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1. Introduction
The shallow portions of fault zones accommodate the up-dip propagation of earthquake ruptures 
(Scholz, 2002). Forecasting earthquake hazards requires knowledge of slip distribution and the mechanical 
behavior of the shallow crust (Field et al., 2013; Nevitt et al., 2020; Petersen et al., 2015). Models for fault 
strength and predictions of rate-dependent frictional behavior with depth often depict the upper 3 km as an 
unconsolidated gouge or a voluminous bedrock zone(s) undergoing distributed deformation (e.g., Fagereng 
& Toy, 2011; Klinger et al., 2018; Sibson, 1983). Geodetic measurements indicate that a seismic slip deficit 
in the shallow crust may be explained by compliant zones of reduced elastic stiffness (Barbot et al., 2008) 
or elastoplasticity in off-fault damage zones (Kaneko & Fialko, 2011; Roten et al., 2017). However, fault 
growth, evolution, and structural maturity cause localization of on-fault deformation rather than creation 
of off-fault damage (Dolan & Haravitch, 2014). Paleoseismic trenches (Rockwell & Ben-Zion, 2007) and 
exhumed bedrock fault surfaces indicate deformation is localized even in the shallowest crust, and that 
structures are reactivated during recurring seismic events.

Abstract The material properties and distribution of faults above the seismogenic zone promote 
or inhibit earthquake rupture propagation. We document the depths and mechanics of fault slip along 
the seismically active Hurricane fault, UT, with scanning and transmission electron microscopy and 
hematite (U-Th)/He thermochronometry. Hematite occurs as mm-scale, striated patches on a >10 m2 
thin, mirror-like silica fault surface. Hematite textures include bulbous aggregates and cataclasite, overlain 
by crystalline Fe-oxide nanorods and an amorphous silica layer at the slip interface. Textures reflect 
mechanical, fluid, and heat-assisted amorphization of hematite and silica-rich host rock that weaken the 
fault and promote rupture propagation. Hematite (U-Th)/He dates document episodes of mineralization 
and fault slip between 0.65 and 0.36 Ma at ∼300 m depth. Data illustrate that some earthquake ruptures 
repeatedly propagate along localized slip surfaces in the shallow crust and provide structural and material 
property constraints for in models of fault slip.

Plain Language Summary Earthquake ruptures can travel to the Earth's surface along 
discrete, large faults, or earthquake energy may be consumed in the shallow crust by the creation of small 
fault networks and fractured rock, which may reduce ground shaking intensity. Estimating earthquake 
hazards requires knowledge of subsurface material properties and how they change to promote or inhibit 
localized faulting. We investigate the Hurricane fault, UT, part of the Intermountain Seismic Belt or a 
north–south trending zone of recorded seismicity in the western US, which has the potential for large 
earthquakes (up to magnitude 7). We target hematite, an iron-oxide mineral, on a mirror-like, silica fault 
surface with microscopy and radiometric dating to document textural changes and the timing and depth 
of past fault slip. Nanoscale textures indicate the physical breakdown of hematite and surrounding rock, 
followed by the growth of new hematite and solidification of a silica surface layer, during an earthquake. 
Radioisotopic analyses capture hematite mineralization and fault slip 0.65–0.36 million years ago at 
shallow depths (∼300 m). In this example, the combination of mechanical and hydrothermal processes 
weaken fault materials, leading to repeated propagation of earthquake ruptures toward the surface along a 
discrete fault.
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Above the seismogenic zone (<3 km), frictional and fluid-mediated processes influence local temperatures, 
stress, and mechanical properties leading to slip (de)localization along faults (Brantut & Platt, 2017; Hirono 
et al., 2013). Secondary mineral textures on slip surfaces track mechanochemical transformations that pro-
mote earthquake rupture propagation or energy dissipation via plastic deformation or creation of off-fault 
damage. Hematite, a common mineral associated with faults, exhibits textures that reflect the conditions of 
mineralization, related deformation rates, and micro- to nanoscale deformation mechanisms (e.g., McDer-
mott et al., 2017, 2021; Moser et al., 2017). Hematite (U-Th)/He (hematite He) thermochronometry, when 
combined with textural observations, constrains the temperatures, rates, timing, and, importantly, depths 
of fault slip (Ault, 2020).

We investigate an exhumed >10 m2 mirror-like, silica-rich bedrock fault surface of the seismogenic Hurri-
cane fault zone, UT (Figure 1a). This fault extends >1 km along strike and locally preserves raised, light-re-
flective, and striated hematite patches, which we target for scanning and transmission electron microscopy 
(SEM, TEM) and texture-targeted hematite He thermochronometry. We document textures that reflect the 
role of comminution, fluids, and heat during seismic slip. Hematite He thermochronometry pinpoints the 
timing and brackets the depth at which these textures form. Our results indicate this fault surface developed 
in the shallow (∼300 m depth) crust likely during the updip propagation of earthquake ruptures.

Figure 1. (a) Digital elevation model with the Hurricane fault and 1930–2020 earthquake catalog; blue circles scaled 
to earthquake magnitude. White star denotes study area. (b) Simplified geologic map modified from Biek (2003). White 
box is (c–e) location. (c–d) Field photographs of targeted, mirrored fault surface; (e) hematite patches.
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2. Hurricane Fault
The Hurricane fault is a N–S trending, 250 km-long, west-dipping normal fault; delineates the eastern 
boundary of the transition zone between the Colorado Plateau and Basin and Range tectonic provinc-
es; and is part of the southern Intermountain Seismic Belt (Figure 1a; Arabasz & Julander, 1986; Smith 
et al., 1991). The Hurricane fault has six segments with independent rupture histories (Biek et al., 2010; 
Lund et al., 2007; Stewart & Taylor, 1996). The fault displaces Paleozoic and Mesozoic rocks, and Quaternary 
basalt flows, with net slip estimates of ∼600–2,250 m (Biek, 2003; Lund et al., 2007; Stewart & Taylor, 1996). 
Slip on the Hurricane fault occurred since the late Miocene, concurrent with Basin and Range extension 
(Stewart & Taylor, 1996). Offset Quaternary basalt flows yield average slip rates of 0.21–0.57 mm/yr (An-
derson & Mehnert, 1976; Lund et al., 2007). The fault accommodated at least 20 earthquakes >M 4 over the 
past century (Christenson & Nava, 1992), including the 1992 M 5.8 earthquake near St. George, UT (Stenner 
& Pearthree, 1999).

3. Hematite (U-Th)/He Thermochronometry From Fault Rocks
Hematite is common in the shallow portions of fault zones. It incorporates trace amounts of radiogenic U 
and Th and negligible 4He during mineralization, making it amenable to (U-Th)/He thermochronometry 
(Farley & Flowers, 2012; Strutt, 1909; Wernicke & Lippolt, 1993). Individual hematite grains are the diffu-
sion domain and polycrystalline aggregates, typical of fault rocks, exhibit poly-domain He diffusion behav-
ior (Evenson et al., 2014; Farley, 2018; Farley & Flowers, 2012; Jensen et al., 2018). The hematite He closure 
temperature (Tc) increases with domain (grain) size from ∼30 to 230°C (applying a 10°C/Ma cooling rate to 
∼1 nm-1 mm-thick plates; Farley, 2018).

Hematite He dates from fault rocks record various fault-related processes (Ault, 2020). These dates must 
be interpreted in the context of hematite morphology, deformation textures, grain-size distribution and 
thus Tc range, and post-formation thermal history. Depending on the ambient temperature conditions at 
which hematite forms or is deformed relative to the Tc, hematite may record mineralization (McDermott 
et al., 2021; Moser et al., 2017; Wu et al., 2019), cooling due to exhumation (Calzolari et al., 2018), or He loss 
associated with frictional heating and/or hydrothermal fluids (Ault et al., 2016; McDermott et al., 2017). 
Comminution or recrystallization during slip can modify the Tc, making an aliquot susceptible to He loss at 
lower temperatures (Ault et al., 2015).

4. Samples and Methods
Hematite samples are from a ∼10  m2 bedrock fault with a smooth, light-reflective surface that cuts the 
Rock Canyon Member of the Triassic Moenkopi Formation (Fm) (37°13' 23.44" N, 113°15' 29.88" W; Fig-
ures 1b–1e). The fault strikes ∼170°S with a near-vertical W dip and has dip-slip slickenlines, visible on the 
hematite patches. Semicontinuous mirrored exposures extend along-strike for ∼1.1 km in the Anderson 
junction segment (Figures 1b and 1d). We extracted three samples (HUR1/HUR2, HUR3, HUR4; Figure 1e) 
from separate hematite patches on the fault surface, and examined five plan view and 36 cross-sectional 
aliquots from them with a field emission-SEM. Back-scattered and secondary electron images character-
ize hematite nano- and microstructures, grain morphologies, and grain sizes. Sample HUR4 was dissected 
with a focused ion beam-SEM to produce a cross-sectional lamella for scanning/transmission electron mi-
croscopy (S/TEM). S/TEM analyses included bright-field, dark-field, and TEM imaging, nanoscale energy 
dispersive X-ray spectroscopy (EDS), and diffraction analysis. U, Th, and He contents of hematite aliquots 
from each sample were measured in two sessions. Sample preparation and all analytical methods (Text S1–
S4), as well as SEM (Figures  S1–S10) and S/TEM (Figures  S11–S14) image catalogs, are detailed in the 
Supporting Information S1.
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5. Results
5.1. Hematite Textures

Hematite occurs as elongate, <cm-scale, striated patches, raised 500 μm-1 mm above the surrounding slip 
surface (Figure 1e). Patches are spatially associated with mm-thick hematite veins oriented oblique to the 
slip surface (Figures 1e and 2). These patches overlie a host rock micro-breccia (∼5 cm-thick) with mm- to 
μm-diameter, angular chert and lesser limestone clasts (Figure 1e). Patches exhibit three textural domains 
broadly perpendicular to the slip surface and an outer <3 μm-thick “dual-layer” with distinct textural and 
compositional properties (Figures 2a and S7). Domain 1 hematite, observed >130 μm away from the sur-
face, comprises randomly oriented, high-aspect-ratio plates that are ∼40–150 nm-thick (Figures 2h and 2i; 
Table S1). Void spaces are preserved between clusters of densely stacked plates (Figures S1 and S8a–S8d). 
Domain 2, >60 μm from the surface, is characterized by dominantly subangular hematite fragments and 
broken plates that are ∼60–640 nm-thick (Figures 2f and 2g; Table S1).

Domain 3 occurs <60 μm from the slip surface (Figures 2d and 2e). Here, bulbous hematite aggregates have 
smooth, internally featureless lobes (∼140 nm–4 μm in diameter), which lack well-defined boundaries at 

Figure 2. (a) Schematic block diagram of hematite patch showing textural domains and dual-layer. (b–i) Scanning 
electron microscopy secondary electron images of sample HUR3 in cross-section (b), dual surface layer (c), and 
domains 3 (d and e), 2 (f and g), and 1 (h and i).

2 μm30 μm

1 μm5 μm

1 μm5 μm

D E

F

IH

fault surface
dual layer

do
m

ai
n 

3
do

m
ai

n 
2

do
m

ai
n 

1

G

A

5 μm

silica layerFe-oxide
layer

C

500 μm

B

hem
vein

hem lens

host
rock

fault surface

fault surface (?)

E

silica
layer Fe-oxide

layer

dual-layer

domain 1

domain 2

domain 3

ainainainainainaininininainainiainainainainnainainnnnnnnnnnnnnndomdomdomdomdomdomdomdomdomdomdomdomdomdomomdomdomdomdomdomdomdodomdomdood mdomdomdodommdddd

oooommmmmmmmmmm 22222222222mmmmmmmmmmmmaaaaaadodddoooodoood aaaaaaaaaaaaaaaaa nnnnnnooooooooooooooodddddddddddddddddd ainainaiainaiaiaiaiiaiaiiia nnnnnnnnnnnnnnoomomooomooomoooomommoomoomommmmmmmmmmmmmmmmmddddddddddddddddddddddd aaa 222222222222222dddddd

domdomdomdomdomdomdomdomdomdomdomdomdomdomdomdomdomdommdomdo ainainainainainainainainainainainainaaainainainainainamdomdomoomdomdoomommoomooom inainaiaiiaiaaddd addoooooooooooooooo



Geophysical Research Letters

TAYLOR ET AL.

10.1029/2021GL094379

5 of 11

the SEM-scale (Table S1). TEM, including fast Fourier transform patterns, revealed that some lobes com-
prise crystalline, radially oriented, high-aspect-ratio platelets that are ∼10 nm-wide and have six-fold coor-
dination consistent with hematite (Figures 3a and 3b). S/TEM EDS detected diffuse Si, local Al, and isolat-
ed, nm-scale zones enriched in Ti within this hematite (Figure S14). Local voids <5 μm from the surface 
contain crystalline Si phases and amorphous Mg-oxide (Figures 3a and S14). The presence, thickness, and 
development of hematite textural domains vary parallel and perpendicular to the slip surface and between 
patches.

5.2. Fault Surface Dual Layer

The hematite slip surfaces exhibit a ∼0.5–3 μm-thick surface layer that appears smooth and featureless at 
the SEM scale (Figure 2c). TEM imaging shows this layer has two components (“dual” layer; Figures 3a 
and 3c–3f). The basal layer is defined by elongate, densely packed Fe-oxide rods that are <4 nm in diameter 
with their long axis perpendicular to the slip surface (Figure 3c). Fe-oxide nanorods contain Mg, Ca, and K 
at the contact with an overlying ∼200 nm-thick silica layer (Figures 3g–3j). High-resolution TEM (Figure 3e) 
and diffraction patterns indicate the silica is amorphous. This silica has higher Al content than the basal 
Fe-oxide, contains Mg, and the uppermost portion is enriched in K and Ca (Figures 3h and 3j). It contains 
isolated Fe-oxide nanorods oriented with their long axis parallel to the fault surface (Figure 3f). The nature 

Figure 3. (a) Scanning/transmission electron microscopy (S/TEM) dark field image of HUR4 lamella; locations of (b–k) denoted. (b) High-resolution (HR) 
TEM and Fast Fourier Transform (FFT) images of domain 3. (c) S/TEM dark field images of basal Fe-oxide layer. (d) S/TEM bright field image and (e) HRTEM 
of upper silica layer; amorph. = amorphous, crys. = crystalline (f) Fe-oxide nanorods in silica layer in S/TEM bright field; inset: associated S/TEM EDS Fe map. 
(g–k) Co-located S/TEM EDS chemical maps of Si (g), Al (h), Mg (i), Ca and K (j), and Fe (k); white dashed line marks Fe-oxide-silica boundary.
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of the contact between the dual-layer and underlying hematite varies along the slip surface and between dif-
ferent hematite patches. For example, the contact is sharp in HUR3 where domain 2 underlies the dual layer 
and domain 3 is locally absent (e.g., Figure 2c) and is gradational above domain 3 within HUR4 (Figure 3c).

5.3. Hematite (U-Th)/He Data

We initially acquired 14 hematite He dates from sample HUR1/HUR2. Aliquots were not examined via 
SEM before (U-Th)/He analyses, but stereoscopic inspection and SEM-imaging of representative aliquots 
indicated dated material is dominantly domain 3 and some domain 2. Nine hematite He dates from this 
sample yield a mean of 0.39 ± 0.04 Ma (±1σ standard deviation; Figure 4a; Table S2). Individual dates range 
from 0.46 ± 0.04 Ma to 0.36 ± 0.10 Ma (date ± 2σ analytical uncertainty) with Th/U of 0.22–0.37. We report 
(Table S2) but do not consider further an additional five analyses because of likely U volatilization during 
degassing and possible secular disequilibrium (Text S4; Figure S15).

We subsequently used SEM to pre-screen aliquots prior to (U-Th)/He analysis to target each textural do-
main (cf. McDermott et al., 2017). Analyzed aliquots were small to ensure textural and mineralogical ho-
mogeneity, resulting in U and Th yields for some aliquots near the analytical resolution limit. A subset of 
aliquots experienced U volatilization during laser heating and some dates sit on the cusp of secular equi-
librium for the (U-Th)/He system (see discussion in Text S4; Table S2). All pre-screened hematite He dates 
(n = 15) are reported in Table S2 and here we discuss six robust individual hematite He dates from samples 
HUR1/HUR2 and HUR 3 (Figure 4a). An individual date from domain 1 in HUR1/HUR2 is 0.36 ± 0.02 Ma. 
Dates from domain 2 in HUR3 are 0.65 ± 0.06 Ma, 0.61 ± 0.05 Ma, 0.53 ± 0.08 Ma, and 0.50 ± 0.04 Ma, with 
a mean of 0.57 ± 0.07 Ma. The date from domain 3 in HUR3 is 0.41 ± 0.03 Ma. These aliquots have Th/U 
of 0.16–0.35.

6. Discussion
6.1. Textural Relationships and Interpretations

Hematite morphology and textural relationships inform the mechanical, fluid, and thermally mediated pro-
cesses operative during Hurricane fault slip. The spatial association between hematite patches and veins 
indicates a genetic relationship (Figure 2b). Domain 1 textures are consistent with shallow hydrothermal 
hematite precipitation (Figures 2h and 2i; cf. Ault et al., 2016). Angular hematite fragments in domain 2 
are generated by cataclasis of domain 1 material during slip. Discrete surfaces at the top and base of the 
hematite patches support, but do not require, at least two slip events (Figure 2b). Veins and patches cut and 

Figure 4. (a) Individual hematite (U-Th)/He dates with 2σ analytical uncertainties classified by texture. Inset: hematite 
block diagram with interpreted relationships between domains and dates. (b) Comparison of hematite He dates with 
local fault-related geochronology (Koger & Newell, 2020; Lund et al., 2007) and regional thermochronometry (Bidgoli 
et al., 2015; Flowers et al., 2007; Murray et al., 2019).
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overlie the host rock microbreccia indicating the fault surface was repeatedly reactivated with progressively 
localized deformation.

Domain 3 hematite textures and the dual surface layer comprise material that has been fully transformed 
by fault slip. Domain 3 hematite and the basal Fe-oxide layer are sourced from hematite in domains 1 and 
2. The bulbous domain 3 lobes grade into Fe-oxide nanorods that grew toward the slip surface (Figures 3a 
and 3c). The overlying amorphous silica with trace Al, Mg, Ca, and K (Figures 3e–3k) is likely sourced 
from the adjacent Rock Canyon Member underlying the patches and/or material on the opposing side of 
the fault. The Rock Canyon Member conglomerate contains chert and limestone clasts, and carbonate ce-
ment and veins. The preservation of amorphous silica at the slip surface and complete transformation of 
domain 3 hematite suggest this material was collectively amorphous. Al present within the amorphous 
silica implies it was hydrous (Figure 3h; Faber et al., 2014; Oehler, 1976). Individual nanorods suspended 
in the amorphous, hydrous silica (Figure 3f) originated from the underlying Fe-oxide layer, implying that 
solidification of amorphous silica occurred syn- to post-crystallization of Fe-oxide nanorods. Portions of 
the larger outcrop surface are mirror-like, suggesting extensive amorphous silica on the fault surface (Fig-
ures 1c and 1d).

We suggest the development of domains 2 and 3 textures, and the dual layer, involves (a) coseismic com-
minution of pre-existing hematite and conglomerate, (b) mechanical, fluid, and temperature assisted 
amorphization, and (c) rapid growth of sintered lobes and nanorods, and silica solidification in the syn- to 
post-seismic period. An increase in particle surface area during cataclasis promotes amorphization (Are-
tusini et al., 2017; Kaneki et al., 2020). Domain 2 provides a vestige of the comminution that facilitated this 
process. Amorphization may also be associated with fluid-mediated chemical reactions (Hirono et al., 2013) 
and frictional heating (Brantut et al., 2008; Hayward et al., 2016), but it does not require high temperatures 
(Pec et al., 2012; Yund et al., 1990).

Differences in textures between Hurricane fault hematite patches and previously documented hematite 
“fault mirrors” imply disparate temperatures and conditions during coseismic slip. Mirrors can exhibit tri-
ple-junction-forming (polygonal) grains that lack shape and crystallographic preferred orientation within 
∼50 μm of the slip surface (Ault et al., 2015, 2019; McDermott et al., 2017), analogous to textures observed in 
high-temperature experiments (T > 800°C; Siemes et al., 2003, 2011; Vallina et al., 2014). Locally mirrored 
zones comprising sintered nanoparticles created during high-velocity hematite deformation experiments 
yield >70% He loss during slip, consistent with transient temperature rise >800°C (Calzolari et al., 2020). 
We lack direct constraints on Hurricane fault slip temperatures but suggest they must be markedly lower 
than those achieved on hematite fault mirrors. Hydrothermal synthesis produces similarly sized hematite 
nanorods in minutes to hours at temperatures ∼100–200°C (Almeida et al., 2010; Tadic et al., 2019; Wheeler 
et al., 2012). As discussed below, our samples are at ∼300 m depth during slip, where normal stresses are 
low (∼6.5 MPa) and interstitial fluids are prevalent (Gleeson et al., 2016). Prior work supports the presence 
of shallow hydrothermal fluids in the Hurricane fault zone between ∼540 and 90 ka, overlapping our he-
matite He dates (Koger & Newell, 2020). Additionally, pore fluid vapourization during coseismic slip may 
enhance fluid pressurization, dampen temperature rise, and promote earthquake rupture propagation on 
thin slip surfaces like the Hurricane fault (Chen et al., 2017).

6.2. Timing and Depth of Fault Slip From Hematite (U-Th)/He Thermochronometry

Individual hematite He dates are ∼0.65–0.36 Ma. To interpret these results, we first compare hematite He 
dates and grain-size dependent Tc estimates with geologic and chronometric constraints on the ambient 
thermal history (cf. McDermott et al., 2021). We calculate Tc estimates from our oldest dates (domain 2) 
using the range of particle half-widths, diffusion kinetics of Farley (2018), and a 10°C/Ma cooling rate. Av-
erage half-widths are 60–640 nm, corresponding to Tc of ∼65–100°C, which broadly overlaps with data from 
the other domains (Table S3). This Tc range is similar to the apatite (U-Th)/He (apatite He) Tc, which is 
∼30–90°C (Flowers et al., 2009). There are no reported conventional low-temperature thermochronometry 
data from the Moenkopi Fm in the Hurricane fault footwall or from any units in the vicinity of our study area. 
However, apatite He and apatite fission track dates from across southern UT and northern AZ are all >4 Ma 
(Figure 4b; Bidgoli et al., 2015; Flowers et al., 2007; Murray et al., 2019). The most proximal apatite He dates 
from the Moenkopi Fm (∼120 km from our study area) are ∼5–77 Ma and radiation damage-He diffusivity 
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data patterns reflect limited burial (heating) followed by late Miocene cooling (Flowers et al., 2007). If our 
hematite formed at depth and hematite He dates track cooling due to regional erosion, then we would expect 
the hematite and apatite He dates to overlap, but they do not.

Offset Quaternary basalt flows along the Anderson Junction segment and Virgin River incision constrain 
the local erosion and footwall exhumation history. The closest basalt flow erupted 0.35 ± 0.05 Ma (date ± 2σ 
uncertainty; Sanchez, 1995) and is vertically offset across the Hurricane fault by 73 m. Older flows along 
this segment indicate ∼440 m of fault offset in the last ∼1.5 Ma (Lund et al., 2007). The calculated incision 
rate for the nearby Virgin River in the Hurricane fault footwall is 338 m/Ma (Walk et al., 2019), consistent 
with ∼220 m of incision since our oldest ∼0.65 Ma hematite He date. Fault offset and incision estimates 
indicate <300 m of total exhumation over the past ∼0.65 Ma, far lower than the required ∼2 km minerali-
zation depth if our hematite He dates reflected ambient cooling (using calculated Tc, 30°C/km geothermal 
gradient, 15°C mean surface temperature). These comparisons indicate that hematite He dates must record 
mineralization and/or some other faulting-specific process at ∼300 m depth.

Results from microtexturally pre-screened aliquots allow us to refine our hematite He data interpretations 
(Figure 4a). Hematite precipitated as plates preserved in domain 1, but the sole robust single-aliquot hema-
tite He date from this domain is younger than domain 2 dates (Figure 4a). Domain 1 contains void spaces 
that exceed the He stopping distance (∼14–16 μm), likely causing excess He loss and the anomalously young 
date (Huber et al., 2019; Huff et al., 2020). Domain 2 cataclastic hematite likely retained its He budget since 
formation because deformation experiments show that comminution during seismic slip does not induce 
substantial He loss (Calzolari et  al.,  2020). The ∼0.65–0.5  Ma domain 2 dates record the time of initial 
hematite precipitation in the coseismic or immediate post-seismic period (Nuriel et  al.,  2019; Williams 
et al., 2017).

Comminution, amorphization, and regrowth of new hematite (domain 3) occurred during a subsequent 
seismic slip event at ∼0.46–0.36 Ma. The sole domain 3 hematite He date (∼0.41 Ma) falls within the range 
of dates from HUR1/HUR2 aliquots (∼0.46–0.36  Ma) comprising dominantly domain 3 material (Fig-
ure 4a). Amorphization and transformation of domain 3 hematite yields complete He loss at that time. This 
requires that any thermal perturbation associated with fault slip is both highly localized at the slip surface 
and of low enough magnitude to not induce He loss in domains 2 and 1 hematite.

7. Implications for Shallow Earthquake Rupture Propagation
Our data capture episodes of seismic slip along the Anderson Junction segment of the Hurricane fault, 
broadly coeval with documented shallow earthquake-related deformation elsewhere along the fault (Fig-
ure  4b; Koger & Newell,  2020). Hematite He data patterns and erosion estimates require that hematite 
mineralization and seismic slip occurred at ∼300 m depth. Thus, observed textures reflect the up-dip prop-
agation of earthquake ruptures from the seismogenic zone. Although we cannot rule out distributed defor-
mation along other sub-parallel fault strands (Figure 1b) or the creation of off-fault damage during oth-
er earthquakes, some Pleistocene earthquakes were preferentially localized on this discrete fault surface. 
Paleoseismic investigations indicate segments of the Hurricane fault experienced multiple large magnitude 
earthquakes (M 6.4–7.3; Lund et al., 2007). Given the >1 km extent of this fault along strike (Figure 1b), it 
was likely repeatedly reactivated as ruptures propagated toward the surface from depth.

The Hurricane fault exposure detailed in this study provides a rare window into how the uppermost crust 
accommodates earthquake energy. Our data reveal that at ∼300 m depth, comminution and hydrothermal 
processes work constructively to transform fault materials even at the nanoscale to promote slip localiza-
tion and rupture propagation (cf. Hirono et al., 2013). The shallowest parts of some bedrock fault systems 
do not necessarily exhibit voluminous fault damage, but rather large m- to km-scale discrete slip surfaces 
that repeatedly distribute earthquake energy. Thus, the shallow crust hosts a diversity of structures and 
evolving mechanical properties that promote or inhibit rupture propagation. Integration of textural and 
thermochronometric data from shallowly exhumed faults with complementary data from deformation ex-
periments can provide direct observables such as fault zone width, coefficient of friction and constitutive 
behavior of fault materials, and spatial heterogeneities in these properties, which underpin geophysical 
models of fault slip and strong ground motion.
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Data Availability Statement
Data contained within the Supporting  Information  S1 is archived and freely available at https://doi.
org/10.6084/m9.figshare.15175476, and hematite He analyses are available at Geochron.org (http://www.
geochron.org/results.php?pkey=34293).
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