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Abstract. Peptidylglycine a-amidating monooxygenase
(PAM) is an essential enzyme that catalyzes the
COOH-terminal amidation of many neuroendocrine
peptides. The bifunctional PAM protein contains an
NH,-terminal monooxygenase (PHM) domain fol-
lowed by a lyase (PAL) domain and a transmembrane
domain. The cytosolic tail of PAM interacts with pro-
teins that can affect cytoskeletal organization. A re-
verse tetracycline-regulated inducible expression sys-
tem was used to construct an AtT-20 corticotrope cell
line capable of inducible PAM-1 expression. Upon in-
duction, cells displayed a time- and dose-dependent in-
crease in enzyme activity, PAM mRNA, and protein.
Induction of increased PAM-1 expression produced
graded changes in PAM-1 metabolism. Increased ex-
pression of PAM-1 also caused decreased immunofluo-
rescent staining for ACTH, a product of proopiome-

lanocortin (POMC), and prohormone convertase 1
(PC1) in granules at the tips of processes. Expression of
PAM-1 resulted in decreased ACTH and PHM secre-
tion in response to secretagogue stimulation, and de-
creased cleavage of PC1, POMC, and PAM. Increased
expression of a soluble form of PAM did not alter
POMC and PC1 localization and metabolism. Using the
inducible cell line model, we show that expression of in-
tegral membrane PAM alters the organization of the
actin cytoskeleton. Altered cytoskeletal organization
may then influence the trafficking and cleavage of lu-
menal proteins and eliminate the ability of AtT-20 cells
to secrete ACTH in response to a secretagogue.
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is a bifunctional enzyme found in nearly all large

dense core vesicles (LDCVs; Eipper et al., 1993).
The major forms of PAM are type I integral membrane
proteins that catalyze the COOH-terminal amidation of
glycine-extended peptides in a two-step process (Eipper et
al., 1993; Kolhekar et al., 1997). Peptidylglycine a-hydrox-
ylating monooxygenase (PHM) catalyzes the first step of
the reaction, whereas peptidyl-a-hydroxyglycine o-ami-
dating lyase (PAL) catalyzes the second step. The precur-
sor PAM protein, PAM-1 (Fig. 1), is composed of an ini-
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tial signal and propeptide sequence followed by the PHM
catalytic domain, a noncatalytic domain referred to as
exon A, the PAL catalytic domain, a transmembrane do-
main, and a COOH-terminal domain (Yun et al., 1993).
The two catalytic domains of PAM can be expressed inde-
pendently as soluble PHM and PAL, and both domains
have been shown to be targeted efficiently to LDCVs
(Milgram et al., 1992). In contrast, when integral mem-
brane forms of PAM were expressed in an AtT-20 mouse
corticotrope cell line, they were predominantly localized
to the trans-Golgi network (TGN) (Milgram et al., 1993,
1994, 1997). The COOH-terminal domain of PAM inter-
acts with proteins that could affect the cytoskeletal organi-
zation via their effects on actin and tubulin (Alam et al.,
1997).

AtT-20 cells express high levels of proopiomelanocortin
(POMC) and prohormone convertase 1 (PC1) while lower
but adequate endogenous levels of PAM are present
(Thiele and Eipper, 1990; Milgram et al., 1992). PC1,
a member of the family of mammalian subtilisin-like
prohormone convertases (Bloomquist and Mains, 1993;
Seidah et al., 1993; Lindberg and Zhou, 1995; Rouille et al.,
1995), has been shown to be important in the initial stages

459



PHM Exon A PAL D
12060 [ m PAM-1
%10 L e
70 kD il WS PALm
sskb [ 00 V7 : PHM4
lumen cytosol

Ab 6E6

Ab 1764 Ab 471

Figure 1. Structures of PAM proteins studied. Intact PAM-1 is
an integral membrane protein of 120 kD that consists of two cata-
lytic domains (PHM and PAL) which are separated by the non-
catalytic exon A region (hatched box) (Eipper et al., 1993). A
proteolytic cleavage site is present within exon A. The PHM and
PAL catalytic domains lie within the lumenal compartment. The
major protein products generated from PAM-1 cleavage in neu-
roendocrine cells are 46-kD PHM (soluble) and 70-kD PAL
(membrane bound, PALm); PALm includes a transmembrane
domain (TMD) and a cytoplasmic domain (CD). PHM4 is a solu-
ble, naturally occurring, alternatively spliced variant of PAM
(previously called PAM-4); PHM4 contains the PHM and exon A
domains followed by a unique COOH terminus. AtT-20 cells sta-
bly transfected with vectors encoding PAM-1 and PHM4 were
examined. The specificities of the PAM antisera used in this
study are shown. mAb, mouse monoclonal antibody; Ab, rabbit
polyclonal antibody.

of POMC processing (Benjannet et al., 1991; Bloomquist
et al., 1991; Thomas et al., 1991; Zhou and Mains, 1994).
Decreasing PC1 expression in several cell types, by apply-
ing the antisense RNA approach, blocked propeptide
processing at the early steps (Bloomquist et al., 1991;
Eskeland et al., 1996; Yoon and Beinfeld, 1997) while
overexpressing PC1 in AtT-20 cells was associated with an
increased rate of POMC cleavage and a more extensive
cleavage of POMC to smaller products (Zhou and Mains,
1994).

Processing of propeptides begins in the TGN and further
processing occurs in immature granules (Schnabel et al.,
1989; Paquet et al., 1994; Hendy et al., 1995; Patel and Ga-
lanopoulou, 1995). Peptide products are concentrated and
packaged into LDCVs which are stored and then released
upon stimulation (Milgram et al., 1992; Steiner et al.,
1996). The mechanisms underlying the sorting and packag-
ing of POMC products are controversial. It has been pro-
posed that a sorting motif in POMC binds to a sorting re-
ceptor such as carboxypeptidase E (Cool et al., 1997; Shen
and Loh, 1997; Normant and Loh, 1998). However, other
studies have concluded that proteins move from the TGN
into immature granules and are subsequently sorted (Ir-
minger et al., 1997; Kuliawat et al., 1997; Thiele et al.,
1997; Udupi et al., 1997; Varlamov et al., 1997; Klumper-
man et al., 1998). Chromogranin B has been proposed to
function as a helper protein in the sorting of products
to secretory granules (Natori and Huttner, 1996). It is
thought that the presence of a highly conserved disulfide-
bonded loop structure is essential for sorting of chromog-
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ranin B (Huttner et al., 1995). Other factors that may be
important in the sorting and packaging of secretory gran-
ule products include the specific parameters of the luminal
milieu such as pH and calcium concentration (Chanat et al.,
1991; Colomer et al., 1996; Kromer et al., 1998).

Previously, we noted that overexpression of integral
membrane PAM was associated with an increased release
of intact POMC and its first cleavage product (ACTH bio-
synthetic intermediate), in an unregulated (“constitutive-
like”) manner (Mains et al., 1991; Milgram et al., 1992).
However, the use of clonal cell lines could not establish a
causal relationship for this observation, due to possible
differences attributable to clonal variation. Since soluble
PAM aggregates with some other soluble LDCV proteins
(Colomer et al., 1996), the effects of membrane PAM
overexpression could involve lumenal interactions. Alter-
natively, saturation of limiting amounts of cytoplasmic tar-
geting proteins or disrupted signaling to cytoskeletal effec-
tors could have important consequences for trafficking of
peptide-containing vesicles (Leube et al., 1994).

To avoid clonal variation as a possible explanation for
differences between nontransfected cells and any one par-
ticular transfected cell line, the inducible reverse tetracy-
cline repressor system (rTet) of Gossen and Bujard was
developed for membrane PAM (Gossen et al., 1993, 1994;
Schiller et al., 1997). Using this system, we examined two
issues: whether PAM processing and trafficking are sat-
urable and, secondly, whether increasing expression of
PAM affects ACTH or PCl1 trafficking, processing, and
regulated secretion. We demonstrate that the effects of
membrane PAM on ACTH and PC1 storage and secretion
may be mediated through its effects on cytoskeletal orga-
nization.

Materials and Methods

Generation of Stable Cell Lines

An AtT-20 cell line, engineered for inducible PAM (iPAM) expression
using the rTet has been described previously (Gossen et al., 1993, 1994;
Schiller et al., 1997). AtT-20/D-16v cells (Milgram et al., 1992) were ini-
tially transfected with pUHD17-2.neo, selected with G418 (0.5 mg/ml;
Sigma) and screened by slot blot and Northern blot for RNA using a rtTA
cDNA probe. Clonal pUHD cell lines were obtained by subcloning and
screened by in situ hybridization (Schiller et al., 1997). The pUHD.PAM
vector was cotransfected into AtT-20/pUHD cells with pSCEP to confer
hygromycin resistance (Paquet et al., 1996). Cells containing all three plas-
mids were selected by growth in medium containing G418 (0.1 mg/ml) and
hygromycin (200 U/ml; Sigma) and were subcloned as required. The re-
sulting iPAM cell lines were evaluated by immunostaining with PAM anti-
sera. Cell lines were maintained in DME/F12 medium containing sera
from donor herds (10% defined equine serum; Hyclone Laboratories) in
an atmosphere of 95% air, 5% CO,. Nontransfected cells and cell lines
stably expressing pUHD, PAM-1, or PHM4 were maintained as previ-
ously described (Milgram et al., 1992). A new stable PAM-1 line was also
generated for this study using a different vector (pCl.neo) but with identi-
cal properties to the original cell line.

iPAM cells were treated with the antibiotic doxycycline (Dox) to in-
duce PAM expression. The health and viability of the cells were normal
up to 4 pg/ml Dox, but treatment with 8 wg/ml Dox was associated with
decreased PAM protein and enzymatic activity and rounding up of the
cells. To determine the optimal treatment time for Dox induction of PAM
expression, iPAM cells were treated with a maximally effective dose of
Dox (4 pg/ml) for varying time periods. Using antisera to PHM and PAL,
increased levels of PAM protein were first detectable after 8 h of Dox
treatment. Peak levels of PAM protein were observed after 48 h of Dox
treatment and longer treatment of iPAM cells (72 or 96 h) did not alter
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the PAM expression levels in these cells (data not shown). In addition,
iPAM cells treated for up to 14 d with optimal doses of Dox showed no
apparent detrimental effects (data not shown). Removal of Dox from
iPAM cells treated with 4 pg/ml Dox for 48 h slowly restored PAM ex-
pression to basal levels (data not shown); 24 h after removal of Dox there
was no decline in PAM expression. Dox had no noticeable effect on non-
transfected cells under the same conditions used for induction of iPAM
cells (data not shown).

Antibodies

Polyclonal rabbit antisera raised to different regions of PAM were used:
Ab1764 (rPAM-1[37-382]) detected PHM; Ab471 (rPAM-1[464-864]) de-
tected PAL (Milgram et al., 1992). mAb 6E6 (rPAM-1[898-976]) detected
the cytoplasmic domain of rPAM-1 and mAb 18ES detected the PHM do-
main (Yun et al., 1993; Milgram et al., 1997). Other rabbit polyclonal anti-
sera used detected the NH,-terminal region of ACTH (JH93; Zhou et al.,
1993), PC1[359-373] (JH888; Zhou and Mains, 1994), and TGN38[155-249]
(JH1479; Milgram et al., 1997). Rabbit antisera were raised at Covance.

Northern Blot Analysis

Total RNA was isolated using RNA Stat-60 reagent (TelTest B) and frac-
tionated using denaturing formaldehyde gels. PAM mRNA was visualized
using a PHM probe (1.3-kb PstI-BamHI fragment of rPAM-1, nt 356-
1682; Thiele and Eipper, 1990). RNA loading was normalized using a
probe for the ribosomal protein S26 (Vincent et al., 1993).

Western Blot Analysis

Cell extracts or conditioned media were fractionated on either 10 or 12%
polyacrylamide, 0.25% N,N’-methylene-bis-acrylamide/SDS slab gels,
transferred to Immobilon-P membranes (Millipore) and visualized using
the enhanced chemiluminescence kit (Amersham Lifescience) (Husten
and Eipper, 1991; Milgram et al., 1992). Densitometric analysis of the im-
munoblots was performed using NIH Image analysis software (National
Institute of Mental Health) (Milgram et al., 1993).

Cell Extracts and PAM Enzyme Assays

Cells were scraped into ice-cold 20 mM Na(N-tris[hydroxymethyljmethyl-
2-aminoethanesulfonic acid) (NaTES)/10 mM mannitol, pH 7.4, 1% Tri-
ton X-100 (TMT), containing protease inhibitors (Milgram et al., 1992).
After three cycles of freezing and thawing, the supernatant was retained
and the pellet was discarded. Protein concentrations were determined us-
ing the bicinchoninic acid protein reagent kit (Pierce Chemical Co.). PHM
and PAL assays were performed on cell extracts as previously described
using acetyl-Tyr-Val-Gly and acetyl-Tyr-Val-a-hydroxyglycine as sub-
strates, respectively (Kolhekar et al., 1997).

Biosynthetic Labeling and Immunoprecipitation

Cells were plated on 12-mm culture dishes coated with 0.1 mg/ml poly-
L-lysine (Sigma) and grown for 48 to 72 h before biosynthetic labeling.
Cells were incubated for 10 min in complete serum-free medium (CSFM)
lacking methionine (selectamine kit; GIBCO BRL), then labeled for 30
min with 250 wCi [*S]methionine (~1 uM [Met]; Amersham) at 37°C in
air atmosphere. Cells were chased in CSFM containing 140 uM methio-
nine, 2 mg/ml BSA, 0.1 mg/ml lima bean trypsin inhibitor, pH 7.4, for dif-
ferent time periods. After the chase periods, the spent medium was col-
lected, centrifuged at 2,000 g to pellet nonadherent cells, and the
supernatant was transferred to a new tube containing a cocktail of pro-
tease inhibitors (Milgram et al., 1992). All samples were kept at —80°C
until further analysis. Cell extracts (5 X 10° dpm, trichloroacetic acid pre-
cipitable) and equivalent amounts of spent media were subjected to im-
munoprecipitation using a rabbit polyclonal antiserum to PAM. Immune
complexes were collected with protein A beads and analyzed by SDS-
PAGE followed by fluorography (Zhou et al., 1993).

Secretion of ACTH Immunoreactivity

Duplicate wells of cells (nontransfected and stably transfected PAM-1,
iPAM—, iPAM+, pUHD—, and pUHD+) were plated on poly-L-lysine—
treated wells for measurements of ACTH secretion. Wells were initially
rinsed for three 30-min periods in basal release medium (DME/F12/Air
with 2 mg/ml fatty acid—free BSA, 0.1 mg/ml lima bean trypsin inhibitor, 1
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wg/ml insulin, 0.1 wg/ml transferrin) (Mains and Eipper, 1981; Milgram
et al., 1993). The experiment was begun with two successive 30-min basal
collections taken using control medium and concluded with one 30-min
period of stimulated secretion (1 mM BaCl, in basal release medium). The
collected medium was centrifuged to remove nonadherent cells and pro-
tease inhibitors were added and the medium frozen until assay. Cells were
extracted using 5 N acetic acid with protease inhibitors, lyophilized, and
then dissolved in radioimmunoassay buffer with protease inhibitors.
ACTH radioimmunoassays were performed using Ab Kathy (1:15,000)
and [“IJACTH(1-39) (Amersham); this antiserum only recognizes
POMC products in which the COOH-terminal end of ACTH(1-39) is ex-
posed (Schnabel et al., 1989).

Immunofluorescence Staining for Filamentous Actin

To detect filamentous actin, cells were fixed in prewarmed 4% parafor-
maldehyde for 20 min, washed once with PBS (50 mM sodium phosphate,
150 mM sodium chloride, pH 7.4), permeabilized for 20 min (0.075% Tri-
ton X-100, 2 mg/ml BSA in PBS), washed once, and incubated in block for
30 min (2 mg/ml BSA in PBS). Cells were incubated with a PAM mAb
(6E6) for 120 min, then washed three times with PBS. PAM staining was
detected with a donkey anti-mouse Cy3 and filamentous actin visualized
with a 1.2 pg/ml FITC-phalloidin. The cells were exposed to this second
set of antibodies for 60 min (in the dark), washed three times in PBS, and
then mounted with prewarmed DABCO/permount and coverslipped.

Immunofluorescence Staining for PAM, ACTH,
TGN38, and PC1

Cells were plated on poly-L-lysine-coated glass chamber slides (Lab-Tek)
48-96 h before fixation. Cells were double immunostained for PAM and
ACTH, PAM and TGN38, or for PAM and PC1 as described (Milgram
et al., 1997). Cells were viewed under epifluorescence optics with an up-
right microscope (Axioskop; Zeiss, Inc.) using FITC (BP 485/20, barrier
filter 520-560) and rhodamine (BP 546/12, LP 590) filters with an HBO
100-W mercury lamp and a X40 or X63 objective lens. Images were pho-
tographed using a Micromax digital camera with Winview 3.2 software
(Princeton Instruments). One set of images was visualized on a confocal
laser microscope (Noran OZ; Noran) at an excitation wavelength of 488
nm (FITC-nar, barrier filter 525 = 50) and 568 nm (Rho-nar, barrier filter
605 =+ 55) from a Krypton-Argon multi-line laser. Z-axis images were pro-
cessed using Intervision 1.6 software (Noran). A second set of images was
visualized on a confocal laser microscope (MRC 600; Bio-Rad Laborato-
ries) at an excitation wavelength of 488 nm (FITC-nar, barrier filter 510-
515) and 568 nm (Rho, barrier filter 585) from a Krypton-Argon laser.
Z-axis images were processed using Comos 6.05 software. Photographs of
nontransfected and transfected cells were taken under identical conditions
and printed in an identical fashion. A set of control experiments (omission
of primary antibody or omission of secondary antibody) was performed
showing that there was no bleed through from one fluorophore into the
other filter when appropriate dilutions of antisera were used for double
immunostaining.

Results

Dose—Response Curve for Dox Induction of PAM as
Determined by Northern Blot Analysis

Induction of PAM-1 mRNA was examined by Northern
blot (Fig. 2). iPAM cells were treated with increasing con-
centrations of Dox for 48 h. In the exposure shown, there
is no detectable PAM mRNA in the absence of Dox and
the intensity of the signal increases with higher doses of
Dox, reaching maximal expression levels at 1-4 wg/ml
Dox. With longer exposure times, the level of PAM
mRNA in the noninduced iPAM cells was found to be
similar to the level of endogenous PAM mRNA in the
nontransfected cells (data not shown). There was a 60-fold
induction of PAM mRNA expression in the maximally in-
duced iPAM cells compared with the noninduced cells. No
decrease in PAM-1 mRNA level was observed with the
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Figure 2. Induction of PAM mRNA in iPAM cells. Northern
blot of total RNA (10 pg) isolated from iPAM cells after treat-
ment with the indicated doses of Dox (g/ml) for 48 h. The mem-
brane was hybridized with cDNA probes for PHM (top) and S26
ribosomal protein (bottom). Similar results were obtained in two
other analyses of this type.

highest dose of Dox (8 wg/ml). The level of PAM-1
mRNA in the maximally induced cells was similar to the
level in stably transfected PAM-1 cells (data not shown).

Dose—Response Curve for Induction of PAM Protein in
iPAM Cells: PHM

Since one of our goals was to examine cells expressing dif-
ferent levels of PAM-1, iPAM cells were treated for 48 h
with increasing concentrations of Dox and compared with
control cells using enzyme assays (Fig. 3 A) and Western
blots (Fig. 3, B and C). Controls included nontransfected
AtT-20 cells as well as AtT-20 cells expressing only
the reverse tetracycline repressor (pUHD—, untreated;
pUHD+, treated with 4 pg/ml Dox for 48 h) or expressing
PAM-1 or PHM4. As with PAM mRNA (Fig. 2), Dox ex-
erted a dose-dependent effect on PHM activity (Fig. 3 A).
Peak levels of PHM specific activity were observed after
treatment with 1-4 pg/ml of Dox. PHM specific activity in
the noninduced iPAM cells was similar to nontransfected
cells, untreated, and Dox-treated pUHD cells (Fig. 3 A).
The PHM specific activity of maximally induced iPAM
cells was 20-30-fold higher than noninduced iPAM cells
and comparable to that of the stably transfected PAM-1
and PHM4 cells (Fig. 3 A). The sensitivity of iPAM cells to
induction with low amounts of Dox can be seen by the
two- to fivefold increase in PHM specific activity when
noninduced cells are compared with cells treated with
0.0625 pg/ml Dox.

Increasing concentrations of Dox produced a dose-
dependent increase in PAM protein expression in the
iPAM cells (Fig. 3 B). Intact PAM-1 (120 kD) and soluble
PHM (46 kD) were apparent in the Dox-treated iPAM
cells as in the stably transfected PAM-1 cells (Fig. 3 B).
Since 46-kD PHM can be stored or secreted, spent media
were also examined (Fig. 3 C). Cells were incubated in
CSFM for 6 h; equal amounts of cell protein (Fig. 3 B) and
a 10-fold higher volume of spent medium (representing se-
cretion) (Fig. 3 C) were visualized with an antiserum to
PHM. Due to the limited sensitivity of our antisera, en-
dogenous PAM expression in iPAM cell extracts before
induction (0 Dox) or in nontransfected cells, pUHD—, and
pUHD+ cells is not detectable (Fig. 3 B). The addition of
Dox (4 pg/ml for 48 h) to the culture medium of nontrans-
fected and PAM-1 cells had no effect on PAM protein ex-
pression (data not shown).
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Figure 3. Induction of PAM protein in iPAM cells: PHM analy-
sis. A dose-response curve was generated by incubating the
iPAM cells with the indicated doses of Dox (micrograms per mil-
liliter) for 48 h. NT and stably transfected pUHD—, pUHD+
(treated with 4 pg/ml Dox for 48 h), PAM-1, and PHM4 cell lines
were also analyzed. (A) PHM specific activity was measured in
cell extracts (mean = SEM; n = 2-4). Western blots of 20 wg of
cell protein (B) and spent medium corresponding to 200 g cell
protein (6 h basal collection, C) were visualized with antiserum to
PHM (Ab 1764). (D) Blots from cell extracts were digitized; ex-
pression in PAM-1 cells was set to 100%, and the relative contri-
butions of intact 120-kD PAM-1 (open bars) and 46-kD PHM
(filled bars) are plotted as a stacked bar graph. (E) For each cell
line or dose of Dox-treated cells, the amount of 46-kD PHM in
cell extracts (B) or spent medium (C) (taking into account the 10-
fold excess volume analyzed) was expressed as a percentage of
total PAM; total PAM = 120-kD PAM-1 (cells) + 46-kD PHM
(cells and media). Similar results were obtained in two additional
experiments.

Maximum PAM protein levels in the iPAM cell line
(1-4 pg/ml Dox) were similar to levels in the stably trans-
fected PAM-1 cell line and at least 35-40-fold higher than
in the noninduced iPAM cells. Western blots of cell ex-
tracts and media were digitized (Fig. 3, D and E). In the
iPAM cells, the proportion of 46-kD PHM to the total
amount of PAM protein in the cell extract decreased 37%
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with increasing PAM protein expression (Fig. 3 D). The
decreased fraction of 46-kD PHM with increased total cel-
lular PAM expression could reflect decreased cleavage of
PAM-1 or increased secretion of 46-kD PHM.

Secretion of PHM from iPAM cells was detectable with
Dox doses of 0.0625 pg/ml or higher (Fig. 3 E). At the low-
est doses of Dox, more 46-kD PHM was in the cells (filled
bars) than in the medium (open bars) after the 6-h basal
collection. AtT-20 cells producing soluble PHM (PHM4)
store this protein much more efficiently than AtT-20 cells
that produce soluble PHM from membrane PAM. As ex-
pression of PAM-1 increases, the recovery of 46-kD PHM
decreased (Fig. 3 D) and the fraction of the 46-kD PHM
recovered in the medium increased (Fig. 3 E). As a result,
the amount of secreted 46-kD PHM was similar at the
higher levels of induction (>2 pg/ml Dox). The decrease
in steady-state levels of 46-kD PHM with increasing levels
of PAM-1 expression demonstrates that there are satura-
ble steps in PAM-1 metabolism. In addition, the ability of
the cells to store the 46-kD PHM that is produced declines
as expression of PAM-1 increases.

Dose—Response Curve for Induction of PAM Protein in
iPAM Cells: PAL

As with the PAM mRNA, PHM protein expression, and
PHM enzyme activity, a dose-dependent effect of Dox on
PAL enzyme activity was observed (Fig. 4 A). Increased
expression of PAL activity was apparent with the lowest
doses of Dox tested. Peak levels of PAL specific activity
were observed after treatment with 2—4 pg/ml Dox; treat-
ment with 8 wg/ml Dox resulted in decreased PAL activity.
PAL specific activity in the noninduced iPAM cells was
similar to nontransfected, untreated, and Dox-treated
pUHD cells (Fig. 4 A). The PAL specific activity of maxi-
mally induced iPAM cells was comparable to that of the
stably transfected PAM-1 cells and two- to threefold
higher than PHM specific activity, reflecting the higher en-
zymatic turnover rate of PAL (Eipper et al., 1993).

Processing of PAM-1 in the iPAM cells yields a 70-kD
PALm product, as in stably transfected PAM-1 cells (Fig.
4 B). A dose-dependent increase in PAM protein expres-
sion was seen in the iPAM cells using the PAL antiserum,
with levels approaching those in PAM-1 cells; very little
soluble PAL is produced from PAM-1 in AtT-20 cells, so
Western blots of PAL in spent media are not shown. West-
ern blots were digitized so levels of expression could be
compared (Fig. 4 C). The fraction of the total PAM pro-
tein in the cell extracts accounted for by 70-kD PALm in-
creased twofold with increasing PAM expression levels
(Fig. 4 D). PAM-1 metabolism is clearly altered as a func-
tion of expression level.

Biosynthesis of PAM-1

The alterations in steady-state levels of PHM and PAL
with increasing levels of PAM expression could reflect dif-
ferences in the rate of biosynthesis of PAM-1, cleavage of
PAM-1, degradation, and/or secretion of PHM and PAL.
To distinguish these possibilities, identical wells of iPAM
cells treated with a low dose of Dox (0.25 pg/ml) or a high
dose of Dox (2.0 pg/ml) were incubated in medium con-
taining [*>S]Met for 30 min and either harvested immedi-
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Figure 4. Induction of PAM protein in iPAM cells: PAL analysis.
(A) PAL specific activity was measured in cell extracts prepared
as described in Fig. 3 (mean = SEM; n = 2-4). (B) Western blots
were carried out on cell extracts using antisera to PAL. (C) Blots
were digitized; expression in PAM-1 cells was set to 100% and
the relative amounts of PAM-1 (open bars) and 70-kD PALm
(filled bars) are plotted as a stacked bar graph. (D) For each cell
line or dose of Dox-treated cells, the amount of 70-kD PAL in
the cell extract is expressed as a percentage of the total PAM pro-
tein in the extract; total PAM = 120-kD PAM-1 (cells) + 70-kD
PAL (cells). Similar results were obtained in two additional ex-
periments.

ately (pulse) or chased in medium containing unlabeled
Met (chase). PAM proteins immunoprecipitated from cell
extracts and media were fractionated by SDS-PAGE (Fig.
5). Consistent with the steady-state levels of PHM and
PAL protein and enzyme activity (Figs. 3 and 4), the rate
of PAM-1 biosynthesis was 2.8 * 0.4-fold higher (P <
0.005; n = 4) in cells induced with the high dose of Dox
than in cells induced with the low dose of Dox.

Consistent with Western blot analysis (Fig. 3), relative
secretion of 46-kD PHM was enhanced when levels of
PAM-1 expression were higher. With the low dose of Dox,
65% of the 46-kD PHM present after a 4-h chase was re-
covered in the medium. In contrast, with the high dose of
Dox, 81% of the 46-kD PHM was recovered in the me-
dium. No detectable degradation of PAM protein oc-
curred within 4 h at either level of PAM expression. The
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Figure 5. Biosynthesis of PAM after Dox induction. Identical
wells of iPAM cells were treated with 0.25 or 2.0 wg/ml Dox for
48 h and then incubated with [*S]Met for 30 min and either har-
vested immediately (pulse, P) or chased for 0.5, 2, or 4 h (chase);
for chase samples, cell extracts (C) and media (M) were ana-
lyzed. PAM proteins were immunoprecipitated using antisera to
PHM or PAL (not shown); only data for PHM immunoprecipi-
tates from the pulse and 4-h chase samples are shown. (Inset)
Longer exposures of films of chase samples are shown.

higher levels of 70-kD PALm observed in PAM-1 cells in-
duced with high levels of Dox may reflect a small change
in the turnover rate of this membrane protein.

Localization of PAM-1 and ACTH

To evaluate the localization of PAM at different levels of
expression, a dose-response curve for Dox induction of
PAM-1 in iPAM cells was examined by immunofluores-
cence (Fig. 6 A). Cells were fixed and visualized with a
mAb directed against the PAM-1 COOH terminus. Less
than 1% of the cells stained for PAM-1 when the un-
treated iPAM cells were examined (Fig. 6 A, 0 Dox); as
for Western blots, our antisera cannot detect the endoge-
nous levels of PAM in AtT-20 cells. In iPAM cells treated
for 48 h at a low Dox dose (0.25 pg/ml), PAM-1 signal was
seen in ~50% of the cells (Fig. 6 A, 0.25 Dox). In maxi-
mally induced iPAM cells (4 pg/ml Dox), PAM staining
was much more intense and >95% of the cells displayed
fluorescence (Fig. 6 A, 4 Dox).

Maximally induced iPAM cells were coimmunostained
with antisera for a TGN marker protein (TGN38) and
PAM-1 (Fig. 6 B). In the panels shown, two cells show in-
tense PAM-1 staining (green) in the perinuclear region
with lighter staining in vesicular structures at the tips of
processes (arrows). When the PAM-1 and TGN38 images
were superimposed, the TGN region was predominantly
yellow, indicating that much of the PAM-1 is localized to
the TGN region (Fig. 6 B); TGN staining was not apparent
at the tips of the processes (arrows). In a third cell that
stained only faintly for PAM-1, the TGN staining pattern
was similar to the staining pattern seen in cells expressing
more PAM-1 (Fig. 6 B).

Having established that the iPAM cells can be used ef-
fectively to control the expression of PAM in a given cell
population, the effects of increased PAM expression on
ACTH localization were evaluated by immunofluores-
cence (Figs. 6 C and 7). Fig. 7 shows epifluorescence images
of populations of nontransfected and PAM-1-expressing
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cells whereas Fig. 6 C shows confocal images of two cells
among a population of iPAM cells treated with Dox; as oc-
casionally happens, only one of the pair of cells is express-
ing high levels of PAM (green). In the population of non-
transfected (NT) cells (Fig. 7, left), vesicular, punctate
staining for ACTH is observed throughout the cytosol
with increased staining in the cellular processes and a
slight increase in ACTH staining in the TGN region. In the
single iPAM cell not expressing high levels of PAM (Fig. 6
C, left cell), the ACTH (red) staining pattern is similar to
that of the nontransfected cells. pUHD cells treated with
Dox also displayed ACTH staining patterns similar to
those seen for nontransfected cells (data not shown). In-
terestingly, in the confocal image of the iPAM cell ex-
pressing PAM-1 (Fig. 6 C, right), the ACTH distribution is
dramatically altered, with marked localization of ACTH
to the TGN region of the cell and less intense staining of
processes. Similar patterns of ACTH staining are observed
in the population of AtT-20 cells expressing PAM-1 (Fig.
7, middle). The PAM and ACTH staining patterns of the
Dox-treated iPAM cells (Fig. 6 C, right cell) are almost
identical to those of the stably transfected PAM-1 cells
(Fig. 7, PAM-1).

Confocal microscopy allowed more detailed comparison
of the localization of ACTH and PAM in the iPAM+
cells. PAM staining in this cell (Fig. 6 C) is predominantly
localized to the TGN region with some staining for PAM
at the tips of the cellular processes. When the ACTH and
PAM signals are superimposed, a large portion of the
TGN region is yellow, consistent with colocalization of
ACTH with PAM-1. Compared with the noninduced
iPAM cell (Fig. 6 C, left cell), the intensity of ACTH stain-
ing is decreased in the cell with increased PAM expression
(Fig. 6 C, right cell); a similar difference in staining inten-
sity is seen when comparing ACTH staining in nontrans-
fected and PAM-1 cells (Fig. 7). The different ACTH
localization observed in iPAM cells expressing PAM-1
cannot be caused simply by the introduction of proteins
into the secretory pathway using the rTet system, since
previous results using AtT-20 cells with Dox-inducible ex-
pression of regulated endocrine—specific protein of 18 kD
showed no effect on POMC biosynthesis or localization
(Schiller et al., 1997).

To determine which region of PAM was responsible for
altering ACTH localization, nontransfected and stably
transfected AtT-20 cell lines expressing either intact PAM-1
or PHM4 (Fig. 7) were compared. In cells expressing
PHM4 (lacking the PAL and transmembrane domains of
PAM-1), PHM staining differs from that of PAM-1 and
iPAM+ cells in that it is primarily seen in the cellular pro-
cesses with fainter staining in the TGN region (Fig. 7,
PHM4). Moreover, the ACTH staining pattern in the
PHM4 cells closely resembles that of the nontransfected
and noninduced iPAM cells (Figs. 7 and 6 C, left cell, re-
spectively); ACTH staining in the PHM4 cells is primarily
seen in the cellular processes with less staining of the TGN
region.

Overexpression of PAM-1 Eliminates the Stimulated
Secretion of ACTH

Observing that the ACTH immunostaining patterns were
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Figure 6. Localization of PAM and ACTH after Dox induction. Immunofluorescent staining for PAM in iPAM cells treated with the
indicated doses of Dox (micrograms per milliliter) using mAb 6E6 (A); cells were photographed under identical conditions and the cor-
responding phase images are shown. (B) Immunofluorescent staining of Dox-treated iPAM cells (4 pg/ml Dox for 48 h) with mAbD to
PAM (6E6; green) and polyclonal antibody to TGN38 (red); images were taken in black and white and colorized using Adobe Photo-
shop; areas of overlap appear yellow (bottom). Arrows mark tips of processes. Images in C were obtained with the Noran confocal laser
scanning microscope. Dox-treated cells were stained simultaneously for PAM (mAb 6E6; green) and ACTH (JH93; red); the combined
images showing areas of PAM and ACTH overlap are seen in yellow (C, bottom). The cell nucleus (n) and tips of cellular processes (ar-

row) are indicated. Bar, 10 pm.

markedly different in nontransfected cells and cells ex-
pressing PAM-1 (Figs. 6 C and 7), their basal and stimu-
lated secretions of ACTH were examined. Secretion of
ACTH was quantified using an immunoassay specific for
the COOH terminus of ACTH(1-39); secretion was exam-
ined during two sequential basal collections and cells were
then stimulated with 1 mM BaCl, (Fig. 8 A). BaCl, mimics
Ca’* and several secretagogues and supports a steady high
rate of secretion (Mains and Eipper, 1984). As expected,
in nontransfected AtT-20 cells, the addition of secreta-
gogue to the medium stimulated ACTH secretion three-
to fourfold above basal levels. A similar fold stimulation of
ACTH secretion was observed in control pUHD cells
whether or not they were treated with Dox (pUHD—,
pUHD+) and in noninduced iPAM cells; none of these
cells express exogenous PAM-1. In contrast, in iPAM cells
treated with Dox to induce PAM-1 expression, addition of
secretagogue to the medium did not stimulate ACTH se-
cretion above basal levels (Fig. 8 A). The effects seen with
the iPAM cells cannot be attributable to the Dox treat-
ment alone since the pUHD+ cells responded to secreta-
gogue as well as nontransfected AtT-20 cells or untreated
pUHD - cells. As for Dox-treated iPAM cells, secretion

Ciccotosto et al. Integral Membrane PAM Affects POMC and PC1 Trafficking

of ACTH from stably transfected PAM-1 cells was not
stimulated by secretagogue (Fig. 8 A). In contrast, AtT-20
cells expressing a soluble PAM protein (PHM4), exhibited
a threefold increase in ACTH secretion in response to
secretagogue. Treatment of the iPAM cells with a low, but
effective dose of Dox (0.0625 wg/ml) resulted in a partial
inhibition of the ability of secretagogue to stimulate
ACTH secretion (data not shown). Thus, overexpression
of PAM-1 is causally related to the inability of Dox-
treated iPAM cells and PAM-1 cells to respond to secreta-
gogue treatment.

In the course of analyzing ACTH secretion by the vari-
ous AtT-20 cell lines, the utility of having an inducible cell
line was clearly apparent (Fig. 8 B). The pUHD cell line
selected contained roughly half as much ACTH per milli-
gram of cell protein as the parental, nontransfected AtT-
20 cell line. The iPAM cell line subsequently selected con-
tained roughly half as much ACTH per milligram of cell
protein as the parental pUHD cell line. In no case did Dox
treatment affect the ACTH content of the cells. The
PAM-1 and PHM4 AtT-20 lines generated several years
ago contained approximately as much ACTH per milli-
gram of cell protein as the newly generated iPAM cell line.
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Figure 7. Localization of
PAM and ACTH in stable
cell lines. Immunofluorescent
staining of nontransfected,
stably transfected PAM-1
and PHM4 cells for PAM and
ACTH (Ab JH93) (6E6 and
18ES, respectively). PAM
staining was detected with
goat anti-mouse FITC and
ACTH staining was visual-
ized with goat anti-rabbit
Cy3. Phase-contrast images
are also shown. All cells were
photographed under identi-
cal conditions. The cell nu-
cleus (n) and tips of cellular
processes (arrows) are indi-
cated. Bar, 10 pm.

of control pUHD cells (whether or not they were treated
with Dox [pUHD—, pUHD+]), noninduced iPAM cells,
and PHM4 cells. As seen for the ACTH immunoreactivity
(Fig. 8 B), cells with increased exogenous PAM-1 expres-
sion (iIPAM+ and PAM-1 cells) failed to show a robust
stimulation of secretion of PHM activity after secreta-
gogue stimulation (only double the basal levels).

Figure 8. Expression of PAM-1 alters secretion
of ACTH in AtT-20 cells. NT and stably trans-
fected pUHD —, pUHD + (treated with 4 pg/ml
Dox for 48 h), iPAM—, iPAM+ (treated with 4
pg/ml Dox for 48 h), PAM-1, and PHM4 cell
lines were analyzed as described in Materials and
Methods. (A) Medium was collected after two
30-min periods of basal secretion followed by a
30-min period of stimulated secretion (1 mM
BaCl,) and the levels of ACTH were deter-
mined. (B) Cells were extracted for measure-
ment of total protein and immunoreactive
ACTH. Levels of ACTH from duplicate cultures
were measured in triplicate (A and B). (C) Me-
dium was collected as in A and assayed for PHM
activity. Bars are mean = SEM.

PHM4
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PC1 Metabolism Is Altered by Increased Expression
of PAM-1

To ask whether expression of membrane PAM might af-
fect other LDCV proteins in addition to ACTH, PC1 was
investigated. The major products of proPCl cleavage are
mature 82-kD PC1, produced rapidly in the endoplasmic
reticulum, and 66-kD PC1AC, produced only in LDCVs
(Fig. 9 A; Zhou and Mains, 1994). A dose-response curve
for Dox induction of PAM-1 expression was generated as
described in Figs. 2-4 and cell extracts were subjected to
Western blot analysis with antibodies to PC1 (Fig. 9 B). In
nontransfected, PHM4, and pUHD— or pUHD+ cells,
PC1AC was the major form of PC1 in cell extracts. In con-
trast, in PAM-1 cells, mature 82-kD PC1 predominated in
cell extracts. Increasing PAM-1 expression in iPAM cells
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Figure 9. Effect of PAM expression on PCl. (A) Structure of
preproPC1; preproPCl has a signal peptide (SP), proregion
(Pro), subtilisin-like catalytic domain (Subtilisin), P-domain (P),
and COOH-terminal domain (COOH). ProPCl1 (87 kD) is
cleaved to yield PC1 (82 kD) and PC1AC (66 kD). iPAM cells
were treated with the indicated doses of Dox for 48 h. Western
blots of 20 pg of cell extracts (B) and spent medium (not shown)
were visualized with antiserum to PC1 (Ab JH888). (C) Blots
were digitized. (D) Immunofluorescent staining of NT, iPAM —,
iPAM+ (treated with 4 pg/ml Dox for 48 h), PAM-1, and PHM4
cells was viewed using phase optics and stained with an antibody
for PC1 (Ab JH888). Bar, 10 pm.
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caused a dose-dependent decrease in the production of
PCI1AC from mature PC1; whereas 65% of the total PC1
was PC1AC in noninduced cells, only 30% was PC1AC in
the maximally induced iPAM cells (Fig. 9 C). PC1AC ac-
counted for even less of the total PC1 in stably transfected
PAM-1 cells.

PC1 localization was then examined in various PAM cell
lines by immunofluorescence (Fig. 9 D). PC1 staining in
nontransfected and in noninduced iPAM cells was vesicu-
lar and predominantly localized to the tips of the cellular
processes (Fig. 9 D, NT and iPAM~—). In iPAM cells
treated with Dox and expressing high levels of PAM, PC1
was not concentrated at the tips of the processes and there
was an overall decrease of PCI1 staining intensity. Lack of
staining at the tips of processes and decreased PC1 stain-
ing intensity were also observed in stably transfected
PAM-1 cells. In contrast to the iPAM+ and PAM-1 cells,
the PHM4 cells showed prominent PC1 staining at the tips
of the cellular processes; the PC1 staining appeared to be
colocalized with the PHM staining (Fig. 9 D, PHM4). Thus
the PC1 staining pattern of the PHM4 cells more closely
resembles that of the nontransfected and iPAM— cells
(Fig. 9 D) than the other cells tested.

Expression of PAM-1 Alters Organization of the
Actin Cytoskeleton

Cytoskeletal organization is a powerful factor in regulated
exocytosis (Muallem et al., 1995; Carbajal and Vitale,
1997). Since PAM-1 is known to interact with proteins that
can indirectly affect cytoskeletal organization (Alam et al.,
1997), the distribution of filamentous actin in noninduced
and induced iPAM cells was examined using the mush-
room toxin, phalloidin (Fig. 10). In noninduced iPAM cells
expressing only their endogenous PAM protein, PAM
staining was not visible (Fig. 10, iPAM—, red). Fila-
mentous actin was found in clusters broadly distributed
throughout the cell and was collected in several subplasma
membrane foci (Fig. 10, iPAM—, green); although the
edges of the noninduced cells were easily visible, filamen-
tous actin was not enriched in the subplasma membrane
region. As expected, after induction with Dox, PAM-1 was
largely localized to the TGN region of the cell (Fig. 10,
iPAM+, red). A dramatic change in the distribution of fil-
amentous actin accompanied expression of PAM-1 (Fig.
10, iPAM+, green); filamentous actin was concentrated at
the plasma membrane with numerous foci of more intense
staining. The broadly distributed diffuse patches of fila-
mentous actin were absent from the iPAM+ cells. Patches
of filamentous actin were also concentrated in the TGN
region of the iPAM+ cells.

Discussion

Characterization of an iPAM Cell Line

PAM is an essential bifunctional enzyme that catalyzes the
bioactivation of many peptides (Eipper et al., 1993). The
anterior pituitary and atrial myocytes are rich sources of
PAM expression (May et al., 1990; Eipper et al., 1993),
whereas AtT-20 cells contain lower albeit sufficient levels
of PAM to amidate the endogenous substrates. Various
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iPAM-

forms of PAM have been expressed successfully in AtT-20
cells, with stable expression of membrane PAM reaching
levels found in the anterior pituitary (May et al., 1990).
The use of stable cell lines is an important tool in address-
ing many questions relating to peptide processing and
sorting, but their limitations include clonal variability and
inability to regulate the level of protein expression. This
problem is illustrated by the variable ACTH content of
the nontransfected, PAM-1, and PHM4 cell lines (Fig. 8
B). To overcome these limitations, an inducible expression
system for integral membrane PAM was developed using
the tetracycline repressor system (Gossen et al., 1993,
1994; Schiller et al., 1997). By regulating the level of PAM
expression in the iPAM cell line, we were able to show
that the metabolism of membrane PAM is altered as ex-
pression levels increase: cleaved PHM products are less
prevalent and the soluble products made are stored less
well. Individual steps in PAM trafficking, such as internal-
ization from the cell surface, remain to be evaluated.

Maximal expression of PAM in the iPAM cell line was
comparable to levels in the anterior pituitary (May et al.,
1990) and in cell lines stably transfected with various
forms of PAM (Figs. 3 and 4). Before induction, the iPAM
cells resembled nontransfected cells in their levels of PAM
mRNA, enzyme activity, protein expression, and immu-
nofluorescence. The level of PAM induction observed,
when comparing nontransfected cells to maximally expres-
sing iPAM cells, was 20-60-fold depending on the analyti-
cal method used. A 35-fold induction of chloramphenicol
acetyltransferase was observed using a metallothionein-I
promoter in AtT-20 cells, but the requisite levels of diva-
lent metals had toxic effects on the cells (Dickerson et al.,
1989). Taken together, these findings highlight the value
of this Tet-On cell line in studying the steps in PAM me-
tabolism by regulating its level of expression.

Increasing Expression of PAM-1 Causes Altered
Metabolism of PAM-1

rPAM-1 contains several paired basic potential proteolytic
cleavage sites and cleavage at the Lys-Lys*’ site, located
within the noncatalytic exon A region, results in separa-
tion of the two catalytic domains (Eipper et al., 1993); the
46-kD PHM domain is soluble whereas the 70-kD PAL
domain remains membrane bound (Fig. 1; Stoffers et al.,
1989). At low levels of PAM-1 expression, a higher pro-
portion of the total PAM is 46-kD PHM and this soluble
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iPAM+

Figure 10. Localization of
PAM and filamentous actin
after Dox induction. Staining
of noninduced iPAM cells
(iPAM—) and Dox-treated
iPAM cells (PAM+; 4 pg/ml
Dox, 48 h) using a mAb to
PAM (6E6; red) and FITC-
phalloidin (green). Images
were obtained with the Bio-
Rad confocal laser scanning
microscope. Bar, 25 pm.

protein is largely stored in the cells. As levels of PAM-1
expression increase, decreasing amounts of the total PAM
are recovered as soluble PHM, and more of the soluble
PHM recovered is in the medium. The diminished cleav-
age of PAM-1 may reflect the fact that less 66-kD PC1AC
is observed in cell extracts after induction of PAM-1 ex-
pression (Fig. 9). PC1 can cleave PAM-1 to soluble PHM
and PALm (Marx and Mains, 1997) and PCIAC is more
active, under the conditions in maturing LDCVs, than is
82-kD PC1 (Zhou and Lindberg, 1994). It is striking that
soluble PHM produced from PHM4, a soluble precursor,
is efficiently stored whereas soluble PHM produced from
membrane PAM-1 is not efficiently stored (Fig. 3 C) (Mil-
gram et al., 1994). Upon induction of PAM-1 expression in
the iPAM cells, this phenomenon is replicated.

Increased Expression of Integral Membrane PAM
Alters the Regulated Secretory Pathway

The signals mediating the trafficking of soluble, lumenal
proteins and membrane proteins from TGN into imma-
ture secretory granules (ISGs) and the maturation of
secretory granules are not yet understood. Our observa-
tion that induction of PAM-1 expression causes dramatic
changes in the actin cytoskeleton, eliminates regulated
exocytosis, causes the relocalization of soluble lumenal
proteins, and limits the cleavage of lumenal proteins, pro-
vides new insight into this process. PAM-1 has lumenal
and cytosolic components, and both may contribute to the
observed effects. We suggest two ways in which membrane
PAM could affect the regulated secretory pathway: first,
the COOH-terminal domain of PAM may interact with
cytosolic factors involved in regulating microtubules and
the actin cytoskeleton; second, the lumenal domains of
PAM may aggregate with other lumenal proteins (Co-
lomer et al., 1996) (Fig. 11).

A working model for the effect of membrane PAM on
the regulated secretory pathway in AtT-20 cells is shown
in Fig. 11. The biogenesis of ISGs requires segregation of
stored products from proteins leaving via constitutive-like
secretion and may involve pH- and Ca?"-dependent selec-
tive aggregation (Kuliawat and Arvan, 1992; Kuliawat et
al., 1997; Thiele et al., 1997; Kromer et al., 1998) as well as
sorting receptors (Cool et al., 1997; Normant and Loh,
1998). Soluble proteins (ACTH, PC1, and soluble PHM)
will aggregate as a function of the pH and [Ca®"] in the
ISGs (Chanat et al., 1991; Colomer et al., 1996; Thiele et al.,
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Figure 11. Model for the effects of increased PAM expression in
AtT-20 cells. In noninduced iPAM cells (iPAM —) neuroendo-
crine-specific cleavages begin to occur in ISGs. Products are
stored in mature granules (MSGs). Addition of secretagogue
stimulates Ca?" entry (mimicked here by addition of Ba?*) and
secretion from mature, but not from immature, secretory gran-
ules. Budding from ISGs allows nonaggregated content proteins
and membrane proteins to leave the ISG and undergo secretion
via constitutive-like vesicles (CLV) or return to the TGN. Fila-
mentous actin is scattered throughout the cell. Upon expression
of PAM-1 (iPAM+ or PAM-1), the actin cytoskeleton is reorga-
nized and concentrated more at the plasma membrane (PM).
Mature granules are no longer collected at the tips of cell pro-
cesses, regulated exocytosis no longer occurs, and cleavage of
secretory granule content proteins is slowed. The interaction of
the cytosolic domain of PAM-1 with an endogenous Kalirin-like
protein and thus with Racl is postulated to cause the observed al-
terations in the actin cytoskeleton. Inhibition of regulated exocy-
tosis and secretory granule maturation and localization may in-
volve contributions from the lumenal domains of PAM as well as
the cytosolic domain.

1997). The extent of proteolytic processing may affect the
ability of the proteins to aggregate (Quinn et al., 1991). In
cells expressing only endogenous PAM (nontransfected,
pUHD, and iPAM—) or PHM4, the prominent granular
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staining for ACTH and PC1 in the cellular processes (Figs.
6,7, and 9) and the stimulation of ACTH secretion (Fig. 8
A) indicate that these soluble proteins are sorted into the
regulated secretory pathway and stored in mature secre-
tory granules (Mains and May, 1988; Schnabel et al., 1989;
Milgram et al., 1994).

ISGs are situated near the TGN and clathrin-coated re-
gions are commonly seen on them, while mature secretory
granules lack clathrin-coated regions and are localized to
the periphery of the cell (Tooze and Tooze, 1986; Tooze
et al., 1991; Dittie et al., 1996; Klumperman et al., 1998).
During the process of maturation, secretory granules be-
come responsive to secretagogue addition; this process
may involve removal of some proteins and addition of oth-
ers. Retrieval of furin from ISGs involves AP-1 adaptors
and clathrin (Dittie et al., 1997). Similarly, PAM-1 may be
retrieved from ISGs through interactions with coat pro-
teins. Since very little PAM-1 appears on the cell surface,
whereas a significant amount of soluble PHM undergoes
constitutive-like secretion, the soluble and membrane pro-
teins leaving the ISGs must enter a compartment that al-
lows them to part company (Fig. 11).

One of the most dramatic effects of PAM-1 expression
is alteration of the actin cytoskeleton. The cytosolic do-
main of PAM is known to interact with Kalirin, a GDP/
GTP exchange factor for Racl (Alam et al., 1997). When
expressed in fibroblasts, Kalirin disrupts actin stress fibers
and dramatically alters cell morphology (Mains et al.,
1998). Although expression of Kalirin is restricted to the
nervous system in the adult rat, we postulate the existence
of a Kalirin-like protein in AtT-20 cells. PAM-1, through
its interaction with this Kalirin-like protein, could activate
Racl, a known effector of the actin cytoskeleton (Lamaze
et al., 1997; Bellanger et al., 1998). Changes in filamentous
actin can enhance or inhibit exocytosis (Muallem et al.,
1995; Carbajal and Vitale, 1997; Baldini et al., 1998). In
addition, the cytosolic domain of PAM interacts with
P-CIP2, a serine/threonine protein kinase expressed in
AtT-20 cells, that phosphorylates stathmin, a cytosolic
protein known to regulate microtubule stability (Curmi et
al., 1997).

Another dramatic effect of expressing PAM-1 is the
complete elimination of the ability of AtT-20 cells to se-
crete in response to addition of secretagogue; this effect
was observed in the iPAM cells and in the stably trans-
fected PAM-1 cells (Fig. 8, A and C). Expression of solu-
ble PHM4 did not impair the ability of AtT-20 cells to re-
spond to secretagogue. The altered polymerization of
actin may contribute to this effect in several different
ways. First, the more extensive network of polymerized
actin in the subplasma membrane region may serve as a
physical barrier to exocytosis. Second, the altered cyto-
skeletal organization observed in cells expressing mem-
brane PAM may be responsible for the failure of secretory
granules to accumulate in cell processes, in a position from
which exocytosis is possible. While it is clear that ISGs
cannot respond to secretagogue as well as mature secre-
tory granules, the mechanisms underlying acquisition of
secretagogue responsiveness are not clear. Overexpression
of PAM-1 may also impair this process.

Induction of PAM-1 expression in iPAM cells and over-
expression of PAM-1 in stably transfected cells both result
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in the impaired endoproteolytic cleavage of POMC, PCI1,
and PAM itself, yielding a lumenal compartment full of
partially cleaved products (POMC data not shown here;
Mains et al., 1991). Maturation of the lumenal contents of
the ISG is impaired. Expression of soluble PHM4 does not
impair cleavage of lumenal content proteins or storage of
ACTH and PC1 in vesicles that accumulate at the tips of
cell processes. This effect of PAM-1 could involve both lu-
menal and cytosolic components. In particular, the ability
of the lumenal domains of PAM to aggregate with other
lumenal proteins could be important. Although the effects
of overexpressing PAM-1 are widespread and diverse,
they appear to be focused on the regulated secretory
pathway. Localization of endogenous membrane proteins
identifying the TGN (TGN38), lysosomes (LAMP1), or
endosomes (mannose-6-phosphate receptor) is not dra-
matically altered in iPAM+ or PAM-1 cells (data not
shown).

The dramatic effects of inducing PAM-1 expression in a
single cell line demonstrate how well the endoproteolytic
events in the lumen of the secretory granules are inte-
grated with the maturation of ISGs and regulated exocyto-
sis. The importance of the cytoskeleton to each of these
processes is also apparent. The inducible iPAM cell line
should allow us to identify the signaling pathways linking
PAM-1 to the cytoskeleton, the manner in which expres-
sion of PAM-1 blocks regulated exocytosis, and the steps
in the trafficking of PAM that are saturable.
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