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Abstract
Purpose of Review Flame retardant (FR) compounds can adversely impact neurodevelopment. This updated literature review
summarizes epidemiological studies of FRs and neurotoxicity published since 2015, covering historical (polybrominated biphe-
nyls [PBBs], polychlorinated biphenyls [PCBs]), contemporary (polybrominated diphenyl ethers [PBDEs],
hexabromocyclododecane [HBCD], and tetrabromobisphenol A [TBBPA]), and current-use organophosphate FRs (OPFRs)
and brominated FRs (2-ethylhexyl 2,3,4,5-tetrabromobezoate [EH-TBB] TBB), bis(2-ethylhexyl) tetrabromophthalate [BEH-
TEBP]), focusing on prenatal and postnatal periods of exposure.
Recent Findings Continuing studies on PCBs still reveal adverse associations with child cognition and behavior. Recent studies
indicate PBDEs are neurotoxic, particularly for gestational exposures with decreased cognition and increased externalizing
behaviors. Findings were suggestive for PBDEs and other behavioral domains and neuroimaging. OPFR studies provide sug-
gestive evidence of reduced cognition and more behavioral problems in children.
Summary Despite a lack of studies of PBBs, TBBPA, EH-TBB, and BEH-TEBP, and only two studies of HBCD, recent
literature of PCBs, PBDEs, and OPFRs are suggestive of developmental neurotoxicity, calling for more studies of OPFRs.

Keywords Flame retardants . Developmental neurotoxicity . Children . Cognition . Behavior . Epidemiology

Introduction

Flammability regulations required that chemical flame retar-
dants (FRs) be embedded in consumer products, including
textiles, plastics, furnishings, electronics, building materials,
and transportation products, to reduce flame propagation and
prevent combustion. Historical FRs, polybrominated biphe-
nyls (PBBs) and polychlorinated biphenyls (PCBs), were

initially used due to their resistance to fire. However, most
industrialized nations banned their production amid evidence
supporting their toxicity, major accidental human poisoning
incidents, and their persistence in the environment and in
humans [1–4]. Contemporary FRs, including polybrominated
diphenyl ethers (PBDEs), hexabromocyclododecane
(HBCD), and tetrabromobisphenol A (TBBPA), replaced
PBBs and PCBs. Since the 1970s, PBDEs have been the most
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commonly used FR until their voluntary phase-out from the
United States (US) market in 2004 for mixtures penta-BDE
and octa-BDE and in 2013 for deca-BDE. Production ceased
once studies confirmed their presence in a wide range of en-
vironmental samples and human tissues, their tendency to
bioaccumulate, and evidence of their neurotoxicity,
thyrotoxicity, estrogenicity, and carcinogenicity [5–8].
TBBPA and HBCD are still in production, though both
are highly scrutinized, because of their persistent,
bioaccumulat ive, and toxic propert ies [9, 10] .
Consequently, organophosphate FRs (OPFRs), including
tris(1,3-dichloropropyl) phosphate (TDCIPP), triphenyl
phosphate (TPHP), and mono-substituted isopropyl
triphenyl phosphate (mono-ITP), which were used since
the 1970s, have emerged as high production substitutes
for PBDEs. Toxicological studies indicate that OPFRs
may adversely affect human health, with findings sug-
gesting developmental toxicity, endocrine disruption,
and carcinogenicity [11, 12]. Other brominated FRs, in-
cluding 2-ethylhexyl 2,3,4,5-tetrabromobezoate (EH-TBB)
and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP),
were also used to replace PBDEs as components of
Firemaster 550 (along with TPHP and mono-ITP).

Fetuses and children are highly susceptible to neurotoxic
insults from exogenous chemicals due to marked structural
and functional brain development during gestation and child-
hood [13]. Toxicological studies have found evidence that
FRs disrupt thyroid hormone homeostasis, interfere with ɣ-
aminobutyric acid (GABA) signaling, affect neuronal viabili-
ty via apoptosis and oxidative stress, modify intracellular cal-
cium signaling, alter gene and protein expression in cellular
targets, and affect neuronal differentiation [11, 14, 15, 16–26].
Human exposure to FRs is nearly universal as evidenced by
their detection in maternal serum, cord/child serum, urine, and
breastmilk [27–41].

Several of the halogenated FRs are stringently regulated,
but they remain a public health concern due to their persis-
tence in the environment and in humans. Chlorinated and
brominated FRs have long half-lives. For instance, CB-153
and CB-180 have half-lives of 7–9 years [42], PBB has an
estimated half-life of 10.8 years [43], congeners within the
penta-BDE mixture have half-lives between 2 and 4 years,
and BDE-153 has a half-life of 14–16 years [44, 45].
Further, humans continue to be exposed to PBDEs despite
the phase-out, because of exposures to reservoirs that
remain in usage; reservoir sources, such as recycled
items containing PBDEs, contribute to environmental
levels as compounds are released as dust particles and
higher-brominated PBDEs metabolize into lower-brominated
congeners [46]. Despite the phase-out, the body burden of
BDE-47 and BDE-99 plateaued between 2011 and 2014 and
BDE-28 has increased after an initial period of decline among
pregnant women in California [47].

Epidemiological Studies on FRs
and Neurodevelopment Published Prior
to 2015

Chronic exposure to FRs in the general population and
evidence of neurotoxicity from animal studies raise con-
cerns of neurodevelopmental impacts in humans.
Numerous epidemiological studies have reported adverse
associations between PCB and PBDE exposures and
neurodevelopment in childhood [47–54], although the
findings are not entirely consistent for various
neurodevelopmental domains.

Inverse associations have been reported between in utero
PCB concentrations and verbal and memory scores at 4 years
and full-scale intelligence quotient (FSIQ) scores at 11 years
among children living in the Great Lakes region in Michigan
[55, 56]. These findings were similarly observed in the
Oswego cohort, with a reduction of 3 FSIQ points (p = 0.02)
for each 1 ng/g (wet weight) increase in placental concentra-
tions of PCBs [49]. Poorer cognitive development in children
has similarly been reported in cohorts in Japan and Slovakia
[57,58]. Decrements in IQ scores were also noted among chil-
dren ages 4 and 5 years who were prenatally exposed to
PCBs as a result of cooking-oil contamination in
Taiwan as compared to children born before the mass
poisoning [51]. In contrast, birth cohorts from the
Netherlands and upstate New York did not observe a
persistent inverse association between prenatal PCBs
and cognition in subsequent analyses of children at an
older age [59, 60]. Further, null associations were re-
ported in the North Carolina birth cohort and in the
Collaborative Perinatal Project [61,62]. Prenatal PCBs
may also impact neurobehavior in children as positive
associations were noted with impulsivity, impairments in
information processing and executive function, attention
deficit hyperactivity disorder (ADHD) behaviors, and
feelings of unhappiness and anxiety in children [54,
63–68]. In other studies, however, no relationship was
observed between prenatal PCBs and various neurobe-
havioral domains, including response inhibition, autistic
behaviors, ADHD-like behaviors, and emotional disor-
ders [52, 60, 69–74].

Prenatal PBDEs were first reported to be significantly as-
sociated with decreased FSIQ in children at 48 months in the
New York City cohort [75]. Concordant findings were later
reported in the Center for the Health Assessment of Mothers
and Children of Salinas (CHAMACOS) Study; specifically, a
10-fold increase in ∑PBDEs (BDE-47, -99, -100, and -153)
was associated with a decrease of 4.7 points (95% CI − 9.4,
0.1) in FSIQ at age 7 years [76]. Eskenazi et al. [77] addition-
ally reported inverse associations between child serum con-
centrations of ∑PBDEs at 7 years and FSIQ (β = − 5.6, 95%
CI − 10.8, − 0.3). Statistically significant inverse associations
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were also observed in the Health Outcomes and Measures of
the Environment (HOME) Study, with a reduction of 4.5
points (95% CI − 8.8, − 0.1) in FSIQ at 5 years [78]. In con-
trast, the Menorca birth cohort did not find a relationship be-
tween prenatal or postnatal PBDEs and total cognitive func-
tion scores at 4 years [79]. However, BDE-47 concentrations
were low in the Menorca cohort, with a median of 0.12 ng/g
lipid in child serum at 4 years [79]. Further, the Pregnancy,
Infection, and Nutrition (PIN) Babies Study in North Carolina
reported positive associations between PBDE concentrations
measured in breastmilk and cognitive skills at 36 months [80].
Although, Adgent et al. [80] conclude that these positive as-
sociations may have been mitigated by the benefits of
breastfeeding. Increased behavioral problems in children have
also been observed with higher concentrations of PBDEs, par-
ticularly with externalizing and attention problems. In the
CHAMACOS Study, prenatal and postnatal PBDE exposures
were associated with attention problems in school-aged chil-
dren [76]. In addition, concurrent concentrations in child se-
rum were positively associated with more teacher-reported
hyperactivity and attention problems at 7 years [76].
Increased hyperactivity problems in children at 5 years were
also reported in the HOME Study with prenatal BDE-47 con-
centrations [78]. A cross-sectional study of children ages 9–
11 years found positive associations between PBDEs and con-
duct problems, hostility, and aggression [81]. In contrast, null
associations were reported by the Menorca birth cohort be-
tween prenatal and postnatal PBDEs and externalizing prob-
lems [79].

New studies are emerging on these and current-use FRs,
different neurobehavioral outcomes, and in diverse study pop-
ulations. This updated literature review focuses on recent find-
ings published from 2015 onward on prenatal and postnatal
exposures to historical (PBBs, PCBs), contemporary (PBDEs,
TBBPA, HBCD), and current-use FRs (OPFRs, EH-TBB,
BEH-TEBP) and several neurodevelopmental domains, in-
cluding cognition (intelligence quotient), behavior (external-
izing, internalizing, attention, social), and neuroimaging, in
children up to 18 years of age.

Methods

We devised and executed a literature search strategy for
PubMed on 11 December 2019. Search strings were devel-
oped that would address our population of interest (children),
exposures of interest (FRs), and outcomes of interest (cogni-
tion, behavior, and neuroimaging). A combination of medical
subject headings and free text words were used, with the ex-
clusion on the publication dates that occurred prior to 2015.
The specific search string utilized in PubMed was as follows:
(“2015”[Date - Publication]: “2020”[Date - Publication])
AND (“Flame retardants” OR PBDEs OR PCBs OR PBBs

OR TBBPA OR HBCD OR OPFRs OR EH-TBB OR BEH-
TEBP OR BFRs) AND (IQ OR “Cognitive function” OR
Behavior OR Neuroimaging OR “Brain imaging”) AND
Children. The search strategy was also limited to studies con-
ducted on humans. Finally, we scanned references of the in-
cluded studies to screen for any additional studies that were
not retrieved by the initial literature search.

Results from PubMed were exported into an Excel file and
screened for relevancy based on the title and abstract by two
reviewers. Discrepancies between reviewers were marked and
resolved by discussion. There was no limitation on the
number of exposures examined within each study as
some investigated the associations between several toxi-
cants and neurodevelopment. Likewise, there was no limita-
tion on the number of neurodevelopmental outcomes exam-
ined so long as one of the assessments aligned with the three
domains selected for the present review. Studies that were not
original research (e.g., review articles) or not written in
English were excluded.

Data extraction from full-text documents was inde-
pendently completed, with the following information re-
corded for each bibliographic citation: study type, pub-
lication year, geographical location, overall sample size,
FR compound assessed, timing of FR quantification
(prenatal [weeks], postnatal [days, weeks, months,
years]) and corresponding biological (maternal or child
serum, cord serum, breastmilk, urine) or environmental
matrix (dust), neurobehavioral domains, age of assess-
ment, and overall study findings.

Summary of Studies

The PubMed search retrieved 100 studies and hand searching
bibliographies yielded two additional studies (Fig. 1). A total
of 44 articles were considered relevant after title and abstract
screening. Of these, we excluded 11 review articles and 1 non-
English article. Full-text reviews for the remaining studies
removed 3 additional articles based on irrelevant exposures
and/or outcomes. A total of 29 epidemiological studies were
identified (Table 1). Most epidemiological studies used a pro-
spective cohort study design (n = 26), though there were a few
cross-sectional studies (n = 3).Most studies (n = 18) examined
prenatal exposures, while 5 examined postnatal exposures,
and 6 investigated both pre-and postnatal concentrations.
FRs evaluated in the studies include the following: PCBs
(n = 10), PBDEs (n = 18), HBCD (n = 2), and OPFRs (n =
4). We did not identify any studies on PBBs, TBBPA, EH-
TBB, or BEH-TEBP. Neurobehavioral outcomes assessed in
the epidemiological studies, ranging from newborn to
15 years, were mainly behavior (n = 25), followed by intelli-
gence quotient (IQ) (n = 9). Two studies have examined the
relationship between FRs and neuroimaging.
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Historical Flame Retardants (PCBs)

Cognition

In the Development at Adolescence and Chemical Exposure
(DACE) Study, prenatal exposure to PCB-183 was associated

with a higher risk of subclinical cognitive impairment (IQ ≤
85), and PCB-105, -138, and -183 concentrations were in-
versely associated with verbal memory at ages 13–15 years
[82•]. In the Norwegian Mother and Child Cohort Study
(MoBa), the estimated maternal dietary exposure during preg-
nancy to dioxin-like PCBs or PCB-153 was associated with

Fig. 1 Flow chart showing the process of literature search and study selection
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reduced language skills in girls at age 3.5 years, but not IQ
[83]. Using two cohorts in the Netherlands (Risk of Endocrine
Contaminants on Human Health [RENCO] Study and the
Groningen Infant Comparison of Exposure-Effect Pathways
to Improve the Assessment of Human Health Risks of
Complex Environmental Mixtures of Organohalogens [GIC]
Study), Ruel et al. observed a significant association between
prenatal PCB-153 concentrations and having a delayedmental
development index (MDI) score at age 18 months [84•].

Behavior

ADHD-related behaviors have been examined in several stud-
ies. In the Inuit and European (INUENDO) birth cohort,
pooled estimates for mother-child pairs from Greenland and
Ukraine indicated no statistically significant relationship be-
tween concentrations of prenatal and postnatal PCB-153 and
abnormal behavior scores at ages 5–9 years [85]. In contrast,
cord serum PCB-153 concentrations were significantly asso-
ciated with increased ADHD behaviors at age 8 years; post-
natal exposures had weaker associations [86]. Another study
in Inuit preschoolers identified an association between PCB-
153 concentrations at 2 months, but not cord plasma concen-
trations, and inattention at age 5 years [87]. In the Duisburg
Birth Cohort Study, prenatal exposure to PCBs was related to
increased omission errors on a computer-based test battery of
attention performance (KITAP), but reduced ADHD behav-
iors among children at ages 8–9 years [88]. The MoBa Study
did not find associations of estimated prenatal exposure to
dioxin-like PCBs or PCB-153 with ADHD and executive
function at age 3.5 years [83]. A cross-sectional study in a
PC-polluted region in Slovakia found that serum concentra-
tions were related to longer simple reaction time at ages 8–
9 years [89]. Two studies examining prenatal PCB exposure
and Social Responsiveness Scale (SRS) scores, indicative of
more autistic behaviors, had conflicting findings [90, 91].
Specifically, an inverse association was reported between pre-
natal PCB concentrations among girls at ages 9–10 years,
while a positive association was observed among children at
ages 3–4 years [90, 91].

Contemporary Flame Retardants
(PBDEs and HBCD)

Cognition

In the HOME Study, investigators reported adverse associa-
tions between prenatal and postnatal concentrations of PBDEs
and full-scale IQ (FSIQ) in children [92,93•,94]. A 10-fold
increase in prenatal ∑PBDEs (BDE-47, -99, -100, and -153)
was associated with a 5.3-point decrease (95% confidence
interval [CI] − 10.6, − 0.02) in FSIQ at age 8 years [94].

Braun et al. [92] further examined the persistence of prenatal
PBDEs’ role in longitudinal patterns of child cognition.
Prenatal BDE-47 was associated with lower mental develop-
ment index (MDI) at ages 1–3 years and FSIQ at ages 5 and
8 years. In addition, child serum concentrations of PBDEs,
quantified at ages 1, 2, 3, 5, and 8 years, were associated with
lower FSIQ at age 8 years [93•]. Decrements in FSIQ were
noted with higher BDE-153 concentrations measured at mul-
tiple time points during childhood [93•]. In contrast, the
DACE Study reported null associations between prenatal
PBDEs (BDE-47, -99, -100, -153, and -154) and the risk of
subclinical cognitive impairment (IQ < 85) in adolescents at
ages 13–15 years, but BDE-154 and HBCD were associated
with lower verbal memory and total intelligence in continuous
outcome analysis, respectively [82•]. In a prospective cohort
in the Netherlands, Ruel et al. reported no associations be-
tween PBDEs or HBCD measured in maternal serum at 35-
week gestation and MDI scores at 18 and 30 months [83]. In
the Children’s Health and Environmental Chemicals in
Korean (CHECK) Study, maternal serum PBDEs were not
associated with MDI at 13–24 months [95]. Findings between
PBDE concentrations measured in breastmilk yielded similar
null findings with MDI scores at 13–24 months [95].

Behavior

While prenatal PBDEs were not associated with neurobehav-
ioral infant profiles at 5 weeks in the HOME Study [92],
Oulhote et al. [97] reported that infants enrolled in the
Maternal-Infant Research on Environmental Chemicals
(MIREC) cohort displayed more negative vocalizations at
6.9 ± 0.9 months, including incidences of crying and scream-
ing, with increased concentrations of prenatal PBDEs. Poorer
emotional reactivity at ages 2 and 4 years was additionally
reported in the Shanghai-Minhang Birth Cohort Study with
higher concentrations of cord serum PBDEs [98].

Positive associations were additionally reported between
prenatal PBDEs and externalizing problems from early child-
hood to age 8 years in the HOME Study [92, 94]. A 10-fold
increase in BDE-153 was associated with a 3.9-point increase
in Externalizing Problems score at age 8 years [94]. Similar
findings were reported by Kim et al. [95] in the CHECK
Study, with increased maternal serum BDE-47 associated
with more externalizing behaviors in children at 13–
24 months. Findings regarding postnatal PBDEs and external-
izing behaviors are inconsistent. In the South Korean cohort,
breastmilk PBDEs were not associated with externalizing
problems in infants [95]. In addition, Forns et al. [99] utilized
a multi-pollutant model to examine six persistent organic pol-
lutant concentrations measured during infancy and behavioral
problems at 12 months and reported no statistically significant
relationships between breastmilk concentrations of BDE-28
or BDE-47 and behavioral problems. A cross-sectional study
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of 72 children between ages 3–5 years also reported null find-
ings between PBDEs, quantified via a silicone passive sam-
pler that was worn for 7 days, and externalizing behav-
iors [100•]. In contrast, the HOME Study found associ-
ations between PBDEs and increased externalizing be-
haviors (hyperactivity and aggressive behaviors) at age
8 years [93•].

A handful of studies have examined PBDEs and childhood
attention, though conclusions were discordant among cohort
studies. Prenatal BDE-47 and BDE-153 were associated with
more attention problems at age 4 years, though findings were
no longer statistically significant when children were 6 years
in the New York City cohort [101]. However, maternal serum
BDE-153 was associated with poorer attention in adolescents
aged 13–15 years in a Danish cohort [82•]. In the
CHAMACOS Study, prenatal PBDEs were associated with
poorer attention in children ages 9–12 years, while no statis-
tically significant relationship was observed with child serum
PBDEs [102•]. In the HOME Study, findings were sug-
gestive of a potential relationship between prenatal and
concurrent PBDE concentrations and inattention in chil-
dren at age 8 years [103].

Few epidemiological studies have investigated PBDEs’ re-
lationship with social skills and internalizing behaviors. Cord
serum BDE-47 was associated with poorer social skills at 1–
2 years in a prospective birth cohort in rural China [104]. A
statistically significant relationship was also observed in the
Shanghai-Minhang Birth Cohort between cord PBDEs and
internalizing behaviors, but this association was only present
among girls ages 2 and 4 years [98]. In a cross-
sectional study of PBDE household dust levels from
urban dwellings in Nanjing, China, BDE-209 and
total-BDEs (BDE-99, BDE-153, and BDE-209) were as-
sociated with poorer social skills and more depressive
behaviors at ages 4–5 years [105].

Neuroimaging

Two preliminary epidemiological studies utilizing participants
from the ongoing birth cohort, Endocrine Disruption in
Pregnant Women: Thyroid Disruption and Infant
Development Study, investigated prenatal PBDEs and the
brain’s intrinsic functional network organization involved
with executive function and reading development [106••,
107••]. Resting-state functional magnetic resonance imaging
(fMRI) was used to examine whether prenatal PBDEs were
associated with the intrinsic functional network at age 5 years
in a sample of 33–34 children [106••, 107••]. Prenatal PBDEs
were associated with increased global efficiency in areas of
the brain that are involved with visual attention [107••].
Children with increased global efficiency in this area of the
brain were reported to experience more executive function
problems. Margolis et al. [106••] reported inverse associations

between prenatal PBDEs and global efficiency of the reading
network, indicating poorer word reading. While there was no
statistically significant association between prenatal PBDEs
and reading skills in this study, the findings suggest that pre-
natal PBDEs play a role in altering network integration, which
may result in downstream reading problems [106••].

Neuroimaging studies investigating PBDEs would en-
hance our understanding of the long-term neurodevelopment
effects of PBDEs that may not be evident at earlier ages. These
preliminary neuroimaging studies provide findings that indi-
cate PBDEs may be involved in altering the brain’s network
architecture and intrinsic connectivity.

Current-Use Flame Retardants (OPFRs)

Cognition

Maternal urinary concentrations of diphenyl phosphate
(DPHP), a metabolite of TPHP, were inversely associated
with FSIQ (− 2.9 points, 95% CI: − 6.3, 0.5 for a 10-fold
exposure increase) and working memory (− 3.9 points, 95%
CI: − 7.3, − 0.5 for a 10-fold exposure increase) at age 7 years
in the CHAMACOS cohort [108••]. In the third phase of the
Pregnancy, Infection, and Nutrition (PIN3) Study, maternal
urinary concentrations of isopropyl-phenyl phenyl phosphate
(ip-PPP), a metabolite of mono-IT), but not metabolites of
TDCIPP or TPHP, were inversely associated with
Composite, Fine Motor, and Expressive Language scores
from the Mullen Scales of Early Learning (MSEL) as well
as the Vocabulary score from the MacArthur-Bates
Communicative Development Inventories (MB-CDI) at ages
2–3 years [109••].

Behavior

In the CHAMACOS cohort, maternal urinary concentrations
of ip-PPP were positively associated with Hyperactivity
scores in the mother-reported Behavior Assessment System
for Children-2 (BASC-2), but not teacher reports.
Metabolites of TDCIPP and TPHP were not associated with
BASC-2 scores or ADHD Index assessed by Conners’
ADHD/DSM-IV Scales assessed at age 7 years [108••]. In
the PIN3 Study, maternal urinary concentrations of bis(1,3-
dichloro-2-propyl) phosphate (BDCIPP), a metabolite of
TDCIPP, were positively associated with Behavioral
Symptoms Index and Externalizing Problems scores assessed
by BASC-2 at age 3 years. Higher ip-PPP concentrations,
however, were associated with lower Internalizing Problems
scores [100•]. Another cross-sectional study using a silicone
wrist band to assess OPFR exposure identified less responsi-
ble behavior and more externalizing behavior problems asso-
ciated with exposure at ages 3–5 years [100•].
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Recommendations

Overall, findings from epidemiological studies within the past
5 years demonstrate that PBDEs have potential neurotoxic
effects, particularly with exposures occurring during gesta-
tional development. Epidemiological studies from the United
States provide evidence that supports prenatal and postnatal
PBDE concentrations may adversely impact childhood intel-
ligence, with findings suggesting that prenatal PBDEs’ neu-
rotoxicity may persist throughout childhood [92,93•,94].
However, cohort studies from Denmark and South Korea
present null results. Discrepancies may be due to differences
in the body burden of PBDEs between countries. In the
HOME Study, prenatal BDE-47 had a median (IQR) of 19.1
(11–34.5) ng/g lipid compared to 0.9 (0.5–1.3) ng/g lipid in
the DACE Study, 1.1 (<LOQ-2.1) ng/g lipid in the CHECK
Study, and 0.8 (0.5–1.3) ng/g lipid in the RENCO and GIC
Studies [82•, 84•, 111].

Recent epidemiological findings provide additional evi-
dence supporting the hypothesis that prenatal PBDEs are as-
sociated with externalizing behaviors. However, the role of
postnatal PBDEs is still unclear. Only the HOME Study re-
ported positive associations with externalizing behaviors.
Other studies investigating this relationship measured
PBDEs at one time point shortly after birth in breastmilk sam-
ples or during childhood via a personal silicone passive sam-
pler. Differences in exposure assessment methods and timing
may have contributed to the discrepant findings. With regard
to PBDEs and attention problems, the findings were varied.
Although there is some evidence to suggest that prenatal
PBDEs may be associated with more attention problems in
children, there is limited evidence on postnatal exposures.
Lastly, despite the limited number of studies, suggestive evi-
dence indicates exposure to PBDEs is associated with elevat-
ed internalizing behaviors and impaired social skills.
Epidemiological findings regarding current-use OPFRs are
limited, but provide suggestive evidence of a relationship with
neurodevelopment in children. A greater understanding of FR
neurotoxicity can be achieved if future studies focus on
current-use FRs as limited research thus far has examined
pre- and postnatal concentrat ions of OPFRs and
neurodevelopment. Further, the National Academies of
Sciences, Engineering, and Medicine (NASEM) have called
for the evaluation of OPFRs, putting forth a scoping plan for
toxicity assessment [112•]. Secondly, very few studies inves-
tigating FR neurotoxicity have utilized advanced statistical
multi-pollutant models, taking into account the totality of FR
exposures. Historical and contemporary FRs have long bio-
logical half-lives. Thus, it would be prudent to examine the
total impact of FR exposures on cognition and behavior in
children. In addition, limited studies have explored potential
sexual dimorphism and even fewer have employed neuroim-
aging to study FR neurotoxicity.

Current-Use Flame Retardants

OPFR production has increased to 341,000 tons worldwide,
more than tripling from 1992 to 2007 [113]. In the US, OPFR
production increased from 14,000 tons annually during the
mid-1980s to almost 40,000 tons in 2012 [114]. OPFRs have
been detected in household dust, cars, air conditioner filters,
baby products, and furniture in several countries, including
the US, Kuwait, New Zealand, Pakistan, Saudi Arabia, and
Sweden [115–121]. Since OPFRs have a low vapor pressure
and are hydrophobic [122, 123], they tend to partition into
organic matter, such as indoor dust, which is a major source
of human exposure [12, 124]. OPFR diester metabolites are
now universally detected in urine samples [27, 125, 126], and
children have almost 5 times higher urine levels of BDCIPP
compared to their mothers [127]. There is sufficient evidence
from toxicological studies to warrant concerns regarding
OPFRs’ impact on neurodevelopment [128]. As such, future
epidemiological studies should investigate whether OPFRs
are associated with cognitive and behavioral development,
focusing on both prenatal and postnatal exposures. Delayed
action regarding removal of PBDEs from the market (i.e.,
taking over 40 years) resulted in widespread and persistent
human exposures. Epidemiological studies investigating
OPFR neurotoxicity are necessary so that the similar scenario
is not repeated.

Associations between OPFRs and neurodevelopment may
be sexually dimorphic, but few epidemiological studies have
assessed whether effect modification by sex is present
[108••,109••,110••]. Sex may also modify OPFR neurotoxic-
ity as there is evidence that OPFR exposure alters thyroid
hormones in a sex-dependent measure. TDCIPP and TPHP
exposure in adult zebrafish was reported to significantly de-
crease plasma triiodothyronine and thyroxine in males, while
increases were noted in females [129]. TPHP exposure was
additionally observed to increase total thyroxine levels, par-
ticularly in women, in a sample of 51 office workers in the
Boston, MA area [130]. Further, OPFR bioaccumulation was
shown to differ sexually in crucian carp, with female eggs
having a higher perfusion rate of tri-n-butyl phosphate
(TNBP) compared to male gonad concentrations [131].

Cumulative Assessment of FRs Using Multi-pollutant
Models

Currently, no epidemiological study has investigated the full
extent of all FR exposures, including historical, contemporary,
and current-use FRs, on children’s neurodevelopment. Given
that most past-use FRs have long half-lives, each compound
may act alone or in conjunction with other neurotoxicants to
impact brain development. Several advanced mixture models
are available to estimate individual and aggregate exposures,
identify important mixture components, determine whether
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non-monotonic relationships exist, and assess whether inter-
actions are present between chemicals [132]. However, no
epidemiological study has used advanced statistical methods
to evaluate mixtures of FRs. While some studies examined
chemical mixtures, they did not comprehensively examine
FR compounds [94, 99, 106••, 107••]. Therefore, given the
abundance of toxicological evidence to support the neurotox-
icity of FRs, it is pertinent that future epidemiological studies
comprehensively estimate associations of FR compounds tak-
ing into account potential additive, synergistic, and antagonis-
tic effects.

Assessment of Neurodevelopmental Effects Utilizing
Neuroimaging

Neuroimaging could contribute to our ability to investigate FR
neurotoxicity by providing a method to examine brain structure
and functionality, thus enhancing causal inference and identi-
fying potential biological pathways altered by different FRs.
This application advances our understanding by providing an
assessment of developmental trajectories of cognition and be-
havior in children that cannot be achieved via traditional
methods of assessment [133]. The field of pediatric neuroim-
aging is growing, and epidemiological studies examining FR
neurotoxicity have begun to apply these techniques to further
understand the potential downstream neurodevelopmental ef-
fects that may not be evident with assessments using
neurodevelopmental batteries. To date, only two preliminary
studies have applied neuroimaging to examine PBDE neuro-
toxicity; both studies yielded interesting findings despite small
sample sizes [106••, 107••]. Neuroimaging has challenges that
contribute to its application, including high costs, limited avail-
ability in some countries, practical difficulties, such as claustro-
phobia and motion, especially in young children, and differ-
ences in protocols which limit the ability to pool data. Despite
this, there is immense promise in the knowledge and mecha-
nistic insights that can be garnered, specifically regarding brain
plasticity and developmental trajectories [134].

Conclusions

In summary, continuing studies on historically used FRs still
reveal long-term adverse impacts of PCB exposures decades
after the ban. Recently published studies on PBDE neurotox-
icity confirm prenatal exposures are associated with poorer
cognition and more externalizing problems in children.
Evidence from epidemiological studies indicates that PBDEs
may impact attention, internalizing behaviors, and social
skills. PBDEs may also alter the intrinsic functional network
organization of the brain, resulting in downstream effects on
various neurodevelopmental domains, such as reading and
executive function. Limited and inconsistent conclusions from

epidemiological studies examining postnatal PBDEs make it
difficult to conclude that exposures during childhood are as
detrimental as those occurring during gestation. Limited stud-
ies on OPFRs have indicated an adverse impact on child cog-
nitive function, hyperactivity, and externalizing behaviors,
calling for more research on this class of FRs and child neu-
robehavioral development.

However, there is sufficient evidence to justify that a coor-
dinated global effort be taken to reduce FR exposure in
humans, because sensitive life stages for brain development
should be protected. Further, the fire safety benefit of incor-
porating FRs in consumer products is questionable [135].
California revised the 1975 flammability standard, Technical
Bulletin (TB 117) with TB117-2013. This update replaces the
open flame test with the smolder test, which allows furniture
to meet fire safety standards without the need of adding FRs,
suggesting that these chemicals may not be needed. The
phase-out of PBDEs was an important step in decreasing ex-
posure to these neurotoxicants. However, PBDEs remain an
important public health problem even though it has been over
a decade after its removal from the market. OPFRs are rapidly
following its predecessor by making their presence in envi-
ronmental and human samples universally known. While ep-
idemiological studies are still investigating OPFR neurotoxic-
ity, delaying mitigating actions for several decades—as was
done with PBDEs—is an injustice to children’s health and
will likely result in another regrettable substitution.
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