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Abstract: The current study describes a novel and eco-conscious method to synthesize 1,4-dihydropyridine
derivatives utilizing an aqueous micellar solution containing aluminum dodecyl sulfate, Al(DS)3,
using readily available starting material. The final products were synthesized with excellent yields
within remarkably quick reaction durations, promoting remarkable atom economy and minimizing
environmental impacts. The present protocol has several advantages over other methodologies in
terms of high yield (up to 97%) with excellent purity. Further, the synthesized 1,4-DHPs exhibit
favorable to excellent resistance against examined bacterial and fungal species. Intriguingly, polar
groups on the phenyl ring (5b, 5c, 5i and 5j) make the 1,4-DHPs equally potent against the microbes
as compared to the standard drugs.

Keywords: multi-component reaction; 1,4-dihydropyridines; microwave; heterocyclic compounds;
Al(DS)3; green synthesis

1. Introduction

Researchers have long been intrigued by the biological properties of 1,4-dihydropyridines
(1,4-DHPs). 1,4-DHPs constitute a significant category within the N-heterocyclic ring,
consisting of a biologically vital nucleus that exhibits various important pharmacolog-
ical properties and is used as an antibacterial, anticancer [1], anticoagulant, antileish-
manial, anticonvulsant, antitubercular [2], antioxidant [3], antiulcer, antifertility, neuro-
protection properties, antimalarials, HIV-1 protease inhibitor, antihypertensive [4], anti-
atherosclerotic, hepato-protective, vasodilator, anti-mutagenic, bronchodilator, geropro-
tective, anti-tumor [5], and anti-diabetic agent [6]. Moreover, they constitute an essential
category of agents that modulate calcium channels and have been widely employed in
the treatment of cardiovascular disorders, exhibiting functions such as antihypertensive,
antianginal, vasodilator, and cardiac depressant activities [7]. 1,4-DHP attracts more atten-
tion, due to its bioactivity and presence in coenzymes, diphosphate pyridine nucleotide
(DPNH). In the pharmaceutical field, DHPs are already commercialized as amlodipine,
felodipine, isradipine [8], lacidipine [9], nicardipine [10], nitrendipine [11], nifedipine, and
nemadipine B [12], among them, nitrendipine and nemadipine B stand out for their potent
calcium channel blocking activities.

In general, 1,4-DHPs are synthesized using multicomponent reactions, where a com-
bination of β-keto-ester, aldehyde, as well as ammonia undergoes reaction to produce
the required DHPs. Arthur Hantzsch described the first one-pot formation of symmet-
rically substituted 1,4-DHP in the year 1882 [13]. The Hantzsch reaction proved to be
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the most widely used protocol to access 1,4-DHPs and its numerous biologically active
derivatives [14]. But due to drawbacks such as harsh reaction conditions, long reaction
time, and generally low yield of products, new modifications were made to it to obtain
the targeted compounds,1,4-DHPs, in good to excellent yields [15]. It has been reported
that in multicomponent reactions (MCRs), a wide variety of catalysts has been studied
for the production of 1,4-DHP derivatives, encompassing various Lewis or Bronsted acids
such as Y(OTf)3 [16], free nano-Fe2O3 [17], TMU-33 [18], InCl3 [19]; heterogeneous catalyst
such as HClO4–SiO2 [20], PdRuNi@GO NPs [7], zeolite [21], IRMOF-3 [22]; organ catalyst,
CAN [23], Montmorillonite K10 clay [24], HClO4-SiO2 [25], tetrabutylammonium hydrogen
sulfate, sodium- and Cs-Norit carbons, fermenting Baker’s yeast [26], metal triflates with
the incorporation of numerous methodologies such as stirring [2], conventional heating [27],
refluxing [22], microwave [1], visible light [4], and ultrasound irradiations [21]. Researchers
are now focusing on the green aspects of this reaction leading to the usage of various green
solvents such as glycerol [18], water [19], and ionic liquids [6]. Unless otherwise stated,
aqueous surfactant solutions, as well as neat conditions, have also been incorporated to
obtain the required products.

Persisting on our work, in the present work, we describe the synthesis of novel 1,4-
DHP scaffolds using a one-pot method using an aqueous micellar solution as a greener
solvent. The microwave-assisted reaction method stands out as superior due to its rapid
reaction times, cost-effectiveness, and straightforward operational procedures compared
to other methods. To begin our investigation into a sustainable and effective approach for
synthesizing 1,4-DHPs, we commenced by employing a catalytic quantity of Al(DS)3 with
a combination of substituted benzaldehyde, diethyl acetylene dicarboxylate, and either
ammonium acetate or aniline, along with malononitrile under microwave irradiations at
ambient temperature.

2. Result and Discussion
2.1. Characterization of Aluminum Dodecyl Sulfate, Al(DS)3
2.1.1. SEM Characterization

The SEM images depicted in Figure 1a–f, magnified from 500 to 7500 times, provide
valuable insights into the morphology of the Al(DS)3 surfactant. This compound was
produced as dense aggregates (Figure 1a) which are irregular in shape. At higher magnifi-
cations, it becomes evident that randomly organized microplates arranged to compose the
micro-objects are in an edge-to-face style (Figure 1a–d).
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Based on the elemental investigation conducted on microscopic sectors of Al(DS)3
using EDS (as shown in Figure S1), the atomic percentages of Al and S were determined to
be 22.40% and 77.60%, respectively, which indicates a 1:3 stoichiometry.

2.1.2. XRD Characterization

The XRD patterns in the range of 2θ = 5–25◦ for the Al(DS)3 sample are shown in
Figure 2. The prepared sample of Al(DS)3 gave rise to XRD peaks at 2θ = 6.596, 7.184, 10.965,
13.166, 17.587, 20.387, 20.674, and 21.875, corresponding to (110), (110), (111), (111), (200),
(210), (211), (211), and (211) diffraction peaks, respectively. According to the above data,
the XRD patterns of Al(DS)3 show a prominent diffraction peak at (110) with preferential
orientation around 2θ = 6.596◦ with 100% relative intensity, which shows a reasonable
degree of crystallinity of 65.3%.
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2.2. Preparation of [1,4-DHPs]
10-Amino-3,3,6,6-Tetramethyl-9-Aryl-3,4,6,7,9,10-Hexa-Hydroacridine-1,8(2H,5H)-Dione
Derivatives (5a–n) Using Al(DS)3

Various solvents, including water, ethanol, ethanolic solution of p-TSA, glycerol, aque-
ous solution of SDS, and aqueous solution Al(DS)3, were employed for the condensation of
benzaldehyde 1, dialkyl acetylene dicarboxylate 2, ammonium acetate 3, and malononitrile 4.
Among these, water as a solvent proved to be the most effective, as indicated in Table 1. The
maximum yield was achieved through an Al(DS)3 + water catalyst system.

Table 1. Impact of solvents on production of the 5a–h.

Solvent Time (min) Yield a (%)

Ethanol 10 87%
Glycerol 8 91%

p-TSA + Ethanol 8 89%
PEG 9 90%

Water 15 42%
Al(DS)3 + Water 5 97%

SDS + Water 6 92%
CH3CN 6 95%

Ethylene glycol 8 94%
a Reactions supported using various solvents. Reactions occurred at 100 ◦C in MW irradiation.
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Table 2 illustrates the optimal temperature for a reaction carried out in an aqueous
micellar solution and it was also observed that increasing the temperature has a significant
increase in yield with time. Conversely, further temperature increases, result in a decrease
in product yield as the products start decomposing at higher temperatures.

Table 2. Impact of pressure on the percentage yield of 5a–h using Al(DS)3 in water.

Watt Time (min) Yield a (%)

65 8 93%
70 7 93%
75 6 95%
80 5 97%
85 4 91%
90 3 88%
95 2 85%

a Yield refers to the combined yield of all crops.

Similarly, various other aldehydes 3b–g will undergo reactions with diethyl acetylene
dicarboxylate, malononitrile, and either ammonium acetate or aniline using the same
procedure, with the formation monitored by TLC and melting point analysis. The reactions
proceed smoothly even in the company of various electron-donating (-Me and -OMe) as
well as electron-withdrawing substituents (-NO2) on the aldehyde, facilitating efficient
reactions. The effectiveness of this method is notable, yielding high percentages (92–97%)
for the final products.

2.3. Characterization of Diethyl 6-Amino-5-Cyano-4-Phenyl-1,4-Dihydropyridine-2,3-Dicarboxylate
(5a) Using Al(DS)3

The structural elucidation of the novel scaffold is accomplished by using various
spectroscopic methods such as FTIR, 1H NMR, 13C NMR, Mass, and elemental analysis.
In the series, the IR spectra of compound 5a reveal three significant absorptions at 3360.7,
2250.6, and 1740.5 cm−1 corresponding to the N-H, C≡N, and C=O groups stretching.
In 1H NMR spectra (500 MHz, CDCl3) of compound 5a, three singulets at δ 11.94, 6.59,
and 4.54 were observed for NH, NH2, and CH, respectively, confirming the formation of
1,4-DHP. The multiplet for 5 protons was at δ 7.13–7.27 for the phenyl ring attached at the
C-4 position. One quadruplet and one triplet at δ 4.17–4.13 and 0.90–0.91 were observed for
CH2 and CH3 protons of ester linkage.

In 13C, NMR spectra of molecule 5a, most down-shielded peaks at δ 190.26 and
189.73 ppm were observed for the C=O group. Peaks at δ 160.57, 157.91, 154.74, 153.24,
and 54.77 ppm were observed for C-2, C-6, C-3, C-5, and C-4 carbon atoms of the main
1,4-DHP skeleton, whereas carbon atoms belonging to the aromatic region were observed
at δ 136.15 (C-1′), 135.43 (C-2′ and C-6′), 128.34 (C-3′ and C-5′), and 120.71 (C-4′) ppm. The
peaks for C≡N and other sp3 carbons were observed at the appropriate position. Further-
more, ESI-MS fragmentation Pattern and Elemental analysis also support the formation
of final 1,4-DHP derivatives. The spectral data of compound 5a strongly corroborates the
assigned structure.

2.4. Anti-Microbial Activity

The novel synthesized compounds 5a–n underwent testing against two Gram-positive
bacteria (Streptococcus pyogenes MTCC 442, and Bacillus subtilis MTCC 441), three Gram-
negative bacteria (Klebsiella pneumonia MTCC 3384, Escherichia coli MTCC 443, and Staphy-
lococcus aureus MTCC 96), as well as three fungal strains (Aspergillus niger MTCC 281,
Aspergillus janus MTCC 2751, and Aspergillus sclerotiorum MTCC 1008). Fungal strains were
cultivated in malt extract medium prior to inoculation for a duration of 72 h at 28 ◦C,
whereas bacterial samples were grown in nutrient broth for 24 h at 37 ◦C. Each synthesized
chemical underwent triplicate testing after being dissolved in DMSO at concentrations of 2,
4, 8, 16, 32, 64, and 128 g/mL using a serial dilution procedure.
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3. Experimental Section
3.1. Materials and Methods
3.1.1. Chemicals

All chemicals used in this study were obtained from Sigma-Aldrich (St. Louis, MO,
USA) which were employed without additional distillation, while the solvents were ordered
from Loba Chemie (Mumbai, India).

3.1.2. Analytical Instruments

The digital melting point apparatus was employed to measure the melting point
of all the resulting products via the open capillary method. IR spectra of the targeted
compound were taken using ATR mode on Perkin Elmer (Waltham, MA, USA) Spectrum
II. NMR such as 1H and 13C are collected on a Bruker (Billerica, MA, USA) Avance NEO
500 MHz NMR spectrometer using DMSO as solvent. Chemical shifts (δ) are accounted
for in ppm relative to that of TMS as an internal standard. The mass spectroscopy was
recorded on LC-MS Spectrometer Model Q-ToF Micromass Thermo Scientific (Waltham,
MA, USA) (FLASH 2000) CHN Elemental Analyser is used for fundamental analysis. The
thin layer chromatographic (TLC) technique was used to observe the reaction time as well
as to check the purity of the compound, and then the visualization of TLC was performed
with the help of a UV chamber. XRD patterns of the dried (lyophilized) samples were
captured at room temperature using a Bruker D8 advance. The compounds were exposed to
monochromatic Cu-Kα radiation (λ = 1.5418 Å, 50 kV, 40 mA) across the 2θ range between
<1 and >150◦, with steps of 0.02◦. SEM micrographs were obtained utilizing a JSM IT500
scanning electron microscope. Elemental analysis on microscopic sections of the Al(DS)3
sample was conducted via EDS. SEM images were acquired under high vacuum mode,
ranging from 30 nm (30 kV) to 15.0 nm (1.0 kV).

3.2. Synthesis of Aluminum Dodecyl Sulfate

The preparation of aluminum dodecyl sulfate was conducted following the procedure
outlined in the literature (Scheme 1) [28]. Anhydrous AlCl3 (0.1 mol) and sodium dodecyl
sulfate (SDS) (0.3 mol) were dissolved using the minimum amount of water required. The
solutions were gradually diluted with continuous stirring at room temperature, resulting
in the precipitation of a colorless solid. This solid was filtered to isolate the solid Al(DS)3.
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Scheme 1. Preparation of Al(DS)3 in water.

3.3. Synthesis of 1,4-DHPs Derivatives (5a–n)

Using Al(DS)3 catalyst (5 mole%), a mixture composed of substituted benzaldehyde
(5 mmol), diethyl acetylene dicarboxylate (5 mmol), and either ammonium acetate or
aniline (5 mmol), along with malononitrile (5 mmol), was subjected to MW irradiation at
80 watts for 5 min in H2O (Scheme 2). The reaction’s progress was monitored using TLC
(Merck, Darmstadt, Germany) (EtOAc: Toluene; 8:2). After determining that the reaction
had concluded, the mixture was cooled to ambient temperature, filtered, rinsed with water,
and subsequently subjected to extraction using ethyl acetate. Subsequently, the resulting
solid was recrystallized using ethyl alcohol to yield colorless crystals with an efficiency of
93–97%.
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By the optimized reaction conditions, a diversity of 1,4-DHP was prepared using
various substituted aldehydes in aqueous micellar solution under MW irradiations at
80 watts for 5 min (Table 3).

Table 3. 1,4-DHP derivatives 5a–n synthesis using Al(DS)3 + water for 5 mints under MW radiations.

Compound
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5g 4-OMe H 0.63 94 238–240 -
5h H Ph 0.66 96 173–174 170–172 [29]
5i 4-NO2 Ph 0.69 94 171–173 172–174 [30]
5j 3-NO2 Ph 0.71 95 270–272 -
5k 4-Cl Ph 0.67 96 186–187 188–189 [31]
5l 4-Br Ph 0.60 96 151–153 152–154 [32]

5m 4-Me Ph 0.61 93 286–287 -
5n 4-OMe Ph 0.65 92 253–255 -

diethyl 6-amino-5-cyano-4-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5a): Yield 97%, color-
less crystals, mp 227–228 ◦C. IR spectrum, ν, cm−1: 3360.7 (N-H stretch, -NH2), 2250.6
(C≡N), 1740.5 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 11.94 (s, 1H, NH), 7.13–7.27
(m, 5H, Ar-H), 4.54 (s, 1H, CH), 6.59 (s, 1H, NH2), 4.17–4.13 (q, 4H, CH2), 0.90–0.91 (t, 6H,
CH3). 13C NMR spectrum, δ, ppm: 190.26, 189.73, 160.57, 157.91, 154.74, 153.24, 136.47,
135.43, 128.34, 120.71, 113.47, 54.77, 57.95, 57.96, 13.72, 13.51. Mass spectrum, m/z (Irel, %):
342.138 (M + 1), Found: 342.136. Anal. calcd. for C18H19N3O4: C, 63.33; H, 5.61; N, 12.31%.

diethyl 6-amino-5-cyano-4-(4-nitrophenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5b): Yield 96%,
colorless crystals, mp 240 ◦C. IR spectrum, ν, cm−1: 3361.1 (N-H stretch, -NH2), 2251.3
(C≡N), 1740.7 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 12.23 (s, 1H, NH), 7.66–7.97
(m, 4H, Ar-H), 4.46 (s, 1H, CH), 6.89 (s, 1H, NH2), 4.16–4.12 (q, 4H, CH2), 1.19–1.20 (t, 6H,
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CH3). 13C NMR spectrum, δ, ppm: 190.52, 190.07, 160.85, 158.23, 155.07, 153.57, 136.77,
135.78, 128.63, 121.03, 113.75, 55.03, 58.28, 58.27, 14.03, 13.86. Mass spectrum, m/z (Irel, %):
387.123 (M + 1), Found: 387.122. Anal. calcd. for C18H18N4O6: C, 55.96; H, 4.70; N, 14.50%.

diethyl 6-amino-5-cyano-4-(3-nitrophenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5c): Yield 94%,
colorless crystals, mp 242 ◦C. IR spectrum, ν, cm−1: 3361.3 (N-H stretch, -NH2), 2251.6
(C≡N), 1741.1 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 12.10 (s, 1H, NH), 7.58–8.12
(m, 4H, Ar-H), 4.81 (s, 1H, CH), 6.85 (s, 1H, NH2), 4.49–4.53 (q, 4H, CH2), 1.14–1.15 (t, 6H,
CH3). 13C NMR spectrum, δ, ppm: 190.41, 189.99, 160.74, 158.17, 154.93, 153.42, 136.64,
135.63, 128.55, 120.97, 113.61, 58.11, 58.10, 54.92, 13.94, 13.74. Mass spectrum, m/z (Irel, %):
387.123 (M + 1), Found: 387.122. Anal. calcd. for C18H18N4O6: C, 55.96; H, 4.70; N, 14.50%.

diethyl 6-amino-4-(4-chlorophenyl)-5-cyano-1,4-dihydropyridine-2,3-dicarboxylate (5d): Yield
94%, colorless crystals, mp 237–239 ◦C. IR spectrum, ν, cm−1:3361.6 (N-H stretch, -NH2),
2251.7 (C≡N), 1741.5 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 12.31 (s, 1H, NH),
7.60–7.87 (m, 4H, Ar-H), 4.76 (s, 1H, CH), 6.93 (s, 1H, NH2), 4.09–4.13 (q, 4H, CH2), 1.16–1.17
(t, 6H, CH3). 13C NMR spectrum, δ, ppm: 190.68, 190.18, 160.96, 158.35, 155.09, 153.65,
136.91, 135.95, 128.81, 121.18, 113.97, 58.35, 58.37, 55.14, 14.26, 14.04. Mass spectrum, m/z
(Irel, %): 376.099 (M + 1);377.099 (M + 2), Found: 376.098(M + 1); 377.098 (M + 2). Anal.
calcd. for C18H18N3BrO4: C, 57.53; H, 4.83; N, 11.18%.

diethyl 6-amino-4-(4-bromophenyl)-5-cyano-1,4-dihydropyridine-2,3-dicarboxylate (5e): Yield
95%, colorless crystals, mp 267–268 ◦C. IR spectrum, ν, cm−1: 3361.9 (N-H stretch, -NH2),
2251.9 (C≡N), 1741.6 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 12.27 (s, 1H, NH),
7.52–7.73 (m, 4H, Ar-H), 4.85 (s, 1H, CH), 6.90 (s, 1H, NH2), 4.51–4.54 (q, 4H, CH2), 1.13–1.12
(t, 6H, CH3). 13C NMR spectrum, δ, ppm: 190.62, 190.05, 160.91, 158.30, 155.01, 153.61,
136.73, 135.72, 128.58, 121.11, 113.79, 58.31, 58.32, 55.11, 14.20, 13.96. Mass spectrum, m/z
(Irel, %): 420.048 (M + 1); 421.048 (M + 2), Found: 420.047; 421.047 (M + 2). Anal. calcd. for
C18H18N3ClO4: C, 51.44; H, 4.32; N, 10.00%.

diethyl 6-amino-5-cyano-4-p-tolyl-1,4-dihydropyridine-2,3-dicarboxylate (5f): Yield 93%, colorless
crystals, mp 230–231 ◦C. IR spectrum, ν, cm−1: 3361.0 (N-H stretch, -NH2), 2250.9 (C≡N),
1740.9 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 12.15 (s, 1H, NH), 7.09–7.41 (m,
4H, Ar-H), 4.87 (s, 1H, CH), 6.87 (s, 1H, NH2), 4.50–4.52 (q, 4H, CH2), 2.15 (s, 3H, CH3),
0.89–0.91 (t, 6H, CH3). 13C NMR spectrum, δ, ppm: 190.33, 189.78, 160.79, 158.09, 154.87,
153.48, 136.51, 135.57, 128.42, 120.83, 113.56, 58.01, 58.03, 54.96, 13.95, 13.71. Mass spectrum,
m/z (Irel, %): 356.153 (M + 1), Found: 356.151. Anal. calcd. for C19H21N3O4: C, 64.21; H,
5.96; N, 11.82%.

diethyl 6-amino-5-cyano-4-(4-methoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5g): Yield
94%, colorless crystals, mp 238–240 ◦C. IR spectrum, ν, cm−1: 3360.9 (N-H stretch, -NH2),
2250.8 (C≡N), 1741.3 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 12.01 (s, 1H, NH),
7.19–7.49 (m, 4H, Ar-H), 4.79 (s, 1H, CH), 6.67 (s, 1H, NH2), 4.07–4.09 (q, 4H, CH2), 3.89
(s, 3H, OCH3), 1.11–1.13 (t, 6H, CH3). 13C NMR spectrum, δ, ppm: 190.09, 189.63, 160.47,
157.83, 154.65, 153.13, 136.38, 135.32, 128.28, 120.64, 113.39, 57.83, 57.81, 54.65, 13.66, 13.50.
Mass spectrum, m/z (Irel, %): 372.148 (M + 1) Found: 372.146. Anal. calcd. for C19H21N3O5:
C, 61.45; H, 5.70; N, 11.31%.

diethyl 6-amino-5-cyano-1,4-diphenyl-1,4-dihydropyridine-2,3-dicarboxylate (5h): Yield 96%,
colorless crystals, mp 170–172 ◦C. IR spectrum, ν, cm−1: 3362.3 (N-H stretch, -NH2), 2252.5
(C≡N), 1742.1 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz):6.85–8.12 (m, 10H, Ar-H),
4.58 (s, 1H, CH), 6.95 (s, 1H, NH2), 4.40–4.47 (q, 4H, CH2),2.13–2.14 (t, 6H, CH3). 13C NMR
spectrum, δ, ppm: 190.49, 189.99, 160.93, 158.33, 155.12, 153.65, 137.20, 136.87, 136.24, 135.83,
129.15, 128.74, 121.23,121.13, 113.81, 58.36, 58.35, 54.17, 14.12, 13.92. Mass spectrum, m/z
(Irel, %): 417.169 (M + 1) Found: 417.167. Anal. calcd. for C24H23N3O4: C, 69.05; H, 5.55;
N, 10.07%.
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diethyl 6-amino-5-cyano-4-(4-nitrophenyl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5i):
Yield 94%, colorless crystals, mp 171–173 ◦C. IR spectrum, ν, cm−1: 3362.6 (N-H stretch,
-NH2), 2252.8 (C≡N), 1742.5 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 7.33–8.63
(m, 9H, Ar-H), 4.51 (s, 1H, CH), 7.31 (s, 1H, NH2), 4.46–4.50 (q, 4H, CH2), 2.15–2.16 (t, 6H,
CH3). 13C NMR spectrum, δ, ppm: 190.96, 190.47, 161.24, 158.61, 155.48, 153.94, 137.47,
137.17, 136.51, 136.17, 129.31, 129.03, 121.55,121.45, 114.12, 58.68, 58.67, 55.43, 14.43, 14.27.
Mass spectrum, m/z (Irel, %): 462.154 (M + 1) Found: 462.153. Anal. calcd. for C24H22N4O6:
C, 62.33; H, 4.79; N, 12.12%.

diethyl 6-amino-5-cyano-4-(3-nitrophenyl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5j):
Yield 95%, colorless crystals, mp 270–272 ◦C. IR spectrum, ν, cm−1: 3362.8 (N-H stretch,
-NH2), 2252.9 (C≡N), 1742.7 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 7.27–8.15
(m, 9H, Ar-H), 4.92 (s, 1H, CH), 7.27 (s, 1H, NH2), 4.47–4.51 (q, 4H, CH2), 1.52–1.53 (t, 6H,
CH3). 13C NMR spectrum, δ, ppm: 190.81, 190.41, 161.17, 158.54, 155.36, 153.87, 137.45,
137.04, 136.57, 136.12, 129.26, 128.96, 121.49, 121.40, 114.07, 58.52, 58.51, 55.32, 14.31, 14.19.
Mass spectrum, m/z (Irel, %): 463.154 (M + 1) Found: 463.153. Anal. calcd. for C24H22N4O6:
C, 62.33; H, 4.79; N, 12.12%.

diethyl 6-amino-4-(4-chlorophenyl)-5-cyano-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5k):
Yield 96%, colorless crystals, mp 186–187 ◦C. IR spectrum, ν, cm−1: 3363.2 (N-H stretch,
-NH2), 2253.1 (C≡N), 1742.9 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 7.30–7.81 (m,
9H, Ar-H), 4.86 (s, 1H, CH), 7.34 (s, 1H, NH2), 4.48–4.52 (q, 4H, CH2), 1.78–1.79 (t, 6H, CH3).
13C NMR spectrum, δ, ppm: 191.07, 190.58, 161.33, 158.79, 155.49, 154.16, 137.74, 137.32,
136.89, 136.36, 129.38, 129.27, 121.71, 121.62, 114.35, 58.75, 58.74, 55.54,14.66, 14.41. Mass
spectrum, m/z (Irel, %): 452.130 (M + 1); 453.130 (M + 1) Found: 452.128 (M + 1); 453.128 (M
+ 2). Anal. calcd. for C24H22ClN3O4: C, 63.79; H, 4.91; N, 9.30%.

diethyl 6-amino-4-(4-bromophenyl)-5-cyano-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5l):
Yield 96%, colorless crystals, mp 151–153 ◦C. IR spectrum, ν, cm−1:3363.5 (N-H stretch,
-NH2), 2253.3 (C≡N), 1743.1 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 7.21–7.69 (m,
9H, Ar-H), 4.95 (s, 1H, CH), 7.32 (s, 1H, NH2), 4.48–4.51 (q, 4H, CH2), 1.67–1.68 (t, 6H, CH3).
13C NMR spectrum, δ, ppm: 191.02, 190.45, 161.21, 158.72, 155.41, 154.02, 137.52, 137.15,
136.50, 136.19, 129.24, 128.98, 121.68, 121.56, 114.29, 58.72, 58.71, 55.51, 14.60, 14.31. Mass
spectrum, m/z (Irel, %): 496.079 (M + 1); 497.079 (M + 2) Found: 496.075(M + 1); 497.075 (M
+ 2). Anal. calcd. for C24H22BrN3O4: C, 58.07; H, 4.47; N, 8.47%.

diethyl 6-amino-5-cyano-1-phenyl-4-p-tolyl-1,4-dihydropyridine-2,3-dicarboxylate (5m): Yield
93%, colorless crystals, mp 286–287 ◦C. IR spectrum, ν, cm−1:3362.5 (N-H stretch, -NH2),
2252.1 (C≡N), 1742.6 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 6.97–7.93 (m, 9H,
Ar-H), 4.96 (s, 1H, CH), 7.29 (s, 1H, NH2), 4.47–4.49 (q, 4H, CH2), 2.10–2.12 (t, 6H, CH3),
2.17 (s, 3H, CH3). 13C NMR spectrum, δ, ppm: 190.73, 190.13, 161.11, 158.44, 155.28, 153.89,
137.33, 136.93, 136.32, 135.95, 129.17, 128.82, 121.37, 121.21, 113.96, 58.43, 58.41, 55.37, 14.35,
14.10. Mass spectrum, m/z (Irel, %): 432.185 (M + 1) Found: 432.176. Anal. calcd. for
C25H25N3O4: C, 69.59; H, 5.84; N, 9.74%.

diethyl 6-amino-5-cyano-4-(4-methoxyphenyl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5n):
Yield 92%, colorless crystals, mp 253–255 ◦C. IR spectrum, ν, cm−1: 3362.7 (N-H stretch,
-NH2), 2252.4 (C≡N), 1742.3 (C=O stretch). 1H NMR spectrum, δ, ppm (J, Hz): 7.08–7.95
(m, 9H, Ar-H), 4.89 (s, 1H, CH), 7.05 (s, 1H, NH2), 4.39–4.45 (q, 4H, CH2),3.95 (s, 3H, OCH3),
1.93–1.94 (t, 6H, CH3). 13C NMR spectrum, δ, ppm: 190.47, 190.04, 160.93, 158.25, 155.07,
153.43, 137.19, 136.79, 136.18, 135.71, 128.99, 128.68, 121.16, 121.09, 113.79, 58.23, 58.21, 55.05,
14.08, 13.87. Mass spectrum, m/z (Irel, %): 448.179 (M + 1) Found: 448.166. Anal. calcd. for
C25H25N3O5: C, 67.10; H, 5.63; N, 9.39%.

3.4. Plausible Mechanism

As per literature [32], a conceivable mechanism can be reasonably suggested for the
production of pyran pyrazole 5a from the four-component reaction between aniline 1, di-
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ethyl acetylene dicarboxylate 2, substituted benzaldehyde 3, and malononitrile 4 (Scheme 3).
The hypothesis suggests that the substituted benzaldehyde 3 may undergo activation by
water, leading to increased electrophilicity of the carbonyl carbon. It is suggested that this
process involves the establishment of hydrogen bonds between the oxygen atom of the
carbonyl group and water molecules, while simultaneously, hydrogen bonds form between
the acidic hydrogen of malononitrile and the oxygen of water. Following this, Knoevenagel
condensation takes place [33], resulting in the generation of an intermediate 7. Subse-
quently, aniline 1 reacts with diethyl acetylene dicarboxylate 2, resulting in the generation
of enolate intermediate 6. Afterward, the Michael reaction takes place between intermediate
6 and intermediate 7, which leads to the generation of transient intermediate [34] 8 which
undergoes intramolecular cyclization, followed by tautomerization, ultimately resulting in
the formation of the target compound, the 1,4-dihydropyridine derivative 9.
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3.5. Anti-Microbial Activity

The antimicrobial activities of the synthesized compounds 5a–n were evaluated using
the Minimum Inhibitory Concentration (MIC) method. The results were compared to the
reference drugs Fluconazole and Amoxicillin, with concentrations of 4 g/mL and 2 g/mL,
respectively, in their respective areas of application. Table 4 shows that compound 5a–n
exhibits moderate to excellent resistance against the tested strains. 1,4-DHPs with polar
electron-withdrawing groups (5b, 5c, 5i, and 5j) attached to the phenyl ring at position
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4 exhibited effectiveness against all the tested strains, comparable to the standard drugs
Amoxicillin (MIC 4 µg/mL) and Fluconazole (MIC 2 µg/mL) this may be due the formation
of H-bonds with the different parts of the protein of microbes. However, the resistance
efficiency against the tested microbes decreases if the same phenyl ring is substituted with
less polar groups such as Me (5f and 5m), OMe (5g and 5n), and Halogens (5d, 5e, 5k, and
5l) this is due to their less or no ability of formation of H-Bonds.

Table 4. Anti-microbial activity of synthesized 1,4-DHP derivatives 5a–n.

Compound
Gram (+ve) Bacteria Gram (−ve) Bacteria Fungi

B. subtilis S. pyogenes E. coli K.
pneumonia S. aureus A. janus A. niger A.

sclerotiorum

5a 16 8 8 8 16 8 16 8
5b 4 4 4 8 4 4 4 8
5c 4 8 4 4 8 8 8 32
5d 16 8 16 32 32 16 32 32
5e 16 32 - 64 64 32 16 16
5f 32 8 16 8 16 16 16 8
5g 16 16 8 8 16 8 16 –
5h 64 16 32 16 32 32 32 16
5i 4 4 4 4 4 4 4 4
5j 4 8 8 4 4 8 4 4
5k 8 16 16 - – 16 16 32
5l 32 64 128 16 32 16 32 16

5m 8 16 64 32 64 16 16 32
5n 16 8 8 16 8 16 32 16

Amoxicillin 4 4 4 4 4 – – –
Fluconazole – – – – – 2 2 2

4. Conclusions

An environmentally green procedure was performed for the synthesis of a novel
1,4-DHP scaffold via a one-pot, four-component reaction using aqueous micellar solution
under microwave irradiation by treatment of a mixture of substituted benzaldehyde, diethyl
acetylene dicarboxylate, and either ammonium acetate or aniline, along with malononitrile
in an equivalent ratio. In summary, the outlined procedure illustrates remarkable efficacy
in generating 1,4-DHP derivatives from easily accessible starting materials in a single step,
utilizing a micellar solution of Al(DS)3 in water. The resulting crops are swiftly attained
with adaptability and variety, achieving outstanding yields and purity. This approach
demonstrates efficiency in terms of labor, cost-effectiveness, and minimal waste generation
while operating under mild reaction conditions. Furthermore, all synthesized 1,4-DHPs
display potent activity against the evaluated microbial strains. On a note, it finds that the
presence of polar groups such as NO2 on the phenyl ring imparts comparable resistance to
standard drugs such as Amoxicillin and Fluconazole.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29051115/s1, Scheme S1: Synthesis of 1,4-DHPs using
Al(DS)3 in water under microwave radiations; Table S1: Synthesis of 1,4-DHP derivatives 5a-n using
Al(DS)3 in water for 5 mints under microwave radiations; Table S2: Indexing of XRD using the
Debye Scherrer Method; Figure S1: Energy-Dispersive X-ray Spectroscopy (EDS) data; Figure S2:
1H-NMR of diethyl 6-amino-5-cyano-4-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5a); Figure S3:
1H-NMR of diethyl 6-amino-5-cyano-4-(3-nitrophenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5c);
Figure S4: 1H-NMR of diethyl 6-amino-5-cyano-1,4-diphenyl-1,4-dihydropyridine-2,3-dicarboxylate
(5h); Figure S5: 1H-NMR of diethyl 6-amino-5-cyano-4-(3-nitrophenyl)-1-phenyl-1,4-dihydropyridine-
2,3-dicarboxylate (5j).
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