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A B S T R A C T

Under certa in  circumstances, narrow band  linear phase filters can be implemented more 

efficiently using frequency sampling filters th a n  direct convolution filters. T he  desired fre­

quency response of a frequency sampling filter is approx im ated  by in terpo lating  a frequency 

response th rough  a set of frequency samples. T h e  im plem enta tion  of a  frequency sampling 

filter contains unit delays in its feedback paths.  Therefore, it cannot be pipelined or  effi­

ciently used in m u lt ira te  applications. In this thesis, a  frequency sampling filter th a t  has 

only delays of length D  in its feedback pa ths  is developed. This new frequency sampling 

filter can be pipelined and efficiently used in m ult ira te  applications.
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C h ap ter  1

In trod uction

M any digital signal processing applications require linear phase frequency selective filters to  

bandllm it the  spec trum  of a  signal. W hen designing frequency selective filters, the  desired 

filter characteristics are  specified in the  frequency dom ain  in te rm s of  the  desired m agni­

tude  and  phase response of the  filter. M any design processes are  available for determ ining 

system  functions th a t  can closely app rox im ate  desired frequency response characteristics.  

-After determ in ing  a  system  function, the  filter is implem ented using difference equations. 

T w o types of difference equations exist for implem enting digital filters, recursive and non­

recursive. .A difference equation  is recursive if the  current o u tp u t  is a  function of the  past 

o u tp u ts .  For example, in a  recursive filter the  functional relationship between the  input 

and  the  o u tp u t  can be expressed as y ( n )  = F[ij{ n -  l ) , y { n  -  2 ) . . . , . r (n ) .  x( n -  1). x{n  -  2)...]. 

where x{ n)  is the  sys tem 's  inpu t,  y(n]  is the  system 's  o u tp u t  and  F  is a function relating 

the  o u tp u t  to  the  inpu t.  .A difference equation  is nonrecursive if the  o u tp u t  is a  not a func­

tion of  pas t  ou tp u ts .  For example, in a  nonrecursive filter the  o u tp u t  can be expressed as 

y{n)  = F[x( n) .  x{n  — I).  x{n — 2)...]. Digital filters can be classified as finite impulse response 

(F IR )  filters or infinite impulse response (HR) filters. .A recursive difference equation  can 

implement an FIR or an HR filter. A nonrecnrsive difference equation  can implement only 

an FIR filter [1]. In this thesis, recursive im plem enta tions of F IR  filters called frequency



sam pling filters th a t  are  well suited for pipelining and m ult ira te  applications are  devel­

oped. T h e  com puta t ional  requirem ents of these filters are com pared to  direct convolution 

im plem entations.

In applications requiring a  frequency selective filter, frequency dispersion due to 

non-linear phase can d is to rt  desired signal inform ation. For such applications it is desirable 

to  design linear phase filters. For a causal FIR digital filter to  have linear phase, it must 

have an impulse response. h(n) .  with the proper ty  h{n)  =  h~{ . \  — 1 — n ) for 0 <  n <  .V — I 

where h “(n)  is the  complex conjugate of li{n)  [2].

T w o com m on m ethods used to  design linear phase F IR  digital filters are  the  op t i ­

mal filter design m e thod  and  th e  window design m ethod . In the  op tim al design m ethod , 

the  m ax im um  approx im ation  error  between the  desired frequency response and the  ac­

tu a l  frequency response is minimized. This design procedure generates  an FIR. where 

h{n)  =  /?"(.V — 1 — n). In the  window design m e thod ,  the  unit impulse response. hd{n) .  

is determ ined  from the  desired frequency response specification, using the  inverse

Fourier transfo rm  relation.

hd{n)  = ( 1. 1 )

In general, hd[n)  is infinite in dura tion  and  is t ru n c a te d  to  length  .V by multiplying h j ( n )  

by a  finite length  window sequence. w(n) .  of length N .  If the  desired impulse response has 

the  property , hd( n)  =  hj(rV — 1 — n ) for 0 <  n < N  — I,  and  if the  window has the  property . 

w[n]  =  tu’ fiV -  1 — n) for 0 <  n <  A’ — 1, then  hd{n) w{n)  =  h](iV — 1 -  n ) w ‘ { N  -  1 — u) 

for 0 <  n <  .V — 1, and  the  filter ob ta ined  is a  linear phase F IR  filter.

Once an impulse response is determ ined from the  op tim al or window design m ethods,  

the  filter can be im plem ented by one of the  nonrecursive direct convolution s t ruc tu res  shown 

in Figs. l . l a  and  1.1b. T h e  s truc tu re s  in Fig. 1.1 are  called direct convolution s t ruc tu res  

because they  implement convolution directly. These filter s t ruc tu re s  require A' — 1 adds 

and A' multiplies per o u tp u t  sample, where .V is the  length of the  filter's impulse response. 

If the  filter has linear phase and a real impulse response then. h{ii) =  h { . \  -  I -  n)  for



input

h(0)

z

h ( I )

'   > j z |-

V h(2)

M ± )— K + ) — K ± )" ---------K ± )

\ l  h(3) \ l  h(N -I)

output

Figure l . l a :  Direct form s tru c tu re  used to  realize F IR  filters.

in p u t  x ( n )

' f h(2)h(0)

o u tp u t  y ( n )

Figure 1.1b: Transposed  Direct form s tru c tu re  used to  realize F IR  filters.

0 < n < y  — 1. and  the  s t ruc tu res  shown in Fig. 1.2a and  1.2b can be used. These filter 

s truc tu re s  require (.V +  l ) / 2  multiplies and  jV — 1 adds per o u tp u t  sample if .V is odd and 

y / 2  multiplies and  (A' — 1) adds per o u tp u t  sample if iV is even. A ssum ing th a t  multiplies 

are com puta t ional ly  m ore complex th a n  adds, the  filter s t ruc tu res  shown in Fig. 1.2 require 

approxim ate ly  half the  num ber  of com puta t ions  required by the  s t ruc tu res  in Fig. 1.1

Unlike the  previous design m ethods ,  frequency sam pling filters implement F IR  filters 

recursively. Under certain  circumstances, na r row band  filters can be implem ented more 

efficiently using frequency sampling filters than  using direct convolution filters [1]. Filters 

implem ented by the  frequency sampling technique are recursive. T he  frequency sampling 

filters discussed in this thesis are  a T ype  1 frequency sampling filter, which in terpo lates  a 

frequency response th rough  A  evenly spaced frequency samples taken a t  frequencies u; =  

for k  €  .4 whëre .4 =  { 0 , 1....V -  1}. and  a  T ype  2 frequency sampling filter, which 

in terpo lates  a frequency response th rough .V evenly spaced frequency samples taken  at 

frequencies =  4^ (^k +  for k  €  .4 [3] [4] [5] .

Pipelining is an im plem enta tion  technique where sequential instruc tions are over-



input x(n)
•̂1 •̂1

1

■ < + > 6 ------- 0 - s - 0 « -------------- ( + > 6

output y(n)

Figure 1.2a: S tru c tu re  for a  Direct Form FIR filter with linear phase (X odd).

input x(n)
j} _ 3j> •̂1

\ 1 1

h(0) h(N/2)h ( m - n

+ ) < — ( + ) < —( + ) ^ -----------
output y(n)

Figure 1.2b: S tru c tu re  for a  Direct Form F IR  filter w ith  linear phase  (N even)



lapped in execution. T he  filter represented by Figs. l . l a  and  1.1b can be pipelined by adding 

registers in series with the  multipliers and adders. T he  th ro u g h p u t  o f  a digital filter can 

be dram atically  increased by pipelining because several o u tp u ts  can be processed s im ulta ­

neously. Recursive s truc tu re s ,  such as the freciuency sampling s t ruc tu re ,  are  not am enable  

to  pipelining because the  present o u tp u t  needs to  be ob ta ined  before com puting  the  next 

o u tp u t  values. .A. scheme was suggested by Soders trand  and  S inha in [6] and ex tended by 

Sinha and Loomis in [7] for pipelining HR filters. This technique designs system functions 

which use pipelinable delays in the  feedback p a th  of the  filter.

If  different sampling frequencies are used in a  system , then  it is called a m ult ira te  

system . Crooke and  Craig have shown in [S] th a t  for na r row band  filtering applications, 

com pu ta t iona l  efficiencies o f  direct convolution filters can be gained by decim ating the 

o u tp u t  of a  nonrecursive filter. For recursive filters w ith  unit delays in the  feedback p a th ,  

such as the  frequency sam pling  filter, the  process of decim ation does not reduce the  num ber  

of com pu ta t ions  significantly. M artinez and  P arks  in [9] have discussed a class of recursive 

filters which have a  system  function with  only a  delay of  D  in the  feedback p a th .  These 

filters are suitable for decimation by a  factor o f  D.

In this thesis, a frequency sampling filter is developed th a t  has only delays of D  in 

the  feedback pa th s .  C h a p te r  3 shows th a t  these filters can be pipelined and  a significant 

saving can be achieved when the  o u tp u ts  of these filters are  decimated. Coupled s ta te  

space im plem enta tions  of these filters are  discussed in C h a p te r  4 because they exhibit lower 

sensitivity to  finite word length effects th a n  Direct Form s truc tu res .



C h a p ter  2

Frequency Sam pling F ilters

A F IR  filter can be realized by recursive or  nonrecursive s truc tu res .  Frequency sampling 

filters are  recursive im plem enta tions of F IR  filters. T h e  recursive s truc tu res  used to  real­

ize frequency sampling filters are simple to  program  and  are very efficient under  certain 

c ircum stances [10]. In this chap te r ,  we will develop system  functions and  Direct Form re­

alizations for T ype  1 and  T y p e  2 frequency sampling filters. T he  num ber  of com puta t ions  

per  o u tp u t  sam ple required by frequency sampling filters will be com pared to  th a t  required 

by m u lt i ra te  frequency sampling filters. A  coupled s ta te  space realization of  a frequency 

sam pling  filter will be discussed.

2.1 T y p e  1 freq u en cy  sam p lin g  filters

.A T ype  1 frequency sampling filter in te rpolates  a frequency response th rough  a set of 

frequency samples taken  a t  frequencies for & 6  A where A  = {0 ,1 .  ...A' -  1}. If we

let H { k )  k  e  A  represent the  set of .V frequency samples, then

H { k )  =  = for k e  .4.



This relationship shows th a t  H{ h]  for k  g  .4 can be in terpre ted  as samples of the  r  t r a n s ­

form, taken  at .V evenly spaced points on the unit circle in the  z plane. T h e  finite length 

impulse response. h( u) .  of the  filter whose frequency samples are given by the  discrete val­

ues. I I ( k )  for k  €  .4. can be determ ined from the  Inverse Discrete Fourier T ransform  ( ID F T ) .

/?(/;) =  <
y T . k = o  n e  A

0 otherwise

T he fiequency samples. H { k )  k  €  .4. can be calculated from the  filter's impulse response 

by using the  Discrete Fourier T ransform  (D F T ) .

.v - i
H ( k )  =

n = 0

Since the  D F T  is a  form of a  Fourier transform , h( n)  is the  only impulse response of length 

iV th a t  in te rpolates  a  frequency response th rough  the  points ,  H { k )  k  g .4. Therefore the 

frequency response of a  system  which has an  impulse response of  length N  can be uniquely 

specified by a set of N  frequency samples H { k )  for k  g  .4. T h e  system  function of  this filter 

is given bv
;V -1

Æ (z)  =  ^  / r (n ) z - "  (2.1)
n = 0

where h{n)  is given by the  D F T .  S ubsti tu t ing  the  D F T  into Equat ion  (2.1).

.v - i
H i z )  =  E

n=0
-1

k=0

In terchanging  the  order  of the  sum m ations  and sum m ing up over the  index n.

Equation  (2.2) has the  form of Lagrange 's  in te rpo lating  formula [3]. T h e  complex 

polynomial, / / ( z ) .  in te rpolates  a  frequency response th rough  the  points.  H { k )  k  g  .4. when



.input output

Figure 2.1; S tru c tu re  of a  T y p e  1 frequency sampling filter.

~ =  e- ' ~^  for k  E A\  E quat ion  (2.2) shows th a t  the  filter can be realized using a  cascade of 

a comb filter (1 -  c "  ' ’ ), which has zeros a t  r  =  for k  E T ,  and  a  parallel connection 

of complex resonators whose poles occur a t  the  zeros of the  comb filler.

W hen a filter Is Implemented using special purpose hardw are ,  the  word lengths of 

the  filter are fixed and  finite. T h e  In terpolation formulas In the  filter system function require 

the  zeros of the  comb filter to  exactly  cancel the  poles of the resonator  on the unit circle. 

T h e  quantiza tion  of  the  filter's coefficients m ay prevent the  cancelation of the  poles on the 

unit circle making the filter unstab le  In the  bounded Input bounded o u tp u t  (B IBO ) sense. 

To prevent Instability In the  filter, the poles of all the  resonators  can be moved within the 

unit circle, by replacing with  r r ~ ‘ where | r |  <  1 In the  filter equation. For exam ple the  

svstem  function would be w ri t ten  as

H { k )
I ' (2.3)

The filter described in E quat ion  (2.3) Is called a frequency sampling filter because 

the  filter’s coefficients are a  function of the  frequency samples. Fig. 2.1 shows a block 

d iagram  used to  Implement the  frequency sampling filter described In Equation (2.3). .Most 

o f  the  .V complex resonators  in the  filter s t ru c tu re  require one complex add and  two complex 

multiplies per o u tp u t  sample. Each complex multiply requires two real adds and  four real 

multiplies. Each complex add  requires two real adds. Hence, the  entire filter requires 

approxim ate ly  .S.V +  1 real multiplies and  S.V — 1 real adds per o u tp u t  sample.
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2.1.1 T yp e 1 Frequency Sam pling F ilters W ith  R eal Im p ulse R esponse

T he filter can  be im plem ented w ithou t complex ar i thm etic  if it has a  real impulse response. 

If the  filter has a real impulse response then  its frequency response, has the  property .

where is the  complex conjugate  of .

Since H ( k )  =  for k  €  .4, th e  frequency samples of a T ype  1 frequency

sam pling  filter will have the  form

H ( k )  = H - ( S  - k )

where H ' ( N  — k)  is the  complex conjugate of H ( N  — k) .  T h e  frequency samples, H ( k )  

k  E .4, can be  w ri t ten  as H ( k )  = \H{k)\e'>^^^'' where |/f(A;)l the  m agn itude  and  9(k)  is 

the  phase of  the  frequency sample. This implies th a t

|^ (& ) |  =  \ H ( N  -  k)\

and

0(k)  =  - e ( N  - k ) .

Subs t i tu t ing  these properties in to  the  system  function in E quat ion  (2.3),

1 _  r-.'V.-.'V r ^ ( 0 ) H ( N / 2 )
+

k=0 (1 -  e " J ^ '= r z - i ) ( l  -

1 -  f H( 0 )  H { N / 2 )
N  1 1  -  r z - i  1 +  r z - i



1 0

Resonator I

Resonator 2
input

Resonator M

output

Figure 2.2a: T ype  1 frequency sampling filter with a  real impulse response of length  N  
where .V is even and  M \  =  ( N / 2 )  — 1.

My

k=0

cos{8{k)) -  rs  ^cos{6{k) -
1 — 2 c o s ( ^ k ) r z ~ ^  +  

where N  is even and  M \  = { N / 2 )  — 1. Similarly if N  is odd.

(2.4)

+

M y

+  Y. - AH{ k) \
k=0

c o s { $ { k ) ) - r z  ^cos{6{k) -  ^ k )
1 — 2co${=^k)rz~^  +

(2.5)

where M i = { N  -  l ) / 2 .

A block d iagram  for the  filter described in Equation  (2.4) is shown in Fig. 2.2a. Fig. 

2.2b shows the  s t ru c tu re  of the  t t h  resonator . T h e  system  function in Equation  (2.4) shows 

th a t  the  filter consists o f  a  comb filter in cascade with  a  parallel combination  of My + 2 

resonators.  W hen .V is odd . the  te rm  H { N / 2 )  does not exist in the system  function of  the  

filter.



11

input 2\H(k)\ cos lQ (k)l/N  
 >

output

 > — .......
2\H(k)\r lQ (k ) - 2 n k /N I /N

Figure 2.2b: S truc tu re  of the  Ath resonator  in Fig. 2.2a.

T h e  resonator  in Fig. 2.2b requires 4 real multiplies and  3 real acids per  o u tp u t  

sample. Therefore, the  filter requires approxim ate ly  4 d / i  +  4 real multiplies per  o u tp u t  

sam ple and  4.1/, +  4 real adds per  o u tp u t  sample.

2.1 .2  T yp e 1 Frequency Sam pling F ilters W ith  Linear P hase

T h e  num ber  of a r i thm etic  opera tions  required to  implement the  filters described in E qua­

tions (2.4) and (2.5) can be fu rthe r  reduced if the  filter is also constra ined to  have linear 

phase. If the  filter's frequency response has linear phase, the  filter's phase. has the

form #(fJ^ )  =  -  cu where N  is the  length of the  filter’s impulse response. T hus ,  the

phase samples. 6{k) .  can be expressed as

0 ( k )  =  - 2

I t  can be shown [1] th a t  for a  linear phase filter of length iV, where N  is even, =  0

which implies th a t

H{ N/ ' 2 )  = 0 when N  is even .

F rom the  expression for the  phase samples,

o s { 9 ( k ) )  =  ( - l ) * ’co.s .c o s ( 2 .6 )



Resonator 1

Resonator 2

Resonator M  ,

H(0)/N

4

12

output

Figure 2.3a; T ype  1 frequency sampling filter with linear phase (N even) 

S u bs t i tu t ing  E quat ion  (2.6) and  the  linear phase properties into E quat ions (2.4) and  (2.-5)

H( = ) =
1 —  r,.V .-A -

A"
//(O) Ml

1 -

-l)*2 |E (A ')|coa(^ t)(l- 1 1

k=\ 1 -  2 c o s { ^ h ) r : - ^  + ».2 - —  ’2

where M i  = { N / 2 )  — 1 when N  is even, and  M i  =  { N  — l ) / 2  when N  is odd.

T h e  s tru c tu re  of  a frequency sampling filter with a  real impulse response and  linear 

phase is shown in Fig. 2.3a. T h e  s t ru c tu re  of the  A;th resona to r  is shown in Fig. 2.3b. Fig. 

2.3b shows th a t  the  k t h  resona to r  requires 2 real adds and  3 real multiplies per  o u tp u t  

sample. Hence, th e  filter requires approxim ate ly  3 M i multiplies per o u tp u t  sam ple and 

3 .1/1 adds per  o u tp u t  sample. This s t ru c tu re  represents a  frequency sam pling filter requiring 

fewer adds and  multiplies th a n  the  previously discussed s t ruc tu re s  in Figs. 2.1 and  2.2.

2.2 T y p e  2 F requency S am p lin g  F ilters

.A. T y p e  1 frequency sampling filter in te rpo lates  a  frequency response th ro u g h  a  set of .V 

equally spaced frequency samples taken  from the  frequency range [0,2rr) s ta r t in g  a t  u; =  0. 

A  T y p e  2 frequency sampling filter in te rpo lates  a  frequency response, th rough  a  set of .V 

equally spaced frequency samples taken  from the  range [ 0 .2 - ) ,  s ta r t in g  a t  u; =  y .  Thus.
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input + A(k) output

 ̂ ^2rcos{2nklN )

' where A(k) = (-1) 2(\H(k)\/N)cos( Kk/N)

Figure 2.3b: S truc tu re  of the  A-th resonator ,  in Fig. 2.3a.

the  frequency samples. H{ k ) .  are related to  the  filter's system function by

H ( k )  = for k  G .4.

.An impulse response of length A' can be ob ta ined  from the  frequency response samples by 

using the  relationship.

.v - i

k=0

S u bs t i tu t ing  this expression for h{n)  in to  Equation  2.1,

i V - l

H ( z )  =  E
n=0 A~0

In terchanging  the  orders o f  sum m ation  and  sum m ing up over the  n index.

H U
1 +  z - N  -V -1 H { k )

(•2 .8 )

E quation  (2.8) has the  form of  L agrange’s in terpolation  formula. T he  complex 

polynomial in te rpola tes  the  frequency response th rough  a set of points H { z )  where r  =
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input output

r7.

H(om

Figure 2.4: S tru c tu re  of a  T ype  2 frequency sampling filter.

f j  —(t+ô) for A- 6 .4. Similar to  the  T ype  1 frequency sampling filter described in Equation  

(2.2). the  filter described by E quat ion  (2.8) can be realized using a cascade of a comb filter, 

which has .V zeros and  A' complex resonators,  which have poles th a t  occur at the  zeros of 

the  comb filter.

To prevent instability  in the  filter, the  poles o f  all the  resonators  can be moved within 

the  unit circle by replacing z~^  with r s ~ '  where | r |  <  1 in the  filter equation. Therefore 

the  system  function of a  T ype  2 frequency sampling filter can be w ri t ten  as.

H { z )  =
1 +  r .V .- jV  .v - i H{ k )

N
(2.9)

Fig. 2.4 shows a  block d iagram  which can be used to  im plem ent the  frequency 

sam pling filter described in E quat ion  (2.9). T h e  filter requires approxim ate ly  SA' real 

multiplies and  8 N  — 1 real adds per o u tp u t  sample.

2.2.1 T yp e 2 Frequency Sam pling F ilters W ith  R eal Im p ulse R esponse

.A. T y p e  2 frequency sampling filter can be im plem ented  w ithou t complex a r i thm etic  if its 

impulse response is real. If the  impulse response of the  filter is real,  it.s frequency samples



15

Resonator 0

Resonator 1
input

output
Resonator M 2

Figure 2.5a: T ype  2 frequency sampling filter w ith  a real impulse response!N even), 

have the  property.

which implies th a t

and

H { k )  = H - { N  -  l - k )

e{k) = - e { N  -  1 -  k).

S u bs t i tu t ing  this cons tra in t  in to  E quat ion  (2.9). the  system  function of  a  T y p e  2 frequency 

sam pling filter w ith  a  real impulse response of  length N  where N  is even can be w ri t ten  as

H(=)  = 1 +  r
N

^  2 |g(fc)|{co5(^(fc)) -  r z - h o s [ e ( k )  -  1)]}
^  l - 2 c o s [ ^ ( / : + i ) ] r 3 - i  +  r 2 r - 2

( 2 . 1 0 )

where M 2 = (Nl ' 2)  — 1. W hen  N  is odd,

H [ z )  =
1 +

g  2 |E (A ) |{ c o a ( 6 ( t ) ) -  r z - ' c o # / ; )  -  +  1)]}

t=0 1 -  2 c o s [ ^ ( k  +1  \1 -  — 1 _L r 'Z  — 2
( 2 . 1 1 )

where d /2  =  (iV -  3 ) /2 .

.A. block d iagram  describing Equation  (2.10) is shown in Fig. 2.5. Fig. 2.5b shows
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2m (k)\IN )cos [ e (k ) l  

 >  —
input output

\^ co sl2 n (k + ll2 )IN I

h V e — < --------
% 2(\H (k)\IN )cos {e(k)-l2 ïï(k+I/2)/NI J

Figure 2.5b; S tru c tu re  of the  &th resona to r ,  where k =  0 to  . i / i .

the  s t ru c tu re  of the  &th resonator .  T h e  filter described by E quat ion  (2.10) can be realized 

by a  comb filter in cascade w ith  M-z +  1 resonators. If A' is odd. the  filter has a  resonator

due to  the te rm  in parallel with th e  o the r  resonators.

Each resona to r  in Fig. 2.5b requires 3 real adds and  4 real multiplies per o u tp u t  

sample. Hence, the  filter requires approx im ate ly  4 A/2  real adds and  4 A/2  real multiplies per 

o u tp u t  sample.

2.2 .2  T yp e 2 Frequency Sam pling F ilters W ith  Linear P hase

T he  num ber  of a r i thm etic  opera tions  required to  realize the  filters described in Equations 

(2.10) and  (2.11) can be fu rthe r  reduced if th e  filter is also constra ined  to  have linear phase.

T he  phase samples, 6{k) ,  for the  linear phase filter can be expressed as

6{k)  =  —
A' -  1 (2.1 2)

Using equation  (2.12),

C03[#(&)] =  { - i f  s in
i i h ï )

and

cos =  { - I f  s i n



input

Resonator 0

Resonator I

— — ^ 0 - ^  

— T t J  — | T | > J

Resonator M , M ± )
output

Figure 2.6a: T y p e  2 frequency sampling filter with linear phasefX  even).

input A(k)
> ■ >

( ± H -
j  ̂ 2 r  sin [2 ji(k+ l/2 )/N

where A(k) =  (-1) 2 sin (k+I/2 )l (\H(k)\/N)

Figure 2.6b: S tru c tu re  of the  A'th resonator ,  in Fig. 2.6a.

S u bs t i tu t ing  these relationships into the  E quat ions (2.10) and  (2.11) yields

1 +  r ^ z - ^  l j ^ ( - l ) >^ 2 \ H{k ] \ s i n [ ^ [ k  +  ^)](1 +  , ; - ' )

V 1 ^  1 -  2c£is[ ^ (  A- +  i  ) ] r z - i  +  F -c - -
(2.1.3)

H { z ]  =
1 +  ?■'' 2 

T f

A '. - . V ^ ( V )  ^  (-l)^ -2 |fy (A ) | .s /u [^(A  +  i ) ] ( l  +  r . - M | ,
1 +  r z - i  “  1 -  2co.s[^(A +  5)];-2-^ +  r'-2-'^

2.14)

where d/o =  (.V/2) — 1 when .V is even, and  A/o =  (-V — 3 ) /2  when .V is odd.

Fig. 2.6 shows the  s t ru c tu re  of the  filter described by E quat ion  (2.13). T he  s tru c tu re
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of th e  Ath resona to r  is shown in Fig. 2.6b. Each resonator  requires 2 real adds and 3 real 

multiplies per  o u tp u t  sample. T he  filter in Fig. 2.6 requires approxim ate ly  3.1A real adds 

and  3 .1/2  real multiplies per  ou tpu t sample.

2.3 P ro p er tie s  O f F requency Sam p lin g  F ilters

Under certain  circumstances, frequency sampling s truc tu res  are more efficient th a n  direct 

convolution s t ruc tu res .  For a  frequency selective filter, the  frequency samples in the  stop 

band  can be set to  zero. If only K  of  the  filter's frequency samples are nonzero, then only 

A of  the  filler's resonators  are  required since the pa ths  along which H { k )  is zero need not 

be realized. If a filter has nonlinear phase, a  direct convolution im plem enta tion  of the  filter 

requires approxim ate ly  .V — 1 adds and .V multiplies per o u tp u t  sample to  implement the 

filter. .A. corresponding frequency sampling s t ru c tu re  requires 4 A real adds and  4 A' real 

multiplies per  o u tp u t  sample. Hence, for a  nonlinear phase FIR filter, a frequency sampling 

s t ru c tu re  will be more efficient th a n  a  direct convolution s tru c tu re  when 4 A' <  ,V or A' <

Linear phase frequency sam pling filter s truc tu res  which have an  impulse response 

of  length ,V require approx im ate ly  3A' adds and 3 A' multiplies per  o u tp u t  sample, .A linear 

phase direct convolution s t ru c tu re  requires approxim ate ly  ^  multiplies and  .V adds per 

o u tp u t  sample. If A' of the  frequency sampling filter’s frequency samples are  nonzero and 

we assum e th a t  multiplies are  com puta t ional ly  more complex to  perform th a n  adds ,  then 

a  frequency sam pling s tru c tu re  will be m ore efficient th a n  a  direct convolution s tru c tu re  

when 3A' <  . j  o r  K  < A lthough  this analysis m ay not be precise, it gives an indication 

of  applications where frequency sampling filters are more efficient th a n  direct convolution 

filters.

Direct convolution im plem enta tions can be easily pipelined because of their  feed 

forward s t ruc tu re .  ' Frequency sam pling  filters canno t be easily pipelined because of  the  

single delay feedback p a th  in the  recursive s t ruc tu res  in the  resonators. T h e  presence of 

unit delays in the  feedback p a th  of each resona to r  requires the  previous o u tp u t  sample to  

be com puted  before the  next o u tp u t  sam ple can be com puted . This prevents the  filter from
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being pipelined.

2.4 C ou p led  S ta te  Space S tru ctu res U sed  To R ea lize  Fre­

q u en cy  Sam p lin g  F ilters

In this section, the  s ta te  space represen ta tion  of a  frequency sampling filter’s resonators 

is discussed. In addition  to  inpu t and  o u tp u t  variables, s ta te  space s truc tu re s  involve an 

additional set of variables called s ta te  variables. M a them atica l  equations describing the 

system , its input and  its o u tp u t  are divided into two par ts ,  a set of equations relating the 

s ta te  variables to  the  input and  a  set of equations relating the  s ta te  variables and the current 

input to  the  o u tp u t .

T he  system  function of a  T ype 1 frequency sampling filter is given in Equation  (2.3). 

T h e  system  function of the  Ath resonator  can be w ri tten  as

Hk( z )  =
Ski-
X { z )

where S' k(z)  is the  c transform  of the  o u tp u t  of the  Ath resonator  and  -V(r) is the r  transform  

of the  input to  the  resonators. If .V is even, the  o u tp u t  I ' ( r )  of the  filter can be expressed 

in te rm s of S' k(z)  as

;V -1

¥ { z )  =  S'o(:) + 5'.v/2(-) + XI Sk{ z )
k=i . k^4

where 6'o(z) and  5jV/2(~) are  the  o u tp u ts  of the  resonators corresponding to  the  frequency 

samples H ( 0 )  and  H ( N / 2 ) ,  respectively. If the filter has a  real impulse response, then 

H ( k )  — H ‘ { X  — A) and  th e  o u tp u t  y ( z )  of th e  filter can be w ri t ten  as

n = )  =
A/, H( k)  yA H^j k) +



2 0

//(O) H i N j - l )  
+ .Y (2)

A/i ,\/i
X2 ' Â'( -  ) +  XZ +  '% +  '  ̂A'/2
A:=l A*=:I

where .\/i  =  ( A '/2 ) — 1. If .V is odd . the  H ( S j' I) te rm  does not exist, and .\/i =  (.V — l ) / 2 .  

Sk[ z )  is given as

Sk(=)  =
H ( k ) X ( z )

1 — e^^N^rz~'^

Taking the  inverse 2  t ransfo rm  of E quat ion  (2.15),

Sk(n)  = e^ ' N^rsk i n  -  1} + H ( k ) x ( n ) .

Sk(n)  can th e n  be defined in te rm s  of the  s ta te  variables, u i ( n )  and  ugfu). as

Sk(n)  = vi [n)  +  jL'2 (n)

(2.15)

(2.16)

rcos  ( ' ^ k \  +  j r s i n  ( ^ k [üi( n — 1 ) +  j v 2 ( n — 1 )] +  

Re[H( k) ]  + j I m [ H [ k ) ]

where the  real p a r t  o f  H { k )  is Re[H( k) ]  and its im aginary p ar t  is I m[ H{ k ) ] .  In m atr ix  

form, these s ta te  equations can be w ritten  as

i ' l in)

V2{n)

r c o s i ^ k )  - r s i i i { j ^ k )  

r. sin{' j^k) r c o s { ' ^ k )

L'lin -  1 ) Re[H( k]]
-f

Coin -  1) I i n[H(k)]

,v{ n ]
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If we let

l ' t ( - )  =  Sk( z]  +  S ’!^{z) for k  =  I . 2 ...A/1

then
A/,

y ( - )  =  X Z  ¥ k { z )  +  'S'o(z)  +  5 \ y 2 ( - ) -
k = l

T he o u tp u t  equation  can be w ritten  as

U k i n )  =  ÿ k { n )  +  s l . ( n )

=  t>l {>t ) +  j L ' 2 { l l )  +  I' l i  I t ) -  j C 2 { n )

2 0

where v (n )  is the  vector of s ta te  variables.

Since coupled s ta te  space s truc tu res  exhibit lower coefficient sensitivity th a n  direct 

form s truc tu res  [10]. they can be used to  implement the  resonators  in the  frequency sampling 

filters to  reduce the  effect of finite word lengths in digital filters.

2.5 Sam p lin g  R a te  R ed u ctio n  In F requency S am p lin g  F il­

ters

After narrow band  filtering, a  signal contains fewer frequencies th a n  it did before filtering. 

If  the  original signal and  the  filtered signal are  sam pled a t  the  Nyquist ra te  o f  the  original 

signal,  then the  Nyquist r a te  o f  the  filtered signal is exceeded. T h e  system  can be m ade more 

efficient if the  sampling frequency of the  filtered signal is reduced. T h e  process of  sampling 

ra te  reduction is called decimation. Fig. 2.8 represents a  block d iagram  of a system  where 

the  o u tp u t  signal is dec im ated  by a  factor o f  D.  This system  is called a  m u lt ira te  system



•22

input x(n)

. s i n ( ^  k )

c o s ( ^  k )

Figure 2.7: Coupled s ta te  space s t ru c tu re  for the  t t h  resonator  of a  T ype  1 frequency 
sampling filter.

x(n) y(n)

narrow band  
filte r

decim ator

Figure 2.8: Block d iagram  of  a  m ult ira te  filtering process.

because th e  signals associated with  the  system  are sampled a t  different frequencies.

W hen a  signal is dec im ated  by a  factor  of D.  every £*th sam ple is preserved, and  

the  in term ed ia te  D  — I samples are  discarded. If the  dec im ator  can be successfully moved 

tow ard  the  inpu t side of  the  filter, a  significant com pu ta t ional  saving can be achieved [8]. 

Fig. 2.9. i llustrates a  few rules th a t  can be used to  move the  dec im ator  in a  fiowgraph 

[11]. For example , if a  direct convolution s t ru c tu re  is decim ated by a factor  of D.  the 

com pu ta t iona l  requirem ent of the  filter can be reduced by moving the  dec im ator  toward 

the  inpu t side of the  filter as shown in Fig. 2.10. This reduces the  num ber  of  com puta t ions  

per o u tp u t  sample, and  the  adders and  multipliers in the  filter can o pera te  D  times slower 

while achieving the  sam e th roughpu t .

If the  o u tp u t  of a  frequency sampling filter is dec im ated by a factor  of D.  the  presence 

of unit delays in the  feedback p a th  of each resonator  prevent the  dec im ato r  from being moved 

tow ard  the  input side of the filter. Hence, for frequency sampling filters li ttle com puta t ional  

saving is achieved l)y decim ating the  o u tp u t .  Table 2.1 shows the  app rox im ate  num ber of
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■Mx(n) y(n)x(n)

x l(n ) y(n) y(n)

x2(n)

x2(n)

Figure 2.9: Rules used to  move a dec im ato r  in a flow graph.

F ilter  for even .V Nonlinear phase 
real impulse response

Linear phase
real impulse response

Direct convolution filter N D X I 2 D
T ype 1 frequency sampling filter ( A K + D D (3 A" +  2 ) 0
T ype 2 frequency sampling filter ( 4 A ' - f l ) j 9 (3A + 2 ) D

Table 2.1: Multiplies required per  o u tp u t  sam ple by direct convolution and  frequency sa m ­
pling filter s t ruc tu res  when their  o u tp u ts  are dec im ated  by a  fac tor  o f  D.

multiplies required per  o u tp u t  sample by a  direct convolution s tru c tu re  and  by frequency 

sam pling s t ru c tu re s  where only K  of  the  frequency samples are nonzero, and  their  o u tp u t  

is dec im ated by a  factor of D.  Table 2.2 shows the  app rox im ate  num ber  of multiplies per 

o u tp u t  sample required if th e  dec im ato r  is moved tow ard  the  inpu t side of  the  filter.

Tables 2.1 and  2.2 il lus tra te  th a t  the  frequency sampling filters discussed in this 

chap te r  are not well suited for decimation. In the  next chap te r ,  a  class o f  frequency sampling 

filters is developed with  only powers of in the  denom inato rs  o f  the ir  system  functions. 

These filters are  well su ited  for sam pling ra te  reduction by a factor of D.
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V h(2)
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 >

F igure 2.10: F iowgraph for a  direct convolution s t ru c tu re  with  the  o u tp u t  decim ated by a 
factor  of D.

M ultira te  filter for even N Nonlinear phase 
real impulse response

Linear phase
real impulse response

Direct convolution filter N N / 2
T ype 1 frequency sampling filter (2D  +  2)A' +  D ( 2D  +  1)A  +  2 D
T ype 2 frequency sampling filter ( 2D + -2)K + D ( 2D + \ ) K  + -2D

Table 2.2: Multiplies required per  o u tp u t  sam ple if the  dec im ator  in the  s t ruc tu re s  in in 
Table 2.1 is moved tow ard  th e  inpu t.



C h ap ter  3

P ip elin ed  and M ultirate  

Frequency Sam pling F ilters

Pipelining is an im plem enta tion  technique where multiple instructions are overlapped in 

execution like in an assembly line. A filter can be pipelined by adding  registers to  the 

multipliers and  adders in the  filter. T he  frequency sampling filters discussed in C h a p te r  2 

have unit delays in the  feedback p a th  of each resonator.  For each of these resonators, the  

o u tp u t  can be com puted  only if all o f  the  previous o u tp u t  samples have been com puted . 

Therefore, these s t ruc tu re s  cannot be pipelined and  they are not well suited for sampling 

ra te  reduction a t  the  o u tp u t .

In this chapter,  a  frequency sampling filter system  function is developed which has 

only te rm s in the  denom inator.  This filter can be pipelined, and it is also well suited 

for decim ation a t  the  o u tp u t .  W hen decim ating by a factor  of D.  the  dec im ator  can be 

pushed tow ard  the  input side to  reduce the  com puta t ional  requirem ents of the  filter.

2.5
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input output

Resonator (N-I)

Resonator 2

Resonator I

Figure 3.1a: Pipelined T ype  I frequency sampling filter.

3.1 P ip e lin e d  T yp e  1 F requency Sam p lin g  F ilter

T h e  .system function of a  T ype  1 frequency sampling filter is given in E quat ion  (2.3) as

From the  rules of geom etric  progression.

D - l

1=0

which implies th a t

S u bs t i tu t ing  E quat ion  (3.1) in to  E quat ion  (2.3).

t=0 1 — e-' .V

(3.1)

(3.2)

T h e  block d iag ram  for the  filter described in E quat ion  (3.2) is shown in Fig. 3.1a 

where the  s t ru c tu re  of the  t t h  resona to r  is shown in Fig. 3.1b. T he  system function of the 

filter given in Equat ion  (3.2) shows th a t  the  filter can be realized by a comb filter with .V



input a(k) output

where a (k )=  H(k)/N  

Figure 3.1b: S truc tu re  of the  k t h  resonator  in Fig. 3.1a.

zeros in cascade with .V parallel resonators. Each resonator  has D  poles and  D  — I zeros. 

T he  resona to r  shown in Fig. 3.1b reciuires D  + I complex multiplies and  D  complex adds 

per  o u tp u t  sample. Hence, the  filter requires approxim ate ly  {-ID +  4):V +  I real multiplies 

and  { - W  +  4)A' — 1 real adds per o u tp u t  sample.

Fig. 3.1a represents a  filter with a  significant increase in the  hardw are  com pared  to 

the  filter shown in Fig. 2.1. However, if we assume th a t  multiplies are the  only source of 

bottleneck involved in the  im plem enta tion  of the  filter and require less th a n  D  tim e periods 

to  execute, then the  presence of only delays of  D  in the  feedback pa th s  makes it possible to  

pipeline this filter resulting in an improved th roughpu t .

M ultirate Type 1 Frequency Sampling Filter

T he system  function in E quat ion  (3.2) is also well suited for m u lt i ra te  applications. 

Consider the  filter described by E quat ion  (3.2) where the  sampling ra te  of the  o u tp u t  signal 

is reduced by a factor o f  D.  In stead  of com puting  all the  o u tp u t  samples, a  com pu ta t ional 

reduction can be achieved by moving the  dec im ator  tow ard  the  input side of the  filter.
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input outputa(k)

D-i J2n(D-I)k W
a(k)

a(k) = H(k)IN

Figure 3.2a: T h e  A;th resona to r  of a m ult ira te  T ype  1 frequency .sampling filter.

input outputa(k)

am

D-i J2n(D-l)k W
a(k)

a(k) = H(k)IN

Figure 3.2b: S tru c tu re  of th e  t t h  resonator ,  w ith  th e  dec im ato r  moved tow ards the  input 
side.
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Fig. 3.2a represents a  Direct Form 1 s t ru c tu re  of the  resonator  in Fig. 3.1b, where 

the  o u tp u t  is dec im ated  by a  factor of D.  Fig. 3.2b represents an  equivalent s t ru c tu re  with 

the  dec im ator  moved towards the  input side of the  filter. Fig. 3.2b requires D  times fewer 

adds and  multiplies per  o u tp u t  sam ple th a n  the  s tru c tu re  in Fig. 3.2a. T hus ,  Fig. 3.2b 

represents a  frequency sampling filter s t ru c tu re  with a  reduced com pu ta t iona l  requirem ent.

3.1 .1  P ip e lin ed  T yp e 1 Frequency Sam pling F ilter  W ith  R eal Im pulse  

R esponse

T h e  frequency sampling filter described by E quat ion  (3.2) can be implem ented w ithout 

complex ar i thm etic  if it has  a real impulse response. T h e  system  function in E quat ion  (3.2) 

can be expressed as

_L ' ' /  L4-I i ; - n  _ n . _  n  '1 — 1 — f J “D

when -V is even. If the  filter has a  real impulse response, the  frequency samples have the 

property . H ( k )  = H “{ N  — k)  which implies

l/f(fc)l = lil(.V-fc)l

and

e{k)  = - 9 { N  - k ) .

S u bs t i tu t ing  these relationships into the  system  function of the  filter.

-  N  \  l - r ^ z - D  i - e J ^ D r D . - D
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Resonator 0

Resonator I
input

output
Resonator M  ,+ l

Figure 3.3a: Pipelined type  1 frequency sampling filter with real impulse response.

Ml

E
t-=i

+ 1 _  e-j4rfcD ,,D--D

I  1 — r ^ z ~ ^  1 — eJ'D j.D ~-D

Ml
Y . 2 \ H ( k ) \
k=l

E H o' (^o$(e(k) + ' ^ l k ) { r :  *)'
1 -  2 c o s (  ^ k D ) r ^ : ~ ^  +  r - D ~ - 2 D

+

1 -  2 c o s ( ^ k D ) r ^ : ~ ^  +
(3.3)

where M \  =  (.V/2) — 1 if N  is even. If A' is odd .  then  the  filter's system  function does not 

have a  H ( y / 2 )  te rm  and  A/j =  (jV -  l ) / 2 .

T he  system  function of  the  filter described in E quat ion  (3.3) shows th a t  it consists 

o f  a  comb filter in cascade with  M i  +  2 parallel resonators.  Fig. 3.3a shows a  block diagram  

of the  filter described by E quat ion  (3.3) where the  s t ru c tu re  of resonators  I to  M i  is shown 

in Fig. 3.3b. Each of  the  resonators ,  1 to  M i ,  requires 2 D  +  2 real multiplies and  2 D  +  1 

real adds per o u tp u t  sample. Figs. 3.3c and  3.3d show the  block d iagram s for resona to r  0. 

and  resona to r  N / 2  respectively. Each of these resonators  require D  real adds and  £> +  1 real 

multiplies per o u tp u t  sample. Hence, th e  filter requires approxim ate ly  ( 2D  +  2)( M i  +  1 ) +  1 

real multiplies and  ( 2D + l ) (A /i  +  1) +  M i  real adds per o u tp u t  sample.

Fig 3.3 represents a  frequency sampling filter w ith  a  significant increase in the  hard-
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input output

(2D-I)

2 D

a.(k) = r ‘ cos(B (k )+ 2n ik /N  ) 2lH(k)\/N  

where i=0,I...2D -I

Figure 3.3b: S tru c tu re  of  the  resonators  1 to  M i ,  in Fig. 3.3a

outputinput

D - I

Figure 3.3c: S truc tu re  of resona to r  0. in Fig. 3.3a
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input H(NI2)IN output 

 >  >

re-

re'

Figure 3.3d: S truc tu re  of  the  resonator  iV/2, in Fig. 3.3a

ware required to  implement the  filter, com pared to  the  frequency sam pling filter in Fig. 2.2. 

However, the  filter s t ru c tu re  can be pipelined because only delays of D  a re  in the  feedback 

pa th s  of the filter. If we assume th a t  the  multipliers are the  only source of bottleneck in 

pipelining the  filter and if the  multiplier takes less th a n  D  tim e periods to  execute, then 

the  filter s t ru c tu re  in Fig. 3.3 can be pipelined.

M ultirate Type 1 Frequency Sampling Filter W ith a Real Impulse Response

If the  o u tp u t  of the  filter described by Equation  (3.3) is decim ated by a  factor of 

D.  a  significant com pu ta t iona l  saving can be achieved by moving the  dec im ato r  toward the 

input side of  the  filter. Fig. 3.4a represents a  Direct Form 1 s t ru c tu re  for resonators 1 to 

M \  where the  o u tp u t  of each resona to r  is decim ated by a  factor  of D.  Fig. 3.4b represents 

an equivalent s t ru c tu re  with  the  dec im ator  moved tow ard  the  input side of the  filter. T he  

s t ru c tu re  in Fig. 3 .4a requires D  times as m any adds and  multiplies per  o u tp u t  sample 

as the  s t ru c tu re  in Fig. 3.4b. For an  equivalent th ro u g h p u t ,  the  s tru c tu re  shown in Fig. 

3.3b requires adders and  multipliers th a t  are D  times faster th a n  the  corresponding units 

in Fig. 3.4b. Thus,  the  filter s t ru c tu re  shown in Fig. 3.4b represents a filter with a  reduced 

co m pu ta t iona l  requirement.
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input output

(D-1)

2D

/ T 2 r ’c o s f  2 s .  kD )<' ff r~

(2D-D m

a ^ ( k ) =  r  c o s ( e ( k )  + 2 n i k l N )  2 \H (k ) \ /N  

w h e re  i= 0 ,I .. .  2D -1

Figure 3.4a: Direct Form 1 s t ru c tu re  of the  A;th resonator  of a m u lt i ra te  T ype  1 frequency 
sampling filter with real impulse response for k =  1 to  M\ .

o u tp u tin p u t

.2D

a . ( k ) ^ r  c o s ( Q ( k ) + 2 K ik lN )  2 \ I I ( k m  

w h e re  i - 0 , I . . .2 D - I

Figure 3.4b: S tru c tu re  of  the  A-th resona to r  with the dec im ator  moved tow ards the  input 
side.
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3 .1 .2  P ip e lin ed  T yp e  1 Linear P hase Frequency Sam pling F ilter

T he phase. of a  F IR  linear phase filter th a t  has an  impulse response of length .V

can be expressed as

• —uj
iV -  I 

2

T hus,  the  phase samples for a  l inear phase T ype  1 frequency sam pling filter are

e(h]  =  -
iV -  1

2

It can be shown [1] th a t  for a  T ype  1 linear phase filter o f  length  N .  H{ N/ ' 2 )  = 0. From 

the  expression for th e  phase samples,

cos  ( d{k)  +  =  ( - l ) ^ 'c o s (3.4)

ind

cos  ( 6{k)  — ' ^ I k  I = ( 3 . 5 1

S ubs t i tu t ing  E quat ions (3.4) and  (3..5) into the  E quat ion  (3.3), an  expression for the  system 

function of a  pipelined linear phase frequency sampling filter can be obta ined .

A- \  1 - . D . - D

+  ^ 2 |E f ( A - ) |  -----------------------       — '-----------------------
k=l

- r

1 -  2 co s{  ' ^ k D ) r D z - D  +  , . 2 D  ~ - 2 D

1 — 2 c o s { ^ k D ) r ^  z ~ ^  +
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Figure 3.5a: Pipelined T y p e  1 frequency sampling filter w ith  linear phase.

+  -
1 -  r ^ z ~ ^

(3.6)

where . l / i  =  (.V/2) — 1 if -V is even and  M i =  (.V — i ) / 2  if N  is odd.

T h e  s t ru c tu re  of the  frequency sam pling filter described by the  system function in 

E quat ion  (3.6) is shown in Fig. 3.5a where Fig. 3.5b shows the  s t ru c tu re  of resonators  1 

th rough  M l .  T h e  s t ru c tu re  of resonator  0 is shown in Fig. 3.3c. Each of these resonators 

requires '2D +  2 real multiplies and  '2D +  1 real adds per  o u tp u t  sample. Hence, the  filter 

requires {2D  +  2 )M i + D  + '2 real multiplies and  {2D  +  2 )M i +  D  real adds per o u tp u t  

sample.

Fig 3.5a represents a  frequency sampling s t ru c tu re  with a significant increase in 

required hardw are  com pared  to  the  s t ru c tu re  in Fig. 2.3a. However, this filter can be 

pipelined because only delays of D  are in the  feedback p a th s  of  the  resonators.

M ultirate Type 1 Frequency Sampling Filter W ith Linear Phase

After frequency selective filtering, the  o u tp u t  of the  frequency sampling filter can be 

dec im ated.  Fig. 3.6a represents a  Direct Form I s t ru c tu re  used to implement the  resonators 

1 th rough  M l  of  the  filter, described by Equation  (3.6). with the  o u tp u t  dec im ated  by a 

factor of D.  To achieve com pu ta t ional  reduction, the  dec im ator  is moved tow ard  the  input 

side of the  filter. Fig. 3.6b represents an  equivalent s t ru c tu re  with the  dec im ato r  moved
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input output

M+>

2D

afk)=  r  (.1) cas((2M)k n //^ )2 m k )m  for UO toD-2. 

afk) = . r'(-l) iosll2(2D-l-0+Uk niN}2\H(k)\IN forl= D lo2D -l

Figure 3.5b: S tru c tu re  of resonators  1 to  jU i , shown In Fig. 3.5a

tow ard  the  input side. Fig. 3.6b represents  a  s t ru c tu re  with  a  significant com puta t ional  

saving over the s t ru c tu re  in Fig. 3.6a

3 .1 .3  P rop erties  o f M u ltira te  T yp e 1 Frequency Sam pling F ilters

Assuming th a t  only K  of the  frequency samples of the  filter are nonzero, a  com parison of 

the  multiplies required per  o u tp u t  sam ple by a direct convolution filter, a T ype  1 frequency 

sampling filter and  a  pipelined T y p e  1 frequency sampling filter is shown in Table 3.1. Table

3.2 shows the  co m pu ta t iona l  requirem ents  o f  the.se filters if their  o u tp u t  is decim ated by a 

factor  o f  D.

Table 3.2 shows th a t  the  system  function of  the  T ype  1 frequency sampling filter, 

developed in this section is more suited for m u lt ira te  systems when com pared  to  the  T ype 

1 frequency sampling filter discussed in C h a p te r  2. T he  linear phase T y p e  1 frequency 

sam pling filter developed in this section with  the  o u tp u t  decim ated by a factor of D  is more
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Figure 3.6a: Direct Form 1 s tru c tu re  for the  A:th resona to r  of a  m u lt ira te  T ype  1 frequency 
sam pling filter with linear phase.
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Figure 3.6b: S tru c tu re  of the  A:th resonator  w ith  the  dec im ato r  moved towards the  input 
side.
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Filter for even A' Nonlinear phase 
real impulse response

Linear phase
real impulse response

Direct convolution filter N .V/2
T y p e  1 frequency AK 3A
sampling filter +  1 + 2

Pipelined T ype  1 frequency (2 D  +  2 ) K (2D  +  2)A‘
sampling filter +  1 +  1

Table 3.1: Multiplies required per  o u tp u t  sample by a  direct convolution filter, a  T ype 1 

frequency sampling filter and  a  pipelined T ype  1 frequency sampling filter (A' is the  num ber 
of nonzero frequency samples, D  > I and  N  is the  length of the  impulse response of  the 
filter).

F ilter  for even .V Nonlinear phase 
real impulse response

Linear phase
real impulse response

Direct convolution filter 
with the  o u tp u t  decim ated

.V .V/2

T y p e  I frequency 
sampling filter with the  
o u tp u t  decimated

(2 D  +  2 )A  
+ D

( 2 D + D K  
+ D

Pipelined T y p e  1

frequency sampling filter with the
o u tp u t  decimated

C2D + 2 ) K  
+ D

12D + 2 ) K  
+ D

Table 3.2: Multiplies required per o u tp u t  sam ple by a direct convolution filter, a T ype 1 
frequency sampling filter and  a  pipelined T ype  1 frequency sampling filter with their  o u tp u ts  
dec im ated  ( D  is the  decim ation ratio . K  is the  num ber of nonzero frequency samples and 
A' is the  length of the  impulse response of the  filter).
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efficient th a n  a linear phase direct convolution filter, when ( 2D + 2 ) K  +  1 <  .V/2 or

A - <  ^
2£) +  2 “  4£) +  4

.A. nonlinear phase Type  1 frequency sampling filter developed in tliis section wi th  the  o u tp u t  

dec im ated  by a factor of D is more efficient th a n  a nonlinear phase direct convolution filler, 

when A" <  77^  •

3.2 P ip e lin e d  T y p e  2 F requency S am p lin g  F ilter

.A T ype 2 frequency sampling filter can be developed similar to  the  T ype  1 frequency 

sampling filter in Section 3.1. T he  system  function of a  T ype  2 frequency sampling filter 

was given in E quat ion  (2.9) as

D-i . 1 _

From the  rules o f  geom etric progression, 

which implies th a t

S ubs t i tu t ing  E quat ion  (3.7) in to  the  E quat ion  (2.9),
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Resonator 0

Resonator I
input output

Resonator (N-1)

Figure 3.7a: P ipelined T ype 2 frequency sampling filter.

input a (k ) output

r e

where a(k) = H(k)/N.

Figure 3.7b: S truc tu re  of the  t t h  resona to r  In Fig. 3.7(a)
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T h e  block d iag ram  of the  filter described in E quat ion  (3.8) is shown in Fig. 3.7a 

where the  s t ru c tu re  of the  fcth resona to r  is shown in Fig. 3.7b. T h e  system  function of the 

filter given in E quat ion  (3.8) consists of a comb filter with .V zeros in cascade with a parallel 

com bination  of .V -  1 resonators. Each of the  resonators  has D  poles and ( D - i )  zeros. 

T h e  resona to r  shown in Fig. 3.7b requires D  + I complex multiplies and  D  complex adds 

per o u tp u t  sam ple . Hence, th e  filter requires approxim ate ly  (4D  -t- 4).V -  1 real adds and 

(■ID +  4).V +  1 multiplies per o u tp u t  sample. If we assum e th a t  multiplies are a t  least D 

times slower th a n  adds ,  the  filter described by Equation  (3.8) can be pipelined because of 

the  presence of only in the  denom inato r  of the  system  function of each resonator.

M ultirate Type 2 Frequency Sampling Filter

A fter narrow band filtering, the  o u tp u t  of the  frequency sam pling filter can be deci­

m a ted .  T he  system function in E quat ion  (3.8) is well suited for m ult ira te  applications where 

the  o u tp u t  is dec im ated  by a fac tor  o f  D.  Instead  of  com puting  all the  o u tp u t  samples, a 

com pu ta t iona l  reduction can be achieved by moving the  dec im ator  tow ard  the  input side 

of the  filter.

Fig. 3 .8a represents a Direct Form 1 s t ru c tu re  for the  resonator  in Fig. 3.7b. Fig. 

3.8b illustrates an  equivalent s t ru c tu re  for the  filter w ith  the  dec im ator  moved tow ards the  

inpu t side of the  filter. To achieve the  sam e th ro u g h p u t ,  the  s t ru c tu re  in Fig. 3.7b needs 

to  have adders and  multipliers th a t  are D  times faster th a n  the  corresponding units  in 

the  s t ru c tu re  in Fig. 3.8b. T hus .  Fig. 3.8b represents a  filter s t ru c tu re  with a reduced 

co m pu ta t iona l  requirem ent com pared  to  the  s t ru c tu re  in Fig. 3.7b.

3.2 .1  P ip e lin ed  T yp e 2 Frequency Sam pling F ilter  W ith  R eal Im pulse  

R esponse

T h e  filter described by E quat ion  (3.8) can be implem ented w ithou t complex a r i thm etic  . if 

the  filter's impulse response is real. T h e  system  function in Equat ion  (3.8) can be expressed
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input a(k) output

r  e

D.U2iz(D.J)(k+l/2)/N

where a(k) = H(k)/N

Figure 3.8a: Direct Form 1 s tru c tu re  for the  Azth resona to r  of a  m u lt ira te  T y p e  2 frequency 
sam pling  filter.

input output

re
■D

D I J2K(D-l)(k+l/2)/N „, 
r  e  a(k)

where a(k) = H (k)/N

Figure 3.8b: S tru c tu re  of the  A’th  resonator  with the  dec im ator  moved tow ards the  input 
side.



4 3
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V —1
H { z )  =

N
h z - ^ ) ‘

N - l

+ E
i-=#

1 _  g jjf(k+ ^)D ^D ~-D
(3.9)

w here A' is even. If a  T ype 2 filter is constra ined  to  have a  real im pulse response, then  its 

frequency response sam ples have the  property ,

!#(& )! =  | # ( . V - 1 - 6 ) 1

and

9 ( 6 )  =  - 9 ( . V -  1 - 6 )

S u b stitu tin g  these rela tionsh ips in to  E quation  (3 .9).

f f ( z )  =
iV E

Ar=0

- Id

+

1 +  r N ^ - N  Ml

N E 2 i ^ ( ^ ’)i
k=0

E/=o* coa (9 (6 ) +  ^ / ( 6  -t- i )  r z  ‘

1 -  2 c o . s ( - t t ( 6  +  \  ) D ) r ^ z ~ ' ^  - \ -  r ' ^ D ~ - 2 D

E ,= o ' (9 (6 ) +  ^ ( D  -  / )(6 -f i ) )  ( r : - i ) ^ + '

1 -  2cos(4^(6-f i)£))r^c-^  +
(3.10)

w here Mo = (iV /2) -  1.

A block d iag ram  for th e  filter described in E quation  (3.10) is shown in Fig. 3.9 where 

a  s tru c tu re  of resonato rs 0 to  M 2 is show n in F ig . 3.9b. If N  is odd , M 2 = (-Y —3 ) /2 . and the
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Resonator 0

Resonator I
input

output

Resonator M

F igure 4.9a: P ipelined T ype  2 frequency sam pling filter w ith real im pulse response.

filter system  function  has a  te rm  due to  th e  frequency sam ple, Each of these res­

o n a to rs  requires 2 D +  2 real m ultiplies and  2 D  4-1 real adds per o u tp u t sam ple. Hence, the 

filter requires app rox im ate ly  (2 D 4 -2 )(M g -f-1) 4-1 real m ultiplies and (2£>4-1 )(4 /24-1 ) 4 -.U2 

real adds per o u tp u t sam ple. T he h ardw are  requirem ent of the  filter in Fig. 3 .9a  is m ore 

th a n  th a t  in Fig. 2.4a. However, th e  s tru c tu re  in Fig. 3 .9a can be pipelined.

M ultirate Type 2 Frequency Sampling Filter W ith Real Impulse Response

T h e filter described by E quation  (3.10) is well su ited  for sam pling ra te  reduction  by 

a fac to r of D  a t th e  o u tp u t.  Fig. 3 .10a represen ts D irect Form  1 s tru c tu re  for resonators 

1 to  Mo  w here the  o u tp u t o f each resonato r is decim ated by a fac to r o f D.  To achieve 

co m p u ta tio n al saving, the  d ec im ato r should  be moved tow ard  the inpu t side o f the  filter. 

Fig. 3.10b represen ts an  equivalent s tru c tu re  w ith  the  dec im ato r moved tow ard  the  inpu t 

side of th e  filter. T his s tru c tu re  requires fewer adds and m ultiplies per o u tp u t sam ple th an  

th e  s tru c tu re  in Fig. 3.10a.

3 .2 .2  P ip e lin ed  T yp e 2 Linear P hase Frequency Sam pling F ilter

If a T ype 2 frequency sam pling  filter is constra ined  to  have linear phase, then  the  phase 

sam ples can be w ritten  as

-V -  1
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input output

a,(k)

. r ^ ‘>

a.(k) = r ‘ cos(e(k)+2Ki(k+I/2)/N) 2\H<k)\/N 

where i=0,I...2D-I

Figure 3.9b: S tru c tu re  o f th e  resona to rs  0 to  M 2 in Fig. 3.9a.

in p u t o u tp u t

 >  I D

—

X  2r'cos(^^(k+mD)

'(D-I)

2D

a ^ ( k ) =  r  ‘ C 0 5 ( % ( k ) * 2 t t i ( k * l l 2 j l N ) 2 m k ) \ I N  

w h e re  i= 0 ,î .„  2 D  - I

Figure 3.10a: D irect Form  1 s tru c tu re  for th e  A-th reso n a to r of a  m u ltira te  T ype 2 frequency 
sam pling  filter w ith  real im pulse response.
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input output

2 rcosi ZnDik^-HZ) IS)

(D -I)

20

a^(k)^r co5(Q(k)-¥2iii(k^ll2)IN) 2\H(k)\!N 

where i=0,l...2D-l

F igure 3.10b; S tru c tu re  of th e  fcth reso n a to r w ith  th e  d ec im ato r pushed tow ards th e  inpu t 
side.

T herefore

cos [0(k]  +  — / +  - (3.11)

and

cos
N

(3.12)

S u b s titu tin g  E quations (3.11) an d  (3.12) in E quation  (3.10),

H { z )  =
N k = l

1 -  ■lcOS( ' ^ k D ) T ^ Z - ^  +  7 - 2 0 - - 2 D

1 -  2 c o s ( ^ k D ) r ^ z - ^  +  r'^D~-2D



Resonator 0

Resonator I

input output
Resonator M

F igure 3.11a: P ipelined T ype 2 frequency sam pling  filter w ith  linear phase.

1 +

.V A*=l

'D - i /  1 I

1 -  2 c o s ( ^ k D ) r ^ : ~ ‘̂  +

( r z - ' Y{ ,. .- / ) 2 D - i- /  

1 — 2 c o s ( ^ k D ) r ^  z ~ ^  +  r^D- -2D
(3.13)

w here .V is even and  Mo  =  (A '/2) — 1.

T he s tru c tu re  of the  pipelined frequency sam pling filter described by E quation  (3.12) 

is show n in Fig. 3 .11a w here Fig. 3.11b shows th e  s tru c tu re  o f resonato rs 1 th ro u g h  .\ / i .  

Each of these resonato rs requires 2 D  +  2 real m ultiplies and  2 D  +  1 real adds per o u tp u t 

sam ple. T h e  s tru c tu re  of reso n a to r 0 is show n in Fig. 3.3c. Hence, the filter requires 

( 2D  +  2).1/2 +  £) +  2 real m ultiplies an d  ( 2D  +  2)A/2 +  D  rea l adds per o u tp u t sam ple. T he 

presence of only delays o f D  in th e  feedback p a th s  of each reso n a to r m akes it possible to  

pipeline th e  filter.

M ultirate Type 2 Frequency Sampling Filter W ith Linear Phase

T h e system  function  of th e  filter given in E quation  (3.13) con tains only powers o f z ~ ^  

in th e  denom inato r. T his m akes it well su ited  for sam pling  ra te  reduction  a t the  o u tp u t,  by 

a fac to r o f D.  Fig. 3 .12a shows a  D irect Form  1 s tru c tu re  of resonato rs 0 to  M i  o f th e  filter
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input output

\o-t)

H  < --------------
2  rcos(2n(k+H 2)D JN )

a (k )  =  r  ̂ (.j) ‘‘sin((2l+D  m + H 2 ) /N  ) 21/fW IW  f o r  I -  0 to D-I

a ^ (k )= -  r ‘ ( - I ) ' ‘sin{l2(2D -I-l)+II it(k+I/2)/N ) 2 \H (k> m  fo r l= D to 2 D -I

F igure 3.11b: S tru c tu re  of th e  resona to rs  0 to  M 2 In Fig. 3.11a.
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input

* © — s >

V "  * T

I
L

(2D-1) ( k )

2rcos(^-(k*m)D)

output

g ft) = r  '  (-1)  * s i t t ( ( 2 M ) n ( k + i a ) I N )  2 \H (k )V N  f o r  h O l o  D - I  

a ^ ( k ) =  -  r '  ( -1 )  ' '  s i n ( l 2 I 2 D - l - l ) * i ]  n ( k * l l 2 ) I N }  2 \H (k )) IN  J o r k D t o 2 D - l

F igure 3.12a: M u ltira te  T ype  2 frequency sam pling filter w ith  linear phase.

described by E quation  (3.13) w here the  o u tp u t o f each reso n a to r is dec im ated  by a fac to r 

o f D.  To achieve a  co m p u ta tio n al reduction , th e  dec im ato r should  be m oved tow ard  the 

in p u t side of th e  filter. Fig. 3.12b represen ts an equivalent s tru c tu re  w here th e  dec im ato r 

has been m oved tow ard  th e  in p u t side. Fig. 3.12b represen ts a  resona to r s tru c tu re  w ith  a 

sm aller co m p u ta tio n a l requirem ent com pared  to  the  reso n a to r in Fig. 3.12a.

3 .2 .3  P rop erties  o f M u ltirate  T yp e 2 Frequency Sam pling F ilters

Table 3.3 shows a  com parison o f th e  m ultiplies required  by a  d irect convolution filter, a  

T ype  2 frequency sam pling filter and  a  pipelined T ype  2 frequency sam pling filter. T able 

3.4 shows th e  co m p u ta tio n a l requirem ents o f these filters if th e ir  o u tp u t is dec im ated  by a 

fac to r o f D.

Sim ilar to  th e  T ype 1 frequency sam pling filter developed in Section 3.1. th e  linear 

phase T ype 2 frequency sam pling  filter developed in this section is m ore efficient th a n  a 

linear d irect convolution s tru c tu re  when {2D +  2 )A' +  1 <  .V /2 or

:V
'21? “|- 2 4£)  -f- 4
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input output

- 0

I  ̂ 2  r c o s ( 2 i tD ( k + I /2 )  I N )

(D-I)

ID

a j:k )  = r ‘ ( .1 )  '‘s i n ( ( 2 l + l ) n ( k + i a ) I N )  2 \H (k ) \ /N  f o r l = O l o D - I

a f k ) = -  r  ‘ ( . l ) ^ s i n ( l 2 ( 2 D - I - l ) + l l  K ( k + ll2 ) IN i2 \H (k ) I IN  f o r k D t o 2 D - I  

F igure  3.12b: S tru c tu re  of th e  reso n a to r w ith  th e  dec im ato r pushed tow ards the  inpu t side.

F ilte r for even N N onlinear phase 
real im pulse response

L inear phase
real im pulse response

Direct convolution  filter N jV/2
T ype 2 frequency 4 K 3A'
sam pling  filter +  1 + 2
Pipelined T ype  2 frequency (2£l +  2)A' (2D  +  2)A-
sam pling  filter +  1 +  1

T able 3.3: M ultiplies required per o u tp u t sam ple by T ype 2 frequency sam pling filter and  a 
pipelined T ype 2 frequency sam pling filter (A' is the  num ber o f nonzero frequency sam ples, 
D  > 1 and  A' is the  leng th  o f th e  im pulse response o f the  filter).
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F ilte r for even N N onlinear phase 
real im pulse response

L inear phase
real im pulse response

D irect convolution filter 
w ith  th e  o u tp u t decim ated

N 'V/2

T ype 2 frequency 
sam pling  filter w ith  the  
o u tp u t decim ated

{2D + 2 ) K  
+ D

(2 D 4 - 1)A' 
+ D

Pipelined T ype 2
frequency sam pling  filter w ith  the
o u tp u t decim ated

[2D + 2 ) K  
+ D

{2D + 2 ) K  
+ D

T able 3.4; M ultiplies required per o u tp u t sam ple by T ype  2 frequency sam pling filter and 
a pipelined T ype 2 frequency sam pling filter w ith th e ir  o u tp u ts  decim ated  ( D  is the dec­
im ation  ra tio . K  is the  num ber of nonzero frequency sam ples and .V is the  length  of the 
im pulse response of th e  filter).

A  nonlinear phase T ype 2 frequency sam pling filter developed in this section is m ore efficient 

th a n  a nonlinear d irect convolution s tru c tu re  when K  < -

3.3 E xam ple: A  Low -pass F requency Sam p lin g  F ilter  for N  

O dd

.A. frequency sam pling filter designed in [3] is used to  com pare th e  frequency sp ec tru m  of 

the  o u tp u t of a  linear phase pipelined T ype 1 frequency sam pling filter w ithou t decim ation  

of th e  o u tp u t and  w ith  decim ation  by a  fac to r of D.  T h e  in p u t. .v(n) to  th e  filter is

x ( n )  =
cos(0 .037rn)-f cos{O.ÔTrn) for 0 <  n <  200 

0 elsew here

Fig. 3 .13a shows th e  m agn itude  spec trum  of th e  inpu t signal. T he m agn itude and 

phase sp e c tra  of th e  o u tp u t of the  p ipelined frequency sam pling filter are shown by Figs. 

3 .13b an d  3.13c respectively. T h e  m agn itude and phase sp e c tra  for the  m u ltira te  frequency 

sam pling  filter are rep resen ted  by Figs. 3 .13d an d  3.13e respectively. These p lo ts are gener­

a ted  for different values o f r.  In o rder to  reduce th e  nonlinearity  in th e  phase of th e  filter. 

V is kep t close to  unity.
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C h ap ter  4

S ta te  space structures for 

m ultirate  frequency sam pling

filters

C oupled s ta te  space s tru c tu re s  have a  lower coefficient sensitiv ity  and  are less sensitive to  

q u an tiza tio n  erro rs th a n  D irect Form  s tru c tu re s  [6]. In th is  ch ap te r, we will use coupled 

s ta te  space s tru c tu re s  to  im plem ent the  frequency sam pling filters developed in C h a p te r  3.

4.1 S ta te  Space S tru ctu re  for a M u ltira te  T y p e  1 F requency  

Sam p lin g  F ilter

In th is  section , we will develop a  coupled s ta te  space s tru c tu re  of a  T ype 1 frequency 

sam pling  filter which has its  o u tp u t decim ated  by a  fac to r o f D.  T h e  system  function  for a
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m u ltira te  T ype 1 frequency sam pling  filter was given in the  E quation  (3.2) as

If th e  im pulse response o f th e  filter is real, th e  frequency response sam ples have the  p ro p erty  

H { k )  = H ' { N  — k).  Using th is p roperty , we can express the  filte r’s system  function  as

H ( : )  =
1 -  z

Y '

■V ,- jV Ml

E
,/;=l

P z ' - i ) ‘

1 — 1 — I'D ~ - D

1 _  ;.£>r-D I ^  (.j-D I 'D^-D

w here X  is even and .\/i =  ( iV /2) -  1. If X  is odd . th e  H ( X I ' l ]  te rm  does not ex ist in th e  

system  function of the  filter and d /i  =  (.V -  l ) / 2 .  If we define Hk(~)  as

(4.1)

for k  = 1 .2  l/ i  then

H ( z )  =
•V .- 'V

X

4 ^ ................. i?(0)EP="o‘ ( '- - M '  , / f ( A / 2 ) E E : ô '( ^ '^ = - i ) '
l ^ n k K - ) ^  1 _  , . D , - D  i _ p j - D i ' D , - D
k=l

If we also define Hkni ^ )  as

+

then  Hkoi z )  can be w ritten  as

f l koi z)  =
H{ k ) + H ' i k )
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x(n)

» — H + )  
T

i(n>

H(k)

O J2itkD/N 
r  e

tP

D

s’(n)

F igure  4.1a: S tru c tu re  to  im plem ent E quation  (4 .3 ), w ith th e  o u tp u t.  .s(n). decim ated  by a 
fac to r o f D .

If we let 1 to (z )  be th e  o u tp u t o f th e  section of th e  filter given by th e  system  function . 

Hkoi z ) .  and  let .V (z) be th e  in p u t to  the  reso n a to rs , then

yko(^)  =
H { k ) X { z ) + H ' { k ) X { z )

I f  we let

^ (Z ) =
H { k ) X ( z )

1
(4.2)

th en

I'ao( z ) =  .S'(z) +  5 ”(z).

T his implies th a t

ykoin)  =  s[n)  +  s ' ( n ) .

T h e decim ation  o f th e  o u tp u t,  ykoin],  is equivalent to  the  decim ation  of .s(n) and  s ' ( n ) .  

T aking th e  inverse z tran sfo rm  of E q u atio n  (4 .2).

[n) -  r ^ s ( n  -  D)  -  H ( k ) x { n ) (4.3)
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x(n) x[n>

Ü 4 + )

g  flnkD IN  
r e

s'in)

F igure  4.1b: S tru c tu re  to  im plem ent E quation  (4.4) .

Fig. 4.1a shows a  s tru c tu re  for im plem enting  E quation  (4 .3 ), w ith  the  o u tp u t.  s(ii).  

dec im ated  by a  fac to r o f D.  F ig  4.1b shows an  equivalent s tru c tu re  w ith  th e  dec im ato r 

m oved tow ard  th e  in p u t side of th e  filter. T h e  difference equa tion  for th is  equivalent s tru c ­

tu re  is given as

s ' (n)  =  -  I )  + H( k ) x ' { n ) (4 .4)

w here s ' (n)  and  x ' {n)  a re  ob ta in ed  by dec im ating  s{n)  an d  x{n) .  respectively, by a fac to r 

o f D.  s ' {n)  can be expressed in te rm s o f s ta te  variables, i’i ( n )  an d  voin)  as

s ' (n)  -  I ' l in) + j i ' i i n) -

T he frequency sam ples, H { k )  can be w ritten  as

H ( k )  = Re[H( k) ]  + j I m [ H ( k ) ]

w here Re[H( k) ]  is th e  real p a r t and  I m[ H{ k ) ]  is th e  im ag inary  p a r t o f H{ k ) .  T herefore, 

ui (n)  an d  V2 (n)  can  be w ritte n  in m a tr ix  form  as

L'i(n] c o s { ^ k D ) r ^ - s i n ( ^ k D ) r ^ u i(n  -  1) Re[H(k]]
v (n )  = = +

Vo(n) s i n ( ^ k D ) r ^ c o s { ^ k D ) r ^ i’2 (n  -  1) I m[ H{ k ) ]
.r '(n )
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T h e o u tp u t eq uation  can be w ritten  as

Ukoin) = s ( n)  + s ’' {n)

=  [t'i(n) + -  jv-2(n)]

2 0 v ( n )

T h e s ta te  equations and  o u tp u t equations for the o th e r  te rm s in Hk{z )  can be derived 

sim ilarly. T h e  o u tp u t,  i/A,.(n). is ca lcu lated  by adding  up th e  o u tp u ts  due to  all th e  te rm s in 

Hki z ) .

T h e s tru c tu re  of a  m u ltira te  T ype 1 frequency sam pling filter w ith a  real im pulse 

response is show n in Fig. 3 .3a. Fig. 4.2 shows the  s tru c tu re  of th e  resonato rs 1 to  .If, if 

th e  o u tp u t o f th e  frequency sam pling filter is decim ated  by a  fac to r of D.  Each resonato r 

requires 2D + ô real m ultiplies per o u tp u t sam ple an d  2 D  — 2 real adds per o u tp u t sam ple. 

T his is app rox im ate ly  as m any com pu ta tions as th a t  required  for a  D irect Form  s tru c tu re  

show n in Fig. 3.3b. T h e  filter requires (2D-|-.5).V/i +  2D  real m ultiplies and  {2D - 2 ) M i + ' 2 D  

real adds p e r o u tp u t sam ple.

4.2 S ta te  Space S tru ctu re  for a M u ltira te  T yp e  2 F requency  

S am p lin g  F ilter

In th is section, we will develop a coupled s ta te  space s tru c tu re  for a  T ype  2 frequency 

sam pling  filter which has its o u tp u t is decim ated  by a  fac to r of D.  T h e  system  function  for 

a  pipelined T ype  2 frequency sam pling filter is given by the  E q u atio n  (3.8) as



6 2

output

c o s ( - ^  kD) r  
/Y

RelH (k)l

s i n ( ^ k D ) r ‘
im put

.  s i n ( - ^ k D ) r ‘

Im lH (k)}

Re[H (k)e r ]
 > ---------------

lm [H (k)e

Re[H(k)e

Im [H (k)eJ^k2(D -l) /N

F igure 4.2: C oupled s ta te  space s tru c tu re  for resonato rs 1 to  AIi .
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If the  im pulse response of th e  filter is real, the  frequency response sam ples, H{ k )  have the 

p ro p e rty  H { k )  =  H " { N  -  1 -  k) .  Using th is p ro p erty  th e  system  function o f th e  filter can 

be w ritten  as

H {  = ) =
1 + - V . - . V

k=0

w here .V is even, and  AI2 = i N / 2 )  — 1. If  N is odd . the  system  function  has a  te rm  due to  

th e  filter coefficient and  M i =  { N  — 3 ) /2 . If we define Hk { : )  as

for k  = 1 ,2 . ...M g then

H { z )  =
1 +  rN ^ - N

N

M2

t—1

If  we also define Hkn(~)  as

Hkn{~)  = 4— ------------------------1 _  gJ^{k+^)Dj . D~-D  2 _

th en  Hkoiz]  can be w ritte n  as

Hko(z)  =
H i k )

+
H ' i k )

1 _  g 3 - ^ i . k + ^ ] D ^ D  ~ - D  J . D  ~ - D

If  we let Fa,o(-) be th e  o u tp u t o f th e  section of the  filter given by th e  system  function , 

Hko(~).  an d  let A 'f;;) be th e  in p u t to  the  resonato rs, then

H ( k ) X ( :
+

H - ( k ) X { z )
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x(n)
—Aw

H(k>

s(n)

D J2n(k+l/2)DJN  
r  e

D

s ’(n)

Figure 4.3a: S tru c tu re  to  Im plem ent E quation  (4 .3). w ith  th e  o u tp u t.  s ( n) ,  decim ated  by a 
fac to r o f D  .

If we let

then

T his im plies th a t

5 ( - )  _  ■-
1 _  g J - f  ( k + 2 ) # r D . - D

i 'io ( - )  =  .S(z) +  6 " (z ) .

(4.6)

yko(n)  =  s ( n)  + s ' {n) .

T aking th e  inverse z tran sfo rm  of E quation  (4 .6),

s (n )  — — D ) =  H { k ) x { n ) (4.1

Fig. 4 .3a  shows th e  s tru c tu re  for im plem enting  th e  E quation  (4.7) w ith  th e  o u tp u t decim ated  

by a  fac to r of D.  Fig. 4 .3b  shows an  equivalent s tru c tu re  w ith  th e  dec im ato r moved tow ard  

th e  in p u t side o f th e  filter. T h e  difference equation  for th is  equivalent s tru c tu re  is given as

s ' {n)  =  e-'"v — 1) +  .ff(A;).'c'(n) (4.8)
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x(n) xmz
u

D  J2n(k+1/2)D/N  
r  e

s ’(n)

F igu re  4.3b: S tru c tu re  to  im plem ent E quation  (4.4) .

w here s ' {n)  an d  x ' ( n )  a re  o b ta in ed  by decim ating  s ( n)  an d  x ( n )  respectively, by a  fac to r of 

D.  s ' {n)  can be expressed in te rm s of the  s ta te  variables v i (n)  and  v-zin) as

s ' {n)  = vi {n)  + j v 2 {n).

In  m a tr ix  form , u i(n )  an d  V2 (n)  can  be w ritten  as

v (n )  =
i.’i ( « )

l ' 2 ( « )

cos  [ ^ (A :+  i)T l]  - s i n  [ ^ ( f c +

in +  4)i?J cos [ ^ ( A  +  \ ) D ]s i n

+ .r'( n )
Re[H[k) ]

I m [ H ( k ) \

T h e o u tp u t eq u a tio n  can be w ritten  as follows

Cl ( n -  1 ) 

V2(n -  1)

Uko(n)  =  s (n )  +  .s"(n) 

yko{n)  = 2 0

T h e  s ta te  equa tions for th e  o th e r  te rm s in Hk( s )  can be derived sim ilarly. T h e  o u tp u t. 

% (n ) , is ca lcu la ted  by adding  up th e  o u tp u ts  due to  all th e  te rm s in Hk(s) -

T h e  s tru c tu re  of a  m u ltira te  T ype 2 frequency sam pling filter w ith  a real im pulse 

response is show n in F ig. 3 .9a. Fig. 4.4 shows th e  s tru c tu re  of resonato rs 1 to  Mz  if the
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output

c o s ( ^  (k+ll2)D )

R e im k )] vAn-Ij

c o s ( ^  {k^V 2)D ) r®Re[H(k)e j2 n k + l/2 ) /N ^ j

s i t i ( ~ ( k + l / 2 ) D ) r ‘̂

- s in ( j^ ( k + l /2 ) D ) r O

F igure 4.4: C oupled s ta te  space s tru c tu re  for resonato rs 1 to  I / 2 .



F ilte r for even N N onlinear phase 
real im pulse response

D irect Form  1 s tru c tu re  for a  
m u ltira te  T ype  1 frequency 
sam pling filter

{'2D +  2)A' 
+  1

Coupled s ta te  space s tru c tu re  
for a m u ltira te  T ype  1 frequency 
sam pling filter

{'2D + o ) K

D irect Form  1 s tru c tu re  for a 
m u ltira te  T ype  2 frequency 
sam pling  filter

{2D + '2)K 
+  1

C oupled s ta te  space s tru c tu re  
for a  m u ltira te  T ype 2 frequency 
sam pling  filter

{'2D + 0 ) K

Table 4.1: M ultiplies required  per o u tp u t sam ple by D irect Form  s tru c tu re s  and  coupled 
s ta te  space s tru c tu re s  of frequency sam pling  filters (A' is th e  num ber o f nonzero frequency 
sam ples and  D  is th e  decim ation  ra tio  o f th e  o u tp u t) .

o u tp u t of th e  filter is dec im ated  by a  fac to r o f D.  Each reso n a to r perform s '2D +  -3 real 

m ultiplies per o u tp u t sam ple , and  ' ID —'2 real adds per o u tp u t sam ple. This is app rox im ate ly  

sam e as th a t  for a  D irect Form  s tru c tu re , shown in Fig. 3.9b. T h e  filter requires {' ID +  

5)j1/2 +  D  real m ultiplies an d  {'2D — '2)i\l2 +  D  real adds per o u tp u t sam ple.

4.3 P ro p er tie s  o f C ou pled  S ta te  Space S tru ctu res

T able 4.1 shows th a t  a  s ta te  space s tru c tu re  for a  m u ltira te  frequency sam pling filter requires 

th e  sam e num ber of co m p u ta tio n s p e r o u tp u t sam ple as a  D irect Form  s tru c tu re . S ta te  space 

s tru c tu re s  can  be used to  im plem ent m u ltira te  frequency sam pling  filters, w ith  a  reduced 

co m p u ta tio n a l requ irem en t and  low coefficient sensitivity .



C h a p ter  5

C onclusions

U nder ce rta in  circum stances, narrow band  filters can be im plem ented m ore efficiently using 

frequency sam pling filters th a n  d irect convolution filters [1]. F requency sam pling  filters are 

recursive. T he system  functions o f a  T ype  1 ^ d  T ype  2 frequency sam pling filter are given 

by E q u atio n  (2 .3) and  E quation  (2.9) respectively. T hese system  functions have in the  

d enom inato r, which implies th a t  the  filter s tru c tu re  has unit delays in th e  feedback p a th s . 

T h e  presence o f these un it delays in th e  feedback p a th s  prevents p ipelining an d  for m u ltira te  

app lica tions w here th e  o u tp n t is dec im ated , no co m p u ta tio n al saving is achieved.

T he problem  in pipelining a  frequency sam pling filter can be addressed  by changing 

the  system  function  of th e  filter so th a t  it con tains only pow ers o f in its denom inato r. 

If we assum e th a t  m ultiplies are co m pu ta tionally  m ore com plex th a n  adds and if th e  m ul­

tip liers tak e  less th a n  D  tim e periods to  perform  each m ultip lication  then  th e  frequency 

sam pling  filter can be pipelined.

T h e  new frequency sam pling filter system  function  th a t  has only powers o f z ~ ^  

in the  d enom inato r, m akes th e  filter am enab le for sam pling  ra te  reduction  a t  th e  o u tp u t 

o f th e  filter. If th e  o u tp u t o f th is  filter is dec im ated  by a  fac to r o f D,  th e  co m p u ta tio n al 

requirem ents o f the, adders and  m ultip liers in the  filter can be reduced.

T able 3.2 and  Table 3.4 com pare th e  num ber of m ultiplies required  by d irect con­

68
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volution filters, frequency sam pling filters and  pipelined frequency sam pling filters when 

th e ir  o u tp u ts  are decim ated  by a  fac to r of D.  It is show n in these tab les th a t  the  frequency 

sam pling  filters developed in C h a p te r  3 require the  sam e num ber of m ultiplies per o u tp u t 

sam ple as those m entioned in C h a p te r  2. when used in m u ltira te  system s. P ipelined T ype 

1 and  T ype 2 frequency sam pling  filters are m ore efficient th a n  a  d irect convolution filter if 

for a  linear phase filter A' <  and  for a  nonlinear phase filter if K  < ^

C oupled s ta te  space s tru c tu re s  can also be used to  im plem ent the  resona to r in 

frequency sam pling  filters. T hey  have a  lower coefficient sensitiv ity  th a n  D irect Form  s tru c ­

tu res [10]. T hese s tru c tu re s  require app rox im ate ly  th e  sam e num ber of co m p u ta tio n s as 

D irect Form  s tru c tu re s , hence they  can be used to  im plem ent frequency sam pling  filters 

econom icallv.
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