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Abstract
The aim of this study was to better understand the role of a slot machine’s house advantage
(a.k.a. par) in the individual player’s gambling experience. On this issue, the results chal-
lenged the inveterate wisdom of the industry. A battery of simulations comparing outcomes
produced on slot machines with different pars failed to produce significant differences in
play time, i.e., spins per losing player. These simulations were the first to accommodate
variable wagering behavior, as identified by player tracking data donated by a Nevada
casino operator. The results inform operators and game makers alike as to the ability of
gamblers to detect differences in the house advantage, based solely on their results from
play. This information is critical to the formulation of revenue optimization strategies, price
positioning strategies, and marketing communications. Additionally, critical insight is pro-
vided on the slot machine experience, within a profit center vital to the success of many
of the world’s gaming properties. The absence of significant differences in play time for
individual gamblers suggests potential for gains in aggregated slot revenue, without fear of
“price” detection by individual gamblers. The findings add to a growing stream of research
on the impacts of pay table metrics.
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Introduction
Slot revenues are critical to the success of many of the world’s casinos. In the ex-

treme, with its approximately 1,300 venues, the Australian club sector is almost completely
reliant on casino revenue from electronic gaming devices, as live table games are prohib-
ited. Although the casinos in Macao and Singapore are notable exceptions to a hyper-
dependence on slots, even Nevada with its table-heavy Las Vegas Strip garnered 66% of its
2019 casino revenue from slots (Nevada Gaming Control Board, 2019). Further, in Nevada,
the departmental operating profit margin in slots is often three to four times that of table
games (Lucas & Kilby, 2012). Within the broader category of slots, it is reel games that
produce the greatest revenues (i.e., as compared to video poker, video keno, electronic table
games, etc.). Their broad appeal is likely due in part to ease of play and the lack of a skill
requirement (Bishop, 2021).

This reliance on slot revenue throws all of the associated positioning and revenue
optimization strategies into sharp relief. At the center of these strategy discussions is the
debate related to the ability of players to detect the concealed house advantage on reel slots.
If detected, this obfuscated “price” could result in the loss of play, in step with the Law of
Demand. Others have claimed that higher pars will also damage the customer experience
by noticeably reducing the play time (Hwang, 2019; Legato, 2019; Wyman, 2020). But a
growing body of research suggests that players cannot detect the pars of reel slots, and that
higher par games generate significantly greater revenues (Lucas & Spilde, 2019a, 2019b,
2020, 2021).

The outcomes of this study afford casino operators valuable insight on the ability of
reel slot players to detect differences in pars. Such information is critical to the assessment
of key positioning and revenue optimization strategies related to pars. It also informs on
important issues surrounding the adoption and management of server-based gaming sys-
tems, where wholesale adjustments to pars can be quickly executed (Pollack, 2007). For
game makers, the findings provide new information on the customer experience, which
may lead to improvements in future game designs, or the validation of existing configura-
tions. Academically, our results connect to the literature on cognitive bias and the illusory
truth effect, as well as to the Law of Small Numbers and the Law of Demand.

Literature Review
Industry Positions

There are many heuristics in casino operations management; some are useful, but
others are problematic. For example, one popular heuristic holds that a game with a 6%
house edge will generally provide twice the number of spins (i.e., play time) as a game with
a 12% house advantage, ceteris paribus (Legato, 2019). That is, the relationship between
par and play time is believed to be linear, inverse and proportional, even in the short term.
Others have expounded on the considerable limitations of this view (Dunn, 2004; Kilby &
Fox, 1997; Lucas & Singh, 2021), yet it persists. Similarly, Hwang (2019) cites inevitable
differences in the wagering volume (i.e., coin-in) as a reliable means for players to detect
differences in pars. Hwang and others have claimed that increased pars present a critical
threat to slot revenues in that players will eventually notice the “price” increases (Frank,
2017), especially those who are frequent gamblers (Meczka, 2017). At the center of these
popular beliefs lies the assumption that individual players will be able to detect increased
pars, via decreased play time (Hwang, 2019; Legato, 2019; Meczka, 2017; Wyman, 2020).
Alternatively stated, the results from play will provide a reliable basis for detection of par.

Law of Demand
In short, the Law of Demand holds that increases in price will lead to decreases in

the quantity demanded. It is not specific or helpful, i.e., beyond its basic premise. For
example, it does not endeavor to explain the extent of the decrease in quantity demanded.
It would be reasonable to assume that at least some would be willing to absorb a 10%
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decline in quantity demanded, following a 25% increase in price. This would result in a
12.5% increase in sales, ceteris paribus.

The Law of Demand also does not address the relationship between price and quan-
tity demanded when price must be inferred, rather than expressly marked. This introduces
the unique condition surrounding the reel slot player. If we assume that these players can
detect changes in unmarked price, they may very well be subject to the Law of Demand.
But what if they cannot? Hwang (2019) freely assumes the former when invoking the Law
of Demand in his argument for “price” detection. As variance has been shown to have a
profound effect on play time for reel slot players (Lucas & Singh, 2008; Lucas et al., 2007),
it may become increasingly difficult to detect a difference in the pars of games when the
variance in the outcome distribution is increased. One way for slot players to increase this
variance is to deviate from the practice of a constant wager on each spin.

Cognitive Bias
The literature establishes the practice of gamblers varying their wagers by way of

research on the presence of cognitive bias (Croson & Sundali, 2005; Sundali & Croson,
2006). These researchers observed wagering behavior consistent with the following forms
of bias: gambler’s fallacy, hot hand, hot outcome and stock-of-luck. All of these behaviors
were observed from surveillance video recorded in a live casino environment, involving
own-money wagering. This footage revealed a clear prevalence toward one or more forms
of bias in wagering behavior.

The practice of varying the wager in an attempt to gain an advantage can be linked
to each of the previously listed forms of bias (Sundali & Croson, 2006). For example,
consider the gambler who observes the roulette ball settling in a black pocket on five con-
secutive spins. If this gambler succumbs to the gambler’s fallacy she will assume that the
probability of the ball landing in a red pocket is increased on the sixth/next spin. This
incorrect assumption provides a compelling incentive to increase her wager on red.

In the field, other researchers have corroborated Sundali and Croson (2006) by ob-
serving the presence of wagering bias in over half of a 47-subject sample of blackjack
players (Keren & Wagenaar, 1985). These players were found to vary their wagers based
on the outcome of previous hands. Another lab study found subjects to vary their wa-
gers based on the prior outcomes of a simulated blackjack game (Chau & Phillips, 1995).
Specifically, the subjects wagered more after a string of winning wagers than after a spate
of losing bets; thus, deviating from the pattern of a constant wager. Croson and Sundali
(2005) observed a similar behavior in the field. They found that roulette players who won
on a previous spin made more of the same type of bets on the ensuing spin, as compared
to those who lost on the previous spin. To the contrary, Leopard (1978) found subjects in
her lab study took more risk after losing than winning, over a series of gambling outcomes.
She concluded that subjects who lost were taking more risk in an effort to recover their
losses.

The previously reviewed research in the area of cognitive bias establishes the preva-
lence of wagering bias in both the lab and the field, and that it is directly associated with
gamblers varying their bets within a single session of play. One aim of this paper is to see
how this type of behavior (i.e., varying wagers) impacts the ability of gamblers to detect
differences in pars, based solely on their results.

Law of Small Numbers
Tversky and Kahneman’s (1971) Law of Small Numbers serves to connect the mech-

anisms of cognitive bias to the underlying distributions of the pay tables that are common
to the high-variance, modern slot machine. First, Singh et al. (2013) describe the un-
usual nature of these pay table outcome distributions, noting the presence and impact of
the high-variance structures. Such designs are ideal for producing small samples that are
not representative of population parameters such as par (i.e., the mean). The Law of Small
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Numbers is predicated on something its authors referred to as the representation hypoth-
esis. In short, this describes our human tendency to rely on strongly-held yet incorrect
conclusions about chance events.

Tversky and Kahneman (1971) demonstrated our willingness to assume that the re-
sults of inadequate/small samples are reflective of population parameters. Additionally,
they established our tendency to conclude that all sequences of random outcomes are valid
proxies for the true population parameters. This occurs even when sample sizes are demon-
strably inadequate for drawing such conclusions. Further, they demonstrated that when a
series of random outcomes does not resemble a known population parameter, it is expected
to quickly self correct. This belief underlies the root source of behavioral phenomena such
as the gambler’s fallacy and hot outcome bias. Others have argued that it also lies beneath
the hot hand and stock-of-luck biases (Gilovich, Vallone & Tversky, 1985).

In summary, we have a device prone to produce samples that are not reflective of the
game’s long-run design, combined with a human tendency to draw inaccurate and poorly
founded conclusions about the representativeness of the results. In addition, the presence
of cognitive bias would further complicate the detection of unmarked pars by introducing
variable betting behavior. This behavior only increases the already formidable amount
of variance in the outcome distribution, greatly increasing the difficulty of identifying a
difference in pars.

Pay Table Studies
A review of the academic literature reveals three components of a slot machine’s

pay table with the potential to influence a gambler’s play time. The first is hit frequency,
followed by variance (a.k.a. volatility) and the house advantage (a.k.a. par). Hit frequency
is defined as the percentage of spins that are expected to result in a payout of at least
one credit. Based on the results of multiple simulations, Kilby and Fox (1997) found no
evidence of a monotonic relationship between hit frequency and spins per losing player
(i.e., SPLP). Notable contributions of this work included a focus on losing players, as
winning players were assumed to be satisfied. That is, losing players are the ones most
likely to draw on alternative notions of gaming value such as play time (a.k.a. time on
device). Additionally, these simulations employed session-level play constraints such as a
fixed beginning bankroll, a constant wager, and termination criteria that were reflective of
actual play (e.g., quit after bankruptcy, or doubling the beginning bankroll).

Based on unusual patterns in the results of Kilby and Fox (1997), additional sim-
ulation studies were conducted by other researchers. Lucas, Singh and Gewali (2007)
followed with simulations that held par constant across six different reel slot pay tables,
while varying the amount of pay table variance. They found that spins per losing player
(SPLP) consistently decreased with increases in the variance, i.e., a monotonic relationship
emerged. Based on this finding, Lucas and Singh (2008) sought to test the veracity/limits
of a popular industry heuristic, i.e., lower pars necessarily result in increased play time.
Their simulations failed to support this notion. In fact, they demonstrated the opposite ef-
fect by manipulating the pay table variance. That is, the game with the greatest house edge
produced the greatest session-level SPLP, due its low pay table variance. The game with
the lowest par produced the least SPLP, because it featured the greatest amount of variance.

Harrigan and Dixon (2010) simulated play on reel slots with a 2% par and a 15% par.
Initially, they identified a significant difference in the mean number of spins, in favor of the
2% game. In part, this result was an artifact of the simulation parameters. Specifically, all
virtual gamblers played until bankrupt, i.e., no gambler was permitted to finish as a winner.
Therefore, all top-award jackpots were required to be wagered until lost. This engagement
protocol contributed to the significant difference in mean total spins by creating impactful
outliers. The authors thoughtfully noted that the significant difference was absent when
comparing the median number of spins.

Lucas and Singh (2011) sought to isolate the effect of par on an individual player’s
results, on a single visit, and over time. To do so, they created multiple pay tables with
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identical amounts of pay table variance, but different pars. In short, the results of their
simulations failed to support the idea that players could to detect differences in the pars
of otherwise identical games, even over decades of regular/frequent play. Moreover, their
results indicated that it wasn’t so much that players could not detect a difference, but rather
there was no difference to detect. But their simulations featured a constant/equivalent wa-
ger and fixed number of spins on each game, as the aim of their study was not to measure the
number of spins produced by games with different pars. Lucas and Singh (2021) produced
similar results after removing the fixed number of spins constraint, but their simulations
retained the constant wager assumption.

Dixon et al. (2013) conducted a lab study whereby gamblers played equal-appearing
games with different pars (i.e., 2% vs. 15%). Subjects made constant wagers on both
games, over a fixed number of spins on each one. These equal-play sessions were repeated
over several weeks. Seven subjects completed the experiment, all of whom correctly iden-
tified the low-par game. It is worth noting that aside from Harrigan and Dixon (2010),
the par gap of 13 percentage points represents the greatest true difference of any extant
comparison. This holds for simulation, lab, and field studies.

A series of field studies were conducted to determine the ability of players to detect
differences in the pars of otherwise identical games (Lucas & Spilde, 2019a, 2019b, 2020,
2021). One advantage of these quasi-experimental designs was the ability to gather results
from players engaging in own-money wagering within a live gaming environment. In spite
of differences as great 11 percentage points (i.e., a 4% game vs. a 15% game), the high-
par games consistently outperformed their paired low-par counterparts. Nearly all of these
experiments were conducted over periods of time ranging from six to twelve months, in
casinos that were heavily reliant on a clientele of frequent gamblers. That is, regular play-
ers were afforded ample time to discover a difference in the pars. The results supported the
ideas that increasing pars can significantly increase revenues, and that players are either not
sensitive to differences in pars, or they cannot detect the differences. The latter two conclu-
sions were based on the absence of play migration. Specifically, the observed differences
in game-level revenue failed to dissipate over time, indicating that the frequently-visiting
clientele was not responding to the egregious “price” shocks in a rational manner.

Hypothesis
All of the simulation and lab studies reviewed herein have featured a constant wager,

due to the respective aims of the researchers; yet, we know from the cognitive bias literature
that this wagering behavior is not likely. To the best of our knowledge, no one has allowed
the wager to vary within a simulation of play on games with different pars. Doing so will
present the challenge of detecting a difference in pars under conditions more reflective of
actual gambling behavior. Additionally, the results will allow for valuable and insightful
comparisons against the outcomes of extant fixed-wagering simulations. In step with these
aims, the following hypothesis was advanced:

H0 : µ1i j−µ2i j = 0.

Consistent with the approach of prior researchers (Kilby & Fox, 1997; Lucas et al.,
2007; Lucas & Singh, 2008), only the outcomes of losing players will be tested. Within the
null hypothesis, µ1i j indicates the mean number of spins produced by a game with par 1,
over i play sessions, under j wagering conditions. The µ2i j term reflects the same, but the
outcomes are produced from a game with par 2 (i.e., where par 1 6= par 2). Details related
to the variable wagering parameters are forthcoming in the Methodology Section.

Methodology
Proxies of actual games were created to simulate play on slot machines with dif-

ferent pars. The revised pay tables were modified versions of actual licensed pay tables.
The modifications allowed for comparison of more precise pars gaps, while attempting to
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maintain the fundamental structure of the actual games. The pay table data are shown in
Table 1.

Table 1
Pay Table Data

5% Par (σ = 18.69) 10% Par (σ = 17.82)

Event p(Event) Pays p(Event) Pays

E1 0.00001017 4000 0.00001017 4000
E2 0.00043741 500 0.00043741 500
E3 0.00045436 400 0.00045436 300
E4 0.00127095 12 0.00127095 10
E5 0.00115095 10 0.00115095 8
E6 0.00230809 6 0.00230809 6
E7 0.00263227 5 0.00263227 5
E8 0.00153534 3 0.00153534 3
FS10 0.00476218 20 0.00476218 20
FS12 0.00293704 16 0.00293704 16
B1 0.00817326 15 0.00817326 15
B2 0.09257128 2 0.09257128 2
E13 0.88134432 0 0.88134432 0

Note: Pay tables as shown in Lucas and Singh (2021).
“E” represents Event, “FS” represents Free Spin, and
“B”represents Bonus.

The design of the simulations mirrored that employed by Lucas and Singh (2021),
differing with respect to the constant wager constraint. The current simulations included
variable wagering behavior, based on the records of reel slot play from a live gaming envi-
ronment. This insight was made possible via proprietary information provided by a Nevada
casino operator with a heavy reliance on frequent/repeat gamblers. For purposes of the sim-
ulations, it was critical to understand (1) the ratio of the average bet to the starting bankroll;
and (2) the general extent to which the bets varied across spins. The process of expressing
these two items is unpacked in the following two paragraphs.

As the actual visit-level bankroll of players is generally fluid and cannot be precisely
known, the observed actual loss served as the most accurate proxy. For example, players
may enter the casino with an intended bankroll of $50, but outcomes such as quicker-than-
expected losses or big wins can alter their original intentions. Therefore, the average actual
loss serves as the best available representation of a visit-level bankroll. Further, the focus
of this study is on losing players, adding to the utility of this particular bankroll proxy.
The casino’s data indicated that the average bet on a reel slot was 2% of the average loss
per day, per player. This ratio was identical to one of the scenarios simulated in Lucas
and Singh (2021), i.e., the simulations featuring a 50-credit bankroll and a constant wager
of one credit. As a result, the outcomes of the current simulations will provide revealing
points of comparison, while also reflecting realistic bankroll and wagering parameters.

The operator’s wagering data also indicated an elevated standard deviation in the bet
per spin, indicating positive skewness in the distribution. This is an expected artifact of
the reel slot design, as forced minimum wagers create a floor in the distribution, while the
maximum wager per spin is far less restricted. Regarding the latter, there is a generous and
intentional capacity for greater wagers created by the combination of (1) the considerable
number of allowable betting lines; and (2) the permissible number of credits wagered per
line. To reflect the observed skewness in the wagering behavior, we employed the following
the simulation parameters: (1) a 20% chance of a wager at 50% of the average bet; (2) a
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60% chance of an average bet; (3) a 10% chance of a wager at 150% of the average bet;
and (4) a 10% chance of a wager at 200% of the average bet. This distribution of wagers
was clearly influenced by the low-denomination, multi-line games that dominated the slot
floor of the donor casino. Still, such a distribution would be generally applicable to most
slot floors in markets with a heavy reliance on a repeat clientele.

The previously described constraints reflect a somewhat conservative representation
of the observed variance in the wagering behavior of reel slot players. The precise behavior
could certainly vary by market and market segment, but the larger point of the simulations
is to demonstrate the general impact of variable wagering on the results produced by indi-
vidual gamblers. This will further inform operators as to the capacity of losing players to
detect differences in the pars of games, based solely on the number of spins. Alternatively
stated, it will provide insight on the relationship between par and play time, under wagering
behavior generally reflective of actual gamblers.

For purposes of comparison against the results produced via a constant wager, our
simulations followed the design from Lucas and Singh (2021). Rather than review the de-
tails of their design here, we offer the following example of one scenario. Virtual players
begin with 50 credits and play until they either triple their credit balance or lose it all. This
protocol is applied to each of two games with different pars, producing n spins on each
game. This is considered to be one visit, within the quasi-experimental design. Each vir-
tual gambler continues play according to these parameters for a total of 150 visits, i.e., the
equivalent of 3 visits per week for 50 weeks. At the end of the 150 visits, a t test is per-
formed on the number of visit-level spins produced by each game, but only the losing visits
on each game are eligible for inclusion. For example, there may be 122 losing sessions on
Game A and 120 losing sessions on Game B. This entire process is repeated 100 times, for
a total of 100 t test results.

Aside from the variable betting component, the simulation design was identical to
the one from Lucas and Singh (2021). There was also one difference in the engagement
parameters, i.e., the scenarios featuring the 200-credit buy in with a one credit average bet
were not replicated. The wagering data supplied by the Nevada casino operator indicated
that this bet-to-buy in ratio (1:200, or 0.005) was not generally reflective of actual gaming
behavior.

As for the start/stop criteria, the simulations terminated a player’s gambling session
after reaching bankruptcy or doubling the initial bankroll. A second set of simulations
stopped play after reaching bankruptcy or tripling the initial bankroll. These criteria were
based on input from multiple slot mangers operating in repeater markets. Additionally,
these start/stop parameters were consistent with those implied by previous researchers (see
Kilby & Fox, 1997; Lucas & Singh, 2008, 2021; Lucas et al., 2007)

Like Lucas and Singh (2021), the null was tested via two-tailed, independent samples
t tests with the unequal variance assumption in place. All two-tailed hypothesis tests were
conducted at 0.05 alpha, but a Bonferroni Correction was necessary due to 100 repeated
tests of the null. This adjustment reduced alpha to 0.0005 (i.e., 0.05 ÷ 100). Because
only losing visits were included in the t tests, it resulted in an unbalanced design. Use of
the unequal variance assumption was based on the recommendation in Welch (1947), with
McDonald (2014) noting the efficacy of Welch’s test in an unbalanced design.

Results
Table 2 provides summary-level statistics for 100 replications of each simulated sce-

nario of play. For example, consider the simulation scenario labeled “50/0/100” at the
150-visit level. In this case, a player would engage each of the two games according to the
prescribed engagement parameters, over 150 visits to the casino. This play scenario would
be repeated 100 times, resulting in 1,500 sessions on each of two games. Table 2 reports
the descriptive statistics for each game, based on the outcomes from these 1,500 sessions.
For instance, the mean number of SPLP on the 5.0% game was 134, over 1,500 sessions,
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while the mean SPLP for the 10.0% game was 124. The far-right column of Table 2 reports
the percentage of those 1,500 sessions that resulted in bankruptcy. For the 5.0% game,
84.5% of the 1,500 sessions resulted in the player losing the entire 50-credit buy in, with
that percentage increasing to 87.2% for the 10.0% game.

Table 2
Descriptive statistics: Results of 100 replications of each simulated scenario.

Spins per losing player (SPLP)1

Simulation # of % of Losing
Scenario2 Visits Par Mean Median St. Dev. Min. Max. Visits3

50/0/100: 50 5.0% 133 110 77 50 856 84.2
10.0% 124 103 67 50 655 86.7

50/0/100: 100 5.0% 134 110 78 50 684 84.7
10.0% 124 104 67 50 782 87.2

50/0/100: 150 5.0% 134 110 78 50 780 84.5
10.0% 124 104 67 50 685 87.2

50/0/100: 200 5.0% 134 111 78 50 900 84.5
10.0% 125 104 68 50 672 87.2

50/0/150: 50 5.0% 142 111 93 50 872 87.7
10.0% 128 106 76 50 1,016 89.1

50/0/150: 100 5.0% 145 114 96 50 971 87.4
10.0% 130 105 77 50 1,164 88.7

50/0/150: 150 5.0% 145 114 98 50 1,464 87.7
10.0% 129 106 76 50 820 89.1

50/0/150: 200 5.0% 144 113 98 50 1,291 87.8
10.0% 129 106 76 50 937 89.4

100/0/200: 50 5.0% 291 256 137 105 1,217 78.5
10.0% 260 232 112 106 998 80.1

100/0/200: 100 5.0% 290 252 138 106 1,350 77.1
10.0% 262 232 115 100 1,265 80.3

100/0/200: 150 5.0% 290 255 139 105 1,708 77.1
10.0% 261 233 112 106 1,196 79.4

100/0/200: 200 5.0% 290 252 141 105 1,799 77.2
10.0% 259 231 111 105 1,212 79.7

100/0/300: 50 5.0% 303 258 164 107 1,590 78.2
10.0% 270 235 137 105 1,707 81.7

100/0/300: 100 5.0% 302 256 165 105 1,575 78.5
10.0% 267 234 129 105 1,450 80.6

100/0/300: 150 5.0% 301 256 163 107 1,940 79.3
10.0% 267 232 132 110 1,715 81.3

100/0/300: 200 5.0% 304 257 171 107 2,124 78.8
10.0% 268 233 131 105 1,576 81.3

Notes: 1 All five SPLP statistics are expressed in terms of outcomes produced at the
session grain. 2 The first number represents the starting bankroll (i.e., number of
credits), the second number represents bankruptcy stop condition, and the third number
represents credit value (i.e., winning) stop condition. 3 Percentage of losing visits
per n number of visits, where n equals 50, 100, 150 & 200 (all repeated 100 times).
The table structure was adapted from Lucas and Singh (2021) to facilitate a direct
comparison of results.

Staying with the previous example, it is important to note that the statistics reported
in Table 2 would require a player to visit the casino three times per week for 50 weeks a
year, for 100 years. Additionally, s/he would need to play both games on each visit. Given
that each of the listed simulation scenarios was repeated 100 times, it was not practical
to provide descriptive statistics at the level of the t test (i.e., the unit of analysis). No
individual player would be likely to ever see a summary of this many outcomes. Also, it’s
important to point out that just because the mean SPLP is generally greater for the 5.0%
game in Table 2, it is possible if not quite likely that the 10.0% game produced the greater
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SPLP in several of the 100 “years” of play. This conclusion is based on the magnitude of
the standard deviations relative to the difference in the mean SPLPs. Notwithstanding this
caveat, the mean, median, and standard deviation of the SPLP was greater for the 5.0%
game in every comparison.

Table 3 contains the results of the formal hypothesis tests. There was an average of
0.9 rejections of the null across the 16 simulation scenarios. This was down from the 4.2
rejections produced by Lucas and Singh (2021), i.e., with play simulated on the same two
pay tables, under the same simulation scenarios. The reduction in the global rejection rate
(i.e., from 4.2% to 0.9%) was likely due to increases in the outcome distribution’s variance,
resulting from the variable betting protocol. The far right column of Table 3 was included
to facilitate the comparison of the variable wagering results against those produced by a
constant wager on the same two games, under the same player engagement protocol. This
comparison demonstrates a clear reduction in the number of rejected nulls in each of the
four sections (i.e., 50/0/100; 50/0/150; 100/0/200; and 100/0/300).

Table 3
Summary of Null Hypothesis Test Results for Losing Players.
SPLP: 5.0% Par vs. 10.0% Par

Buy In Sim. Stop # of Visits # of Rejected
(in credits) Criteria to the Casino Nulls (out

on each of 2 (in Credits) by the Player # of Rejected of 100 tests
Games, on for Play on (for Play on Nulls (out in Lucas &
each Visit each Game both Games) of 100 tests) Singh)

50 0 or 100 50 1 0
50 0 or 100 100 0 0
50 0 or 100 150 1 3
50 0 or 100 200 0 1
50 0 or 150 50 0 1
50 0 or 150 100 1 1
50 0 or 150 150 1 2
50 0 or 150 200 1 3

100 0 or 200 50 0 1
100 0 or 200 100 2 6
100 0 or 200 150 0 9
100 0 or 200 200 6 17
100 0 or 300 50 1 0
100 0 or 300 100 0 5
100 0 or 300 150 0 7
100 0 or 300 200 1 11

Note: Table structure adapted from Lucas and Singh (2021) to facilitate
a direct comparison of results.

Discussion
The Table 3 results can be interpreted by way of the following example. In the third

line, only one of 100 players rejected the null hypothesis. That result comes from each of
100 gamblers playing both games on 150 visits. The outcomes (i.e., SPLP) from each of
those games were used to test the null hypothesis. That is, after 150 sessions on each of
two games, each of the 100 players employed the results from their losing sessions to test
the null. Again, there was only one rejection. Therefore, the entries in the column labeled
“# of Rejected Nulls (out of 100 tests)” can be used to compute empirical p values (e.g.,
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(100−1)/100 = 0.99).
Staying with Table 3, only one scenario produced more than 2 rejections, with six

players rejecting the null in the scenario defined as 100/0/200, 200 visits. Even at six
rejections, the resulting empirical p value was 0.94. Of course, with a sample size of 200
visits, rejection becomes more likely. Still, across all of the simulated scenarios, it would
be difficult to conclude that the players would be able to detect the considerable difference
in pars solely from the outcomes of their play.

Alternatively, the Table 3 results could be interpreted as 100 annual tests of the null
hypothesis, after n visits by a single player. That is, the result expressed in the third line
of Table 3 also represents a single rejection over 100 consecutive annual tests, with each
one comprised of 150 visits per year. Of course, it is not likely that any actual gambler
would live long enough to produce a body of such results. Still, the outcomes provide
insight regarding the informational wherewithal of gamblers to detect differences in pars
over time. This is a concern advanced in Meczka (2017).

Lucas and Singh (2008, 2011, 2021) demonstrated the limitations associated with the
idea that lower pars necessarily result in significant differences in play time. The results of
the current study extended our understanding of the relationship between par and play time,
by removing the constant wager assumption featured in those three studies. The variable-
betting protocol added to the variance in the outcome distribution, which generally reduced
the number of rejected nulls, i.e., in comparison to the rates observed by Lucas and Singh
(2021).

With the variable betting assumption more accurately portraying the behavior of ac-
tual gamblers, it may help explain the field study results observed by Lucas and Spilde
(2019a, 2019b, 2020, 2021). Specifically, variable betting behavior would increase the
variance in the outcome distribution and, in turn, increase the difficulty in detecting a differ-
ence in the pars of otherwise identical games. In part, this could have allowed the high-par
games to consistently outperform their paired, low-par counterparts. Additionally, variable
betting likely contributed to the lack of observed play migration, in spite of the substantial
increases in the pars of their paired games.

Our results contrasted those from Harrigan and Dixon (2010), in terms of producing
significant differences in the mean number of spins. Potential reasons for the difference
included their use of a constant wager, the 13 percentage-point gap in their pars, and the
requirement for all gamblers to wager until bankrupt (i.e., no winners were permitted).
Dixon et al. (2013) also produced outcomes different from ours, with respect to detecting
differences in pars. Like Harrigan and Dixon, they examined games with a 13-point par gap
and imposed a constant-wager requirement. Additionally, their lab experiment included a
fixed number of spins on each game, rather than imposing variable stop parameters.

Regarding the Law of Demand, the results of the simulations suggested that players
would likely not be able to detect an increase in the obfuscated “price” (par) based solely
on their outcomes. The ability to do so is the cornerstone of Hwang’s (2019) contention
that noticeable differences in the wagering volume (i.e., coin-in) would occur on games
with different pars. Further, he warned that the resulting decline in play time would signal
a price increase, resulting in decreased casino patronage/revenue. It is important to note
here that he was using coin-in as a proxy for play time, which is equivalent to using spins,
ceteris paribus. Hwang’s concern for consequences stemming from the Law of Demand
were not supported by our study, due to a lack of significant differences in the outcomes
produced on games with different “prices.”

Managerial Implications
While industry concern for the ability of players to detect differences in the con-

cealed pars of reel slots is well established, it may be based in part on subscription to the
Law of Small Numbers. As seen from the results of this study and several others, outcomes
produced by individual players are not sufficient to discriminate between even consider-
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able differences in pars. This is because these small samples are not representative of the
population parameter known as par (i.e., the mean).

Based on our results, we hope that managers will consider that the relationship be-
tween par and play time is not necessarily linear, inverse and proportional. Specifically,
a 4% game will likely not provide an individual player twice the spins as an 8% game,
ceteris paribus. The small samples produced by individual players simply do not allow for
this long-term, highly aggregated relationship to manifest. Factors such as variable betting
behavior, the amount of pay table variance, and the failure of players to record and test
outcomes would all contribute to the difficulty of detecting differences in pars.

It may be helpful to consider the reality of imposing the simulation requirements on
an actual player, when attempting to understand the challenge of detecting differences in
pars. For example, the player would need to play both games the same number of times over
the course of a full year. This player would have to strictly adhere to the prescribed buy-in,
betting, and termination criteria. All session-level outcomes would need to be recorded for
each game. The appropriate statistical procedure would need to be employed to test for a
difference in means. Any deviation or failure to comply with these terms would render the
test inaccurate. When all of this is considered, it seems unlikely that players could detect
such differences by way of casual observation, yet this view endures.

If operators were to consider an explanation contrary to the inveterate wisdom of
the industry, revenue gains could be possible if not likely. There is a cost to a misplaced
fear of par detection, in the form of less-than-optimal revenues. A battery of research
results suggests that the customer experience (e.g., play time) is not affected by par in the
manner described in the prevailing view. A first step in moving toward optimizing slot
revenue is overcoming the fear of “price” detection, where par serves as a proxy for price.
This transition would open the door to a new way of thinking, potentially leading toward
noticeable gains in revenue performance, and even decreasing negative disconfirmation
with the gaming experience. For example, the numerous Nevada billboards proclaiming the
availability of loose slots suggest that a player’s bankroll will last longer at the advertised
casino. But what happens when it does not? And by the way, it likely will not. Such an
experience would negatively disconfirm the player’s expectation and undermine the trust
construct — a condition central to customer loyalty.

Par detection is also an important issue for the adoption and management of server-
based gaming and mobile gaming systems (Pollack, 2007). This technology allows op-
erators to readily increase or decrease the pars of reel slots. Should the fear of “price”
sensitivity prevent them from doing so, they may not be able to optimize revenue during
peak business periods (i.e., weekends, holidays, special events, etc.). Due the relative ease
of changing pars in the server-based model, an accurate understanding of the associated
impacts will be a critical element of any optimization strategy.

Illusory Truth Effect
There remains a considerable space between the industry positions on this topic and

the results of this study as well as those from several others, featuring a variety of method-
ologies and designs. Given this collection of robust results from the academic literature, it
is reasonable to consider the presence of the illusory truth effect. This may in part explain
the staying power of these industry arguments.

While this paper does not offer a direct test of the illusory truth effect, it can be help-
ful in explaining the resistance to the results of this work and those of prior researchers. As
it applies to this study, the illusory truth effect describes a behavioral phenomenon whereby
validity judgments of statements increase when a statement is repeated multiple times, even
when that statement is false. Hasher, Goldstein and Toppino (1977) first demonstrated this
effect by exposing subjects to plausible yet false statements. This may explain why a con-
siderable number of studies have shown that reel slot players either cannot detect par, do not
have the results-based wherewithal to detect par, or are unusually insensitive to increases
in par (e.g., Lucas & Singh, 2011, 2021; Lucas & Spilde, 2019a, 2019b, 2020, 2021).
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This effect translates to the industry via well-intended heuristics created to help op-
erators understand and/or simplify the considerable complexities of the modern reel slot
machine. These explanatory shortcuts are useful in certain contexts, but are often over-
applied to incompatible questions, problems, and conditions. For example, consider the
aforementioned belief that a game with a 5% par will provide a player twice the coin-in
(play time) of a game with a 10% par. This popular heuristic breaks down, when fac-
tors such as visit-level bankroll, available leisure time, and the wagering behavior of the
individual slot player are considered (Lucas & Singh, 2021). Further, other studies have
demonstrated that the effect of the pay table variance is far more impactful on the gam-
bler’s play time, especially at the visit level (e.g., Lucas & Singh, 2008). Yet this par-play
time heuristic has been frequently repeated for decades, which has resulted in many adopt-
ing the notion that par is a valid proxy for a gambler’s expected play time (Frank, 2017;
Hwang, 2019; Legato, 2019). It follows that operators and industry pundits would contend
that players have the ability to identify changes in the pars of games (Frank, 2017; Hwang,
2019; Legato, 2019; Meczka, 2017).

It may be the frequency of these messages that has led to the ardent defense of their
validity, despite the growing number of academic studies that suggest otherwise. This
would be in line with the illusory truth effect. In the words of Hasher et al. (1977), “If
people are told something often enough, they’ll believe it.” Moreover, Arkes, Hackett
and Boehm (1989) demonstrated that the strength of the illusory truth effect is increased
when people believe that they are familiar with or knowledgeable about the subject. This
familiarity condition may have further increased resistance to the body of academic results.
Additionally, researchers have discovered that increases in the fluency of a statement can
increase perceived validity (McGlone & Tofighbakhsh, 2000; Reber & Schwartz, 1999),
where fluency represents the ease with which a message is decoded by the brain. Therefore,
it stands to reason that the simplicity of the previously mentioned par-play time heuristic
could aid in its adoption as a true and accurate explanation.

Despite the preponderance of findings that stem from a variety of designs, method-
ologies, and explanations that falsify the application of par heuristics to the individual
player’s gaming experience, they seem to endure. These challenges of logic combined with
the triangulation of empirical and simulation results makes for a compelling yet contradic-
tory set of conclusions. Still, many resist them.

Limitations and Future Research
Our results are a function of the assumptions governing the simulations. While we

believe these assumptions to be conservative, they are necessarily specific. Future re-
searchers may attempt to acquire proprietary data that more precisely describe the variation
in the wagering practices of gamblers. Such data could even be game specific.

It is worth noting here that the cognitive bias literature and the proprietary wagering
data supplied by the Nevada casino operator both established a considerable presence of
variable wagering in live gaming environments. Therefore, future attempts to understand
the outcomes from reel slot play under such conditions should address this reality. Of
course, differences in coded wagering behavior could produce different results.

Differences in pay tables may also produce differences in outcomes. We chose pay
tables previously simulated in Lucas and Singh (2021) to demonstrate how varying the bet
could affect the outcomes produced by players, as compared to results produced by a con-
stant wager. The intent was to isolate the effect of variable wagering. Still, simulating play
on different pay tables would increase our understanding of the relationship between par
and play time. For example, differences in the par gaps of paired games may provide addi-
tional insight. The same could be said for differences in the bonus and free-spin features in
pay tables.

The effects observed in this study could be muted by high-denomination games that
considerably restrict the range of allowable wagers. For example, a maximum allowable
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wager of five credits would constrain the ability of the gambler to vary her wager. There-
fore, the amount of variance added to the outcome distribution would be decreased, poten-
tially increasing the possibility of a significant difference in SPLP on such games. While
our focus was on the experience of losing slot players, we acknowledge that it is possible
for certain winning players to also be dissatisfied. Although a much smaller population and
arguably less of a pressing concern, future researchers may wish to study the judgments
of the outcomes produced by winning players. Going forward, there are a nearly endless
number of experimental configurations to examine, but the results of this work demonstrate
that the relationship between par and an individual gambler’s play time may be importantly
different from the popular understanding. Still, more work is needed to determine the limits
of our conclusions.
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