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TheMagushan skarn Cu–Modeposit is a representative example of the skarnmineralization occurringwithin the
Xuancheng ore district of the Middle–Lower Yangtze River Metallogenic Belt of eastern China. The precise age of
an ore deposit is important for understanding the timing ofmineralization relative to other geological events in a
region and to fully place the formation of a mineral deposit within the geological context of other processes that
occur within the study area. Here, we present new molybdenite Re–Os and titanite and andradite garnet U–Pb
ages for theMagushan deposit and use these data to outline possible approaches for identifying genetic relation-
ships in geologically complex areas. The spatial and paragenetic relationships between the intrusions, alteration,
and mineralization within the study area indicates that the formation of the Magushan deposit is genetically as-
sociatedwith the porphyritic granodiorite. However, this is not always the case, as some areas contain complexly
zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear
spatial relationship to a pluton. This means that it may not be possible to determine whether the mineralization
formed as a result of single ormultiplemagmatic/hydrothermal events. As such, the approaches presented in this
study provide an approach that allows the identification of any geochronological relationships betweenmineral-
ization and intrusive events in areasmore complex than the study area. Previously published zirconU–Pbdata for
themineralization-related porphyritic granodiorite in this area yielded an age of 134.2 ± 1.2 Ma (MSWD= 1.4)
whereas the Re–Os dating ofmolybdenite from the study area yielded an isochron age of 137.7± 2.5Ma (MSWD
=0.43). The timing of the mineralizing event in the study areawas further examined by the dating of magmatic
accessory titanite and skarn-related andradite garnet, yielding U–Pb ages of 136.3 ± 2.5 Ma (MSWD= 3.2) and
135.9 ± 2.7 Ma (MSWD = 2.5), respectively. The dating of magmatic and hydrothermal activity within the
Magushan area yields ages around 136 Ma, strongly suggesting that the mineralization in this area formed as a
result of the emplacement of the intrusion. The dates presented in this study also provide the first indication of
the timing ofmineralization within the Xuancheng district. providing evidence of a close genetic relationship be-
tween the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism
that occurred in this area. This in turn suggests that other Early Cretaceous intrusive rocks within this region
are likely to be associatedwithmineralization and should be considered highly prospective for futuremineral ex-
ploration. This study also indicates that the dating of garnet and titanite can also provide reliable geochronolog-
ical data and evidence of the timing of mineralization and magmatism, respectively, in areas lacking other
dateable minerals (e.g., molybdenite) or where the relationship between mineralization and magmatism is un-
clear, for example in areas with multiple stages of magmatism, with complexly zoned plutons, and with distal
skarn mineralization.
© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Determining the precise timing of formation of an ore deposit is crit-
ically important for understanding theprocesses that formed theminer-
alization in an area, the geological context of a mineral deposit, and
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determining whether hypothetical genetic relationships between ore
deposits and other geological processes (e.g., igneous intrusive activity)
are merely correlative or are actually causative. Establishing these rela-
tionships is particularly important for ancient ore deposits where the
original textures or other key information originally preserved within
the deposit or the surrounding area have most likely been deformed
or overprinted by later structural, metamorphic, hydrothermal, or mag-
matic activities. Sulfide minerals have previously been dated using Rb–
Sr and Sm–Nd approaches (e.g., Maas et al., 1986; Nakai et al., 1990;
Christensen et al., 1995; Yang and Zhou, 2001; Zhang et al., 2014). How-
ever, Rb, Sr, Sm, and Nd are all lithophile elements (e.g., Faure, 1977)
that are incompatible in themajority of sulfides, making the application
of these approaches to ore deposits problematic. For example, detailed
observations of the sulfides dated by these approaches often identified
inclusions of silicate minerals that generated large variations in Rb–Sr
or Sm–Nd ratios (Li et al., 2008; Wan et al., 2009). This means that it is
often unclear whether the dates acquired by these approaches repre-
sent the timing of mineralization or the timing of formation of the sili-
cates that may have formed significantly earlier than the
mineralization within a given deposit.

One of the best ways of directly determining the timing of mineral-
ization is Re–Os dating, an approach that uses chalcophile elements that
are often enriched in sulfide minerals, thus enabling the direct identifi-
cation of the timing of mineralization. A significant amount of research
has demonstrated the usefulness of molybdenite (MoS2) for Re–Os dat-
ing as this mineral contains both a high concentration of Re (up to hun-
dreds or thousands of parts per million) and very low concentrations of
common Os (Luck and Allègre, 1982; Stein et al., 1997; Selby and
Creaser, 2001a, 2001b; Wang et al., 2015; Zhang et al., 2016; Gao

et al., 2018; Nie et al., 2019). However, molybdenite dating also has
some limitations. In some cases, molybdenite Re–Os age and U–Pb zir-
con ages may be different, with the former often yielding ages that are
older than the latter (e.g., Leng et al., 2012; Chen et al., 2015; Zhang
et al., 2015; Mao et al., 2017) thus causing confusion over the timing
of mineralization. Moreover, molybdenite is not present in all mineral
deposits, and other minerals (e.g., pyrite) may be less useful for Re–Os
dating.

The Magushan Cu–Mo deposit is a representative example of the
skarn mineralization present within the newly discovered Xuancheng
ore district of the Middle and Lower Yangtze River Metallogenetic Belt
(MLYRMB, Fig. 1). The deposit is a representative example of the skarn
mineralization present within the district (Bian, 1995; Liu and Duan,
2015; Hong et al., 2017; Jiang et al., 2017; Qian et al., 2017; Zhou et al.,
2017; Fig. 2) and our previous research (Li et al., 2020a) indicates that
the mineralization in this area is associated with a porphyritic granodi-
orite that was emplaced at 134.2 ± 1.2 Ma [mean square weighted de-
viation (MSWD) = 1.4]. However, this age represents the timing of
magmatism in this area and not necessarily the timing of mineraliza-
tion, although it is very likely that the magmatism and the generation
of the skarn in this area are genetically linked as evidenced by parage-
netic and spatial relationships (Figs. 3–5). Here, we present new Re–
Os dates for molybdenite from the Xuancheng Cu–Mo skarn deposit
that suggests that the mineralizing event in this area post-dates the
magmatism in this area by around 4 Ma, although both molybdenite
Re–Os and zircon U–Pb ages are within uncertainty of each other. This
obviously contrasts with the spatial and paragenetic relationships in
this area. This, combined with the overlapping uncertainties on the
Re–Os and U–Pb ages for the mineralization and magmatism meant

Fig. 1. Geological map of the Middle–Lower Yangtze River Metallogenic Belt showing the location of major ore districts and the study area (modified after Chang et al., 1991; Mao et al.,
2011; Zhou et al., 2017).
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we also undertook titanite and garnet U–Pb dating to try and obtain bet-
ter constraints in the timing ofmagmatism and skarn formation, respec-
tively, in this area. Both titanite (Simonetti et al., 2006; Sun et al., 2012;
Hu et al., 2017; Song et al., 2019; Xie et al., 2019; Xiao et al., 2020) and
garnet (Seman et al., 2017; Fu et al., 2018; Mueller and McNaughton,
2018; Li et al., 2019a) have been dated previously using this approach,
indicating this is a viable method for dating these minerals. The new
data presented in this study further constrains the timing ofmagmatism
and mineralization associated with the Magushan deposit, furthering
our knowledge of the mineralizing processes in this area and providing
insights into different methods of determining the relative timing of
mineralization and magmatism in similar but more complex systems
elsewhere.

2. Geological background

2.1. Regional geology

TheMLYRMB is located within the northeastern Yangtze Craton, the
southern part of the Qinling–Dabie orogenic belt, and the North China
Craton (Chang et al., 1991; Zhai et al., 1996; Yuan et al., 2008; Mao
et al., 2011; Zhou et al., 2011, 2015; Pirajno and Zhou, 2015; Fig. 1). It
is subdivided into southern, middle and northern subzones (Zhou

et al., 2017) and is bounded by the Xiangfan–Guangji Fault (XGF) to
the northwest, the Huanglishu–Poliangting Fault (HPF) to the northeast
and the Chongyang–Changzhou Fault (CCF) to the south.

The Xuancheng ore district is a newly discovered ore district within
the southeast MLYRMB to the east of the Tongling ore district and the
south of the Ningwu ore district (Fig. 1). This area represents a newly
discovered and relatively unexplored ore district that hosts polymetallic
Cu deposits, including the skarn-type Magushan Cu–Mo, Qiaomaishan
Cu–W, Shizishan Cu, Changshan Cu–Pb–Zn, and Chashan Pb–Zn de-
posits as well as the Chating porphyry Cu–Au deposit (Bian, 1995;
Hong et al., 2017; Jiang et al., 2017; Qian et al., 2017; Xu et al., 2018; Li
et al., 2019c; Fig. 2). The Xuancheng district is dominated by Silurian
to Jurassic marine and continental sedimentary rocks (Fig. 2) and
hosts generally unexposed and blindmineral deposits that are predom-
inantly covered by Quaternary sediments (Liu and Duan, 2015; Fig. 2).
The district also contains Early Cretaceous intrusive units with domi-
nantly granite, granodiorite, and diorite compositions that are closely
related to the magmatic–hydrothermal deposits within this area (Liu
and Duan, 2015; Li et al., 2019c, 2020a). The Magushan deposit forms
the focus of this study, is one of the two largest skarn deposits within
this Xuancheng district, and contains some 78,000 t of contained Cu
metal at an average grade of 0.89% and 11,000 t of contained Mo at an
average grade of 0.13%, with a further 3 t of Au and 300 t of Ag.

Fig. 2. Sketch map showing the geology of the Xuancheng ore district (modified after Liu and Duan, 2015).
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2.2. Deposit geology and mineralization

The Magushan Cu–Mo deposit is located east of the city of
Xuancheng (Fig. 2a) in an area containing exposed Devonian to Triassic
sedimentary units (Fig. 3). The Devonian units in this area are quartz-
dominated sandstones with a thickness of about 80–110 m whereas
the Carboniferous units are dominated by limestones with a thickness
of 150–180 m that have an upper section that also contains some sand-
stone units. The area also contains Permian limestones of the Qixia For-
mation with a thickness of 170–300 m and Permian sandstones of the
Gufeng and Longtan Formations, with thicknesses of 20 and 300 m, re-
spectively. Argillaceous and hornfels-altered limestones of the Triassic
Yinkeng Formation also crop out in this area with a total thickness of
>220m (Bian, 1995; Hong et al., 2017). The majority of themineraliza-
tion in this area is hosted by Carboniferous and Permian limestones,
with the latter assigned to the Qixia Formation (Bian, 1995; Hong
et al., 2017; Fig. 4). The deposit is also genetically associated with a

porphyritic granodiorite that is closely spatially related to both
orebodies and skarn alteration (Figs. 3 and 4).

The Magushan deposit is located within an inverted anticline
(Bian, 1995; Hong et al., 2017; Fig. 4) and the intrusion associated
with the deposit was emplaced into the Carboniferous and Permian
Qixia Formation limestones that host the majority of the mineraliza-
tion in this area. This porphyritic granodiorite crops out in various
locations within the study area and the petrographic characteristics
of the intrusion at these different locations are similar. The intrusion
is fresh in areas distal from country rock contacts but has undergone
K-feldspar and pyrite alteration near these contacts (Fig. 5a–c).
The skarn alteration associated with the deposit is also concentra-
ted within limestones proximal to the porphyritic granodiorite
(Figs. 3 and 4). The majority of the orebodies that define the deposit
are either layered or lens-shaped and contain chalcopyrite, molybde-
nite, pyrite, sphalerite, magnetite, and pyrrhotite within a garnet,
quartz, and calcite dominated gangue assemblage. Mineralization is

Fig. 3. Geological map showing the area around the Magushan deposit (modified after Bian, 1995; Hong et al., 2017).
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also present within the porphyritic granodiorite (i.e., endoskarn) and
is associated with K-feldspar and pyrite alteration (Fig. 5a–c). How-
ever, the majority of mineralization is hosted by Carboniferous and
Permian Qixia Formation limestones that have been altered to garnet
skarn (Fig. 5d, e) and marble (Fig. 5f), with most of this mineraliza-
tion hosted by the former (Fig. 5g–i).

3. Samples and analytical methods

The spatial and paragenetic relationships between the intrusions, al-
teration, and mineralization indicates that the formation of the
Magushan deposit is genetically associated with the porphyritic grano-
diorite (Figs. 3–5). This simple genetic relationship in theMagushan de-
posit makes this an ideal natural laboratory to test the efficacy of the
different geochronometers that can be used on skarn-typemineralizing
systems.

3.1. Molybdenite Re–Os dating

Sixmolybdenite-bearingore samples associatedwith garnet skarn in
the study area (Fig. 6) were collected from underground developments
within theMagushanmine. The sampleswere crushed topass ~100–150
meshes before molybdenite was separated using standard heavy liquid
separation techniques. High-purity (>99%) molybdenite separates
were then obtained by handpicking under a binocular microscope. Re–
Os isotopic analysis was undertaken at the Re–Os Laboratory of the Na-
tional Research Center of Geoanalysis, Chinese Academy of Geological
Sciences (CAGS), Beijing, China. This analysis used the chemical separa-
tion approaches outlined in Shirey and Walker (1995), Markey et al.
(1998), Mao et al. (1999, 2006), Stein et al. (2001), and Du et al. (2004).

Prior to analysis enriched 190Os and 185Re spikeswere obtained from
Oak Ridge National Laboratory in the USA. Weighed unknowns (~ 0.01

g) were loaded into Carius tube using a thin neck funnel before mixed
190Os and 185Re spike solutions combined with 2 mL HCl and 4 mL
HNO4 were added while the base of the tubes was frozen at tempera-
tures between −50 °C and − 80 °C in an ethanol–liquid nitrogen
slush. The tops of the Carius tubes were then sealed using an oxygen-
propane torch and the tubes were then placed in stainless steel jackets
before being heated for 24 h at 230 °C. The tubes were then cooled,
with the base of the tubes being frozen while the necks of the tubes
were broken. This allowed the removal of Os from the Carius tube by di-
rect distillation for a period of 50min,with the removed Os trapped in 3
mL ofwater thatwas subsequently used for the determination of Os iso-
topic ratios. This analysis used multicollector–inductively coupled
plasma–mass spectroscopy (MC–ICP–MS) employingaNeptune Plus in-
strument at the Re–Os Laboratory of the National Research Center of
Geoanalysis, CAGS, Beijing, China. The residual Re-bearing solution
was saved in a 150 mL Teflon beaker for subsequent Re separation.

Rhenium isotopic analysis used the residual Re-bearing solution that
was heated to near-dryness before the addition of 5 mL of 30% NaOH to
the residue followed by Re extraction using 5 mL of acetone in a 50 mL
centrifuge tube. The Re-bearing acetone phase was then transferred to
150 mL Teflon beakers that contained 1 mL of water. This solution was
then evaporated to dryness before the addition of 2% HNO3 for the
ICP–MSdetermination of Re isotopic ratios using anX-series instrument
at Re–Os Laboratory of the National Research Center of Geoanalysis,
CAGS, Beijing, China.

3.2. Titanite U–Pb dating

Titanite was obtained from fresh porphyritic granodiorite samples
distal from the skarn alteration associated with the contact between
the intrusion and the surrounding limestones (Fig. 7). Polished thin sec-
tions were made from these samples and were used to identify titanite

Fig. 4. Cross-section through the Magushan deposit along geological transect No. 25 (modified after Hong et al., 2017).
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Fig. 5. Photographs of hand specimens from the Magushan deposit showing representative examples of alteration and mineralization within the study area. (a, b) K-feldspar-bearing
porphyritic granodiorite. (c) Pyrite alteration within the porphyritic granodiorite. (d, e) Andradite garnet exoskarn associated with the Magushan deposit. (f) Marble-altered
limestone. (g, h) Molybdenite, chalcopyrite, and pyrite mineralization within garnet skarn. (i) Photomicrograph taken under reflected light showing a typical example of the
mineralized garnet skarn. Abbreviations are as follows: Amp = amphibole, Kfs = K-feldspar, Py = pyrite, Cal = calcite, Grt = garnet, Mol = molybdenite, Ccp = chalcopyrite.

Fig. 6. Photographs (a–c) and photomicrographs (d–f) showing representative examples of the molybdenite ore from the Magushan deposit. (a–c) Hand specimens of molybdenite
mineralization hosted by garnet skarn. (d–f) Photomicrographs taken under reflected light showing molybdenite mineralization hosted by garnet skarn. Abbreviations are as in Fig. 5.
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using standard optical microscopy. Titanite is a common accessorymin-
eral within the intrusion associated with the Magushan deposit and is
generally 100–800 μm long (Fig. 7b–i). A total of 30 titanite crystals
from two polished thin sections were dated during this study.

The in-situ U–Pb dating of titanite was undertaken using laser
ablation–ICP–MS (LA–ICP–MS) at the Ore Deposit and Exploration Cen-
tre (ODEC), School of Resources and Environmental Engineering, Hefei
University of Technology, Hefei, China. Details of the LA–ICP–MS speci-
fications and operating conditions used during this study are given in
Appendix 1. These analyses used a PhotonMachines Analyte HE LA sys-
tem equipped with a 193 nm ArF Excimer laser that was coupled to an
Agilent 7900 quadrupole ICP–MS instrument. Ablation was undertaken
in an ultrahigh purity He atmosphere (0.9 L/min) mixed with Ar (0.9 L/
min) using a 40 μm diameter laser beam. Three standards were used
during this analysis with an OLT-1 titanite standard (Kennedy et al.,
2010) used for calibration, mass discrimination, and isotope fraction-
ation. A BLR-1 titanite (1047.1 ± 0.4 Ma; Aleinikoff et al., 2007;
Mazdab, 2009) standard was also analyzed as an age monitor during
routine analysis to determine the precision and accuracy of the analysis
of unknowns and a GSE-1G silicate glass standard was used for the ex-
ternal standardization of trace element compositions. Each analysis in-
corporated a background acquisition time of approximately 20 s (gas

blank) followed by 40 s of data acquisition time during the ablation of
the sample. Off-line selection and integration of background and analyt-
ical signals, time drift corrections, and the quantitative calibration of
titanite trace-element concentrations and U–Pb ages were all under-
taken using the ICPMSDataCal software package (Liu et al., 2010b).
Measured uncorrected titanite data were plotted on a Tera–
Wasserburg diagram (Tera and Wasserburg, 1972) defining a line that
yields a lower intercept age that approximates the timing of formation
of the sample.

3.3. Garnet U–Pb dating

The garnet samples used for U–Pb dating during this study were
taken from underground developments within the Magushan mine
and drillcore. These samples were taken from both endoskarn and
exoskarn settings but the exoskarn andradite garnet present in the lat-
ter contains higher concentrations of U (Li et al., 2020b in review), mak-
ing it more suitable for use during U–Pb dating. The exoskarn andradite
garnet is also genetically associated with themineralization in this area,
indicating the timing of both garnet formation and mineralization may
be recorded by the age of these minerals (Fig. 8). Andradite garnet
from a total of four polished thin sections were dated during this

Fig. 7. Images showing representative examples of the fresh porphyritic granodiorite and the location and characteristics of the titanitewithin this intrusion. (a) Hand specimen showing a
representative example of the porphyritic granodiorite. (b–i) Photomicrographs were taken under cross-polarized light showing some of the titanite analyzed during this study.
Abbreviations are as follows: Ttn = titanite, Bt = biotite, Pl = plagioclase.
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study using LA–ICP–MS at the Ore Deposit and Exploration Centre
(ODEC), School of Resources and Environmental Engineering, Hefei Uni-
versity of Technology, Hefei, China. These analyses used the same in-
strument and parameters used for titanite dating with a 40 μm
diameter laser beam (Appendix 1). A ZK803–97 garnet standard
(Zhang et al., 2019) was used for calibration, mass discrimination, and
isotope fractionation, with an OH-1 garnet standard (Seman et al.,
2017; Zhang et al., 2019) analyzed as an age monitor during routine
analysis to monitor analytical accuracy and a precision. A GSE-1G sili-
cate glass standard was also used for the external standardization of
trace element compositions.

4. Results

4.1. Molybdenite Re–Os ages

The results of the Re–Os isotopic analysis of the six molybdenite
samples from the Magushan deposit as well as blank and standard
data are given in Table 1 with Re–Os isochron and weighted mean mo-
lybdenitemodel ages shown in Fig. 9. Themolybdenitemodel ageswere
calculated using t=[ln(1+ 187Os/187Re)]/λ, where λ is the 187Re decay
constant of 1.666 × 10−11 year−1 (Smoliar et al., 1996). We used an ini-
tial 187Re/188Os–187Os/188Os ratio isoline to remove the non-radiogenic

Fig. 8.Photomicrographs showing representative examples ofmineralized garnet skarnwithin theMagushan deposit; the same sample is shown in each row. (a, d, g) Photomicrographs of
mineralized garnet skarn taken under reflected light. (b, e, h) Photomicrographs of mineralized garnet skarn taken under plane-polarized light. (c, f, i) Photomicrographs of mineralized
garnet skarn taken under cross-polarized light. Abbreviations are as in Fig. 5 with Po = pyrrhotite.

Table 1
Molybdenite Re–Os isotopic data for the Magushan deposit.

Sample Weight (g) Re 187Re Common Os 187Os Model age

(ppb) ±1σ (ppb) ±1σ (ppb) ±1σ % (ppb) ±1σ Age (Ma) Uncertainty

MGS-Mo-1 0.01022 89,736 935 56,401 588 0.00192 0.60350 131.4 1.0 139.1 1.8
MGS-Mo-2 0.01081 88,682 867 55,738 545 0.00310 0.06846 128.1 0.8 137.1 1.6
MGS-Mo-3 0.01035 58,563 541 36,808 340 0.18917 0.20169 84.8 0.6 137.1 1.6
MGS-Mo-4 0.01042 88,950 1038 55,907 652 0.69151 0.13994 130.1 1.0 138.9 1.9
MGS-Mo-5 0.01109 21,637 166 13,600 105 0.00174 0.04001 31.9 0.3 138.0 1.8
MGS-Mo-6 0.01053 54,929 413 34,524 260 0.22464 0.06380 79.4 0.5 136.8 1.4
Blank sample – 0.00400 0.00064 – – 0.00000 0.00172 0.00009 0.00043 – –
Standard Weight (g) Re (ppm) ±1σ 187Os (ppb) ±1σ Age (Ma) uncertainty
GBW04435(HLP) 0.00641 274.8 2.7 – – – – 640.5 4 222.2 3.4
Reference values – 283.8 6.2 – – – – 659 14.4 221.4 5.6
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187Os from each sample (Li et al., 2012), yielding model ages. Isochron
and weighted average ages were also calculated for each sample. The
Re content of these samples is 21.6 to 89.7 ppm (average of 60.7
ppm). The six molybdenite samples analyzed during this study yield
model ages between 139.1 Ma, 138.9 Ma, 138.0 Ma, 137.1 Ma, 137.1
Ma, and 136.8 Ma and define a well-constrained 187Re–187Os isochron
age of 137.7 ± 2.5 Ma (2σ, n = 6, MSWD = 0.43; Fig. 9a) and a
weighted mean model age of 137.7 ± 1.0 Ma (2σ, MSWD = 1.4;
Fig. 9b).

4.2. Titanite and garnet U–Pb ages

The titanite U–Pb isotopic data obtained during this study are given
in Table 2 and are shown in Fig. 10a. The U–Pb isotope data for these
titanite samples are plotted on a Tera–Wasserburg diagram and define

a regression line that yields a well-defined lower-intercept age of
136.3 ± 2.5Ma (2σ, n=30, MSWD=3.2; Fig. 10a). The andradite gar-
net U–Pb isotopic data are given in Table 3, and plotting these data on a
Tera–Wasserburg diagram (Fig. 10b) yields a well-defined lower-
intercept age of 135.9 ± 2.7 Ma (2σ, n=30, MSWD= 2.5). The results
of the analysis of the standards undertaken during this study are given
in Table 4. Analysis of the OLT-1 titanite standard (1016.8 ± 3.8 Ma;
Kennedy et al., 2010) during titanite U–Pb dating yielded a
well-defined lower-intercept age of 1021 ± 13 Ma (2σ, n = 8, MSWD
= 2.9; Fig. 10c) and the age monitor BLR-1 titanite standard (1047.1
± 0.4 Ma; Aleinikoff et al., 2007; Mazdab, 2009) yielded a well-
defined lower-intercept age of 1045 ± 20 Ma (2σ, n = 8, MSWD =
0.49; Fig. 10d). The andradite garnet dating included analysis of the
ZK803–97 garnet standard (139.1 ± 1.0 Ma; Zhang et al., 2019), yield-
ing a well-defined lower-intercept age of 137.8 ± 3.1 Ma (2σ, n = 7,

Fig. 9. Re–Os isochron age (a) and weighted mean model age (b) diagrams showing variations in ages of molybdenite within the Magushan deposit.

Table 2
Titanite U–Pb isotopic data for the Magushan deposit.

Spots 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U Pb Th U

Ratio ±1σ Ratio ±1σ Ratio ±1σ Age (Ma) ±1σ ppm ppm ppm

MGS-Ttn-1 0.25621 0.01066 0.02332 0.00049 0.08187 0.00352 148.6 3.1 0.00 510.0 181.6
MGS-Ttn-2 0.25079 0.01115 0.02173 0.00030 0.08317 0.00309 138.6 1.9 1.99 1106.2 519.7
MGS-Ttn-3 0.30524 0.01380 0.02223 0.00039 0.10178 0.00470 141.7 2.5 1.47 247.7 200.4
MGS-Ttn-4 0.18247 0.00896 0.02155 0.00038 0.06234 0.00307 137.4 2.4 3.55 425.9 232.4
MGS-Ttn-5 0.23408 0.00857 0.02223 0.00038 0.07670 0.00274 141.7 2.4 0.00 386.7 272.8
MGS-Ttn-6 0.94707 0.04118 0.03123 0.00090 0.24035 0.01383 198.3 5.6 3.70 359.0 55.8
MGS-Ttn-7 0.16156 0.00490 0.02219 0.00034 0.05332 0.00162 141.5 2.1 2.99 1247.9 627.3
MGS-Ttn-8 0.55216 0.03284 0.02568 0.00058 0.15393 0.00840 163.4 3.6 3.95 217.6 152.7
MGS-Ttn-9 0.20197 0.00861 0.02193 0.00034 0.06796 0.00305 139.8 2.2 0.00 462.0 222.4
MGS-Ttn-10 0.96927 0.03641 0.02941 0.00086 0.27522 0.01542 186.9 5.4 4.52 336.5 56.8
MGS-Ttn-11 0.77734 0.03276 0.02818 0.00073 0.22483 0.01245 179.1 4.6 3.12 394.8 82.5
MGS-Ttn-12 0.21372 0.00758 0.02146 0.00035 0.07286 0.00255 136.9 2.2 0.00 715.6 364.4
MGS-Ttn-13 0.34642 0.01672 0.02422 0.00058 0.11111 0.00620 154.2 3.7 0.55 303.2 124.6
MGS-Ttn-14 1.17623 0.05505 0.03246 0.00085 0.25464 0.00941 205.9 5.3 8.73 262.0 142.4
MGS-Ttn-15 0.42787 0.01694 0.02361 0.00052 0.13936 0.00605 150.4 3.3 0.57 455.3 136.7
MGS-Ttn-16 0.38387 0.01325 0.02377 0.00053 0.12150 0.00432 151.4 3.3 5.43 496.5 150.3
MGS-Ttn-17 0.25861 0.01304 0.02298 0.00055 0.08720 0.00574 146.4 3.5 3.60 341.3 105.6
MGS-Ttn-18 0.20257 0.00970 0.02216 0.00036 0.06664 0.00314 141.3 2.3 0.37 313.3 187.9
MGS-Ttn-19 0.19653 0.00635 0.02129 0.00033 0.06734 0.00218 135.8 2.1 1.09 459.0 318.7
MGS-Ttn-20 0.77993 0.03147 0.02788 0.00077 0.22494 0.01197 177.3 4.9 4.37 442.0 63.9
MGS-Ttn-21 0.93465 0.03887 0.02860 0.00081 0.27047 0.01613 181.8 5.1 3.50 342.2 50.9
MGS-Ttn-22 0.89594 0.03464 0.03127 0.00087 0.22656 0.01017 198.5 5.4 2.94 353.6 56.7
MGS-Ttn-23 0.91130 0.03281 0.02853 0.00072 0.24914 0.01054 181.3 4.5 0.00 413.5 67.7
MGS-Ttn-24 0.35923 0.01597 0.02350 0.00045 0.11430 0.00514 149.7 2.9 1.02 253.5 122.9
MGS-Ttn-25 0.30978 0.01176 0.02396 0.00044 0.09602 0.00370 152.6 2.8 3.69 485.4 199.1
MGS-Ttn-26 0.20433 0.01067 0.02230 0.00060 0.07283 0.00545 142.1 3.8 2.48 116.8 64.8
MGS-Ttn-27 0.24712 0.01634 0.02327 0.00053 0.08104 0.00599 148.3 3.4 0.00 243.4 106.7
MGS-Ttn-28 0.28350 0.00935 0.02380 0.00039 0.08868 0.00305 151.6 2.5 2.02 315.3 213.7
MGS-Ttn-29 0.82723 0.03033 0.02796 0.00075 0.23419 0.01112 177.8 4.7 1.38 628.7 83.9
MGS-Ttn-30 0.42449 0.01880 0.02406 0.00056 0.13985 0.00857 153.3 3.5 2.94 423.5 95.2

Y. Li, F. Yuan, S.M. Jowitt et al. Geoscience Frontiers 12 (2021) 101116

9



Fig. 10. Tera–Wasserburg diagrams showing U–Pb ages for the titanite (a) and andradite garnet (b) samples from the Magushan deposit. (c–f) Tera–Wasserburg and weighted average
diagrams showing the results of the analysis of standards undertaken during this study.
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MSWD=2.9; Fig. 10e) and an agemonitor OH-1 garnet standard that is
compositionally similar to theWillsboro garnet standard and has a sim-
ilar U–Pb age (1022± 16Ma; Seman et al., 2017). Analysis of the latter
yielded a well-defined lower-intercept age of 1002± 37Ma (2σ, n=7,
MSWD = 0.37; Fig. 10f). The weighted average ages obtained during
the analysis of the secondary standards used during this study are also
given in Fig. 10c–f. These data are consistent with the lower-intercept
ages obtained from the Tera–Wasserburg diagrams shown within the
same figure and are within uncertainty of the reported reference ages
for these standards. These data also have centralized distributions
rather than being overdispersed (e.g., Spencer et al., 2016; Fig. 10c–f).
All of this indicates that the ages obtained during the analysis of un-
knowns are both accurate and precise.

5. Discussion

5.1. Molybdenite Re–Os age

Molybdenite provides robust Re–Os ages because it contains abun-
dant Re and negligible initial or common Os (Markey et al., 1998;
Selby and Creaser, 2001a, 2001b, 2004; Stein et al., 2001), and the clo-
sure temperature of the Re–Os isotope system for molybdenite is esti-
mated to be around 500 °C (Gao et al., 2017; Li et al., 2019b). This
means that molybdenite is somewhat less sensitive to later hydrother-
mal, metamorphic, and/or tectonic events than other dateable ore min-
erals, indicating that molybdenite Re–Os dating often (but not always)
yields precise ages that reflect the timing of ore deposit formation
(e.g. Stein et al., 1997, 2001; Selby and Creaser, 2001a, 2001b, 2004;
Bingen and Stein, 2003; Hu et al., 2012).

Our previous research (Li et al., 2020a) determined a zircon U–Pb
age of 134.2 ± 1.2 Ma (MSWD = 0.43) for the mineralization-related
porphyritic granodiorite in the study area. The new molybdenite Re–
Os dating during this study yielded an isochron age of 137.7 ± 2.5 Ma

(2σ, n = 6, MSWD = 0.43; Fig. 9a) which is within uncertainty of the
zircon U–Pb age of the intrusion. The consistent nature of the isochron
(137.7 ± 2.5 Ma; Fig. 9a) and weighted mean (137.7 ± 1.0 Ma;
Fig. 9b) model Re–Os ages indicates they are reliable (Stein et al.,
1997; Selby and Creaser, 2001a). However, there is a relatively large
gap between the molybdenite Re–Os and zircon U–Pb ages that outline
the timing of mineralization and intrusion, respectively. This is despite
the presence of spatial relationships between hydrothermal alteration
and the intrusion (Fig. 4) and paragenetic relationships betweenminer-
alization, alteration, and the intrusion (Fig. 5), both ofwhich provide ev-
idence of a genetic relationship between mineralization and the
emplacement of the porphyritic granodiorite in the study area. This sug-
gests that other approaches to constraining the relative timing of events
and geochronological relationships are needed in this area. This would
also be important in areas containing complexly zoned plutons with
multiple intrusive phases that are not clearly linkedwithmineralization
or in areas with distal skarn mineralization that has no clear spatial re-
lationship to a pluton. Both of thesemore complex situationsmean that
any overlapping uncertainties relating to Re–Os and U–Pb ages would
make it impossible to determine if a genetic relationship exists between
mineralization and intrusive events and/or determine whether an area
records a single or multiple phase of magmato-hydrothermal activity.
Some research has also suggested that the Re–Os dating of molybdenite
yields ages that are often older than the results of U–Pb dating (Chen
et al., 2015; Zhang et al., 2015; Gao et al., 2017;Mao et al., 2017), adding
further uncertainty to the determination of genetic relationships be-
tween mineralization and intrusive events. All of this suggests that fur-
ther geochronological data are needed to identify genetic relationships
in situations more complex than those present within the study area.
Here, we present alternative approaches to dating the timing of skarn
formation and intrusion that although confirming the relationships
within the study area also provide a template for approaches to deter-
mine timing relationships within more complex systems.

Table 3
Andradite garnet U–Pb isotopic data for the Magushan deposit.

Spots 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U Pb Th U

Ratio ±1σ Ratio ±1σ Ratio ±1σ Age (Ma) ±1σ ppm ppm ppm

MGS-GRT-1 0.17824 0.02436 0.02123 0.00074 0.06918 0.01639 135.4 4.7 0.24 0.007 5.6
MGS-GRT-2 0.12612 0.02993 0.02036 0.00090 0.05104 0.01743 129.9 5.7 1.32 0.013 4.3
MGS-GRT-3 0.14573 0.02310 0.02089 0.00083 0.05747 0.01446 133.3 5.2 0.17 0.019 5.0
MGS-GRT-4 0.11350 0.01719 0.02046 0.00061 0.04570 0.00820 130.6 3.8 0.82 0.078 9.6
MGS-GRT-5 0.15596 0.01232 0.02041 0.00041 0.06295 0.00528 130.3 2.6 2.15 0.021 24.0
MGS-GRT-6 0.12987 0.01484 0.02028 0.00054 0.05277 0.00709 129.4 3.4 1.27 0.002 10.6
MGS-GRT-7 0.13288 0.03074 0.01978 0.00081 0.05536 0.03005 126.2 5.1 2.20 0.032 4.5
MGS-GRT-8 0.11707 0.01425 0.02081 0.00059 0.04636 0.00685 132.7 3.7 1.36 0.008 9.6
MGS-GRT-9 0.13836 0.01039 0.02169 0.00045 0.05256 0.00437 138.3 2.9 0.84 0.107 29.2
MGS-GRT-10 0.11733 0.01392 0.02171 0.00059 0.04452 0.00579 138.5 3.7 1.23 0.010 13.5
MGS-GRT-11 0.22683 0.06629 0.02419 0.00137 0.07725 0.03551 154.1 8.6 0.76 0.003 2.3
MGS-GRT-12 0.18368 0.01424 0.02172 0.00068 0.06968 0.00768 138.5 4.3 0.54 0.206 9.6
MGS-GRT-13 0.16605 0.11801 0.02383 0.00210 0.05741 0.03795 151.8 13.2 1.38 0.019 1.4
MGS-GRT-14 0.13104 0.01795 0.02148 0.00066 0.05025 0.00855 137.0 4.2 2.23 0.421 8.6
MGS-GRT-15 0.43949 0.10226 0.02550 0.00125 0.14195 0.02381 162.3 7.9 2.31 0.011 3.2
MGS-GRT-16 0.28483 0.05173 0.02280 0.00099 0.10293 0.02121 145.3 6.2 1.80 0.009 3.6
MGS-GRT-17 0.13210 0.01505 0.02209 0.00067 0.04925 0.01073 140.9 4.2 0.96 0.626 8.8
MGS-GRT-18 0.11493 0.02242 0.02085 0.00074 0.04541 0.01123 133.0 4.7 1.54 0.061 7.1
MGS-GRT-19 0.14354 0.01200 0.02204 0.00049 0.05364 0.00508 140.5 3.1 1.76 0.210 30.0
MGS-GRT-20 0.34613 0.09117 0.02353 0.00100 0.12116 0.02234 149.9 6.3 2.05 0.021 4.6
MGS-GRT-21 0.14628 0.01827 0.02316 0.00094 0.05204 0.01946 147.6 5.9 0.32 0.025 5.4
MGS-GRT-22 0.16239 0.01441 0.02219 0.00051 0.06029 0.00632 141.5 3.2 0.29 0.711 43.6
MGS-GRT-23 0.11775 0.01759 0.02315 0.00079 0.04191 0.01003 147.5 5.0 1.96 0.038 5.8
MGS-GRT-24 0.28776 0.04240 0.02339 0.00086 0.10135 0.01534 149.0 5.4 1.23 0.065 7.9
MGS-GRT-25 0.15281 0.01178 0.02096 0.00044 0.06007 0.00569 133.7 2.8 1.36 1.274 23.6
MGS-GRT-26 0.13774 0.00870 0.02050 0.00035 0.05534 0.00395 130.8 2.2 1.08 1.169 47.3
MGS-GRT-27 0.17278 0.01632 0.02048 0.00061 0.06951 0.00845 130.7 3.8 0.56 0.091 8.1
MGS-GRT-28 0.16002 0.02172 0.02159 0.00074 0.06106 0.01228 137.7 4.7 1.53 0.043 6.5
MGS-GRT-29 0.13283 0.00806 0.02016 0.00032 0.05428 0.00338 128.7 2.0 0.57 0.029 67.7
MGS-GRT-30 0.15240 0.01674 0.02055 0.00055 0.06109 0.00813 131.1 3.5 0.64 0.048 14.1
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5.2. Other approaches to determine the timing of intrusion and
mineralization

This section discusses the new andradite garnet and titanite U–Pb
dating undertaken during this study and uses these data to further con-
strain the timing of magmatism and mineralization within the
study area.

5.2.1. Timing of intrusion
Titanite U–Pb dating has beenwidely used to constrain the timing of

magmatic, hydrothermal, and metamorphic events (Frost et al., 2000;
Aleinikoff et al., 2002, 2007; Storey et al., 2006, 2007; Kennedy et al.,
2010; Li et al., 2010). However, titanite also typically contains significant
amounts of common Pb (Storey et al., 2006, 2007), meaning that the
lower intercept age on a Tera–Wasserburg Concordia diagram is gener-
ally used to constrain the timing of titanite formation as this intercept
does not require a common Pb correction (Tera and Wasserburg,
1972; Aleinikoff et al., 2002; Sun et al., 2012). It is also important to
use a matrix-matched external standard for the correction of titanite
U–Pb data as using other standards (e.g., a 91500 standard zircon)
would almost inevitably yield younger apparent ages (Sun et al.,
2012). Our analyses used the OLT-1 titanite standard recommended
by Kennedy et al. (2010) for the external standardization of titanite
LA–ICP–MS U–Pb data, with the BLR-1 titanite standard used as a mon-
itor during routine analysis. We also employed well-established zircon
U–Pb dating procedures for our titanite analyses as these approaches
are known to be reliable. All of this means that the titanite LA–ICP–MS

U–Pb data obtained during this study should be considered reliable
and a precise indicator of the timing of magmatism in the study area.

The titanite analyzed during this study was obtained from fresh
samples of the intrusion associated with the Magushan deposit, where
titanite is present as an accessory mineral within the porphyritic grano-
diorite (Fig. 7). This means that the U–Pb age of the titanite analyzed
during this study represents the timing of the formation of this intru-
sion. The titanite yielded a well-defined lower-intercept age of 136.3
± 2.5 Ma (Fig. 10a) that is within the uncertainty of the zircon U–Pb
age for this intrusion. This indicates that the previously obtained zircon
U–Pb age for this intrusion is reliable and that the titanite age also doc-
uments the timing of the formation of this intrusion.

5.2.2. Timing of mineralization
Garnet contains variable concentrations of U but negligible common

Pb and has a high closure temperature for the U–Pb isotope system
(>850 °C; Mezger et al., 1989), all of which means it is an ideal
geochronometer for the dating of high temperature metamorphism,
metasomatism, or hydrothermal activity (Burton and O'Nions, 1992;
Vance and Holland, 1993; Burton et al., 1995; Jung and Mezger, 2003).
However, the garnet that forms in magmato-hydrothermal environ-
ments typically contains a variety of mineral inclusions and therefore
may not be ideally suited for U–Pb dating. This issue can be resolved
by the use of in situ analytical techniques such as secondary ion mass
spectrometry or LA–ICP–MS. The latter enables the simultaneous analy-
sis of both U and Pb isotopes and trace element concentrations (Liu
et al., 2010a) but can also be used to remove any effects caused by the

Table 4
Results of the analysis of the titanite and garnet standards used during the U–Pb dating undertaken in this study.

Mineral Standard and spot number 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U

Ratio ±1σ Ratio ±1σ Ratio ±1σ Age (Ma) ±1σ Age (Ma) ±1σ

Titanite BLR-1std-1 1.80600 0.02999 0.17562 0.00194 0.07465 0.00123 1047.6 10.9 1043.0 10.6
BLR-1std-2 1.80380 0.02717 0.17694 0.00177 0.07387 0.00109 1046.8 9.9 1050.2 9.7
BLR-1std-3 1.84193 0.02767 0.17669 0.00173 0.07567 0.00116 1060.6 9.9 1048.9 9.5
BLR-1std-4 1.76787 0.02631 0.17587 0.00187 0.07284 0.00098 1033.7 9.7 1044.3 10.3
BLR-1std-5 1.78227 0.02636 0.17470 0.00164 0.07411 0.00107 1039.0 9.6 1038.0 9.0
BLR-1std-6 1.82753 0.03180 0.17786 0.00189 0.07441 0.00111 1055.4 11.4 1055.3 10.3
BLR-1std-7 1.80645 0.02590 0.17789 0.00166 0.07367 0.00103 1047.8 9.4 1055.4 9.1
BLR-1std-8 1.80335 0.02703 0.17467 0.00165 0.07484 0.00109 1046.7 9.8 1037.8 9.1
GSE-1G-1 24.84925 1.15712 0.27452 0.00872 0.65576 0.02996 3302.3 45.5 1563.7 44.1
GSE-1G-2 25.47003 0.26902 0.27685 0.00256 0.66605 0.00597 3326.4 10.6 1575.5 12.9
GSE-1G-3 24.95983 0.25856 0.26976 0.00239 0.67085 0.00597 3306.6 10.4 1539.6 12.2
GSE-1G-4 25.56633 0.30209 0.27276 0.00275 0.68001 0.00765 3330.1 11.8 1554.8 13.9
OLT-1-1 1.72688 0.03835 0.16894 0.00409 0.07377 0.00125 1018.6 14.3 1006.3 22.6
OLT-1-2 1.75218 0.03610 0.17149 0.00403 0.07371 0.00128 1028.0 13.3 1020.3 22.2
OLT-1-3 1.71370 0.03620 0.16791 0.00453 0.07427 0.00147 1013.7 13.6 1000.6 25.0
OLT-1-4 1.73175 0.04889 0.17537 0.00484 0.07114 0.00131 1020.4 18.2 1041.6 26.6
OLT-1-5 1.78247 0.06244 0.17149 0.00610 0.07502 0.00172 1039.1 22.8 1020.3 33.6
OLT-1-6 1.73714 0.03697 0.16866 0.00383 0.07441 0.00119 1022.4 13.7 1004.7 21.2
OLT-1-7 1.75033 0.03815 0.17274 0.00406 0.07315 0.00102 1027.3 14.1 1027.2 22.3
OLT-1-8 1.72264 0.03166 0.16742 0.00346 0.07437 0.00106 1017.0 11.8 997.9 19.1

Garnet GSE-1G-1 27.99784 1.48401 0.27123 0.00413 0.85047 0.04315 3419.0 52.0 1547.0 20.9
GSE-1G-2 20.52502 0.92206 0.27090 0.00416 0.62354 0.02631 3116.4 43.5 1545.4 21.1
GSE-1G-3 18.79892 0.91795 0.26935 0.00447 0.57500 0.02793 3031.6 47.1 1537.5 22.7
GSE-1G-4 27.12701 1.02189 0.27324 0.00350 0.81810 0.03127 3388.1 37.0 1557.2 17.8
OH-1-1 1.79484 0.17792 0.16778 0.00724 0.08813 0.02327 1043.6 64.6 999.8 40.0
OH-1-2 1.80996 0.27047 0.16051 0.00680 0.09290 0.01347 1049.1 97.7 959.6 37.8
OH-1-3 1.84827 0.27531 0.17151 0.00698 0.08878 0.01396 1062.8 98.1 1020.4 38.4
OH-1-4 1.22352 0.20219 0.16349 0.00860 0.06165 0.01054 811.4 92.3 976.2 47.7
OH-1-5 1.29214 0.17446 0.17388 0.00804 0.06120 0.00850 842.2 77.3 1033.4 44.2
OH-1-6 1.54838 0.25329 0.17544 0.00869 0.07266 0.01245 949.8 100.9 1042.0 47.6
OH-1-7 1.72162 0.26663 0.16912 0.00809 0.08388 0.01632 1016.6 99.5 1007.3 44.6
zk803–97A-1 0.36211 0.02586 0.02226 0.00047 0.13400 0.01023 145.7 12.9 137.7 3.2
zk803–97A-2 0.15425 0.01466 0.02159 0.00050 0.05887 0.00622 140.0 8.5 139.9 2.3
zk803–97A-3 0.28682 0.03235 0.02266 0.00089 0.10427 0.02334 140.0 9.5 139.9 3.1
zk803–97A-4 0.21417 0.02040 0.02255 0.00066 0.07825 0.00892 122.7 8.2 139.7 2.9
zk803–97A-5 0.14788 0.00965 0.02194 0.00037 0.05553 0.00367 140.0 10.4 139.9 2.9
zk803–97A-6 0.12850 0.00916 0.02191 0.00045 0.04834 0.00383 140.0 15.2 139.9 4.5
zk803–97A-7 0.16726 0.01184 0.02197 0.00046 0.06272 0.00532 140.0 8.1 139.9 2.6
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presence of mineral inclusions by targeting inclusion-free areas of gar-
net, allowing high-quality data acquisition (Deng et al., 2017).

The analysis undertakenduring this study yielded awell-defined an-
dradite garnet U–Pb lower intercept age of 135.9 ± 2.7 Ma (Fig. 10b).
This age is within uncertainty of the zircon and titanite U–Pb ages for
the intrusion within the study area as well as within uncertainty of
the molybdenite Re–Os age for the mineralization in this area. This
strongly suggests that the formation of the exoskarn andradite garnet
in this area is temporally associatedwith the intrusion of the porphyritic
granodiorite. The fact that the timing of exoskarn formation is consis-
tent with the molybdenite Re–Os age obtained for the deposit also sug-
gests that both high temperature skarn and lower temperature
mineralizing events in this region were associated with the emplace-
ment of the porphyritic granodiorite (given the different closure tem-
peratures for the garnet U–Pb and molybdenite Re–Os systems). These
results strongly suggest that themineralization in the study area formed
during a single phase of magmatic and mineralizing activity as well as
supporting the reliability of the molybdenite Re–Os age presented in
this study. This conclusion is also consistent with the close spatial
(and also likely genetic) relationship between intrusions, orebodies,
and alteration in the study area (Figs. 3–5),which is also free of other in-
trusions and hydrothermal activity.

5.3. Geological significance

5.3.1. Timing of mineralization
The new titanite U–Pb, andradite garnet U–Pb, andmolybdenite Re–

Os ages presented in this study combined with the previous published
zircon U–Pb age for the intrusion in the study area all suggest that the
Magushan deposit formed around 136 Ma. The consistency of these
ageswithin uncertainty also suggests that there is a genetic relationship
between the intrusion of the porphyritic granodiorite in this area and
the formation of the deposit. This indicates that the Magushan deposit
formed as a result of a single phase of magmatic activity associated
with a single phase of magmato-hydrothermal activity ranging from
high-temperature skarn to lower temperature mineralization.

Previous research suggests that magmatism and mineralization in
the MLYRMB (except the Ningzhen district) can be split into three
main phases (Sun et al., 2003; Mao et al., 2006; Xie et al., 2008, 2011,
2012; Xu et al., 2008; Li et al., 2009, 2019c, 2020a; Yuan et al., 2010;
Wang et al., 2015; Liu et al., 2016; Jiang et al., 2017; Zhou et al., 2017).
The three phases are (1) 146–135 Ma magmatism in fault-controlled
uplifted areas, which is associated with porphyry–skarn Cu–Au de-
posits; (2) 135–126 Ma magmatism in fault-controlled depressions,
which is associated with skarn- and Kiruna-type Fe-oxide apatite de-
posits, and (3) 126–123 Ma A-type granites within both uplifted areas
and depressions that are associated with gold and uraniummineraliza-
tion. The new data presented in this study provides the first evidence of
the timing of the formation of the mineral deposits within the
Xuancheng ore district. Previous research reported the ages of
mineralization-related intrusive rocks whereas this study directly
dated the timing of formation of both mineralization (molybdenite
Re–Os) and skarn (andradite garnet U–Pb) in this area (Jiang et al.,
2017; Li et al., 2019c, 2020a). These new data provide further evidence
of the links between Early Cretaceous magmatism and mineralization
within the Xuancheng ore district and the surrounding region. The
timing of mineralization documented within this study is also consis-
tent with the timing of the main metallogenic stage of the MLYRMB
(Fig. 11), suggesting that the deposits within the Xuancheng ore district
formed at the same time as depositswithin other districts in this region.
This suggests that the deposits within the Xuancheng ore district most
likely formed as a result of the same magmatic and mineralizing pro-
cesses that occurred within other ore districts in the MLYRMB, poten-
tially involving the same sources of magmas and metals and with
magmas that underwent the same processes as those associated with
ore deposits elsewhere in this region. All of this suggests that the

under-explored Xuancheng ore district may be as prospective as the
other more mature ore districts within the MLYRMB, and the similari-
ties between these districts mean that exploration techniques used suc-
cessfully in these other areas may also prove fruitful within the
Xuancheng district. This exploration should also focus on the identifica-
tion of, and exploration around, areas containing Early Cretaceous intru-
sive rocks given the genetic relationships between this magmatism and
themineralizationwithin this region outlined both here and during pre-
vious research.

5.3.2. Molybdenite Re contents and origin of ore metals
Molybdenite rhenium and osmium data can not only provide evi-

dence of the timing of mineralization using Re–Os isotopic approaches
but can also be used to provide evidence of the sourcing of rhenium
and by inference other metals within ore deposits (Suzuki et al.,
1996). Rhenium concentrations in molybdenite decrease progressively
from deposits containing Re (and potentially other metals) derived
from the mantle (>100 ppm Re in molybdenite) to those containing
metals derived from mixed mantle–crustal sources (tens of ppm of Re
in molybdenite) to those containing metals derived from the crust
only (<10 ppm Re in molybdenite; Mao et al., 1999). Stein et al.
(2001) also suggested that molybdenite from deposits containing
metals derived from the mantle generally contain more Re than de-
posits containing metals derived from the crust, with molybdenite con-
taining very low concentrations of Re (<20 ppm) typically having a
metamorphic origin (Stein, 2006).

The molybdenite within the Magushan Cu–Mo skarn deposit con-
tains 21.6–89.7 ppm Re (average of 60.7 ppm; Table 1), suggesting
that the deposit contains metals derived from mixed crust–mantle
sources. This is consistent with the results of previous research
(Li et al., 2020a) into the sourcing and evolution of the mineralization-
associated porphyritic granodiorite in this area. This intrusion formed
from magmas derived from an enriched region of the lithospheric

Fig. 11.Histogram showing the timing of formation ofmagmatic rocks andmineralization
within theMLYRMB (data from this study and Sun et al., 2003; Mao et al., 2006; Xie et al.,
2008, 2011, 2012; Xu et al., 2008; Li et al., 2009, 2019c, 2020a; Yuan et al., 2010; Wang
et al., 2015; Liu et al., 2016; Jiang et al., 2017; Zhou et al., 2017).
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mantle that both assimilated upper crustal material and underwent
fractional crystallization prior to emplacement, again supporting a link
between the magmatism and mineralization within the study area.

5.3.3. The viability and utility of titanite and garnet dating
Recent research (Deng et al., 2017; Seman et al., 2017; Gevedon

et al., 2018; Li et al., 2018; Wafforn et al., 2018; Zhang et al., 2018) indi-
cates that garnet U–Pb dating can provide robust constraints on the
timing of carbonatite and alkaline magmatism as well as skarn forma-
tion. All of these previous studies provide evidence of the reliability of
the U–Pb dating of garnet, a finding that is supported by the data pre-
sented in this study.

The direct dating of economic mineralization is essential for estab-
lishing robust genetic relationships between magmatic and mineraliz-
ing, tectonic, and other events as well as for the further refinement of
ore deposit models and to further our understanding of the tectonic
controls on ore deposit formation within in large metallogenic prov-
inces. Of the currently available radiometric dating methods, the Re–
Os method is the only method routinely used to directly date sulfides
(Stein et al., 1997, 2001; Selby and Creaser, 2001a; Selby et al., 2002;
Ootes et al., 2011; Saintilan et al., 2017a, 2017b, 2018). However, not
all mineral deposits contain molybdenite, thus limiting the possible
uses of this approach. In addition, the Re–Os dating of other types of sul-
fides (e.g., pyrite) sometimes yields poor results (Barra et al., 2003; Ying
et al., 2014). All of these cases could be supplemented by additional gar-
net U–Pb dating. Garnet is a common and often voluminous minerals
within skarns and is among the earliest mineral to crystallize during
skarn formation,meaning that garnet crystallization can accurately cap-
ture the timing of the onset of hydrothermal activity (Gevedon et al.,
2018) but the low concentrations of U (typically <1 ppm) present in
garnet can limit the possible use of garnet U–Pb dating (DeWolf et al.,
1996). However, andradite-rich garnet and andradite-rich zones within
grossular garnet are both common within the majority of skarns
(Meinert et al., 2005) and have the ability to accommodate U as a result
of suspected coupled substitutions involving Fe3+ (DeWolf et al., 1996;
Smith et al., 2004; Guo et al., 2016). This yields a generally positive cor-
relation between increasing mol% andradite values and U concentra-
tion, indicating that many skarns are likely to contain garnet with high
U concentrations that are suitable for U–Pb analysis. In addition, the
timing of skarn formation can be used to examine relationships be-
tween skarn mineralization and intrusion in cases involving systems
with ambiguous (i.e. multiple possible intrusions) or unknown (i.e. a
lack of clear spatial relationships) causative plutons (Gevedon et al.,
2018). Garnet U–Pb ages can also be used to provide evidence of multi-
ple stages of magmatism or magmato-hydrothermal activity and could
be used to definitively link skarn formation with a distinct phase of
magmatism. The closure temperature of the U–Pb system for a 0.5 cm
diameter garnet is estimated to exceed 800 °C although no specific esti-
mates for the closure temperature of grossular–andradite garnet have
been determined to date (Mezger et al., 1989; Burton et al., 1995;
DeWolf et al., 1996). However, skarns typically form at temperatures
of 350–650 °C (Bowman, 1998), well below the U–Pb closure tempera-
ture of garnet. The low temperature of the formation of garnet in skarn
systems combinedwith these high U–Pb closure temperatures suggests
that diffusion is unlikely to affect the results of theU–Pbdating of andra-
dite. This also means that garnet ages can be used to identify multiple
phases of skarn formation, as early-formed garnet is unlikely to have
their ages reset by latermineralizing events. The trace and rare earth el-
ement (REE) concentrations of garnet also provide key information on
both skarn formation and the evolution of hydrothermal fluids within
skarn systems (e.g., Li et al., 2020b in review).

Titanite U–Pb dating has also been widely used to constrain the
timing of magmatic, hydrothermal, and metamorphic events (Frost
et al., 2000; Aleinikoff et al., 2002, 2007; Storey et al., 2006, 2007;
Kennedy et al., 2010; Li et al., 2010). Titanite is a common accessory
mineral in numerous igneous rocks but contains high concentrations

of commonPb,meaning thatmatrix-matched external standards are es-
sential to correct for this and ensure that accurate and precise ages are
obtained. In contrast, the zircon U–Pb dating method is relatively sim-
ple, one of the reasons it is commonly used for the dating of igneous
rocks. This means that titanite U–Pb dating is ideally suited for use in
constraining the timing of hydrothermal or mineralizing events rather
than determining the age of igneous rocks. This is consistent with the
results of previous research (Wanhainen et al., 2005; Li et al., 2010;
Deng et al., 2015; Hu et al., 2017; Song et al., 2019) that confirmed the
viability of hydrothermal titanite U–Pb dating in determining the timing
of hydrothermal activity or mineralization in a range of different areas.
The U–Pb dating of titanite by LA–ICP–MS can also simultaneously
yield trace and REE concentrations. These data can provide evidence of
not just the timing of mineralization but also the evolution of
magmato-hydrothermal systems, as evidenced by the research of Xiao
et al. (2020) on the Dongguashan porphyry-skarn copper‑gold deposit
in China.

In summary, garnet and titanite datingmethods not only provide re-
liable geochronological data but also allow further insights into the evo-
lution of hydrothermal and mineralizing systems. These methods may
provide the only possible approach to dating a mineralized system
that is free of other dateable minerals (e.g., molybdenite) or where the
relationship between mineralization and magmatism is unclear. This
may be the case in areas with multiple stages of magmatism, within
areas containing complexly zoned plutons, or in areas with distal
skarn mineralization that has no clear spatial relationship to a pluton.

6. Conclusions

(1) Samples from the Magushan deposit yielded a molybdenite Re–
Os age of 137.7 ± 2.5 Ma, an andradite garnet U–Pb age of
135.9 ± 2.7 Ma, and a titanite (accessory mineral within the as-
sociated porphyritic granodiorite) U–Pb age of 136.2 ± 2.5 Ma.
These data suggest that the deposit formed around 136 Ma.

(2) The Magushan deposit is associated with a single stage of
magmatism and associated magmatic-hydrothermal activity,
with the formation of the deposit genetically related to the intru-
sion of the porphyritic granodiorite in this area.

(3) The molybdenite within the deposit has Re contents that are in-
dicative of the sourcing of metals from a mixed mantle-crustal
source. This is consistent with the sourcing of the magma that
formed the porphyritic granodiorite, which was derived from
an enriched region of the lithospheric mantle but assimilated
upper crustal material prior to emplacement.

(4) This study provides thefirst evidence of the timing ofmineraliza-
tion within the Xuancheng ore district of the MLYRMB. These
data highlight the prospectivity of this ore district for futuremin-
eral exploration and suggests that the Early Cretaceous intrusive
rocks in this region should be considered high priority targets for
the exploration of skarn-type mineralization.

(5) The U–Pb dating of garnet and titanite can provide reliable geo-
chronological data for constraining the timing of mineralization
in areas that lack other dateable minerals (e.g., molybdenite) or
where the links betweenmineralization andmagmatism are un-
clear including areas with multiple stages of magmatism, within
areas containing complexly zoned plutons, or in areas with distal
skarn mineralization that has no clear spatial relationship to a
pluton.
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