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ABSTRACT
We analyse the evolution of a mildly inclined circumbinary disc that orbits an eccentric orbit
binary by means of smoothed particle hydrodynamics (SPH) simulations and linear theory.
We show that the alignment process of an initially misaligned circumbinary disc around
an eccentric orbit binary is significantly different than around a circular orbit binary and
involves tilt oscillations. The more eccentric the binary, the larger the tilt oscillations and the
longer it takes to damp these oscillations. A circumbinary disc that is only mildly inclined
may increase its inclination by a factor of a few before it moves towards alignment. The
results of the SPH simulations agree well with those of linear theory. We investigate the
properties of the circumbinary disc/ring around KH 15D. We determine disc properties based
on the observational constraints imposed by the changing binary brightness. We find that the
inclination is currently at a local minimum and will increase substantially before settling to
coplanarity. In addition, the nodal precession is currently near its most rapid rate. The recent
observations that show a reappearance of star B impose constraints on the thickness of the
layer of obscuring material. Our results suggest that disc solids have undergone substantial
inward drift and settling towards to disc mid-plane. For disc masses ∼0.001 M�, our model
indicates that the level of disc turbulence is low (α � 0.001). Another possibility is that the
disc/ring contains little gas.

Key words: accretion, accretion discs – hydrodynamics – planets and satellites: formation –
binaries: general.

1 IN T RO D U C T I O N

Observations show that most stars form in relatively dense regions
within stellar clusters that subsequently may be dispersed. The
majority of these stars that form are members of binary star systems
(Duquennoy & Mayor 1991; Ghez, Neugebauer & Matthews 1993;
Duchêne & Kraus 2013). The observed binary orbital eccen-
tricities vary with binary orbital period (Raghavan et al. 2010;
Tokovinin & Kiyaeva 2016). For short binary orbital periods,
typically less than about 10 d, the eccentricities are small, likely
because the orbits are circularized by stellar tidal dissipation (Zahn
1977). The average binary eccentricity increases as a function of
binary orbital period and ranges from 0.39 to 0.59. In addition, there
is considerable scatter in eccentricity at a given orbital period with
high eccentricities ∼0.8 or larger sometimes found.

� E-mail: smallj2@unlv.nevada.edu

Discs consisting of gas and dust likely reside within these systems
at early stages. There can be multiple discs present in a binary
system. A circumbinary disc orbits around the binary, while each
of the binary components can be surrounded by its own disc (i.e.
circumprimary and circumsecondary discs), as is found in binary
GG Tau (Dutrey, Guilloteau & Simon 1994). Each of the discs may
be misaligned to each other and to the binary.

Some circumbinary discs have been found to be misaligned with
respect to the orbital plane of the central binary. For example, the
pre-main-sequence binary KH 15D has a circumbinary disc that is
misaligned to the binary (Chiang & Murray-Clay 2004; Winn et al.
2004). The circumbinary disc or ring around the binary protostar
IRS 43 has a misalignment of at least 60◦ (Brinch et al. 2016),
along with misaligned circumprimary and circumsecondary discs.
The binary GG Tau A may be misaligned by 25◦−30◦ from its
circumbinary disc (Köhler 2011; Aly, Lodato & Cazzoletti 2018).
There is also evidence that binary 99 Herculis, with an orbital
eccentricity of 0.76, has a misaligned debris disc that is thought
to be perpendicular to the orbital plane of the binary (Kennedy

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/486/2/2919/5437693 by U
niversity of N

evada at Las Vegas user on 25 July 2019

http://orcid.org/0000-0002-4636-7348
http://orcid.org/0000-0002-8400-0969
mailto:Smallj2@unlv.nevada.edu


2920 J. L. Smallwood et al.

et al. 2012). Furthermore, there are several known circumbinary
planets discovered by Kepler, two of which have a misalignment
to the binary of roughly 2.◦5, Kepler-413b (Kostov et al. 2014) and
Kepler-453b (Welsh et al. 2015). This misalignment suggests that
the circumbinary disc may have been misaligned or warped during
the planet formation process (Pierens & Nelson 2018).

Misalignment between a circumbinary disc and the binary may
occur through several possible mechanisms. First, turbulence in star-
forming gas clouds can lead to misalignment (Offner et al. 2010;
Bate 2012; Tokuda et al. 2014). Secondly, if a young binary accretes
material after its formation process, the accreted material is likely
to be misaligned to the orbital binary plane (Bate, Lodato & Pringle
2010; Bate 2018). Finally, misalignment can occur when a binary
star forms within an elongated cloud whose axes are misaligned with
respect to the cloud rotation axis (e.g. Bonnell & Bastien 1992).

The torque from binary star systems can impact the planet
formation process compared to discs around single stars (Nelson
2000; Mayer et al. 2005; Boss 2006; Martin et al. 2014; Fu,
Lubow & Martin 2015a,b, 2017). By understanding the structure
and evolution of these discs, we can shed light on the observed
characteristics of exoplanets.

Dissipation in a misaligned circumbinary disc causes tilt evolu-
tion. A disc around a circular orbit binary aligns to the orbital plane
of the binary (e.g. Papaloizou & Terquem 1995; Lubow & Ogilvie
2000; Nixon, King & Pringle 2011; Facchini, Lodato & Price 2013;
Foucart & Lai 2014). However, for a disc around an eccentric binary,
its angular momentum aligns to one of two possible orientations:
alignment to the angular momentum of the binary orbit or, for
sufficiently high initial inclination, alignment to the eccentricity
vector of the binary (Aly et al. 2015; Martin & Lubow 2017;
Lubow & Martin 2018; Zanazzi & Lai 2018). The latter state
is the so-called polar configuration in which the disc plane lies
perpendicular to the binary orbital plane. The time-scale for the
polar alignment process may be shorter or longer than the lifetime
of the disc depending upon the properties of the binary and the disc
(Martin & Lubow 2018).

Through smoothed particle hydrodynamics (SPH) simulations,
Martin & Lubow (2017) found that an initially misaligned (i = 60◦)
low-mass circumbinary disc around an eccentric (eb = 0.5) binary
undergoes damped nodal oscillations and eventually evolves to a
polar configuration. Martin & Lubow (2018) explored the properties
of binaries and discs that lead to a final polar configuration. One-
dimensional (1D) linear models for the evolution of a low-mass,
nearly polar disc around an eccentric binary also show evolution
to a polar configuration (Lubow & Martin 2018; Zanazzi & Lai
2018).

In this paper, we extend the work of Martin & Lubow (2017) and
Lubow & Martin (2018) by studying the evolution of misaligned
circumbinary discs around eccentric orbit binaries with lower
initial inclinations that ultimately result in coplanar alignment with
the binary. We apply both three-dimensional (3D) SPH simula-
tions and 1D linear equations for a variety of disc and binary
properties.

First we examine test particle orbits around a circular and
eccentric binary in Section 2. In Section 3, we use 3D hydrody-
namical simulations of circumbinary discs to explore the evolution
of aligning circumbinary discs for various values of inclination,
eccentricity, and disc size. In Section 4, we apply a 1D linear
model for the disc evolution. In Section 5, we apply the nearly rigid
disc expansion procedure. We apply our results to the observed
circumbinary disc in KH 15D in Section 6. Section 7 contains a
summary.

2 TEST PARTI CLE ORBI TS

In this section, we consider the evolution of the orbit of an inclined
test particle around a binary. For a circular orbit binary, or for a
sufficiently low inclination test particle orbit around an eccentric
binary, the test particle orbital angular momentum precesses about
the binary angular momentum. An eccentric orbit binary generates
a secular potential that is non-axisymmetric with respect to the
direction of the binary angular momentum. Consequently, the
particle orbit tilt i oscillates, the precession rate is non-uniform, and
the precession is fully circulating. For higher inclination around an
eccentric binary, the orbit precesses about the eccentricity vector of
the binary and also undergoes oscillations in tilt. The particle in that
case undergoes libration, rather than circulation (Verrier & Evans
2009; Farago & Laskar 2010; Doolin & Blundell 2011).

We consider test particle orbits around an equal mass binary with
M1 = M2 = 0.5M, where M is the mass of the binary, and the
semimajor axis of the binary is denoted as a. The particle orbits
are calculated for four different binary eccentricities, eb = 0.0, 0.3,
0.6, and 0.8. The orbital period of the binary is given by Porb =
2π/

√
G(M1 + M2)/a3. The binary begins at periastron separation.

We apply a Cartesian coordinate system (x, y, z). The x-axis is
along the binary eccentricity vector, whose direction is from the
binary centre of mass to the orbital pericentre. The z-axis is along
the binary angular momentum. The test particle begins in a circular
Keplerian orbit at position (0, d, 0) with velocity (−�pd cos i0, 0,
�pd sin i0), where �p =

√
G(M1 + M2)/d3 is approximate angular

frequency of a particle about the centre of mass of the binary and
i0 is the initial particle orbit tilt with respect to the binary orbital
plane. The longitude of the ascending node φ is measured from the
x-axis. These initial conditions correspond to an initial longitude of
the ascending node of φ0 = 90◦.

Fig. 1 shows the test particle orbits in the i cos φ–i sin φ phase
space for binary eccentricities of eb = 0.0 (upper left-hand panel),
0.3 (upper right-hand panel), 0.6 (lower left-hand panel), and 0.8
(lower right-hand panel) for various initial inclinations. The test
particles all begin at a separation of d = 5a. For these test particle
orbits, the separation does not affect these phase portraits, only the
time-scale on which the orbit precesses. Depending on the initial
orbital inclination, the particle can reside on a circulating or librating
orbit. The centres of the upper libration regions (for all panels except
the circular case) corresponds to i = 90◦ and φ = 90◦, while the
centres for the lower librating regions correspond to i = 90◦ and
φ = −90◦.

For higher binary eccentricity, the critical inclination angle
that separates the librating solutions from circulating solutions is
smaller. When the third body (in this case a test particle) is massive,
the nodal libration regions shrink (see fig. 5 in Farago & Laskar
2010). The critical inclination for test particles that divides the
librating and circulating solutions is

icrit = sin−1

√
1 − e2

b

1 + 4e2
b

(1)

(Farago & Laskar 2010). For the eccentricities considered in Fig. 1
this is icrit = 54.◦9 for eb = 0.3, icrit = 30.◦8 for eb = 0.6, and
icrit = 18.◦5 for eb = 0.8. Martin & Lubow (2018) found that the
critical inclination is slightly higher for a disc than a test particle.
This means that a disc is more likely to move towards coplanar
alignment with the binary than a test particle. In the next section,
we consider the evolution of a hydrodynamic circumbinary disc and
use these test particle orbits for comparison.

MNRAS 486, 2919–2932 (2019)
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Alignment of a circumbinary disc 2921

Figure 1. The i cos φ–i sin φ plane for misaligned test circular particle orbits with varying initial inclination and longitude of the ascending node. The green
lines show orbits close to prograde, red/magenta lines show orbits that have a librating solution, and the blue lines show orbits close to retrograde. Upper
left-hand panel: a circular binary with eb = 0.0. Upper right-hand panel: eb = 0.3. Lower left-hand panel: eb = 0.6. Lower right-hand panel: eb = 0.8.

Table 1. Parameters of the initial circumbinary disc around an equal mass
binary with total mass M, and separation a.

Binary and disc parameters Symbol Value

Mass of each binary component M1/M = M2/M 0.5
Accretion radius of the masses racc/a 0.25
Initial disc mass Mdi/M 0.001
Initial disc inner radius rin/a 2
Disc viscosity parameter α 0.01
Disc aspect ratio H/r(r = rin) 0.1

3 C IRCUMBINARY D ISC SIMULATIONS

To model the alignment process of misaligned circumbinary discs
around an eccentric binary, we use the 3D SPH (e.g. Price 2012)
code PHANTOM (Lodato & Price 2010; Price & Federrath 2010;
Price et al. 2018). PHANTOM has been well tested and used to model
misaligned accretion discs in binary systems (Nixon 2012; Nixon,
King & Price 2013; Martin et al. 2014; Doğan et al. 2015).

3.1 Simulation set-up

Table 1 summarizes the initial conditions of the binary and disc
parameters for the hydrodynamical simulations. We consider an
equal mass binary with total mass M = M1 + M2. The eccentric

Table 2. The set-up of the SPH simulations that lists the eccentricity of the
binary, eb, the initial tilt of the disc, i0, and the initial outer boundary of the
disc, rout. We also list the critical inclination of a test particle derived from
equation (1). The initial tilts from each model are always below the critical
to assure the disc aligns to the orbital binary plane.

Model eb i0 icrit rout/a

Run1 0.0 60◦ – 5
Run2 0.3 50◦ 54.◦9 5
Run3 0.6 30◦ 30.◦8 5
Run4 0.8 15◦ 18.◦5 5
Run5 0.8 15◦ 18.◦5 40
Run6 0.3 10◦ 54.◦9 5
Run7 0.6 10◦ 30.◦8 5
Run8 0.8 10◦ 18.◦5 5

orbit of the binary lies in the x–y plane with semimajor axis, a.
The binary begins at time t = 0 at apastron. The accretion radius
of each binary component is 0.25a. When a particle enters this
radius, it is considered accreted and the particle’s mass and angular
momentum are added to the sink particle. We consider binaries with
eccentricities eb = 0.0, 0.3, 0.6, and 0.8. For each eccentricity, we
begin with a low initial disc inclination somewhat below the critical
value found from equation (1). Table 2 summarizes the set-up for
each simulation. For eb = 0.3 we use i = 50◦, for eb = 0.6 we use

MNRAS 486, 2919–2932 (2019)
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2922 J. L. Smallwood et al.

i = 30◦, and for eb = 0.8 we use i = 15◦ We evolve each simulation
to 3000 binary orbits.

Each simulation has an initially low disc mass of 10−3 M and we
ignore self-gravity. The low-mass disc has a negligible dynamical
effect on the orbit of the binary. Each simulation consists of 6 × 105

equal mass gas particles that initially reside in a flat disc with
an inner boundary of 2a and an outer boundary of 5a. The inner
boundary of the disc is chosen to be close to where the tidal torque
truncates the inner edge of the disc (Artymowicz & Lubow 1994).
For misaligned discs, the tidal torque produced by the binary is much
weaker allowing the disc to move closer to the binary (e.g. Lubow,
Martin & Nixon 2015; Miranda & Lai 2015; Nixon & Lubow 2015;
Lubow & Martin 2018). The surface density profile is initially a
power-law distribution � ∝ R−3/2. We use a locally isothermal disc
with sound speed cs ∝ R−3/4 and disc aspect ratio H/r = 0.1 at
r = rin. We take the Shakura & Sunyaev (1973) α to be 0.01. From
these values we derive an artificial viscosity (αAV) of 0.4 (a value
of αAV = 0.1 represents the lower limit, below which a physical
viscosity is not resolved in SPH) and set βAV = 2.0 from the SPH
description detailed in Lodato & Price (2010) that is given as

α ≈ αAV

10

〈h〉
H

, (2)

where 〈h〉 is the mean smoothing length on particles in a cylindrical
ring at a given radius (Price et al. 2018). With this value of α,
the disc with an initial outer radius of 5a is resolved with a shell-
averaged smoothing length per scale height of 〈h〉/H ≈ 0.25. For
the simulation with a larger outer radius of 40a, we have that
〈h〉/H ≈ 0.30.

3.2 Results

In this section, we describe the results of the hydrodynamical disc
simulations for different values of the eccentricity of the binary
orbit.

3.2.1 Circular binary with eb = 0.0

The left-hand panel of Fig. 2 shows the time evolution of the
inclination and longitude of ascending node at a distance 3a (solid
lines) and 5a (dashed lines) of a misaligned disc with an initial
inclination of 60◦ around a circular binary (Run1 of Table 2). The
inclination evolution of the disc shows that the disc is aligning to the
binary orbital plane. Through viscous dissipation, the disc orbital
angular momentum vector evolves towards alignment with the
orbital angular momentum vector of the binary. The disc undergoes
retrograde precession at a nearly constant (uniform) precession rate
about the binary angular momentum vector. The disc inclination
decreases monotonically. The right-hand panel of the same figure
shows a spiral in the i cos φ–i sin φ phase space as the disc aligns to
the binary orbital plane.

3.2.2 Eccentric binary with eb = 0.3

We consider a binary eccentricity of 0.3. Fig. 3 shows the time
evolution of the inclination and longitude of ascending node at a
distance 3a and 5a of an initially misaligned disc of 50◦ around
the eccentric binary (Run2 of Table 2). The disc evolves towards
alignment to the plane of the binary as in the circular binary case.
However, during this process the disc undergoes tilt oscillations due
to the eccentricity of the binary. The precession rate is non-uniform.

3.2.3 Eccentric binary with eb = 0.6

The left-hand panel of Fig. 4 shows the time evolution of the
inclination and longitude of ascending node at a distance 3a and
5a for a misaligned disc with an initial inclination of 30◦ around a
binary with eccentricity eb = 0.6 (Run3 of Table 2). The right-hand
panel of Fig. 4 shows the spiral in the i cos φ–i sin φ phase space
as the disc aligns to the binary orbital plane. The precession rate is
more non-uniform than in the case of eb = 0.3 shown in Fig. 3 and
the inclination oscillations are stronger.

3.2.4 Eccentric binary with eb = 0.8

Finally, we consider a highly eccentric binary with eb = 0.8.
This eccentricity is at the upper end of the values for binary
KH 15D determined by Johnson et al. (2004). We consider an
initial misalignment of 15◦ (Run4 of Table 2). We show the initial
orientation in the three Cartesian planes in the upper panels in
Fig. 5. In the lower panels, we show the disc orientation at a time
of t = 150 Porb when the disc tilt has increased to about 50◦. The
upper left-hand panel in Fig. 6 shows the evolution of the tilt and
the longitude of the ascending node. The right-hand panel shows
the i cos φ–i sin φ phase-space plot as the disc aligns to the binary
orbital plane. As expected, as the binary eccentricity increases, the
amplitude of the tilt oscillations also increases as expected from
the test particle orbit case. In addition, the precession rate is more
non-uniform, as seen in the lower left-hand panel of Fig. 6.

3.2.5 Eccentric binary with a large disc

The simulations described thus far only dealt with moderately
extended discs with a radial extent initially from 2a up to 5a. For
parameters relevant to protoplanetary discs, such discs precess in
nearly solid body because the sound crossing time-scale is shorter
than the precession time-scales. As discussed in Martin & Lubow
(2018), close binaries may have a disc with a much larger radial
extent relative to the binary separation. We now consider the disc
evolution with a larger initial disc outer radius (Run5 of Table 2).

We consider a disc with a radial extent initially of 40a. Unlike
previous simulations in this work, this disc has 1 × 106 equal
mass gas particles, more than in the other simulations, although
the particle density and therefore spatial resolution is lower. The
disc aspect ratio at the outer boundary is 0.047. Extending the disc
outer radius by a factor of 8 increases the disc angular momentum
compared to the previous simulations. We investigated whether
there are significant dynamical effects that the extended disc exerts
on the binary. The maximum deviation from the initial binary
inclination and eccentricity is 0.◦0072 and 0.0104, respectively.
Thus, there are no significant dynamical effects on the binary. The
initial disc set-up is shown in the top panels of Fig. 7. The evolution
of the tilt and longitude of ascending node are shown in Fig. 8. We
show the results at three radii within the disc, 5a, 10a, and 25a. For
this larger disc, the sound crossing time over the radial extent of the
disc is longer than the precession time-scale. The inner parts of the
disc begin a tilt oscillation, while the outer parts of the disc remain
close to their original value for longer. The lower panels of Fig. 7
show the disc at a time of 600 Porb. The outer parts of the disc have
not changed much from the initial set-up, while the inner parts of
the disc are significantly tilted. We see evidence for disc breaking
in this simulation.

To examine the behaviour of the warp propagation, in Fig. 9 we
show the surface density (top panel), inclination (middle panel), and

MNRAS 486, 2919–2932 (2019)
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Alignment of a circumbinary disc 2923

Figure 2. Left: the upper panel shows the inclination, i, and lower panel the longitude of the ascending node, φ, for a circumbinary disc with i0 = 60◦ around a
circular binary, eb = 0.0 (Run1). Right: the i cos φ–i sin φ phase space. The measurements are taken within the disc at a distance of 3a (solid) and 5a (dashed).

Figure 3. Same as Fig. 2 but for a circumbinary disc with i0 = 50◦ and binary eccentricity eb = 0.3 (Run2).

Figure 4. Same as Fig. 2 but for a circumbinary disc with i0 = 30◦ and binary eccentricity eb = 0.6 (Run3).

longitude of the ascending node (bottom panel) as a function of ra-
dius at times 0 Porb, 10 Porb, 102 Porb, 103 Porb, and 2 × 103 Porb. The
initial surface density (at t = 0) has a profile of � ∝ r−3/2. As the disc
evolves, the gas in the outer portions of the disc spreads outwards
through viscosity. As time increases, the inclination of the inner por-
tions of the disc increases due to these tilt oscillations and the wave

travels outwards in time. From the 1000 Porb curve in the middle
panel, we see that the disc below a distance of about 20a is inclined
more than the outer regions of the disc. Since the surface density at
1000 Porb shows a dip at around 14a, we find that the disc is broken.

Disc breaking occurs when the radial communication time-scale
is larger than the precession time-scale, tc > tp. The disc is able to

MNRAS 486, 2919–2932 (2019)
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2924 J. L. Smallwood et al.

Figure 5. Disc evolution for a circumbinary disc with i0 = 15◦ around a binary with eb = 0.8 (Run4). Upper panels: initial disc set-up for the PHANTOM

SPH simulation of an eccentric binary with separation a (shown by the red circles) with an inclined circumbinary disc. Lower panels: the disc at a time of
t = 150 Porb. The colour denotes the gas density with yellow regions being about two orders of magnitude larger than the blue. The left-hand panels show the
view looking down on to the binary orbital plane, the x–y plane. The middle panels show the x–z plane and the right-hand panels show the y–z plane.

Figure 6. Same as Fig. 2 but for a circumbinary disc with i0 = 15◦ and binary eccentricity eb = 0.8 (Run4).

maintain radial communication via pressure-induced bending waves
that propagate at speed cs/2 for gas sound speed cs (Papaloizou & Lin
1995; Lubow, Ogilvie & Pringle 2002). The radial communication
time-scale can be approximated by

tc ≈ 4

(2 + s)�bhout

(
rout

ab

)3/2

(3)

(Lubow & Martin 2018), where hout is the disc aspect ratio at
the outer edge, s is related to the temperature profile of the

disc (T(r) ∝ r−s), the angular frequency �b =
√

GM

a3 . The nodal

precession rate can be approximated by

ωn(r) = k

(
a

r

)7/2

�b, (4)

where

k = −3

4

√
1 + 3e2

b − 4e4
b

M1M2

M2
. (5)
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Alignment of a circumbinary disc 2925

Figure 7. Disc evolution for a circumbinary disc with i0 = 15◦ and rout = 40a around a binary with eb = 0.8 (Run5). Upper panels: initial set-up of a low-mass
disc initially containing 1000 000 equal mass gas particles. Lower panels: the disc at a time of t = 600 Porb. The colour denotes the gas density with yellow
regions being about two orders of magnitude larger than the blue. The left-hand panels show the view looking down on to the binary orbital plane, the x–y
plane, the middle panels show the x–z plane, and the right-hand panels show the y–z plane.

Figure 8. Same as Fig. 2 but for a circumbinary disc with i0 = 15◦ and rout = 40a around a binary with eb = 0.8 (Run5). The measurements are taken within
the disc at a distance of 5a (solid), 10a (dashed), and 25a (dotted).

The precession time-scale can be found by taking the inverse of the
nodal precession rate. For a narrow disc we have rout = r = 5a,
eb = 0.8, and hout = 0.0795, which equates to tc ≈ 160 Porb

and tp ≈ 1317 Porb. Given that tc < tp, the narrow disc can
rigidly precess. For example, we compare tp to the numerical
precession time-scale tp, Run4 for simulation Run4 that is refer-
enced in Fig. 6. We find that tp,Run4 ≈ 1540 Porb that is consistent
with tp.

For a larger disc, rin � rout, the precession time-scale can be
determined by taking the inverse of the global precession rate.

The global precession rate of a disc is found by taking its angular
momentum weighted average of the nodal precession rate ωn(r).
Therefore, the global precession time-scale is given as

tp,global = 2(1 + p)r1+p
in r

5/2−p
out

|k|(5 − 2p)a7/2�b
, (6)

where p is related to the initial surface density profile of the disc
(� ∝ r−p), For an extended disc with rout = 40a, eb = 0.8, and
hout = 0.0473, we have tc ≈ 6114 Porb and tp,global ≈ 2665 Porb.
Since tc > tp, global, breaking can occur within the disc.
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Figure 9. As a function of normalized radius, we show the surface density
(top panel), tilt (middle panel), and longitude of the ascending node (bottom
panel) at times 0 Porb, 10 Porb, 102 Porb, 103 Porb, and 2 × 103 Porb. The
initial conditions for the circumbinary disc are i0 = 15◦ and rout = 40a with
a binary eccentricity eb = 0.8 (Run5).

4 N EARLY C OPLANA R D ISC LINEAR MODEL

In this section, we apply a 1D linear model to the disc evolution
based on equations that assume that the level of tilt is small and that
the density evolution can be ignored. The equations apply the secular
torque due to an eccentric binary obtained by Farago & Laskar
(2010). The advantage of using this approach is that solutions can
be readily obtained over very long time-scales for very large discs
with far less computational effort than is required with SPH. Such
an approach to modelling the circumbinary disc around KH 15D
has been applied by Lodato & Facchini (2013) and Foucart & Lai
(2014) for a circular orbit binary. The analysis presented in this
section is similar to that of Lubow & Martin (2018) who analysed
a nearly polar disc around an eccentric orbit binary.

We consider an eccentric binary with component stars that
have masses M1 and M2 and total mass M = M1 + M2 in an
orbit with semimajor axis ab and eccentricity eb. To describe this
configuration, we again apply a Cartesian coordinate system (x, y,
z) whose origin is at the binary centre of mass and with the z-
axis parallel to the binary angular momentum Jb and the x-axis
parallel to the binary eccentricity vector eb. We consider the disc to
be composed of circular rings that provide a surface density �(r).
The ring orientations vary with radius r and time t and orbit with
Keplerian angular speed �(r). In this model, the disc surface density
is taken to be fixed in time, i.e. viscous evolution of the disc density
is ignored. We denote the unit vector parallel to the ring angular
momentum at each radius r at each time t by (	x(r, t), 	y(r, t), 	z(r,

t)). We consider small departures of the disc from the x–y plane, so
that |	x| � 1, |	y| � 1, and 	z ≈ 1.

We apply equations (12) and (13) in Lubow & Ogilvie (2000) for
the evolution of the disc 2D tilt vector �(r, t) = (	x(r, t), 	y(r, t))
and 2D internal torque G(r, t) = (Gx, Gy). The disc tilt i in radians
is related to the tilt vector by i(r, t) = |�(r, t)| = 	(r, t). The tilt
evolution equation is given by

�r2�
∂�

∂t
= 1

r

∂G
∂r

+ T , (7)

where T is the tidal torque per unit area due to the eccentric binary
whose orbit lies in the x–y plane. Equation (13) in Lubow & Ogilvie
(2000) provides the internal torque evolution equation:

∂G
∂t

− ωaez × G + α�G = Ir3�3

4

∂�

∂r
, (8)

where α is the usual turbulent viscosity parameter, ωa(r) is the
apsidal precession rate for a disc that is nearly coplanar with the
binary orbital plane that is given by

ωa(r) = 3

8
(2 + 3e2

b)
M1M2

M2

(ab

r

)7/2
�b (9)

and

I =
∫

ρz2 dz (10)

for disc density ρ(r). We apply boundary conditions that the internal
torque vanishes at the inner and outer disc edges rin and rout,
respectively. That is,

G(rin, t) = G(rout, t) = 0. (11)

This is a natural boundary condition because the internal torque
vanishes just outside the disc boundaries. Thus, any smoothly
varying internal torque would need to satisfy this condition.

The torque term due to the eccentric binary follows from an
application of equations (2.17) and (2.18) in Farago & Laskar
(2010). The torque term is expressed as

T = �r2�τ (12)

with

τ = (a(r)	y, b(r)	x) (13)

and

a(r) = (1 − e2
b) ωp(r) (14)

and

b(r) = −(1 + 4e2
b) ωp(r), (15)

where frequency ωp is given by

ωp(r) = 3

4

M1M2

M2

(ab

r

)7/2
�b. (16)

We seek solutions of the form � ∝ eiωt and G ∝ eiωt and equa-
tions (7) and (8) become

iω�r2�� = 1

r

dG
dr

+ �r2�τ (17)

and

iωG − ωaez × G + α�G = Ir3�3

4

d�

dr
, (18)

respectively. As usual, the physical values of � and G are obtained
by taking their real parts.
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5 N EARLY R IGID DISC EXPANSION

5.1 Lowest order

We apply the nearly rigid tilted disc expansion procedure in
Lubow & Ogilvie (2000). We expand variables in the tidal potential
that is considered to be weak as follows:

a = A(1),

b = B (1),

� = �(0) + �(1) + · · · ,

ω = ω(1) + ω(2) + · · · ,

G = G(1) + G(2) + · · · ,

τ = τ (1) + τ (2) + · · · , (19)

where a and b are given by equations (14) and (15), respectively. a
and b depend on the tidal potential and are regarded as first-order
quantities.

To lowest order, the disc is rigid and the tilt vector �(0) =
(	(0)

x , 	(0)
y ) is constant in radius. We integrate r times equation (17)

over the entire disc and apply the boundary conditions given by
equation (11) to obtain∫ rout

rin

�r3�(iω(1)�(0) − τ (1)) dr = 0, (20)

where

τ (1)(r) = (A(1)(r) 	(0)
y , B (1)(r) 	(0)

x ). (21)

We then obtain for the disc precession rate in lowest order:

ω(1) = −3

4

√
1 + 3e2

b − 4e4
b

M1M2

M2

〈(ab

r

)7/2
〉

�b, (22)

where the bracketed term involves the angular momentum weighted
average,〈(ab

r

)7/2
〉

=
∫ rout

rin
�r3�(ab/r)7/2 dr∫ rout

rin
�r3� dr

. (23)

We define the precession period as

Pp = 2π

|ω(1)| . (24)

The tilt components are related by

	(0)
y = −i

√
1 − e2

b

1 + 4e4
b

	(0)
x . (25)

Because |	(0)
x | and |	(0)

y | differ, the disc undergoes non-uniform
precession and secular tilt oscillations with tilt variations i(t) with
respect to the x–y plane. The disc longitude of ascending node φ is
related to the tilt vector by

tan (φ(t)) = −Re(	(0)
x (t))

Re(	(0)
y (t))

. (26)

We take the initial disc longitude of ascending nodes to be 90◦, so
that 2D tilt vector � is initially aligned with the binary eccentricity
vector. Fig. 10 plots the longitude of the ascending node and the
nodal precession rate as a function of time for various values of
binary eccentricity. For eb = 0, the precession rate is uniform and
appears as the horizontal line. The precession rate becomes highly

Figure 10. Top panel: longitude of ascending node φ in radians as a function
of time for different values of binary eccentricity. Bottom: normalized
nodal precession rate as a function of time for various values of binary
eccentricity.

non-uniform at higher values of binary eccentricity. For eb = 0.8,
the precession rate varies about a factor of 10 over the precession
period.

The results in the upper panel of Fig. 10 for eb = 0.8 are similar
to those in the lower left-hand panel of Fig. 6 that are based on
SPH simulations. The precession is non-uniform in both cases,
with similar phase oscillations in time. One difference is that the
precession period increases in time in the SPH simulations. This
increase occurs because of the viscous disc density evolution that in
turn changes the disc angular momentum. This effect is not included
in the linear model.

The disc tilt varies in time as

i(t) = i0

√
2 + (3 − 5 cos (2ω(1)t))e2

b

2(1 − e2
b)

, (27)

where i0 = i(0) that occurs when the longitude of the ascend-
ing node is 90◦. Fig. 11 plots the tilt angle as a function of
time for various values of binary eccentricity. Tilt oscillations
occur because the binary potential is non-axisymmetric around
the direction of the binary angular momentum vector (the z-
axis). For eb � 1, the oscillations undergo extreme tilt variations
i(t) ∝ i(0)

√
(1 − cos (2ω(1)t))/(1 − eb).

The normalized disc tilt and precession rates plotted in Figs 10
and 11 are independent of the disc properties such as its density and
temperature distributions, provided that the level of disc warping is
small, i.e. �(r, t) is nearly constant in radius.

Fig. 12 plots the maximum tilt angle over time as a function
of binary eccentricity implied by equation (27) that occurs for
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Figure 11. Normalized disc tilt angle in radians relative to the coplanar
orientation (equation 27) as a function of time for various values of binary
eccentricity. Time t = 0 corresponds to the disc longitude of ascending node
φ = 90◦.
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Figure 12. Plotted as a line is the maximum disc tilt as a function of binary
eccentricity normalized by i0 (defined in Fig. 11) based on equation (28).
Plotted as dots are the results of SPH simulations for models Run6, Run7,
and Run8 given in Table 2, which all have an initial circumbinary disc tilt
i0 = 10◦.

cos (2ω(1)t)) = −1,

imax = i0

√
1 + 4e2

b

1 − e2
b

. (28)

Also plotted on the figure are the maximum inclinations for SPH
simulations for models listed in Table 1 that start with i0 = 10◦. As
seen in the figure, the results of the SPH simulations agree well with
the expected results based on linear theory. The plotted SPH results
lie slightly below the expectations of linear theory, likely due to the
effects of disc dissipation. Though the linear theory is valid for low
inclinations, the SPH simulations that begin at higher inclinations,
i0 ≤ 50◦ (Run2, Run3, and Run4) also agree quite well with the
linear model.

6 C I R C U M B I NA RY D I S C O F K H 1 5 D

KH 15D is a spectroscopic binary T Tauri star in the cluster
NGC 2264 and located at a distance of 760 pc (Sung, Bessell & Lee
1997). This system was originally thought to be a single variable

star. But more in-depth observations showed this system had a stellar
companion, which causes a peculiar light curve (Kearns & Herbst
1998). The system is estimated to be an age of 3 × 106 yr and the
total mass is roughly 1.3 M� (Hamilton et al. 2001; Johnson et al.
2004). The spectral classification of star A is K6/K7 (Hamilton
et al. 2001) and star B is K1 (Capelo et al. 2012). The two stellar
companions are of roughly equal mass and are on highly eccentric
orbits embedded in the accretion disc that emits bipolar outflows
(Hamilton et al. 2003; Deming, Charbonneau & Harrington 2004;
Tokunaga et al. 2004; Mundt et al. 2010). The binary has an
eccentricity in the range of eb = 0.68–0.8 (Johnson et al. 2004),
semimajor axis of 0.26 au.

The light curve of KH 15D undergoes periodic eclipses in which
the brightness drops by about 3.5 mag for a duration of roughly 24 d
with an orbital period of 48.37 d (Johnson et al. 2004; Winn et al.
2004; Hamilton et al. 2005). The duration of the eclipse has varied
over time (see fig. 1 in Aronow et al. 2018 for the I-band light curve
of KH 15D that shows the brightness of the system from 1951 to
2017). The brightness increased between 1995 and 2005 and the
peak brightness decreased between 2006 and 2010 (Hamilton et al.
2001, 2005).

To understand what causes this light curve, Chiang & Murray-
Clay (2004) and Winn et al. (2004) independently developed a
model in which a circumbinary disc or ring that is misaligned to
the orbital plane of an eccentric orbit blocks light from the binary
and undergoes nodal precession. The nodal precession explains the
time variations of the observed light curves. Between 1995 and
2010, the leading edge of the disc precessed across the orbit of
star A, while star B was fully occulted. During the time between
2010 and 2012, both stars A and B were only detectable through
scattered light. Currently, the brightness of the system has increased
as star B’s orbit has become uncovered from the trailing edge of
the precessing disc (Capelo et al. 2012; Windemuth & Herbst 2014;
Arulanantham et al. 2016; Aronow et al. 2018).

Previous hydrodynamical models for a gaseous disc in KH 15D
have only modelled the binary as circular (Lodato & Facchini 2013;
Foucart & Lai 2014). Our goal in modelling this system is to
understand the properties of the disc, such as its radial extent, given
the observed constraints. Based on the work by Chiang & Murray-
Clay (2004) and Winn et al. (2004) we consider the disc to be
observed nearly edge-on and inclined relative to the orbit of the
binary. In addition, the binary eccentricity vector lies in the plane
of the sky. Under these conditions, the line of ascending nodes of
the disc should currently be φ ≈ 90◦.

We consider a model in which the disc tilt i is below the critical
value icrit given by equation (1) that implies that 20◦ � icrit � 30◦

for 0.6 � eb � 0.8 (Johnson et al. 2004). If the disc tilt is above this
critical value, then the disc will evolve to a polar (perpendicular)
alignment with the binary (Martin & Lubow 2017). However, for
this work, we only examine the conventional model where the disc
or ring is precessing about the binary angular momentum vector.

We see from Figs 6 and 10 that the precession rate is largest
in magnitude at this phase φ � 90◦. For a binary eccentricity of
eb = 0.8, the precession rate is about three times faster than the
mean precession rate. The tilt at this phase is at a minimum value.
At later times the retrograde precession rate −dφ/dt will be as much
as an order of magnitude smaller and the tilt will be more than three
times larger. These results are largely independent of the details of
the disc/ring structure.

The observed occultation involves scattering by solid particles.
Such particles would undergo differential precession of the orbits
in the presence of the binary that would destroy the disc structure
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Table 3. Model parameters.

Model rin/a H/r(rin) α p s eb

A 4 0.1 0.01 0.5 1.0 0.6
B 4 0.1 0.01 0.5 1.0 0.8
C 4 0.1 0.01 1.0 1.0 0.6
D 4 0.1 0.01 1.0 1.0 0.8
E Various 0.1 0.01 0.5 1.0 0.75
F Various 0.1 0.01 1.0 1.0 0.75

Table 4. Period constrained results.

Model rout/a τ (yr) max(r/	in|d	/dr|)
A 27.6 2.3 × 105 0.04
B 26.4 2.8 × 105 0.06
C 37.3 1.3 × 105 0.05
D 35.0 1.6 × 105 0.07

over time. Some mechanism is required to maintain the disc flatness.
One possibility is the ring coherence is maintained by self-gravity in
analogy to planetary rings (Chiang & Murray-Clay 2004). Another
possibility is that the solids are coupled to a gas disc that maintains
its flatness by pressure effects (Papaloizou & Terquem 1995;
Larwood & Papaloizou 1997; Lubow & Ogilvie 2000). We analyse
the latter model.

To analyse the system further, we numerically solve equations (7)
and (8) subject to boundary conditions given in equation (11) for
disc modes, as is described in Lubow & Martin (2018). We analyse
discs whose parameters are listed in Table 1, where s and p are
defined by T(r) ∝ r−s and �(r) ∝ r−p, respectively. In all cases
we assume an equal mass binary M1 = M2. The disc inner radii
should increase somewhat with binary eccentricity, but we ignore
that effect for the two values of eccentricity being considered.

6.1 Precession period constrained model

Previous disc models for this system by Lodato & Facchini (2013)
and Foucart & Lai (2014) applied a constraint on the disc precession
period based on the Chiang & Murray-Clay (2004) model. In
that model, the precession period is approximately 3000 yr or
about 2.09 × 104Pb. However, this period value is determined
by considering a narrow ring and so it is not clear how well
this constraint would apply to a broad disc. This model may be
appropriate if the occultation is due to material in the somewhere
in the middle of the radial extent of disc, rather than the outer edge.
We consider an alternate model in the next subsection. We describe
results for a disc period constrained model based on results from
linear modes.

We adopt the disc parameters similar to those of Lodato & Fac-
chini (2013) that are listed for models A–D in Table 3. In addition,
we consider two values of binary eccentricity eb = 0.6 and 0.8,
while the previous models considered a circular orbit binary. Table 4
contains results for these models. The columns in the table are for
the values for the disc outer radius rout/a, decay time-scale of the
tilt in year τ , and the maximum normalized warp value across the
disc max(r/	in|	/dr|). The latter is the magnitude of the logarithmic
radial derivative of the tilt vector � divided by the magnitude of the
tilt at the disc inner edge, 	in (see also section 3.2 of Martin & Lubow
2018 for more details). Since this value is small, less than H/r, for
all disc models, the disc warp is very mild and so the disc behaves

Figure 13. Narrow ring radii that satisfy the velocity constraint described
in Section 6.2 as a function of binary eccentricity.

quite rigidly. In addition, the linear treatment of the disc evolution
is well justified for discs with small tilts.

The numerical results are similar to those in Lodato & Facchini
(2013) and Foucart & Lai (2014) once slight differences in the
model parameters are taken into account. For example, table 1 in
Lodato & Facchini (2013) has a value for rout = 26a for p = 0.5,
while we obtain a value of 27.6 in model A. The small difference
is likely due to binary eccentricity and the slightly different value
of the binary semimajor axis adopted. In any case, as obtained
previously, the disc model decays rapidly compared to the system
lifetime of a few million years. The decay rate is proportional to
the α value in the disc (for a fixed disc structure) and suggests that
reductions to α ∼ 10−3 are required to provide a sufficiently slow
tilt decay.

The effect of binary eccentricity is to slightly decrease the
required disc outer radius, as seen in comparing models A and B
and also models C and D. In addition the decay time-scale slightly
increases with increasing binary eccentricity.

6.2 Velocity constrained model

There is an observational constraint on the speed of the occulting
disc/ring in the plane of the sky. By comparing frames 1 and 4
in fig. 1 of Aronow et al. (2018), we estimate that the occultation
occurs across distance �a(1 + eb) over a time τ 0 of roughly 40 yr. If
we take the standard value of a = 0.26 au, we then have a constraint
on the transverse occulting velocity v ∼ a(1 + e)/τ 0, that is

v � 6.5 × 10−3(1 + eb) au yr−1. (29)

As discussed above, this velocity occurs for the longitude of
ascending nodes that we take φ = 90◦. We apply this velocity
constraint for various models computed from linear modes.

For a narrow ring, we determine the ring radii as a function
of binary eccentricity that satisfy the velocity constraint (29) at
φ = 90◦. The results are plotted in Fig. 13. The radii agree well
with the ∼3 au estimated by Chiang & Murray-Clay (2004). For
larger values of binary eccentricity, the ring radius increases with
eccentricity.

For a broader disc, we assume the occultation is dominated by the
disc outer edge. We then apply the velocity constraint at that radius.
In Fig. 14, we plot the disc outer radius as a function of disc inner
radius for model E of Table 3 that has a disc with surface density
parameter p = 0.5 and assumed binary eccentricity eb = 0.75. The
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Figure 14. Disc outer radius as a function of disc inner radius for a disc
with p = 0.5 and binary eccentricity eb = 0.75 that satisfies the velocity
constraint described in Section 6.2.

Figure 15. Tilt decay time 1/Im(ω) as a function of disc inner radius for a
disc with p = 0.5 and binary eccentricity eb = 0.75 that satisfies the velocity
constraint described in Section 6.2.

value of eb is close to the best-fitting value of 0.74 in the model of
Johnson et al. (2004).

The inner radius of the circumbinary disc in KH 15D is expected
to range roughly from r = 0.5 au at higher viscosities α > 0.01 to
r = 1 au at small viscosities α < 1 × 10−5 due to the balance of
viscous torque with tidal torques (Artymowicz & Lubow 1994). The
disc torque increases for smaller disc inner radii and is insensitive
to the disc outer radius for rin � rout. The disc angular momentum
increases with the disc outer radius. For smaller disc inner radii,
there is a stronger torque due to the binary that requires a larger disc
outer radius to produce the same velocity at the disc outer edge.
There is then an inverse relationship between the inner and outer
disc radii.

In Fig. 15, we plot the tilt decay time-scale for model E of
Table 3 as a function of disc inner radius with parameters s = 1.0,
α = 0.01, and H/r(rin) = 0.1. In this case, the disc decay time-scale
is typically of order the disc lifetime of a few million years or longer.
The velocity constrained model undergoes slower tilt decay than the
similar models for the period constrained models of Section 6.1. In
particular, no reduction of α below 0.01 is required in this case to
meet the requirement that the disc decay time-scale exceed the disc
lifetime.

We now consider the velocity constrained model with model F in
Table 3 that has the same parameters as model E, but with p = 1. In
this case, the disc outer radius is required to be considerably larger

Figure 16. Disc outer radius as a function of disc inner radius for a disc with
p = 1 and binary eccentricity eb = 0.75 that satisfies the velocity constraint
described in Section 6.2.

than the p = 0.5 case, as seen in Fig. 16. We limited the plot to
rin ≥ 1 au because at smaller values of rin the disc outer radius gets
very large. The reason is that the surface density falls off faster with
radius. The increased radius in the p = 1 case is required to produce
a large enough disc angular momentum that is sufficient to reduce
the disc velocity at the outer edge in order to meet the velocity
constraint. We find that the tilt decay time-scale with p = 1 is even
longer than indicated in Fig. 15. Again, no reduction in adopted
α = 0.01 is required for the tilt to survive a few million years.

These models have assumed that the occultation occurs due to
material at the gaseous disc outer edge. The occultation is likely
due to solids (dust) that could have migrated inward somewhat from
the gaseous disc outer edge. This effect would make the velocity
constraint easier to satisfy. That is, the gas disc outer radius could
be smaller than indicated in Figs 14 and 16 and satisfy the velocity
constraint of equation (29). The level of reduction for rout depends on
the degree to which the solids have migrated inward, as is discussed
in Section 6.3.

6.3 Constraint on thickness of obscuring layer

The obscuring material likely consists of solids that form a dust em-
bedded layer within the gaseous disc. Infrared observations suggest
that the solids consists of 1–50 μm size particles (Arulanantham
et al. 2016, 2017). We define the full thickness of the obscuring
layer as 2T. The observations of KH 15D show that both stars were
occulted over a time interval τ ∼ 5 yr (see fig. 1 of Aronow et al.
2018). The disc thickness can then be expressed as

2T � a(1 + eb)(1 + τ/τ0) sin i, (30)

where the term involving τ is due to the transverse velocity
(precession) of the disc given in equation (29) and τ 0 is the time for
the disc leading edge to precess across both stars that we estimate
as τ 0 ∼ 40 yr, as discussed in Section 6.2. The term involving τ is
then a small correction ∼10 per cent that we ignore. The constraint
on T then implies that

T ∼ 0.13(1 + eb) sin i au. (31)

We consider how this constraint applies to the velocity con-
strained model of Section 6.2. For the narrow ring case with
eb = 0.75 and rout = 3 au (see Fig. 13), we have then T/rout ∼ 0.1sin i.
For eb = 0.75 and a circumbinary disc with p = 0.5 that is tidally
truncated by the binary at its inner radius at rin ∼ 1 au, we have
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Alignment of a circumbinary disc 2931

from Fig. 14 that rout ∼ 30 au and so T/rout ∼ 0.01 sin i. For a
circumbinary disc with the same set of parameters, but with p = 1,
we have that T/rout ∼ 0.001 sin i. For a narrow ring, the thickness
of the occulting solid layer is comparable to the thickness of the
gaseous disc layer, if sin (i) is not small, which suggests that mild
settling of solids has occurred. But, the broad disc T/rout values
are significantly smaller than the assumed gas disc aspect ratio
H/r ∼ 0.1, typical of protostellar disc aspect ratios. Such small
T/rout values suggest that settling of solids towards the disc mid-
plane has occurred. Such settling suggests that the radial drift of
solids might have also occurred so that the velocity constraint may
be satisfied with a smaller gaseous disc outer radius, as discussed
in Section 6.2.

To produce such thin layers in the broad disc cases of Section 6.2
require that the level of disc turbulence be very low. Using
equations (19) and (20) of Fromang & Nelson (2009) and setting
the Schmidt number to unity, we estimate that

α ∼ � ts

(
T

H

)2

, (32)

where ts is the stopping time for the particles given by equation (10)
of Fromang & Nelson (2009). For ∼50 μm particles and H = 0.1r,
we have that the upper limit to α is

α ∼ α0

( rout

r

)2−p
(

0.001 M�
Md

)
(1 + eb)2 sin2 i, (33)

where

α0 = 1.5 × 10−5

2 − p
. (34)

Aronow et al. (2018) report an upper limit of the disc mass
as �1.7 × 10−3 M� based on Atacama Large Millime-
ter/submillimeter Array (ALMA) non-detections. For the outer parts
of the velocity constrained disc in Fig. 14 with p = 0.5 and rin = 1 au
and r = rout = 30 au, we obtain for a disc with Md = 0.001 M� and
eb = 0.75 from equation (33) that α ∼ 10−5 sin 2i. For outer parts of
the velocity constrained disc in Fig. 16 with p = 1.0 and rin = 1 au
and r = rout = 170 au, we obtain for a disc with Md = 0.001 M� and
eb = 0.75 from equation (33) that α ∼ 10−4 sin 2i for p = 1. Such
levels of turbulence are extremely low. Also such thin layers suggest
that the density of dust near the disc mid-plane is greater than the
gas density. This configuration is subject to various instabilities,
such as shear instability and streaming instability (Youdin & Shu
2002; Youdin & Goodman 2005). It is not clear that such thin layers
can exist.

Less extreme values of α can occur if the occulting material
resides at smaller radii, so that T/H is larger. The smaller radii could
occur due to the inward drift of solids. The velocity constraint in
equation (29) can be satisfied by the occulting solids because the
precession rate is controlled by the more extended gas disc. We
consider the case that p = 1 and apply the rigid tilt approximation
that assumes the disc remains flat during its evolution. In that case,
the velocity constraint is satisfied provided that the outer radius of
the gaseous disc satisfies

rout � 0.34

(
rs/au

v/(au yr−1)

)2/3

au, (35)

where rs is the radius of the occulting solids and v is given by
equation (29). This equation holds for rin = 1 au � rs < rout. If the
occulting occurs at rs = 4 au for the p = 1 disc model described in
the previous paragraph with Md = 0.001 M�, then T/H ∼ 0.5 sin i
at r = rs, then α ∼ 10−4 sin 2i by equation (33), and rout = 16 au by

equation (35). Higher values of α � 0.01 can occur for very small
disc masses Md � 10−5 sin2 i M�. For comparison, in the case of
HL Tau, Pinte et al. (2016) found that a thin sublayer of millimetre-
sized grains T /H � 0.2 could account for the observed properties
of the system that in turn imposed an upper limit on α ∼ 3 × 10−4.

The Stokes number for dust grains compares the stopping time ts

to the dynamical time. For a disc with p = 1, its value at radius r is
estimated as

Stk = � ts � 6 × 10−4

(
rg

50μm

)(
Md

0.001 M�

)−1(
rout

16 au

)

×
(

r

4 au

)
(36)

(cf. Fromang & Nelson 2009), where rg is the grain size. With
rg = 50μm, Md = 0.001 M�, rout = 16 au, and r = rs = 4 au, then
Stk � 6 × 10−4. For these parameters, the dust is well coupled to
the gas. The inward radial drift velocity due to gas drag is vr ∼
(H/r)2 Stk �r ∼ 10−5�r with H/r = 0.1 and r = 16 au (Armitage
2013). The drift time-scale near the disc outer edge is then of order
106 yr. Its numerical value in this case is not sensitive to p for
0.5 ≤ p ≤ 1.5 shorter drift time-scales occur for a less massive disc.

Disc warping could also influence the effective value of T by
making the requirements on the thickness on the solids layer even
stronger (thinner layer), but we do not consider its effects here.
Another possibility is that the disc does not contain significant
amounts of gas with associated turbulence, but instead essentially
consists of only solids. The coherence of the disc or ring against
the effects of differential precession is due to the self-gravity
(Chiang & Murray-Clay 2004). For such a ring, some of the linear
theory results in this paper still hold, such as those in Figs 11–13.

7 SU M M A RY

We have analysed the behaviour of a mildly tilted low-mass
circumbinary disc in an eccentric orbit binary star systems by means
of SPH simulations and linear theory. The disc undergoes non-
uniform precession and tilt oscillations due to the effects of the
binary eccentricity (e.g. Figs 6 and 10). For moderately broad discs
(whose outer radii are a few times the inner radii) with typical
protostellar disc parameters, the disc can precess coherently with
little warping. Larger discs can undergo breaking (Fig. 7). For small
initial tilts, the results of the SPH simulations agree well with linear
theory (e.g. Fig. 12). The amplitude of the tilt oscillations increases
with binary eccentricity. The disc tilt undergoes damped oscillation
in time and ultimately approaches a coplanar alignment with the
binary.

We have analysed a model for binary KH 15D that is based
on a mildly tilted precessing disc that orbits an eccentric binary.
The model suggests that the disc tilt relative to the binary orbit is
currently at a minimum value and that the retrograde precession rate
is currently at its largest value. We considered a period constrained
model for the disc, along the lines of the previous circular orbit
binary studies (Lodato & Facchini 2013; Foucart & Lai 2014), but
taking into account the binary eccentricity. We find that the large
binary eccentricity changes the inferred disc outer radii by a small
amount. To satisfy the disc tilt lifetime requirements, the disc α

value must be small, less than about 0.001, as is also consistent
with the earlier studies.

We then considered a model in which the outer disc edge
precession velocity is constrained by the observed changes in the
binary eclipse properties (e.g. Aronow et al. 2018). We determined
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the relation between the disc inner and outer radii subject to this
constraint. We find that discs whose inner radius is tidally truncated
by the binary typically have outer radii of ∼30–170 au depending
on the disc density profile. The disc outer radii are reduced if there is
inward radial migration of solids that are responsible for the binary
occultation. Narrow disc radii are about 3 au, in agreement with
Chiang & Murray-Clay (2004).

The recent reappearance of star B places strong constraints on the
thickness of an occulting layer of solids/dust. The most reasonable
models involve a thin layer of dust that has settled towards the
mid-plane of a low-mass gaseous disc Md < 0.001 M� and has
migrated considerably inward. Such thin layers suggest that the disc
turbulence is very weak α � 0.001. Stronger turbulence can occur
for smaller mass discs. For a narrow ring, less extreme settling
and levels of turbulence are required. Another possibility is that
the disc/ring consists of a thin disc of solids with little gas (e.g.
Chiang & Murray-Clay 2004).

As noted in Martin & Lubow (2017), it is also possible that the
disc is instead evolving to a polar (perpendicular) alignment with
the binary. For this to occur, the disc tilt needs to be i � 30◦.
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