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The Effect of Silicon Content on Impact Toughness
of T91 Grade Steels

Ajit Roy, Pankaj Kumar, and Debajyoti Maitra

(Submitted March 7, 2008; in revised form May 20, 2008)

The impact resistance of silicon (Si)-containing modified 9Cr-1Mo steels has been investigated within a
temperature regime of 240 to 440 �C using the Charpy method. The results indicate that the energies
absorbed in fracturing the tested specimens were substantially lower at temperatures of 240, 25, and 75 �C
compared to those at elevated temperatures. Lower impact energies and higher ductile-to-brittle-transition-
temperatures (DBTTs) were observed with the steels containing 1.5 and 1.9 wt.% Si. The steels containing
higher Si levels exhibited both ductile and brittle failures at elevated temperatures. However, at lower
temperatures, brittle failures characterized by cleavage and intergranular cracking were observed for all
four tested materials.

Keywords DBTT, fractography, impact energy, silicon effect,
T91 grade steels

1. Introduction

Transmutation of spent nuclear fuels (SNF) is currently
being considered to enable their efficient disposal for shorter
duration at the proposed yucca mountain geologic repository,
located in Nevada. The process of transmutation involves
transformation of highly radioactive SNF to species with
shorter half-lives by changes in the nucleus of radioactive
elements resulting from natural radioactive decay, nuclear
fission, neutron capture, and other related processes. This
process is expected to generate and subsequently separate
minor actinides and fission products by impinging proton-
generated neutrons onto SNF at a very high speed (Ref 1).
Target materials such as tungsten and molten lead-bismuth-
eutectic (LBE) have been extensively used to generate neutrons
by bombarding accelerator-driven protons onto them. The
target material has to be contained inside a structural vessel
made of a suitable metal or an alloy. Martensitic iron-
chromium-molybdenum (Fe-Cr-Mo) alloys such as modified
9Cr-1Mo steels have been identified (Ref 2-5) to be the suitable
structural materials to contain the target material.

Studies performed (Ref 6, 7) at the author�s laboratories
have exhibited a beneficial effect of silicon (�1.0 wt.%) on
both the corrosion and tensile properties of Fe-Cr-Mo alloys.
These materials may be subjected to impact loading during the
neutron generation process, known as spallation. In view of
these rationales, the effect of silicon (Si) content on the impact

resistance of modified 9Cr-1Mo steels, also known as T91
grade steels, has been investigated. This article presents the
results of impact testing of T91 grade steels as a function of Si
content so that an optimum Si content could be identified to
provide the desired toughness in terms of impact energy and
ductile-to-brittle transition temperature (DBTT). The resultant
data using Charpy v-notch (CVN) specimens have also been
substantiated using fractographic evaluations performed by
scanning electron microscopy.

2. Materials and Experimental Procedure

Experimental heats (100 lbs each) of martensitic T91 grade
steels containing four levels of Si (0.5, 1.0, 1.5, and 1.9 wt.%)
were custom-melted at a vendor�s facility using a vacuum
induction melting practice. These heats were subsequently
processed into rectangular bars of desired dimensions by
forging and hot-rolling. The hot-rolled bars were subjected to
thermal treatment that consisted of austenitizing at 1110 �C
(1850 �F) for 1 h and oil quenching. The quenched materials
were subsequently tempered at 621 �C (1150 �F) for 1 h
followed by air-cooling. A combination of quenching and
tempering was aimed at producing fully tempered and fine-
grained martensitic microstructure throughout the matrix of the
test materials without the formation of retained austenite. The
chemical compositions of all four heats of materials are given in
Table 1.

The tensile properties of all four heats of T91 grade steels
were determined using smooth cylindrical specimens according
to the ASTM Designation E 8 (Ref 8). These specimens had a
101.4-mm (4 in.) overall length, a gage length of 25.4-mm
(1 in.), and a gage diameter of 6.35-mm (0.25 in.). CVN
specimens having 54.96-mm (2.16 in.) length, 10-mm
(0.39 in.) width, 8-mm (0.32 in.) thickness, and a notch angle
of 45� were machined from the heat-treated materials in such a
way that the plane containing the notch was parallel to the
longitudinal rolling direction. A pictorial view of the CVN
specimen, machined according to the ASTM Designation E 23
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(Ref 9), is illustrated in Fig. 1. A commercially available
pendulum-type impact tester was used to strike the CVN
specimens at a location opposite to the notch. A dial indicator
attached to this equipment recorded the energy absorbed to
fracture the specimens in terms of either Joules or feet-pounds
(ft-lbs). The CVN specimens were tested at temperatures
ranging from cryogenic (-40 �C) to 440 �C. A maximum
temperature of 440 �C was used to simulate the operating
temperature used in the spallation process involving molten
LBE as a target and a coolant. The cryogenic temperature was
attained by immersing these specimens inside an insulated

Table 1 Chemical composition of T91 grade steels

Heat no.

Elements, wt.%

C Mn P S Si Ni Cr Mo Al V Cb N, ppm Fe

2403 .12 .44 .004 .003 .48 .30 9.38 1.03 .024 .23 .91 57 Bal
2404 .12 .45 .004 .003 1.02 .30 9.61 1.03 .025 .24 .89 53 Bal
2405 .11 .45 .004 .004 1.55 .31 9.66 1.02 .024 .24 .085 49 Bal
2406 .11 .45 .004 .004 1.88 .31 9.57 1.01 .029 .24 .087 30 Bal

Note: Bal, balance

Fig. 1 Pictorial view of CVN specimen

Fig. 2 Optical micrograph of steel with 0.5 wt.% Si, Beraha�s
reagent

Fig. 3 Optical micrograph of steel with 1.0 wt.% Si, Beraha�s
reagent

Fig. 4 Optical micrograph of steel with 1.5 wt.% Si, Beraha�s
reagent
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Styrofoam box containing dry ice and denatured alcohol.
Duplicate testing was performed at each temperature and
average values of impact energies were recorded.

The metallurgical microstructures of all four heats of the
tested materials were determined using conventional metallo-
graphic techniques and optical microscopy. Beraha�s reagent

Fig. 5 Optical micrograph of steel with 1.9 wt.% Si, Beraha�s
reagent

Table 2 Room temperature tensile properties of T91
grade steels

Heat no. (Si content) UTS, MPa YS, MPa %El %RA

2403 (0.5%) 1014 876 23 67.4
2404 (1.0%) 986 862 21 65.7
2405 (1.5%) 1020 904 24 68.1
2406 (1.9%) 1027 903 26 76.2

Table 3 Results of charpy testing

Si content,
wt.%

Temperature, �C

DBTT,
�C

Impact energy, ft-lb

240 25 75 125 230 340 440

0.5 15 19 27 48 59 62 63 90
1.0 8.5 13 18 38 47.5 49 49 95
1.5 4.5 8 12.5 19 31 38 39 140
1.9 3 6 8 13 23 28 30.5 150

Fig. 6 Variation of impact energy with temperature

Fig. 7 Variation of DBTT with Si content

Fig. 8 SEM micrographs of fracture surface of CVN specimen
with 0.5 wt.% Si, (a) -40 �C, (b) 125 �C
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containing 3 g of K2S2O3 and 10 g of Na2S2O3 in 100 mL of
water was used as an etchant for microstructural evaluation.
The morphology of failure at the ruptured surfaces of all CVN
specimens was analyzed by SEM.

3. Results and Discussion

The optical micrographs of the tested materials are illus-
trated in Fig. 2-5. An examination of these micrographs
revealed austenitic grain boundaries containing finely dispersed
tempered martensitic phase, and delta-ferrites. Streaks of
martensitic laths oriented in different directions were also
visible within the finely dispersed martensitic structures,
possibly due to the positioning of metallographic mounts that
were different from the rolling direction. The room temperature
tensile properties of the heat-treated materials including the
yield strength (YS), ultimate tensile strength (UTS), percent
elongation (%El), and percent reduction in area (%RA) are
given in Table 2. No significant variations in the magnitude of

YS, UTS, and %El were seen due to the addition of different Si
content. However, the magnitude of %RA was substantially
enhanced in the heat containing 1.9 wt.% Si. The improved
ductility could be attributed to the softening of this steel due to
the presence of higher Si content that may also reduce the
hardenability of the T91 grade steels.

As indicated earlier, the purpose of this investigation was
to determine the susceptibility of T91 grade steels to rupture
under impact loading as a function of Si content. This type of
testing can simulate unusually high strain rates during plastic
deformation. The two important parameters, evaluated by this
testing, were the energy absorbed (ft-lbs) in fracturing the
CVN specimens and DBTT. The variation of average impact
energy as a function of testing temperature is given in Table 3
for materials containing four levels of Si. The plots of average
impact energy versus temperature for steels containing
different levels of Si are illustrated in Fig. 6. These data
clearly indicate that the energies absorbed in fracturing the
CVN specimens were substantially lower at temperatures of

Fig. 9 SEM micrographs of fracture surface of CVN specimen
with 1.0 wt.% Si, (a) -40 �C, (b) 125 �C

Fig. 10 SEM micrographs of fracture surface of CVN specimen
with 1.5 wt.% Si, (a) -40 �C, (b) 125 �C
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-40, 25, and 75 �C, as expected, due to reduced ductility at
relatively lower temperatures. On the contrary, the impact
energy was gradually enhanced with increasing temperature
up to 340 �C, followed by the formation of a plateau at
440 �C, irrespective of the Si content. The gradually reduced
impact energy with increased Si content at comparable
temperatures could also signify reduced ductility, indicating
lower hardenability for the tested materials.

The nature of the curves showing the variation of impact
energy with temperature, as seen in this investigation, is a
general consequence for a majority of engineering metals and
alloys indicating the presence of brittle and ductile regions.
The portions of this curve showing lower and upper plateaus,
respectively, are commonly referred to as the brittle versus
ductile region. The linear portion of the curve lying between
these two regions signifies a transition from brittle-to-ductile
mode of failure. The temperature at which such transition
occurs is commonly termed DBTT. The magnitude of DBTT
was determined by taking an average value of the impact
energy lying between the upper and lower shelf energies of

steels of varied Si content, and extrapolating this energy
value to the temperature axis. The DBTT values correspond-
ing to different levels of Si content are also included in
Table 3.

The variation of DBTT with Si content is illustrated in
Fig. 7, showing a gradual increase in DBTT with increasing Si
content. A higher DBTT value signifies a relatively lower
impact resistance showing greater impact energies. Thus, the
resultant data clearly suggest that the T91 grade steels with
higher Si content would undergo brittle failure more readily
than those with lower Si content. Metallurgically speaking, it is
preferable for a structural material to possess a DBTT value as
low as possible. Thus, these results indicate that the presence of
higher Si content in T91 grade steels would be detrimental from
the impact resistance point of view.

The SEM micrographs of the fracture surfaces of the CVN
specimens tested at -40 and 125 �C are illustrated in Fig. 8-11.
An evaluation of these micrographs reveals that all four tested
alloys exhibited brittle failures at both temperatures, which
were characterized by cleavage and intergranular failure. At an
elevated temperature (340 �C), the steel containing 1.9 wt.% Si
exhibited combined ductile (dimples) and brittle (intergranular
cracking) failures, as shown in Fig. 12(a). On the other hand,
the morphology of failure of the steels containing lower Si
levels (0.5 wt.%) was ductile, showing dimpled microstructures
(Fig. 12b).

Fig. 11 SEM micrographs of fracture surface of CVN specimen
with 1.9 wt.% Si, (a) -40 �C, (b) 125 �C

Fig. 12 (a, b) SEM micrographs of fracture surface of CVN speci-
mens tested at 340 �C
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4. Summary and Conclusion

The role of Si content on the impact resistance of T91
grade steels has been investigated at temperatures ranging
from -40 to 440 �C using CVN specimens. The fracture
morphology of the tested specimens has also been deter-
mined by SEM. The significant results and the key
conclusions derived from this investigation are summarized
below.

• As expected, the optical micrographs revealed fine
tempered martensites within prior austenitic grains. Delta-
ferrites were also seen in these micrographs due to the
presence of high chromium content.

• Classical impact energy versus temperature curves
resulted, showing upper and lower shelf energies. Lower
impact energies and higher DBTT values were observed
with the steels containing 1.5 and 1.9 wt.% Si, suggesting
a detrimental effect of Si content above 1.0 wt.% for
application in the transmutation process.

• All specimens exhibited a combination of intergranular
cracking and cleavage failure at lower temperatures irre-
spective of the Si content. However, the steels containing
higher Si levels showed both ductile and brittle failures at
elevated temperatures.
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