity. Red symbols indicate Shakura–Sunyaev models, blue symbols the corresponding truncated disc models and green symbols the uniform disc models. The different symbol shapes indicate the Eddington parameter of the model, Model A (crosses), Model B (circle), Model F (diamond), and Model G (triangle). When $LM_{\text{max}} > 1$ the radiation force can overcome gravity to drive an outflow. Intuitively, this quantity can therefore be thought of as the imbalance between the radiation force and gravity.

We see that mass flux increases as a function of system luminosity for the non-truncated Shakura-Sunyaev models (dashed red line), with a particularly sharp increase near $LM_{\text{max}} \gtrsim 1$. This is consistent with results from PSD98 (see their fig. 8). For fixed Eddington parameter, we see that the mass flux decreases as the truncation radius decreases (blue dashed lines). The decrease in mass flux is less than predicted from the overall drop in luminosity however, with the non-truncated models (red dashed line) being a factor of ~ 2 below the truncated models with the same luminosity (dashed blue line). This is consistent with our understanding of the flow geometry that streamlines interior to the cut-off are largely unaffected by truncation and since these carry the bulk of the mass
The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.

The velocity of non-truncated models are relatively luminosity independent (red dashed line), whereas truncated disc models show an increase in outflow velocity (dashed blue lines). Our analysis showed that mass flux scales approximately the same way for $LM_{\text{max}} \gg 1$ with $\bar{\rho} \sim L^{1/3}$. Near $LM_{\text{max}} \gtrsim 1$ the density drops sharply as we expect from the behaviour of the total mass flux.
particular model of ionizing flux. Alternatively, with a fixed flow geometry, the ionization state changes in changing from a point to an extended ionization source. This points to the inevitable conclusion that correctly inferring the radiation field geometry is critical in determining the strength and shape of the wind. The problem is further coupled by the fact that more accurate models of the radiation force due to lines is affected by the ionization state of the gas, which we neglect in this work. These issues will have to be confronted if we are to properly study the question of self-shielding in AGN for example (see Matthews et al. 2016).

We showed that truncating the disc radiation alters the flow near the disc where radiation is suppressed. In this work, we have neglected both thermal and magnetic driving. Though these effects may be too weak to fully overcome gravity, our analysis suggests that this requirement may be too strong a condition as gas must only be lifted high enough above the disc so it may be radiated by the inner disc. It may be possible to radiatively drive outflows where \(\dot{M}_{\text{Edd}} \ll 1 \) locally, provided that thermal/magnetic forces are strong enough to lift the gas high enough to overcome geometric foreshortening.

Our work has shown that outflows are sensitive to the local radiation field, particularly near the disc where geometric foreshortening is important. An important next step is to compute the local UV intensity at every point in the wind, and use this as the source of line driving. This is different from our current setup, where frequency is integrated locally and this frequency integrated intensity is used to compute the intensity in the wind. If we maintain the assumption that the wind is optically thin to the continuum, intensity is time independent so this computation can be precalculated and simulations performed with no loss in computational efficiency.

Our model assumes the radiation field is sourced by a standard accretion disc. However, mass-loss in the disc due to outflowing gas explicitly violates the assumption of mass and angular momentum conservation on which this model is based. It is important therefore to model the disc accretion so that the local radiation field can be computed self-consistently. The first step is to introduce an \(\alpha \)-viscosity as in Shakura & Sunyaev (1973) and compute the local Eddington fraction as a function of the local accretion rate. This will not significantly increase computational time for the radiation force since we are already integrating over the full disc at every time-step.
to compute the radiation force. The α prescription will add viscous terms to the momentum and energy equations, but this is less computationally expensive than the radiation force since it depends only on local velocity gradients and does not require integrating over the disc.

Beyond these models, such as fully resolving the magnetorotational instability and computing disc accretion without relying on α-viscosity, our current approach will no longer be consistent as the disc can no longer be considered optically thin and the key model assumption that the radiation field is emitted from the mid-plane breaks down. Such an approach is important because a time-varying accretion rate will lead to a time-varying radiation flux. Time-varying radiation fields have been shown to produce density and velocity perturbations at the base of line driven winds (Dyda & Proga 2018c) and such an approach is necessary to understand disappearing BALs in AGN for example. This approach will require the use full radiation transfer, which we will leave to future work.

This work has focused on computing the correct UV flux, responsible for mediating momentum transfer between the radiation field and the gas. Equally important for line driving is correctly computing the internal state the gas. The ionization parameter in the wind depends on the radiation field of the X-rays. Determining the ionization state of the gas is required to self-consistently calculate the force due to line driving, as the force multiplier depends on ξ (Dannen et al. in preparation). Further we should go beyond the isothermal approximation and compute heating/cooling from the relevant SED (Dyda et al. 2017), because temperature too can affect the number of available lines and thermal driving may alter the global outflow properties.

ACKNOWLEDGEMENTS

This work was supported by NASA under ATP grant NNX14AK44G.

REFERENCES

This paper has been typeset from a TeX/LaTeX file prepared by the author.