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ABSTRACT

Under certain circumstances. narrowband linear phase filters can be implemented more
efficiently using frequency sampling filters than direct convolution filters. The desired fre-
quency response of a frequency sampling filter is approximated by interpolating a frequency
response through a set of frequency samples. The implementation of a frequency sampling
filter contains unit delays in its feedback paths. Therefore, it cannot be pipelined or effi-
ciently used in multirate applications. In this thesis, a frequency sampling filter that has
only delays of length D in its feedback paths is developed. This new frequency sampling

filter can be pipelined and efficiently used in multirate applications.
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Chapter 1

Introduction

Many digital signal processing applications require linear phase frequency selective filters to
bandlimit the spectrum of a signal. When designing frequency selective filters. the desired
filter characteristics are specified in the frequency domain in terms of the desired magni-
tude and phase response of the filter. Many design processes are available for determining
system functions that can closely approximate desired frequency response characteristics.
After determining a system function, the filter is implemented using difference equations.
Two types of difference equations exist for implementing digital filters, recursive and non-
recursive. A difference equation is recursive if the current output is a function of the past
outputs. For example. in a recursive filter the functional relationship between the input
and the output can be expressed as y(n) = Fly(n —1),y(n =2)...,2(n). 2(n—1).2(n—2)...].
where 2(n) is the system’s input, y(n) is the svstem’s output and F is a function relating
the output to the input. A difference equation is nonrecursive if the output is a not a func-
tion of past outputs. For example. in a nonrecursive filter the output can be expressed as
y(n) = Fle(n).x{n—1).2(n-2)...]. Digital filters can be classified as finite impulse response
(FIR) filters or infinite impulse response (IIR) filters. A recursive difference equation can
implement an FIR or an [IR filter. A nonrecursive difference equation can implement only

an FIR filter [1]. In this thesis. recursive implementations of FIR filters called frequency




sampling filters that are well suited for pipelining and multirate applications are devel-
oped. The computational requirements of these filters are compared to direct convolution
implementations.

In applications requiring a frequency selective filter, frequency dispersion due to
non-linear phase can distort desired signal information. For such applications it is desirahle
to design linear phase filters. For a causal FIR digital filter to have linear phase. it must
have an impulse response. h(n). with the property h(n) = h*(N=1=n)for0<n << V-1
where h~(n) is the complex conjugate of h(n) [2].

Two common methods used to design linear phase FIR digital filters are the opti-
mal filter design method and the window design method. In the optimal design method.
the maximum approximation error between the desired frequency response and the ac-
tual frequency response is minimized. This design procedure generates an FIR. where
h(n) = h*(N = 1—n). In the window design method. the unit impulse response. hy(n).
is determined from the desired frequency response specification, Hgq(e/*), using the inverse

Fourier transform relation,

1 L

— | Hye¥)e"dw. (1.1)
2w J_r

hi(n) =
In general. hz{n) is infinite in duration and is truncated to length .V by multiplying ha(n)
by a finite length window sequence. w(n). of length V. If the desired impulse response has
the property, hg(n) = h3(N —1—n) for 0 < n £ N -1, and if the window has the property.
win)=w (N -1-n)for0<n<N=1,then hg(n)w(n) =AYN -1 - n)w*(V -1 —n)
for 0 < n €.V — 1, and the filter obtained is a linear phase FIR filter.

Once an impulse response is determined from the optimal or window design methods,
the filter can be implemented by one of the nonrecursive direct convolution structures shown
in Figs. 1.1a and 1.1b. The structures in Fig. 1.1 are called direct convolution structures
because they implement convolution directly. These filter structures require N - 1 adds
and .V multiplies per output sample. where .V is the length of the filter's impulse response.

If the filter has linear phase and a real impulse response then. 2(n) = (N — 1 — n) for




input

w ho) h(1) h(2) h(3) h(N-1)

output

+ o +)--

Figure L.la: Direct form structure used to realize FIR filters.

input x(n)

h(N-1)

output y(n)

Figure 1.1b: Transposed Direct form structure used to realize FIR filters.

0 < n € .Y —1.and the structures shown in Fig. 1.2a and 1.2b can be used. These filter
structures require (.V + 1)/2 multiplies and V — 1 adds per output sample if N is odd and
N/2 multiplies and (V — 1) adds per output sample if V is even. Assuming that multiplies
are computationally more complex than adds. the filter structures shown in Fig. 1.2 require
approximately half the number of computations required by the structures in Fig. 1.1

Unlike the previous design methods, frequency sampling filters implement FIR filters
recursively. Under certain circumstances, narrowband filters can be implemented more
efficiently using frequency sampling filters than using direct convolution filters {1]. Filters
implemented by the frequency sampling technique are recursive. The frequency sampling
filters discussed in this thesis are a Type 1 frequency sampling filter. which interpolates a
frequency response through NV evenly spaced frequency samples taken at frequencies w =
Zk for k € 4 where A = {0,1...V - 1}. and a Type 2 frequency sampling filter. which
interpolates a frequency response through .\" evenly spaced frequency samples taken at
frequencies « = 3% (A‘ + %) for ke A [3][4] [3] .

Pipelining is an implementation technique where sequential instructions are over-




input x(n)

L

e
h(0) h(l) l

output y(n)

Figure 1.2a: Structure for a Direct Form FIR filter with linear phase (N odd).

input x(n)

-

F

| 7' |-
h(N/2-1) le(N/Z )

output y(n)

Figure 1.2b: Structure for a Direct Form FIR filter with linear phase (N even).




lapped in execution. The filter represented by Figs. 1.1aand 1.Lb can be pipelined by adding
registers in series with the multipliers and adders. The throughput of a digital filter can
be dramatically increased by pipelining because several outputs can be processed simulta-
neously. Recursive structures, such as the frequency sampling structure, are not amenable
to pipelining because the present output needs to be obtained before computing the next
output values. A scheme was suggested by Soderstrand and Sinha in [6] and extended by
Sinha and Loomis in [7] for pipelining IIR filters. This technique designs system functions
which use pipelinable delays in the feedback path of the filter.

If different sampling frequencies are used in a system, then it is called a multirate
system. Crooke and Craig have shown in [8] that for narrowband filtering applications.
computational efficiencies of direct convolution filters can be gained by decimating the
output of a nonrecursive filter. For recursive filters with unit delays in the feedback path.
such as the frequency sampling filter, the process of decimation does not reduce the number
of computations significantly. Martinez and Parks in [9] have discussed a class of recursive
filters which have a system function with only a delay of D in the feedback path. These
filters are suitable for decimation by a factor of D.

In this thesis. a frequency sampling filter is developed that has only delays of D in
the feedback paths. Chapter 3 shows that these filters can be pipelined and a significant
saving can be achieved when the outputs of these filters are decimated. Coupled state
space implementations of these filters are discussed in Chapter - because they exhibit lower

sensitivity to finite word length effects than Direct Form structures.




Chapter 2

Frequency Sampling Filters

A FIR filter can be realized by recursive or nonrecursive structures. Frequency sampling
filters are recursive implementations of FIR filters. The recursive structures used to real-
ize frequency sampling filters are simple to program and are very efficient under certain
circumstances {10]. In this chapter. we will develop system functions and Direct Form re-
alizations for Type 1 and Type 2 frequency sampling filters. The number of computations
per output sample required by frequency sampling filters will be compared to that required
by multirate frequency sampling filters. A coupled state space realization of a frequency

sampling filter will be discussed.

2.1 Type 1 frequency sampling filters

A Type 1 {requency sampling filter interpolates a frequency response through a set of
frequency samples taken at frequencies w = -f\—'A for k € A where 4 = {0, 1.....V — 1}, If we

let H(k) k € A represent the set of .V frequency samples. then

for ke A.

-
s=ed WK




i

This relationship shows that H(k) for & € A can be interpreted as samples of the = trans-
form, taken at .V evenly spaced points on the unit circle in the = plane. The finite length
impulse response. h(n). of the filter whose frequency samples are given by the discrete val-

ues. [1(k) for k € A. can be determined from the Inverse Discrete Fourier Transform (IDFT).

LN BT ned
hin)=

0 otherwise
The fiequency samples. H(k) k € A. can be calculated from the filter's impulse response
by using the Discrete Fourier Transform (DFT).

N-1
H(k) = Z /z(n)e‘j%k".
=0

Since the DFT is a form of a Fourier transform, i(n) is the only impulse response of length
2N that interpolates a frequency response through the points, H(k) & € A. Therefore the
frequency response of a system which has an impulse response of length .V can be uniquely
specified by a set of V frequency samples H (k) for & € A. The system function of this filter

is given by

N-=-1
H(z)= Y h(n)z™" (2.1)

n=0

where i(n) is given by the DFT. Substituting the DFT into Equation (2.1).

N=1Tq Nl .
H(z)= Z [V Z H(k)eJ?«""k] 27"
k=0

n=0 L~
Interchanging the order of the summations and summing up over the index n.

1—=Vb mee
H(.‘Z) = ‘V Z ( )

k=0

(2.2)

L — et Fhsmt

Equation (2.2) has the form of Lagrange’s interpolating formula [3]. The complex

polynomial. H(z).interpolates a frequency response through the points. H(#) & € A. when




— H(O)JN

7. rzt

[ H()IN )
.input . 1- il z! “\ output
_— + J
i
. 1
= H(N-DIN
N 1. oJITRN-DIN 50

PN

Figure 2.1: Structure of a Type 1 frequency sampling filter.

=5 for k € A1 Equation (2.2) shows that the filter can be realized using a cascade of
a comb filter (1 — z=), which has zeros at =z = e %k for k € A, and a parallel connection
of complex resonators whose poles occur at the zeros of the comb filter.

When a filter is implemented using special purpose hardware. the word lengths of
the filter are fixed and finite. The interpolation formulas in the filter system function require
the zeros of the comb filter to exactly cancel the poles of the resonator on the unit circle.
The quantization of the filter's coefficients may prevent the cancelation of the poles on the
unit circle making the filter unstable in the bounded input bounded output {BIBO) sense.
To prevent instability in the filter. the poles of all the resonators can be moved within the
unit circle. by replacing =1 with r=7! where |r| < L in the filter equation. For example the
svstem function would be written as

L-pVemN I H(k)

5) = 2.
H(z) ¥ Eﬂl_ej%k,_:_l (2.3)

The filter described in Equation (2.3) is called a frequency sampling filter because
the filter’s coefficients are a function of the frequency samples. Fig. 2.1 shows a block
diagram used to implement the frequency sampling filter described in Equation (2.3). Most
of the .V complex resonators in the filter structure require one complex add and two complex
multiplies per outp'ut sample. Each complex multiply requires two real adds and four real
multiplies. Each complex add requires two real adds. Hence, the entire filter requires

approximately 8.V + 1 real multiplies and 8.V — 1 real adds per output sample.




9
2.1.1 Type 1 Frequency Sampling Filters With Real Impulse Response

The filter can be implemented without complex arithmetic if it has a real impulse response.

If the filter has a real impulse response then its frequency response. H{e/*). has the property.

H(e?) = H(e™%)

where H~(¢7/¥) is the complex conjugate of H(e™/¥) .

Since H(k) = H(e/¥)|, for & € A. the frequency samples of a Type 1 frequency

=27
_N"

sampling filter will have the form
H(k)=H*(N -k)
where H*(.V — k) is the complex conjugate of H(N — k). The frequency samples, H(k)

k € A. can be written as H(k) = |H(k)|e/®® where |H (k)] is the magnitude and 8(k) is

the phase of the frequency sample. This implies that

|H (k)| = |H(N = k)

and

(k)= -0(N - k).

Substituting these properties into the system function in Equation (2.3),

H(z) =

1—er-N{ H(0) H(N/2)+

N l—rz7? " 14727t

2r

i |H(k)[ed®9) (1 - e=iFkpz=1) 4 | H(k)|e= i) (1 - “’j%kﬂ_l)]
k (1 - eI &)1 - @ Fhpzm)

A1
=0

L—rV2=N ( H(0) H(N/2)

- N {l —r==b U 14 rz?
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input . Resonlatar 2
>@ = 1 1
T ;
x ! Resonator M , —
Z

re Re tor I
]
I

- rN
+ H(O)IN
z-l
r tp "
+ H(N2)IN outpu
; e O
z-l
- r

Figure 2.2a: Type 1 frequency sampling filter with a real impulse response of length .V
where V is even and M; = (N/2) - 1.

My cos(8(k)) — rz"cos(8(k) — 2 k)
: . ~ N b
ZZIH(’\;)] [ 1—2605(2—7'-/\‘)7“"'1-*-7‘27"2 } (2~'1)
k=0 N e e
where .V is even and My = (N/2)— 1. Similarly if V is odd,
1-rNe=N ¢ H(0)
A=) = N {1 —rz-! +
Ay cos(B(k)) — rz""cos(B(k) — 32 k)
2|H (k - i Al 2.5
+,§) [H (k)] [ 1- 2co.s(:"\—'7k)r:"‘ 4 p22-2 ] (2:3)

where My = (N - 1)/2.

A block diagram for the filter described in Equation (2.4) is shown in Fig. 2.2a. Fig.
2.2b shows the structure of the kth resonator. The system function in Equation (2.4) shows
that the filter consists of a comb filter in cascade with a parallel combination of 1f; + 2
resonators. When .\ is odd, the term H(.V/2) does not exist in the system function of the

filter.




input 21H(k)\ cos [O(R)IN output
-+ W S <+ —=

1
Z

- S—

2rcos(2Tk/N) 21H(k)\r [8(k) - 2nkiIN] IN

-1
Z

-

- r2

Figure 2.2b: Structure of the kth resonator in Fig. 2.2a.

The resonator in Fig. 2.2b requires 4 real multiplies and 3 real adds per output
sample. Therefore. the filter requires approximately 43/; + 4 real multiplies per output

sample and 4.1/, + 1 real adds per output sample.

2.1.2 Type 1 Frequency Sampling Filters With Linear Phase

The number of arithmetic operations required to implement the filters described in Equa-
tions (2.4) and (2.5) can be further reduced if the filter is also constrained to have linear
phase. If the filter’s frequency response has linear phase. the filter's phase. f(e/#), has the
form 8(e/¥) = — (i\%) w where N is the length of the filter’s impulse response. Thus. the
phase samples. 8(k). can be expressed as
N-172n
k) = —~|—| =k

(k) [ 2 ] N
It can be shown [1] that for a linear phase filter of length iV, where N is even, H(e!™) =0
which implies that

H(N/2)=0 when N is even .

From the expression for the phase samples,

cos(B(k)) = (-1)%03( k>. (2.6)
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input
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-r H(O)N output
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r

Figure 2.3a: Type 1 frequency sampling filter with linear phase (N even)

Substituting Equation (2.6) and the linear phase properties into Equations (2.4} and (2.5).

{2.7)

L= pNe= H(0) M (—l)k‘ZlH(/\')lcos(%k)(l —rz7h
Y I —pz! 1= 2cos(3k)rs=1 4 r2z=2

H{z)=
k=1
where M = (N/2)—~ 1 when N is even, and M; = (N —1)/2 when «V is odd.

The structure of a frequency sampling filter with a real impulse response and linear
phase is shown in Fig. 2.3a. The structure of the kth resonator is shown in Fig. 2.3b. Fig.
2.3b shows that the kth resonator requires 2 real adds and 3 real multiplies per output
sample. Hence. the filter requires approximately 3A[; multiplies per output sample and
3.\ adds per output sample. This structure represents a frequency sampling filter requiring

fewer adds and multiplies than the previously discussed structures in Figs. 2.1 and 2.2.

2.2 Type 2 Frequency Sampling Filters

A Tvpe 1 frequency sampling filter interpolates a frequency response through a set of .V
equally spaced frequency samples taken from the frequency range [0, 27) starting at w = 0.
A Type 2 frequency sampling filter interpolates a frequency response. through a set of .V

equally spaced frequency samples taken from the range [0.27), starting at w = <. Thus.
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input + Alk) output
=
z-l
2r cos(2kIN )
il
r2
" where A(k) = (-1) * 20H(k)N)cos( TKIN)

Figure 2.3b: Structure of the kth resonator. in Fig. 2.3a.

the frequency samples. H (k). are related to the filter’s system function by
H(k) = H(:)‘:=e"2§(k+%’ for k € A.

An impulse response of length .V can be obtained from the frequency response samples by

using the relationship.

= _%i: CJ\(A+ )n

Substituting this expression for h(n) into Equation 2.1,

N-1

H(z) Z Z H(k T(k+-12-)n =n

n=0 N
Interchanging the orders of summation and summing up over the n index,

14V H() -
A6 = =§— L TTameD -

o
oo
—

Equation (2.8) has the form of Lagrange’s interpolation formula. The complex

polynomial interpolates the frequency response through a set of points H(z) where > =
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v

Figure 2.4: Structure of a Type 2 frequency sampling filter.

eI Fh+3) for fo € A. Similar to the Type | frequency sampling filter described in Equation
(2.2). the filter described by Equation (2.8) can be realized using a cascade of a comb filter,
which has .V zeros and N complex resonators. which have poles that occur at the zeros of
the comb filter.

To prevent instability in the filter, the poles of all the resonators can be moved within
the unit circle by replacing z=! with rz~! where |r| < 1 in the filter equation. Therefore

the system function of a Type 2 frequency sampling filter can be written as.

14 pVemy 32l (k)
N g R

H(z) = (2.9)

Fig. 2.4 shows a block diagram which can be used to implement the frequency
sampling filter described in Equation (2.9). The filter requires approximately 8.V real

multiplies and 8V — 1 real adds per output sample.

2.2.1 Type 2 Frequency Sampling Filters With Real Impulse Response

A Type 2 frequency sampling filter can be implemented without complex arithmetic if its

impulse response is real. If the impulse response of the filter is real. its frequency samples
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Figure 2.5a: Type 2 frequency sampling filter with a real impulse response(N even).

have the property.

H(k)= H*(N - 1-k)

which implies that

[H (k)| = [H(N -1 - k)]

and

(k) = —8(N — 1~ k).

Substituting this constraint into Equation (2.9). the system function of a Type 2 frequency

sampling filter with a real impulse response of length .V where N is even can be written as

H:) 14+ V2N L Y2 2| H (k)| {cos(8(k)) — r=" cos[B(k) — 22 (k + 1)]} (2.10)
P N k=0 1- 2603[%([; + %)]’rg—l + r25-2 .
where My = (N/2)— 1. When N is odd,
ooy LErYEN TR
) = N 1+ rz-t
30 AH B eosl00k)) - ra"coslflh) = Fk + 1) (2.11)
prs 1 — 2cos[%(k + 1)]rz-1 4 r2:72 2.

where My = (N - 3)/2.

A block diagram describing Equation (2.10) is shown in Fig. 2.5. Fig. 2.5b shows
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Figure 2.5b: Structure of the &th resonator. where k= 0 to ;.

the structure of the Ath resonator. The filter described by Equation (2.10) can be realized
by a comb filter in cascade with M, 4+ 1 resonators. If ;V is odd. the filter has a resonator
due to the term H(lg—l-) in parallel with the other resonators.

Each resonator in Fig. 2.5b requires 3 real adds and 4 real multiplies per output
sample. Hence. the filter requires approximately 41/, real adds and 4.}/> real multiplies per

output sample.

2.2.2 Type 2 Frequency Sampling Filters With Linear Phase

The number of arithmetic operations required to realize the filters described in Equations
(2.10) and (2.11) can be further reduced if the filter is also constrained to have linear phase.

The phase samples, (k). for the linear phase filter can be expressed as

w = - ()

Using equation (2.12}),
T 1
" =t N kos — &) —
cos[(k)] = (—1) sin [‘\. (k + 2)]

and

cos [o(k) -2 (k + %)] = (=1)sin [-% (k + %)] .
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Figure 2.6a: Type 2 frequency sampling filter with linear phase(N even).

input

A(k) output
= =

2r sin{27(k+1/2)IN

—~—

-r?

where A(k)= (-1) © 2 sin [ (k+1i2)] (H(N)

Figure 2.6b: Structure of the Ath resonator. in Fig. 2.6a.

Substituting these relationships into the Equations (2.10) and (2.11) yields

H(z) =

T
N =

14 ’..‘\,":—.\r My (——1)"2|H(k)|<1n[—;—(k 4+ %)](1 + ,.:—l)
l- '200.3[%,7-(/: + %)]r:"1 4 r2z-2

H(z -
A k=0

where M5 = (V/2)— | when V is even. and Ms = (.V — 3)/2 when .V is odd.

LN [H () 3R ) lsinlk + )0+ e
) L+ T—2cos[F(h + Plr==T 727

N

} (2.13)
}2.14)

Fig. 2.6 shows the structure of the filter described by Equation (2.13). The structure
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of the kth resonator is shown in Fig. 2.6b. Each resonator requires 2 real adds and 3 real
multiplies per output sample. The filter in Fig. 2.6 requires approximately 3./, real adds

and 3.1/ real multiplies per output sample.

2.3 Properties Of Frequency Sampling Filters

Under certain circumstances. frequency sampling structures are more efficient than direct
convolution structures. For a {requency selective filter. the frequency samples in the stop
band can be set to .zero. If only A" of the filter’s frequency samples are nonzero. then only
I of the filter's resonators are required since the paths along which H(%) is zero need not
be realized. If a filter has nonlinear phase. a direct convolution implementation of the filter
requires approximately .V — 1 adds and .V multiplies per output sample to implement the
filter. A corresponding frequency sampling structure requires 4" real adds and A" real
multiplies per output sample. Hence. for a nonlinear phase FIR filter. a frequency sampling
structure will be more efficient than a direct convolution structure when 4A" < Nor A" < }

Linear phase frequency sampling filter structures which have an impulse response
of length .V require approximately 34" adds and 3/ multiplies per output sample. A linear
phase direct convolution structure requires approximately % multiplies and .V adds per
output sample. If A of the frequency sampling filter’s frequency samples are nonzero and
we assume that multiplies are computationally more complex to perform than adds. then
a frequency sampling structure will be more efficient than a direct convolution structure
when 3R < % or i < %’-. Although this analysis may not be precise, it gives an indication
of applications where frequency sampling filters are more efficient than direct convolution
filters.

Direct convolution implementations can be easily pipelined because of their feed
forward structure. Frequency sampling filters cannot be easily pipelined because of the
single delay feedback path in the recursive structures in the resonators. The presence of

unit delays in the feedback path of each resonator requires the previous output sample to

be computed before the next output sample can be computed. This prevents the filter from
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being pipelined.

2.4 Coupled State Space Structures Used To Realize Fre-

quency Sampling Filters

In this section. the state space representation of a frequency sampling filter’s resonators
is discussed. In addition to input and output variables. state space structures involve an
additional set of variables called state variables. Mathematical equations describing the
system. its input and its output are divided into two parts. a set of equations relating the
state variables to the input and a set of equations relating the state variables and the current
input to the output.

The system function of a Type 1 frequency sampling filter is given in Equation (2.3).

The system function of the Ath resonator can be written as

Hi(z) =

where S(2)is the = transform of the output of the Ath resonator and .X (=) is the = transform
of the input to the resonators. If .V is even, the output Y'(=) of the filter can be expressed
in terms of S(z) as
N~=1
Y(z)=So(z)+ Sxpalz)+ Y Sl3)
k=1k£d

where So(=) and Siy/z(=) are the outputs of the resonators corresponding to the frequency
samples H(0) and H(N/2), respectively. If the filter has a real impulse response. then

H(k)y= H*(N — k) and the output ¥ (=) of the filter can be written as

A H(k) My H'(/\‘)
Y(z) = = + = +
,Z:l - e/ Fhps-t Z:l 1 — eI ¥hps-t




H(0) 1{(;\f/2)} Y
| Rt S N O X(2)
AV M
= 2 Sk(2)+ Y Si(2) + So + Sxp
k=1 k=1

where M; = (N/2)— 1. If N is odd. the H(.N/2) term does not exist. and M; = (.V - 1)/2.

Sk(z) is given as

o HK)X(3) .
W R )

Taking the inverse = transform of Equation (2.15),
sk(n) = ejz:_\’;"'r.sk(n - 1)+ H(k)z(n). (2.16)

sp{n) can then be defined in terms of the state variables, v;{n) and va{n). as

se{n) = o(n)+ juran)

27 .. (27 .
= [rcos (Fk) + jrsin (Wk)] [m(n=1)+ jua(n - 1)+

Re[H(k) + jIm{H (k)]

where the real part of H(k) is Re[H (k)] and its imaginary part is ITm[H(k)]. In matrix

form, these state equations can be written as

rp(n) rcos(%“lk) —r.sin('j’T‘Tk) vy(n—1) . Re[H (k)] ()
= x(n

va(n) r.sin(%k) rcos( %’\41\') va(n —1) Im[H (k)]




If we let
Yi(z) = Se(2) + SE(=) for b = 1.2...0
then
AL
Y(2) =D Yu(=)+ So(2) + Sxpal2).
k=1

The output equation can be written as

ye(n) = spln)+sg(n)

= ui(n)+ jua(n) + va(n) = jes(n)

=[2 O]V(Il)

where v(n) is the vector of state variables.
Since coupled state space structures exhibit lower coefficient sensitivity than direct
form structures [10]. they can be used to implement the resonators in the frequency sampling

filters to reduce the effect of finite word lengths in digital filters.

2.5 Sampling Rate Reduction In Frequency Sampling Fil-

ters

After narrowband filtering, a signal contains fewer frequencies than it did before filtering.
If the original signal and the filtered signal are sampled at the Nyquist rate of the original
signal. then the Nyquist rate of the filtered signal is exceeded. The system can be made more
efficient if the sampling frequency of the filtered signal is reduced. The process of sampling
rate reduction is called decimation. Fig. 2.8 represents a block diagram of a system where

the output signal is decimated by a factor of D. This system is called a multirate syvstem
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Figure 2.7: Coupled state space structure for the kth resonator of a Type | frequency
sampling filter.
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Figure 2.8: Block diagram of a multirate filtering process.

because the signals associated with the system are sampled at different frequencies.

When a signal is decimated by a factor of D. every Dth sample is preserved. and
the intermediate D — 1 samples are discarded. If the decimator can be successfully moved
toward the input side of the filter, a significant computational saving can be achieved [8].
Fig. 2.9. illustrates a few rules that can be used to move the decimator in a flowgraph
[11]. For example, if a direct convolution structure is decimated by a factor of D. the
computational requirement of the filter can be reduced by moving the decimator toward
the input side of the filter as shown in Fig. 2.10. This reduces the number of computations
per output sample. and the adders and multipliers in the filter can operate D times slower
while achieving the same throughput.

If the output of a frequency sampling filter is decimated by a factor of D. the presence
of unit delays in the feedback path of each resonator prevent the decimator from being moved
toward the input side of the filter. Hence. for frequency sampling filters little computational

saving is achieved by decimating the output. Table 2.1 shows the approximate number of
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Figure 2.9: Rules used to move a decimator in a flow graph.

¥n) x(n) 7 ¥n)
>3 |D|—>
y(n) xI(n) y(n)
—> |

Filter for even .V

Nonlinear phase
real impulse response

Linear phase

real impulse response

Direct convolution filter ND N/2D
Type | frequency sampling filter | (LA + 1)D (3K +2)D
Type 2 frequency sampling filter | (44 4 1)D (3K +2)D

Table 2.1: Multiplies required per output sample by direct convolution and frequency sam-
pling filter structures when their outputs are decimated by a factor of D.

multiplies required per output sample by a direct convolution structure and by frequency

sampling structures where only A of the frequency samples are nonzero, and their output

is decimated by a factor of D. Table 2.2 shows the approximate number of multiplies per

output sample required if the decimator is moved toward the input side of the filter.

Tables 2.1 and 2.2 illustrate that the frequency sampling filters discussed in this

chapter are not well suited for decimation. In the next chapter, a class of frequency sampling

filters is developed with only powers of =P in the denominators of their system functions.

These filters are well suited for sampling rate reduction by a factor of D.




input

T
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output
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Figure 2.10: Flowgraph for a direct convolution structure with the output decimated by a
factor of D.

i~

Multirate filter for even N Nonlinear phase Linear phase

real impulse response | real impulse response
Direct convolution filter N N/2
Type 1 frequency sampling filter | (2D +2)k + D (2D + 1)Kk +2D
Type 2 frequency sampling filter | (2D +2)k" + D (2D + 1)Kk + 2D

Table 2.2: Multiplies required per output sample if the decimator in the structures in in
Table 2.1 is moved toward the input.




Chapter 3

Pipelined and Multirate

Frequency Sampling Filters

Pipelining is an implementation technique where multiple instructions are overlapped in
execution like in an assembly line. A filter can be pipelined by adding registers to the
multipliers and adders in the filter. The frequency sampling filters discussed in Chapter 2
have unit delays in the feedback path of each resonator. For each of these resonators. the
output can be computed only if all of the previous output samples have been computed.
Therefore. these structures cannot be pipelined and they are not well suited for sampling
rate reduction at the output.

In this chapter, a frequency sampling filter system function is developed which has
only =D terms in the denominator. This filter can be pipelined, and it is also well suited
for decimation at the output. When decimating by a factor of D. the decimator can be

pushed toward the input side to reduce the computational requirements of the filter.
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— Resonator 1

Resonator 2
. ~\ output

Resonator (N-1)

Figure 3.1a: Pipelined Tvpe | frequency sampling filter.
3.1 Pipelined Type 1 Frequency Sampling Filter

The system function of a Type 1 frequency sampling filter is given in Equation (2.3) as

- VeV E H R
N frr g PR

H(z) =

From the rules of geometric progression.

D- I_Fﬁ\-;ko .D.-D

1=0 1— e Fhpz-1

._.

which implies that

et | — ei%kD D 4D
1—edFhps1 = Gl (3.1)

I G

Substituting Equation (3.1) into Equation (2.3).

1= NN N1 H k)zD—l(ej%kr-—l)l ..
A(:) = RY kgo 1 — e 5+D D --D (3:2)

The block diagram for the filter described in Equation (3.2) is shown in Fig. 3.1a
where the structure of the kth resonator is shown in Fig. 3.1b. The system function of the

filter given in Equation (3.2) shows that the filter can be realized by a comb filter with .V
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Figure 3.1b: Structure of the kth resonator in Fig. 3.1a.

zeros in cascade with .V parallel resonators. Each resonator has D poles and D — 1 zeros.
The resonator shown in Fig. 3.1b requires D 4 1 complex multiplies and D complex adds
per output sample. Hence, the filter requires approximately (4D + 4)N + 1 real multiplies
and (4D + 4)N — 1 real adds per output sample.

Fig. 3.1a represents a filter with a significant increase in the hardware compared to
the filter shown in Fig. 2.1. However, if we assume that multiplies are the only source of
bottleneck involved in the implementation of the filter and require less than D time periods
to execute, then the presence of only delays of D in the feedback paths makes it possible to

pipeline this filter resulting in an improved throughput.
Multirate Type 1 Frequency Sampling Filter

The system function in Equation (3.2) is also well suited for multirate applications.
Consider the filter described by Equation {3.2) where the sampling rate of the output signal

is reduced by a factor of D. Instead of computing all the output samples. a computational

reduction can be achieved by moving the decimator toward the input side of the filter.
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Figure 3.2a: The Ath resonator of a multirate Type 1 frequency sampling filter.
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Figure 3.2b: Structure of the kth resonator, with the decimator moved towards the input
side.
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Fig. 3.2a represents a Direct Form 1 structure of the resonator in Fig. 3.1b, where
the output is decimated by a factor of D. Fig. 3.2b represents an equivalent structure with
the decimator moved towards the input side of the filter. Fig. 3.2b requires D times fewer
adds and multiplies per output sample than the structure in Fig. 3.2a. Thus, Fig. 3.2b

represents a frequency sampling filter structure with a reduced computational requirement.

3.1.1 Pipelined Type 1 Frequency Sampling Filter With Real Impulse
Response

The frequency sampling filter described by Equation (3.2) can be implemented without
complex arithmetic if it has a real impulse response. The system function in Equation (3.2)

can be expressed as

H(z) = 1= pVs=N H(0) I.;Bl(ps—l)l N H(l\’/’l)zgﬁl(e”r:—l)l_*_
:) = Ry 1_ D:-D DD

= . % l 1 27,

-1 IH(I\')IE‘I()(HZE__.GI(C’J.‘TIC":—I)l N N-1 IH(]\,HEJQ(A')Z[E;BI(EJTLI_:_I)1

k=1 1- ej%\',:kD,-D:—D kSl 1= cj%\z/:D,,D:_D

when .V is even. If the filter has a real impulse response. the frequency samples have the

property. H(k) = H*(:V — k) which implies

|H(k)| = |H(N - k)|

and

(k) = —8(N — k).

Substituting these relationships into the system function of the filter,

H(:) =

1= pN~—=N H(0) [D=Bl(7‘z—l)l N H(N/'Z) ZID=BI(€J'7:,.3—1 )l+
N 1~ rDz-D 1 —einDpDs=D
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Figure 3.3a: Pipelined type 1 frequency sampling filter with real impulse response.

5 [lH(knei"“‘)zD“ (I Fhra)! | H (k)" zfia'wf%“r:-‘)‘]}

TN
k=1 1- e F+DpD =D 1- e 3FkDD--D

1= VY {H(O) TR = N/ SR @)

1-rPz=D | — ei#DpDz=D +

§2|H k) l 0 C(JQ(B(A)—}- [A)(,-—l)
( 2(‘0q(3"/\D),D D+,-’-D~—7D

Ei2g" cos(B(k) + (D ~ Nk)(r==1)~P! (3.3)
1~ 2cos(3kD)rPz-D 4 p2D:-2D -

where M; = (V/2)— 1if .V is even. If .V is odd. then the filter's system function does not
have a H(.N/2) term and M; = (N —1)/2.

The svstem function of the filter described in Equation {3.3) shows that it consists
of a comb filter in cascade with 1/, + 2 parallel resonators. Fig. 3.3a shows a block diagram
of the filter described by Equation (3.3) where the structure of resonators 1 to .M/} is shown
in Fig. 3.3b. Each of the resonators, 1 to Ay, requires 2D + 2 real multiplies and 2D +1
real adds per output sample. Figs. 3.3c and 3.3d show the block diagrams for resonator 0.
and resonator :V/2 respectively. Each of these resonators require D real adds and D + 1 real
multiplies per output sample. Hence, the filter requires approximately (2D +2)(M; +1)+1
real multiplies and (2D + 1)( My + 1) + M; real adds per output sample.

Fig 3.3 represents a frequency sampling filter with a significant increase in the hard-
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Figure 3.3d: Structure of the resonator ¥/2, in Fig. 3.3a

ware required to implement the filter, compared to the frequency sampling filter in Fig. 2.2.
However. the filter structure can be pipelined because only delays of D are in the feedback
paths of the filter. If we assume that the multipliers are the only source of bottleneck in
pipelining the filter and if the multiplier takes less than D time periods to execute, then

the filter structure in Fig. 3.3 can be pipelined.

Multirate Type 1 Frequency Sampling Filter With a Real Impulse Response

If the output of the filter described by Equation (3.3) is decimated by a factor of
D. a significant computational saving can be achieved by moving the decimator toward the
input side of the filter. Fig. 3.4a represents a Direct Form 1 structure for resonators 1 to
My where the output of each resonator is decimated by a factor of D. Fig. 3.4b represents
an equivalent structure with the decimator moved toward the input side of the filter. The
structure in Fig. 3.4a requires D times as many adds and multiplies per output sample
as the structure in Fig. 3.1b. For an equivalent throughput, the structure shown in Fig.
3.3b requires adders and multipliers that are D times faster than the corresponding units
in Fig. 3.4b. Thus, the filter structure shown in Fig. 3.4b represents a filter with a reduced

computational requirement.
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i
a ,(k)= r cos(@ (k) + 2nik/IN) 2IH(K)UN
where i=0,1... 2D-1

Figure 3.4a: Direct Form 1 structure of the kth resonator of a multirate Type 1 frequency
sampling filter with real impulse response for k= 1 to Mj.

a',(k) =r‘cos( 6 (k) +2mikiN) 2\H(k)IN

where i=0,1...2D-1

Figure 3.4b: Structure of the kth resonator with the decimator moved towards the input
side.
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3.1.2 Pipelined Type 1 Linear Phase Frequency Sampling Filter

The phase. 8(¢/*). of a FIR linear phase filter that has an impulse response of length .V

can be expressed as

Thus. the phase samples for a linear phase Type 1 frequency sampling filter are

N -1 2x

It can be shown [1] that for a Type 1 linear phase filter of length V. H(~N/2) = 0. From

the expression for the phase samples,

cos (0(k)+%7:lk) = (—1)*cos ((—%H%'-ll) (3.4)

and

il

cos (O(k) - 37Elk)

& (2 - 1)m ) o =
I (=1)%cos (————N (3.3)

Substituting Equations (3.4) and (3.5) into the Equation (3.3), an expression for the system

function of a pipelined linear phase frequency sampling filter can be obtained.

1= NN fH0) 25 e
H(") = K% { 1_1713-.—D

M l(— ) (o2} (( ’+l) k)( o _|_ Z l(—l)ACOQ ((‘31-"\1').“\‘) (I.:—I)QD—I
+AZ=:12|H(/¢)I I oonTD DD T b

k)
ZZlH( 1= 2cos(35kD)rPz=D 4 p2D:=2D

i - ,_\ =N { M {21_0 — 1Y cos (Lﬂ__ﬁ) (( ,.:—-l)l _ (,.3-—1 )Z’D—l—l)}
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Resonator 1
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=

Figure 3.5a: Pipelined Type 1 frequency sampling filter with linear phase.

N

D—1, _~-1y\
+H(Of?,r=gz(_r5 )} (3.6)

where M; = (V/2)— 1if NV is even and M; = (.V — 1)/2if N is odd.

The structure of the frequency sampling filter described by the system function in
Equation (3.6) is shown in Fig. 3.5a where Fig. 3.5b shows the structure of resonators 1
through 1/;. The structure of resonator 0 is shown in Fig. 3.3c. Each of these resonators
requires 2D + 2 real multiplies and 2D + 1 real adds per output sample. Hence, the filter
requires (2D + 2)3; + D + 2 real multiplies and (2D + 2)M; + D real adds per output
sample.

Fig 3.5a represents a frequency sampling structure with a significant increase in
required hardware compared to the structure in Fig. 2.3a. However. this filter can be

pipelined because only delays of D are in the feedback paths of the resonators.
Multirate Type 1 Frequency Sampling Filter With Linear Phase

After frequency selective filtering. the output of the frequency sampling filter can be
decimated. Fig. 3.6a represents a Direct Form | structure used to implement the resonators
1 through 1, of the filter. described by Equation (3.6). with the output decimated by a
factor of D. To achieve computational reduction. the decimator is moved toward the input

side of the filter. Fig. 3.6b represents an equivalent structure with the decimator moved
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input

a ,(k) =7 ! (-1} kcas((?li-l) k TUN)2HONWN  for =0 to D-1.

all) = - r'(-1) Los(22D-1-D+1]k TN J2H(UN  fort=D to 2D-]

Figure 3.5b: Structure of resonators 1 to Af;, shown in Fig. 3.5a

toward the input side. Fig. 3.6b represents a structure with a significant computational

saving over the structure in Fig. 3.6a

3.1.3 Properties of Multirate Type 1 Frequency Sampling Filters

Assuming that only A of the frequency samples of the filter are nonzero. a comparison of
the multiplies required per output sample by a direct convolution filter. a Type 1 frequency
sampling filter and a pipelined Type 1 frequency sampling filter is shown in Table 3.1. Table
3.2 shows the computational requirements of these filters if their output is decimated by a
factor of D.

Table 3.2 shows that the system function of the Type | frequency sampling filter.
developed in this section is more suited for multirate systems when compared to the Type
1 frequency sampling filter discussed in Chapter 2. The linear phase Type 1 frequency

sampling filter developed in this section with the output decimated by a factor of D is more




input output

H ! 2+ os( 21 kD)
1 N

] )
1
:—>4
%up.y @
a k)= ¢! 1) %os (2L+1) TKIN)AH(UN for 1= 0 toD-1

I
a=- * D Kos ([22D-1-D+1jk TINJIH(UN  forI=D to 2D-1

Figure 3.6a: Direct Form 1 structure for the Ath resonator of a multirate Type 1 frequency
sampling filter with linear phase.

k
a’(k) = r‘(-l) cos((2l+1) ™%/N) 2IH(K)UN for 1= 0 to D-1.

k
a@) = - r' (-Dcosf[22D--D+1 K TNHOOIN for E=D to 2D-1

Figure 3.6b: Structure of the kth resonator with the decimator moved towards the input

side.




Filter for even .V Nonlinear phase Linear phase
real impulse response | real impulse response
Direct convolution filter ' /2
Type 1 frequency 4K 3N
sampling filter +1 +2
Pipelined Type 1 frequency | (2D + 2)K (2D + 2)K
sampling filter +1 +1

Table 3.1: Multiplies required per output sample by a direct convolution filter, a Tvpe 1
frequency sampling filter and a pipelined Type 1 frequency sampling filter (A" is the number
of nonzero frequency samples, D > 1 and N is the length of the impulse response of the
filter).

Filter for even .V Nonlinear phase Linear phase
real impulse response | real impulse response
Direct convolution filter Y /2
with the output decimated
Type 1 frequency 2D +2)K (2D + 1)K
sampling filter with the +D +D
output decimated
Pipelined Type 1 (2D +2)K (2D 4+ 2)Ki
frequency sampling filter with the | +D +D
output decimated

Table 3.2: Multiplies required per output sample by a direct convolution filter, a Type 1
frequency sampling filter and a pipelined Type 1 frequency sampling filter with their outputs
decimated (D is the decimation ratio. A is the number of nonzero frequency samples and
N is the length of the impulse response of the filter).
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efficient than a linear phase direct convolution filter. when (2D +2)A' + 1 < N/2 or

-1 AY
2D+2 7 4D+ 4

L <

A nonlinear phase Type | frequency sampling filter developed in this section wi th the output
decimated by a factor of D is more efficient than a nonlinear phase direct convolution filter.

when A < ﬁj\-ﬁ

3.2 Pipelined Type 2 Frequency Sampling Filter

A Tyvpe 2 frequency sampling filter can be developed similar to the Type | frequency
sampling filter in Section 3.1. The system function of a Type 2 frequency sampling filter

was given in Equation (2.9) as

1+ V=N 2 H(k)
N 1- eI k+3) pa-t

H(z)y =

From the rules of geometric progression,

D-1 i 2% (k+1)D,.D ,~D
(eI Fk+3)p -1y 1 -/ F+2)D,De

= 1= e Fk+5) o1

which implies that

1 — e F(k+3)D D -~D

—_ j%—ﬂ(k*—l) -1 = 3.7
1—elwirair: D=V ei% b+ z1) (3.9
Substituting Equation (3.7) into the Equation (2.9),
No=N N=1l o sD=1 i35 (k1) -1y
H(z) = LTS H(k) dizp (&2 72777 ) (3.8)

EEYTN)
A iz 1| — ¢JF(k+3)D D =D
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Resonator 0

Resonator 1 |~
y \ output

Resonator (N-1)

Figure 3.7a: Pipelined Type 2 frequency sampling filter.

input a(k) output
><—AB T = =
2| jon(keli2)N

re a(k)
2 jan(k+1/12)IN
re a(k)

D j2m(D-1)k /NA

re

l
'
1
Dl é;Zn(D-l)(k-rIIZ)/ J

il

I

where a(k)= H(k)IN.

Figure 3.7b: Structure of the kth resonator in Fig. 3.7(a)
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The block diagram of the filter described in Equation (3.8) is shown in Fig. 3.7a
where the structure of the kth resonator is shown in Fig. 3.7h. The system function of the
filter given in Equation (3.8) consists of a comb filter with .V zeros in cascade with a parallel
combination of .V — 1 resonators. Each of the resonators has D poles and (D — 1) zeros.
The resonator shown in Fig. 3.7b requires D + 1 complex multiplies and D complex adds
per output sample . Hence. the filter requires approximately (4D + 4)N — | real adds and
(4D 4+ 4).V + | multiplies per output sample. If we assume that multiplies are at least D
times slower than adds. the filter described by Equation (3.8) can be pipelined because of

the presence of only =2 in the denominator of the system function of each resonator.

Multirate Type 2 Frequency Sampling Filter

After narrowband filtering. the output of the frequency sampling filter can be deci-
mated. The svstem function in Equation (3.8) is well suited for multirate applications where
the output is decimated by a factor of D. Instead of computing all the output samples. a
computational reduction can be achieved by moving the decimator toward the input side
of the filter.

Fig. 3.8a represents a Direct Form | structure for the resonator in Fig. 3.7b. Fig.
3.8b illustrates an equivalent structure for the filter with the decimator moved towards the
input side of the filter. To achieve the same throughput, the structure in Fig. 3.7b needs
to have adders and multipliers that are D times faster than the corresponding units in
the structure in Fig. 3.8b. Thus, Fig. 3.8b represents a filter structure with a reduced

computational requirement compared to the structure in Fig. 3.7b.

3.2.1 Pipelined Type 2 Frequency Sampling Filter With Real Impulse
Response

The filter described by Equation (3.8) can be implemented without complex arithmetic . if

the filter's impulse response is real. The system function in Equation (3.8) can be expressed




input a(k)
[ =
i jemtkr1i2)N >
re a(k) D j2rD(k+112)IN Z
r e

L J2RD-NIHIZIN

where a(k) = H(k)IN

Figure 3.8a: Direct Form 1 structure for the kth resonator of a multirate Type 2 frequency
sampling filter.

input

a(k)

output

D1 j2r(D-1)(k+1/2)IN
r e a

j2 k+1/2)IN
lD r 83: a(k) rDej 21:D(k+1/2)/~
z-l
2 jantkrli2)IN
lD re S a(k,
[]
1 ]
1
|
z-l
1 |p =3

(k)

where a(k) = H(k)IN

Figure 3.8b: Structure of the kth resonator with the decimator moved towards the input

side.




as

14 pN =N %""1 lH(k)lfJe(k) Zﬂ-al(ej-":—\,:(k+%)r:—l )l

H(z) =
(=) N & | — JZ k451D, D--D

N-1 ¢ - I (k+3 -
|H (k)] 25 e X (KF2) pa 1yl (3.9)

FETTINN
Lg 1 - e/ X k+3)DpD =D

where .V is even. If a Type 2 filter is constrained to have a real impulse response. then its

frequency response samples have the property,

|H (k) = |H(N -1 k)|

and
Ok)y=-0(N-1-Fk)

Substituting these relationships into Equation (3.9).

L4 N
H(z) = Y

=N Mg [IH(A ,ewu)zD L ¥ ttd) -1y
k=0 1- EJ N (A+~)D7'D~ -D

o H()]es8 TP e Bl a1
e~1 5 k+5)D D ~D

1-—-
1+ N ,~N Mo - T 251 cos (0(k)+2—”l(k+l) o
Z | l—2cos( (A+2)D)TD -D 4 p2D-2D
lDolcos(H(k)-i- (D - (k+l))(,.-—1)0+1 510,
T 1-2cos(Z(k + 3)D)rPz=D § r2D5-2D 3.

where M, = (N/2) - 1.
A block diagram for the filter described in Equation (3.10) is shown in Fig. 3.9 where

a structure of resonators 0 to A, is shown in Fig. 3.9b. If ¥ isodd, M, = 3)/2. and the
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—>» Resonator 0
]
. Resonator 1
input + h
+ — ] ]
1
+ L output
o —— Resonator M
z
N

Figure 3.9a: Pipelined Type 2 frequency sampling filter with real impulse response.

filter system function has a term due to the frequency sample, H( —\-2;1) Each of these res-
onators requires 2D + 2 real multiplies and 2D + 1 real adds per output sample. Hence. the
filter requires approximately (2D + 2)( Mz + 1)+ 1 real multiplies and (2D + 1)(A+ 1)+ M
real adds per output sample. The hardware requirement of the filter in Fig. 3.9a is more

than that in Fig. 2.4a. However, the structure in Fig. 3.9a can be pipelined.
Multirate Type 2 Frequency Sampling Filter With Real Impulse Response

The filter described by Equation (3.10) is well suited for sampling rate reduction by
a factor of D at the output. Fig. 3.10a represents Direct Form 1 structure for resonators
1 to M, where the output of each resonator is decimated by a factor of D. To achieve
computational saving. the decimator should be moved toward the input side of the filter.
Fig. 3.10b represents an equivalent structure with the decimator moved toward the input
side of the filter. This structure requires fewer adds and multiplies per output sample than

the structure in Fig. 3.10a.

3.2.2 Pipelined Type 2 Linear Phase Frequency Sampling Filter

If a Type 2 frequency sampling filter is constrained to have linear phase. then the phase

samples can be written as

e ()]




input output
9%} — >

He—

2 os( 2% (k+1/2) DIN)

a (k)

-
%p.1y 0

N;_ T -

. r2D

a‘.(k) = cos( 8(k)+21i(k+1/2)IN) 2IH(K)IN
where i=0,1...2D-1

Figure 3.9b: Structure of the resonators 0 to M- in Fig. 3.9a.

input utput

D—@

————

2% keli2)D )

D
2 rcos( v

——

2D
- r

ab=r ! casto (k) + 2micke112) IN) 2HUDUN

where i=0,1... 2D -1

Figure 3.10a: Direct Form 1 structure for the Ath resonator of a multirate Type 2 frequency

sampling filter with real impulse response.
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ak) = r cos( 0 (k)+2mi(ke112)IN ) 2HKNN

where i=0,1..2D-1

Figure 3.10b: Structure of the kth resonator with the decimator pushed towards the input
side.

Therefore
LA ko (@REDE L ,
cos (0(k)+ 1V1<L+§)) = (—1)%sin <——N (A-{- 2)) (3.11)
and
9-2i (ks d)) = e (2200 d))
cos (0(A)— Nl<k+ 2)) = (-1) szn( ~ k+ 3 (3.12)

Substituting Equations (3.11) and (3.12) in Equation (3.10),

- . 2041)m(k+ 1 -
14+ pNz=N M; Zgol(—l)ksm (L");/—(‘J) rz~!

H(z) = —T—=—N"2|H(k : -
() N I; H (R 1—2cos(%\‘%kD)rD:‘D+r2D:‘2D

—(fog- L ’
TPl (_1)ksin L‘”"\}_“:Lz_)%,.z—l)w-l

1 - 2cos(3FkD)rPz=D 4 p2D:-2D
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Figure 3.11a: Pipelined Tvpe 2 frequency sampling filter with linear phase.

(pal
D=l(_1)ksin (———2—(2[“)‘;.“"* )) rz=!

L4 rNomY A =0
= — 20H (K
AY E [ (k)] 1-— 200.9(%kD)I'D:‘D + p2D;-2D

- e (DR (k+E Pt
Yz (=1)rsin (_._._\._-_))(,.: 1y2D-1-1

1 — 2cos(4kD)rPz=D 4 p2D--2D (3.13)

where .V is even and Ay = (V/2) - 1.

The structure of the pipelined frequency sampling filter described by Equation (3.12)
is shown in Fig. 3.11a where Fig. 3.11b shows the structure of resonators 1 through 1/;.
Each of these resonators requires 2D + 2 real multiplies and 2D 4 1 real adds per output
sample. The structure of resonator 0 is shown in Fig. 3.3c. Hence, the filter requires
(2D + 2)Ms + D + 2 real multiplies and (2D + 2)Al, + D real adds per output sample. The
presence of only delays of D in the feedback paths of each resonator makes it possible to

pipeline the filter.
Multirate Type 2 Frequency Sampling Filter With Linear Phase
The system function of the filter given in Equation (3.13) contains only powers of z~P

in the denominator. This makes it well suited for sampling rate reduction at the output. by

a factor of D. Fig. 3.12a shows a Direct Form 1 structure of resonators 0 to M, of the filter
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2 os( 27 (k+1/2) DIN)

%p.1y

_rZD

a(k) = Pl ety “sin(2eel) T(kr1/2)IN ) 2H(QYN  for I=0to D-1

a l(k) =-r! -1) ksin{[Z(ZD-I-I)+I] n(k+1/2)/IN] 2\H(k)UN Sfor =D to 2D-1

Figure 3.11b: Structure of the resonators 0 to M> in Fig. 3.11a.
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input output

2 r‘?:os(?Nl (k+1/2)D )

-

. rZD

3ap.p K

a (k)= ) (o) Xsin(Lel) R+ 12)IN) 2H(QUN  for &0 to D-1

a,l)= - bl X sinf22D-1-p+1] 7 12IN] 2HIOUN for &= D t0 2D-1

Figure 3.12a: Multirate Type 2 frequency sampling filter with linear phase.

described by Equation (3.13) where the output of each resonator is decimated by a factor
of D. To achieve a computational reduction, the decimator should be moved toward the
input side of the filter. Fig. 3.12b represents an equivalent structure where the decimator
has been moved toward the input side. Fig. 3.12b represents a resonator structure with a

smaller computational requirement compared to the resonator in Fig. 3.12a.

3.2.3 Properties of Multirate Type 2 Frequency Sampling Filters

Table 3.3 shows a comparison of the multiplies required by a direct convolution filter. a
Type 2 frequency sampling filter and a pipelined Type 2 frequency sampling filter. Table
3.4 shows the computational requirements of these filters if their output is decimated by a
factor of D.

Similar to the Type 1 frequency sampling filter developed in Section 3.1. the linear
phase Type 2 frequency sampling filter developed in this section is more efficient than a

linear direct convolution structure when (2D +2)K' + 1 < .¥/2 or

N .
-1 N A

K ~ .
‘< Spr2 T ID+4




al(k) =rt (-1) ksin((Zl+I)1r(k+I/2)lN) 2IH(UN  forI= 0 to D-1

k
a) =- r' (1) sinff2@D-1-+1] n(ke12UN) 2HOQUN  Jor 1D 10 2D-1

Figure 3.12b: Structure of the resonator with the decimator pushed towards the input side.

Filter for even V

Nonlinear phase
real impulse response

Linear phase
real impulse response

Direct convolution filter N N/2

Type 2 frequency 4K 3K
sampling filter +1 +2
Pipelined Type 2 frequency | (2D + 2)/ (2D + 2)K
sampling filter +1 +1

Table 3.3: Multiplies required per output sample by Tvpe 2 frequency sampling filter and a
pipelined Type 2 frequency sampling filter (A" is the number of nonzero frequency samples,

D > 1 and .V is the length of the impulse response of the filter).




Filter for even N Nonlinear phase Linear phase
real impulse response | real impulse response
Direct convolution filter N N/2
with the output decimated
Tvpe 2 frequency (2D +2)K (2D + )i
sampling filter with the +D +D
output decimated
Pipelined Type 2 (2D +2)iK (2D + 2)K
frequency sampling filter with the | +D +D
output decimated

Table 3.4: Multiplies required ‘per output sample by Type 2 frequency sampling filter and
a pipelined Tvpe 2 frequency sampling filter with their outputs decimated (D is the dec-
imation ratio. A" is the number of nonzero frequency samples and .V is the length of the
impulse response of the filter).

A nonlinear phase Type 2 frequency sampling filter developed in this section is more efficient

than a nonlinear direct convolution structure when A" < ,—D\—Jr-—,

3.3 Example: A Low-pass Frequency Sampling Filter for .V

Odd

A frequency sampling filter designed in [3] is used to compare the frequency spectrum of
the output of a linear phase pipelined Type 1 frequency sampling filter without decimation

of the output and with decimation by a factor of D. The input. x{n) to the filter is

c0s(0.037n) + cos(0.57n) for 0 < n < 200
z(n) =
0 elsewhere
Fig. 3.132 shows the magnitude spectrum of the input signal. The magnitude and
phase spectra of the output of the pipelined frequency sampling filter are shown by Figs.
3.13b and 3.13c respectively. The magnitude and phase spectra for the multirate frequency
sampling filter are represented by Figs. 3.13d and 3.13e respectively. These plots are gener-

ated for different values of r. In order to reduce the nonlinearity in the phase of the filter.

r is kept close to unity.
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Chapter 4

State space structures for
multirate frequency sampling

filters

Coupled state space structures have a lower coefficient sensitivity and are less sensitive to
quantization errors than Direct Form structures [6]. In this chapter. we will use coupled

state space structures to implement the frequency sampling filters developed in Chapter 3.

4.1 State Space Structure for a Multirate Type 1 Frequency

Sampling Filter

In this section. we will develop a coupled state space structure of a Type 1 frequency

sampling filter which has its output decimated by a factor of D. The system function for a

(1]
=1
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multirate Type 1 frequency sampling filter was given in the Equation (3.2) as

) = 1 — pVa-N Nz:l H(k) gal(ej%gkrs-l)l
T N o 1 FkDuD D

If the impulse response of the filter is real, the frequency response samples have the property

H(k)= H*(N — k). Using this property, we can express the filter's system function as

H(z) =

N ot | — e/ ¥FPpD-D 1- e‘JTLDrD:“

1= NN [ M (k) TR eI Fhrzt)  H* (k) TR e Fhret)
> 2 + D *

1-rDz-D 1~ e7DpD:=D

H(0) YL (rzm1) . HN2) T2 e“rz—‘)‘}

where .V is even and M; = (N/2)— 1. If NV is odd. the H{N/2) term does not exist in the

system function of the filter and M, = (.V — 1)/2. If we define Hi(z) as

H(k)YP5 (eI Fhpz1)! . H™(k) SPs (e i kpz-1)l

Hiz) = — = b S Ew 5D (1)
for k = 1.2....M; then
He = Azl %H( £ 2,03(1'5_1)l+ \1/2_,31—0 ,(J‘j = 1”].
If we also define Hyn(z) as
Hin(z) = [H(Mw ez H-m(r»-f%krwl)n}
1 — ¢ ¥kDpD~~D 1 — e i kD pD~-D

then Hyp(z) can be written as

Hyo(z2)

{ H(k) N H(k) ]

1 -/ ¥kDyDo=D | _ =i¥HkD D ;=D
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s(n) s'(n)

o

Figure 4.1a: Structure to implement Equation (4.3), with the output. s(n). decimated by a
factor of D .

If we let Yjo(=>) be the output of the section of the filter given by the system function.

Hio(z). and let X(z) be the input to the resonators, then

Hb)X(z) _ H(K)X(2)

Ywo(z) = - - .
kol 2) 1—eFkDpDo=D ' | _ ~iFkD DD

If we let

H(k)X(2)

> 4.2
1 — ¢/ ¥kDypD =D (4:2)

S(:‘) =

then

This implies that
gro{n) = s(n) + s"(n).

The decimation of the output, yro{n). is equivalent to the decimation of s(r) and s*(n).

Taking the inverse z transform of Equation (4.2).

s(n)—e’g.\';"’DrDs(n—D) = H(k)x(n) (4.3)
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x(n) x(n) s'(n)

H(k)

2xkDIN
r Dej

Figure 4.1b: Structure to implement Equation (4.4) .

Fig. 4.1a shows a structure for implementing Equation (4.3), with the output. s(n).
decimated by a factor of D. Fig 4.1b shows an equivalent structure with the decimator
moved toward the input side of the filter. The difference equation for this equivalent struc-

ture is given as
s(n) = eFDpDy(n — 1)+ H(k)z'(n) (4.4)

where ¢'(n) and 2'(n) are obtained by decimating s(n) and z(n). respectively. by a factor

of D. s'(n) can be expressed in terms of state variables, v;(n) and va(n) as
s(n) = wvi(n)+ jeaAn).
The frequency samples, H(k) can be written as
H(k) = Re[H(k)) + jIm[H(E)]

where Re[H (k)] is the real part and /m[H (k)] is the imaginary part of H(k). Therefore,

v1{n) and vo(n) can be written in matrix form as

ri(n) cos(%"kD)rD —sin(—f\z;kD)rD vi(n—1) Re[H(k))
+ 2'(n).

v(n) =
va(n) sin(ZFkD)rP cos(%—',’-kD)rD va(n —1) Im[H(k))
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The output equation can be written as

yro(n) = s(n)+ s (n)

= [ea(n) + jealm)]) + [es(n) = jealn)]

=[2 O}V(n)

The state equations and output equations for the other terms in Hy(z) can be derived
similarly. The output, yr(n), is calculated by adding up the outputs due to all the terms in
Hi(z).

The structure of a multirate Type 1 frequency sampling filter with a real impulse
response is shown in Fig. 3.3a. Fig. 1.2 shows the structure of the resonators 1 to M, if
the output of the frequency sampling filter is decimated by a factor of D. Each resonator
requires 2.D 4 5 real multiplies per output sarﬁple and 2D — 2 real adds per output sample.
This is approximately as many computations as that required for a Direct Form structure
shown in Fig. 3.3b. The filter requires (2D +5).M; +2D real multiplies and (20 —-2)M+2D

real adds per output sample.

4.2 State Space Structure for a Multirate Type 2 Frequency
Sampling Filter

In this section, we will develop a coupled state space structure for a Type 2 frequency
sampling filter which has its output is decimated by a factor of D. The system function for

a pipelined Type 2 frequency sampling filter is given by the Equation (3.8) as

1+ ,..’\fz_,\- N-1 H(k)zl.;al(e‘)e‘—;-(ki-%)r:—l)l

222040 1
S k=0 1- EJT(L+9)DI.D5—D




2 output
27
cos(<= kD) rP
N
Re/H(k)] W [ -
z
. 2T b
imput SM(T -
- sin(.-ill kD) rP
> + )
z! : B
T D
Rel(ke 2T ) cos( g+ KD)F
-
D
ImiH(k)e 7Ny
z! E
'
' ) -
1 Re[H(k)e Jrk2(D-1) INY )
: =
L
Im{H(k)e Jjrk2(D-1) IN r(D-I) )
=

Figure 4.2: Coupled state space structure for resonators 1 to Mj.




63
If the impulse response of the filter is real, the frequency response samples, H (k) have the
property H(k)= H*(N — 1 — k). Using this property the system function of the filter can
be written as

|4 V=N [Ah H(k)zgsl(ej%(k+{,—)r:-—l)l H-(A.)ZID=BI(C-J:':T"(IJ+-;—),.:—1)I

g Py LTI
‘\ k=0 1 — e" ) (A+'Z)D]‘D:"D 1 [ays J _\r(,\+2)D’-D:—D

H(:) =

where .V is even. and My = (N/2) - 1. If N is odd. the system function has a term due to

the filter coefficient H(V—;l-), and My = (N = 3)/2. If we define Hi(z) as

Hik) SRS @R Hrat) B (k) TR (e F )ty

4.5)
1 — e (k+3)DpD ;=D 1 - e~ ¥ (k+5)DpD;-D (

Hi(z) =

for k =1,2....M5 then

k=1

N.-N 1‘42
H(:) = BTN—~ [Z Hk(:)} .

If we also define Hy,(2) as

H _ H(k) (e Fk+3)pz-1)n H (k) (e Fh+3)pz-1)n
nlz) = 1 -5 k+3)DpD-D | _ =13 P (k+5)DpD =D

then Hiq(z) can be written as

H(k) H*(k)
1 - @ Fk+3D DD | _ =15 (k+5)D D -D

Hio(z) = [

If we let ¥;o(z) be the output of the section of the filter given by the system function,

Hio(z). and let X(z) be the input to the resonators, then

Yio(=)

H(E)X(z2) H*(k)X(2)
e R e
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x(n) s(n) s'(n)
= -+ lD =
H(k)
D j2r(k+1/2)DIN
re
P

Figure 1.3a: Structure to implement Equation (4.3). with the output. s(n), decimated by a
factor of D .

If we let
§() 1 - ejg&fl;(D:,?D:—D (+6)
then
Yio(z) = S(2)+ 57(=).
This implies that
yro(n) = s(n) + s™(n).
Taking the inverse = transform of Equation (.6),
s(n) — e ¥&+3D Dy — Dy = H(k)z(n) (4.7)

Fig. 1.3a shows the structure for implementing the Equation (.7) with the output decimated
by a factor of D. Fig. 4.3b shows an equivalent structure with the decimator moved toward

the input side of the filter. The difference equation for this equivalent structure is given as

s'(n) = I FEDD oy _ 1y 4 H(k)a'(n) (1.8)




x(n) x(n) s'(n)
— 10 + =
H(k)

D j2n(k+1/2)DIN
re

Figure 4.3b: Structure to implement Equation (4.4) .

where s'(n) and 2'(n) are obtained by decimating s(n) and z(n) respectively, by a factor of

D. §'(n) can be expressed in terms of the state variables v;{n) and va(n) as

s'(n) = wni(n)+ jva(n).

In matrix form, v1(n) and va(n) can be written as

v (n) cos [%\—',T(k-i- %)D] P —sin [?—J—(k + %)D] rP vi(n —1)
v(n) = =
va(n) sin [?—\‘,"(k + %)D] P cos {%‘%’(k + %)D} rD va(n — 1)
Re[H (k)] )
2'(n)
Im[H(k)]

The output equation can be written as follows
yro(n) = s(n)+s™(n)

Yro(n) = [ 2 0 ] v(n)

The state equations for the other terms in Hg(z) can be derived similarly. The output.
yr(n), is calculated by adding up the outputs due to all the terms in Hy(z).
The structure of a multirate Type 2 frequency sampling filter with a real impulse

response is shown in Fig. 3.9a. Fig. 4.1 shows the structure of resonators 1 to M if the
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2 output
-
cos( % (k+1/2)D) r°
-

w(n-1)

REHMI N (o

. 2T D
e sin( N (k+2/2)D) r

- sin(% (k+1/2)D) rP

- 2
Im[H(K)] ﬁ%&( n) v(n-l)
-

cos( -fv—“ (k+1/2)D) rP

Re[H(kje J2URH1IZ)IN y
S

+112)IN

Im{H(k)e 2PN |

]
Re(H(k)e SE*+H12)2(D-1) IN D-1)

]
]
? >

L

/

e

Im(E(kge I HRHI2)2D-1) IN 0D

Figure 4.4: Coupled state space structure for resonators 1 to M.




Filter for even N Nonlinear phase
real impulse response
Direct Form 1 structure for a (2D + 2)K
multirate Type 1 frequency +1
sampling filter
Coupled state space structure (2D + 35)K

for a multirate Type 1 frequency
sampling filter

Direct Form 1 structure for a (2D +2)K
multirate Type 2 frequency +1
sampling filter

Coupled state space structure (2D + 3)K

for a multirate Type 2 frequency
sampling filter

Table 4.1: Multiplies required per output sample by Direct Form structures and coupled
state space structures of frequency sampling filters (4" is the number of nonzero frequency
samples and D is the decimation ratio of the output).

output of the filter is decimated by a factor of D. Each resonator performs 2D + 5 real
multiplies per output sample, and 2D -2 real adds per output sample. This is approximately
same as that for a Direct Form structure, shown in Fig. 3.9b. The filter requires (2D +

5)Al5 + D real multiplies and (2D — 2)M, + D real adds per output sample.

4.3 Properties of Coupled State Space Structures

Table 4.1 shows that a state space structure for a multirate frequency sampling filter requires
the same number of computations per output sample as a Direct Form structure. State space
structures can be used to implement multirate frequency sampling filters, with a reduced

computational requirement and low coefficient sensitivity.




Chapter 5

Conclusions

Under certain circumstances, narrowband filters can be implemented more efficiently using
frequency sampling filters than direct convolution filters [1]. Frequency sampling filters are

recursive. The system functions of a Type 1 gnd Type 2 frequency sampling filter are given

by Equation (2.3) and Equation (2.9) respectively. These system functions have z~! in the
denominator. which implies that the filter structure has unit delays in the feedback paths.
The presence of these unit delays in the feedback paths prevents pipelining and for multirate
applications where the output is decimated, no computational saving is achieved.

The problem in pipelining a frequency sampling filter can be addressed by changing
the system function of the filter so that it contains only powers of =~ in its denominator.
If we assume that multiplies are computationally more complex than adds and if the mul-
tipliers take less than D time periods to perform each multiplication then the frequency
sampling filter can be pipelined.

The new frequency sampling filter system function that has only powers of ==D
in the denominator, makes the filter amenable for sampling rate reduction at the output
of the filter. If the output of this filter is decimated by a factor of D, the computational

requirements of the adders and multipliers in the filter can be reduced.

Table 3.2 and Table 3.4 compare the number of multiplies required by direct con-
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volution filters. frequency sampling filters and pipelined frequency sampling filters when
their outputs are decimated by a factor of D. It is shown in these tables that the frequency
sampling filters developed in Chapter 3 require the same number of multiplies per output
sample as those mentioned in Chapter 2. when used in multirate systems. Pipelined Type
1 and Tvype 2 frequency sampling filters are more efficient than a direct convolution filter if

for a linear phase filter k' < 4,_‘)\;4 and for a nonlinear phase filter if A" < %

Coupled state space structures can also be used to implement the resonator in
frequency sampling filters. They have a lower coefficient sensitivity than Direct Form struc-
tures [10]. These structures require approximately the same number of computations as
Direct Form structures. hence they can be used to implement frequency sampling filters

economically.
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