1. How much do we love Lotto? (Rhys)
 • We are agnostic on why people play
 • Call it “fun”. Lots of it - £1b pa (£5b sales)
2. But lotto is highly “taxed” (Rob)
 • And its highly regressive
 • More than most “sin” taxes
 • Tax spoils a quarter of the fun (£⅓b pa)
3. Problem gambling? (Me)
 • We attempt to place a value on this
 • £5.5b pa “upper bound” for DSM PG
 • £1.2b pa “upper bound” for PGSI PG
Outline of Act 1

• Provide a simple analytical model of lotto
 – Estimate this on 200+ draws of UK lotto

• Focus on estimating causal effect of “price”
 – And overall shape of prize distribution

• Find backward looking behaviour
 – Strong “habituation” => LR effect > SR effect
 • Addiction?

• Infer “fun” from estimated “price elasticity”
 – Calculate lost fun due to lotto takeout
Lotto background

• UK context
 – GGY is about $20b ≈ $400 pppa
 • Lotteries most prevalent form of gambling
 • NL accounts for about $5b of GGY in UK

• Lotto is a distinctive form of lottery
 – Pari-mutuel

• Pick your own numbers
 – Allows for “conscious selection”

• “Rollovers” occur
 – More so because of conscious selection
 – Generates spikes in sales
General structure of lotto games

- Each player chooses (or Lucky Dips) \(n \) from \(N \)
- Prize pools shared by all players who match, \(n \) balls (jackpot), \(n-1 \), etc.
 - If no \(n \)-ball winner at \(t-1 \) then \(J_{t-1} \) added to \(J_t \)
 - Multiple rollovers possible
- Game design - \(n, N, \) takeout rate, prize pools
 - Design (given \(S \)) determines Prob(\(R>0 \))
- Game design implies \(P, R \) and \(S \) related
 - \(P(R,S) \) : focus here on \(P \), rather than \(R \) directly
• *Peculiar* economies of scale (Clotfelter and Cook *AER* 1993)
 – Higher S, lowers rollover prob
 • Raises current value of ticket (so reduces P)
 – asymptotes to take-out rate ($\approx \frac{1}{2}$) from below
 – So P asymptotes to $\frac{1}{2}$ from above
• Rollover draws (Walker *Econ Policy* 1999)
 – J_t includes J_{t-1} - like adding a “raffle” prize in t
 • Raffle prizes are fixed (don’t depend on S_t)
 – But if $R_t > 0$, then J_{t-1} **worth** less the higher is S_t
 • Because higher S_t lowers chance of winning J_{t-1}
P(R,S) relationship for 6/49

- P(0,S) tends to ½ from above
- But rollovers shifts P down
 - P(8,S) and P(4,S)
 - tend to ½ from below
- Rollover changes P, at any given S
 - Price elasticity
• Sticker price £1, 35k outlets, twice weekly
 – ₙ = 6, ₖ = 49, τ ≈ ½
 • Tax (12%) + “good causes” (28%) + costs (10%)
 – Winnings tax free! Paid as lump sum!
 – Prob matching 6 is ₙ!/ₖ!(ₖ-ₙ)! ≈ 1/14m
• UK game also has 5+B, 5, 4 ball prize pools
 – 3-ball fixed prize, not a pool - £10 (Prob ≈ 2%)
• Jackpot
 – ≈ ½ (S/2 + rollover – 10.w₃)
• Wed rolls over into next Sat and vice versa
• Existing research estimates simple models
 \[S_t = a + bP_t + \text{otherstuff}_t \]
 • Estimate for Weds and Sats separately
 • Expect \(b < 0 \)
 • Otherstuff\(_t\) includes \(S_{t-1} \)

• Take-out from draw \(t \) depends on
 • Take-out rate, \(\tau \) - fixed
 • Rollover size, \(R_t \) – depends on \(S_{t-1} \)

• Use other determinants of \(R_t \)
 • As source of exogenous variation in \(P_t \)
 • Unexpected variation in number of 3 ball winners
 • Small and medium numbers in winning n
Lotto is lots of “fun”

- D shows “willingness to pay”
- Actually “pay” $P = \frac{1}{2}$
- $S \approx 40m \ (20m)$ per draw
 - £3b pa
- $MC = 0.1$
- $Slope_{LR} \approx -0.02 \ (-0.015)$
- Fun = CS = £16m \ (3m)
 - £1b pa
- Tax $\approx £16m \ (8m)$
- Lost fun = DWL $\approx £4m \ (2\frac{1}{2}m)$
 - Tax spoils £\frac{1}{3}b pa of the fun
Act 1 Conclusion

- Bigger estimated P effects Weds than Sat

Long run $\varepsilon_{\text{Sat}} \approx -\frac{2}{3} (0.05)$, $\varepsilon_{\text{Wed}} \approx -1\frac{1}{2} (0.13)$

- Set τ to ensure that $\varepsilon = -1$ to max revenue
 - So “money left on the table”
 - So raise Wed’s prizes at expense of Sat’s

- Exactly what UK operator did (2013/15)
 - Added large raffle prizes to both draws
 - But these are worth more on Weds than Sats

- Not yet enough data to see if this has worked

- QUESTIONS?
Outline of Act 2

• Taxes on “sin” popular with governments
 – Moral high ground
• Taxing a “necessity” is regressive
 – So poor bear a larger tax burden than rich
 – Determined by “income elasticity” of D, \(\eta \)
 • “Impact of a 1% rise in income on demand
 • Estimate this using data on purchases and income
• Estimate how demand varies with income
 – “Luxury” good, \(\eta > 1 \)
 • Budget share rises with income (entertainment)
 – “Necessity”, \(0 < \eta \leq 1 \)
 • Budget share falls with income (food, fuel)
Background

• “Incidence” of “tax” on lotto
 – Is tax regressive?
 – Estimate relationship between D and income
• We have 13 years of UK FES data (2001-13)
 – Huge and detailed survey - 69k hh in our data
 – Important feature of data is lots of zeroes
• “Parametric” model
 – \(\text{Lottoshare}_h = c + d \cdot \log (\text{Totexp}_h) + \text{other stuff}_h \)
 – Simple way of incorporating zeroes (Tobit)
FES vs NL data

• FES lotto spending tracks
 NL series OK – 30% under reporting
• But OK
 – Methodology robust to ME in demand
Spending patterns in FES data (weekly)
Engle curves

• Standard parametric specification
 – Lottoshare\(_h\) = c + d \cdot \text{Log} (\text{Totexp}_h) + \text{other stuff}_h

• Nice: \(\eta = (d/Lottoshare)-1\)

• Easy: linear regression

• Many households have zero lotto share
 – “Tobit” and extensions rather than regression

• Results
 – Tobit - 0.0027 (0.0001)

• Semi-parametric analysis
 – Implement a SP version of Tobit?
Act 2 Conclusion

• So $\eta = 1 + (-0.0027/0.006) \approx 0.6 < 1$
 - suggests lottery tax is regressive
• Suits \textbf{(AER 1973)} regressivity index
 - $SI = L/T$
• Lotto \ 0.36
• Gambling \ 0.32
• Alcohol \ 0.13
• Tobacco \ 0.42
• QUESTIONS ?
Outline of Act 3

- “Problem” gambling usually defined by aggregating responses to a questionnaire
 - PG = 1 if score exceeds critical value
 - DSM and PGSI

- Allows us to count the number of PGs
 - But what does PG “cost” to someone with PG?

- Can we improve the way that PG is defined?
- Can we improve on our estimates?
Problem Gambling in UK

- PG defined in UK GPS 2010 (and later HSE)
 - PGSI > 7 = 0.63% (of 46 m popn = 290k people)
 - DSM > 2 = 0.83% (of 46 m popn = 380k people)
Well-being in GPS

- UK 2010 GPS records “well-being” (W)
 - “How happy would you say you are these days”
- UK 2010 only GPS to do this
 - W not in HSE
 - Nor in other GPS’s
- W widely used to value life events
 - Divorce
 - Marriage
 - Unemployment
 - And, now, PG
Well-being in GPS

- W falls as PG score rises
 - For both DSM and PGSI
 - But neither have a step down at the critical value
Income in GPS

- GPS records income
 - in £5k “bins”
- Income makes you happier
 - If you don’t have much
- Use log Income
 - Rather than income
PG money metric

- Our methodology increasingly common
 - Estimate W vs Log Income and “event”
 - Event, in this case, is PG=1
 - \(W_i = e + f \cdot PG_i + g \cdot \text{Log Income}_i + \text{otherstuff}_i \)
 - Log income is grouped – replace by a prediction from an integer regression
 - \(f (<0) \) tells us how much less W is for PG=1 vs 0
 - \(g (>0) \) tells us effect of doubling income on W
 - So \(f/g \equiv \% \Delta \text{income that makes } W_{PG=1} = W_{PG=0} \)
PG money metric

• $f/g \equiv \% \Delta \text{ income that makes } W_{PG=1} = W_{PG=0}$

• For DSM
 \[f = -1.38, \quad g = 2.65 \Rightarrow f/g = -0.52 \]
 \[PG_{dsm} = 1 \Rightarrow \text{Loss in } W \text{ (pa)} \approx -£9k \]

• For PGSI
 \[f = -0.40, \quad g = 2.62 \Rightarrow f/g = -0.15 \]
 \[PG_{pgsi} = 1 \Rightarrow \text{Loss in } W \text{ (pa)} \approx -£2.5k \]

• Aggregate
 \[\Delta W_{pgsi} = -£0.75b \]
 \[\Delta W_{dsm} = -£3.5b \]
Causal effect

• Our regression estimate of f is likely to be biased because of measurement error in PG
 – Downwards (attenuated towards 0)
 – Exploit the second PG measure. Then, we get
 \[\Delta W_{pgsi} = -£1.2\ b \quad \text{or} \quad \Delta W_{dsm} = -£5.5\ b \]

• But f also biased because of simultaneity
 – Unhappy people gamble more
 – Upwards – so estimates above are “upper bounds”
 – More difficult in this case – working on it
Act 3 Conclusion

• Conventional measures of PG associated with large/huge reductions in well-being
• Conventional definitions probably flawed
 — So who knows what the right answer is?
 — Ours is an upper bound on true answer
• Well-being data offers the possibility of
 — Designing better questions
 — And better, data-driven, aggregation of answers
 — To get a more defensible PG scale
Take away

• Lotto is a £1b of fun pa
 – But taxation reduces the fun by close to 50%
• And the tax is highly regressive
• PG may be a large problem
 – Small % of (a large number of) people
 – Method for “valuing” PG
 • Different values for two popular (similar) measures
 – Either huge (at most £5.5b)
 – or just large (at most £1.2b)
 – But these are “upper bounds”

• QUESTIONS?
Questions?

• Unanswered questions
 – Does lotto cause more/less PG? Working on it!
 – Does lotto good-causes spending do any good?
 • Not yet working on this!
 – Scouts, Opera House, Olympic medals, “Warm glow”
 – Can we improves estimates? Working on it!

• If you want the paper(s), or these slides?
 – Email ian.walker@lancaster.ac.uk

• If you have hard questions?
 – We can talk later ... in the bar?

• And if you have cool data for us
 – Then we’re buying the drinks