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A B S T R A C T

T h e  surface  k inetics  processes in th e  m olecu lar  b e a m  ep i tax y  (M B E ) grow th  of 

G a A s  (100) an d  th e  M B E  dop ing  kinetics are s tu d ied  theore tically , using a  s tochas­

tic  m ode l  which is based  on th e  m a s te r  equa tion  app roach  and  ra n d o m  d is tr ibu tion  

ap p ro x im a tio n .  T h e  k ine tic  processes included in th e  m odel are: adsorp tion , surface 

m ig ra t io n  and  evaporation . In th e  s tu d y  of surface roughening  kinetics  in G a A s  (100) 

d ia to m ic  arsen ic  m olecu lar  specie (A.S2) was used. T h e  t im e  averaged  reflection-high- 

energy-e lec tron  -diffraction (R H E E D ) in tens ity  o b ta in ed  from th e  grow th  d a ta  was 

in  ag reem en t  w ith  th e  theo re t ica l  results. A t ran s i t io n  t e m p e r a tu re  a t  which tim e 

averaged  R H E E D  in ten s i ty  is a m a x im u m  was observed. T h e  R H E E D  in tensity  in­

creases w ith  t e m p e ra tu re  till th e  t rans i t ion  t e m p e ra tu re  due to surface sm oothen ing  

re su lt in g  from  the  surface m ig ra t io n  of Ga  and  As to  energetica lly  favorable sites. 

T h e  R H E E D  in ten s i ty  decreases beyond the  t ran s i t io n  t e m p e ra tu re  due to the  evap­

o ra t io n  of A s  from th e  surface. T h e  t rans i t ion  t e m p e ra tu re  can be  explained by the 

difference in t im e  for the  fo rm ation  of energetica lly  s tab le  surface a d a to m  clusters 

re su lt in g  from  th e  difference in th e  effective surface m ig ra t io n  ra te s  for various flux 

ra tios .  T h e  doping  s tud ies  were perfo rm ed  for various g row th  conditions. T h e  p re ­

d ic ted  s t ick ing  coefficient of I n  versus ^  shows excellent ag reem en t with  experim ents  

re p o r te d  in l i te ra tu re .  T h e  s ticking coefficient decreases w ith  T  due  to  surface segre­

ga t ion  aided  evapora tion  of I n  a t  higher tem p e ra tu re .  T h e  p red ic ted  dopan t depth



profile also shows excellent q u a li ta t iv e  agreem ent w ith  expe rim en ts .  T h e  surface seg­

regation  of I n  occurs due to  a  s trong  repulsive in te rac t io n  betw een I n  and  the host 

la t t ic e .  T h e  resu lts  of th is  s tu d y  show t h a t  there  is a  d o p an t  dep le ted  zone (DDZ) 

w here  th e  I n  concen tra t ion  is lower th an  bo th  th e  bulk  and  th e  top  surface layer. 

T h e  observed  D D Z quali ta tive ly  m atch es  th a t  observed in ex p e rim en ts .  T h e  tim e 

a n d  g row th  ra te  dependences of th e  phenom enon  are s tu d ied  and  found to be in good 

ag reem en t  w ith  experim en ts .  T h e  m odel was used to  s tu d y  8 doping  of dopan ts  as a 

func tion  of te m p e ra tu re .  T h e  resu lts  arc in qua li ta t ive  ag reem en t w ith  experim enta l  

resu lts .  W i th  an increase in tem p e ra tu re ,  th e  d o p an t  profiles becom e sharper .  This 

is caused by a  sm o o th e r  growing surface a t  higher tem p e ra tu re s .  Even  though, the 

re su lts  of th e  work quali ta t ive ly  agree w ith  the ex p e r im en ta l  work, th e re  is a q uan ­

t i ta t iv e  difference betw een th e  resu lts  in te rm s  of d o p an t  profiles. T h is  d iscrepancy 

is a t t r ib u te d  to  the  l im ita t ion  of th e  m odel, and  the  m odel p a ram ete rs .
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C h ap ter  1

INTRO DUCTIO N

With the advent of ultra-high vacuum technique of molecular beam epitaxy (MBE), het­

erostructures consisting of dissimilar materials have been successfully grown and exploited 

to fabricate novel microstructures such as superlattices and quantum well structures, and 

therfore has opened up new areas in both device technology and semiconductor physics. 

The performance of devices fabricated critically depends on the interfacial roughness in 

heterostructures and the quality of doped and undoped epilayers grown. To achieve device 

quality, it is of great importance to understand the growth kinetics of material used for 

growing crystal and also to s tudy the dopant segregation phenomenon.

MBE growth and doping kinetics of many elemental and compound semiconductors 

has been studied experimentally [3-6,18-22,28-32] and theoretically [9-17,23,27] in the past 

decade. Of these materials, G aAs  and Si  have had considerable attention due to their 

technological advantages over the other materials. Despite numerous studies, there is 

a considerable lack of understanding of growth kinetics and its relation to the growth 

parameters. The subject of this thesis is to theoretically address two growth issues: surface
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roughening kinetics of GaA s  (100) and S i  doping kinetics.

Traditionally the theoretical tools employed for MBE kinetic studies are Monte Carlo 

(M C) simulations [11,12], Molecular Dynamics (MD), and Stochastic Models [7,13-15]. 

MC simulation is crystal size limited, but provides microstructural details of thin film 

surfaces and interfaces. MD simulation provides atomistic details and is very rigorous, but 

is computationally intensive due to  pico second time scale of simulation. The stochastic 

model approach is not size limited, but does not provide microstructural details of the thin 

film. Since for the problems to be addressed, crystal size limitation should be avoided and 

macroscopic roughness (GaAs)  and spatial distribution of dopant (5 i)  can be obtained 

without need for microstructural details, the stochastic model approach is adopted for this 

thesis.

O verview  of the Thesis

This thesis theoretically addresses the issues of surface roughening kinetics in the MBE 

growth of (100) GaAs  and surface segregation phenomenon during I n  doping of S i  using 

the stochastic model and the ra te  equation model, respectively. A brief literature survey, 

discussing both  experimental and theoretical models for surface kinetic processes in the 

MBE growth of G aAs  (100) and M BE doping kinetics of S i  is presented in Chapter 2. 

The detailed study of surface roughening kinetics in GaAs  (100) using stochastic model 

of MBE growth is presented in Chapter 3. Chapter 4 includes the detailed study of MBE 

doping kinetics in I n  doped S i  system and 6 doping kinetics using the rate equation model 

which is a simplified stochastic model. The conclusions are stated in Chapter 5.



C h a p ter  2

LITERATURE OVERVIEW

Molecular Beam Epitaxy (MBE) is one of the most suited techniques for growing high 

crystalline quality epilayers with great purity and precise thickness control of semiconductor 

compounds. In this section, the experimental work on GaAs  MBE growth and in situ 

doping in M BE growth of semiconductors are reviewed along with the theoretical work.

2.1 M olecular beam  ep itaxy

T he technology of crystal growth has advanced enormously during the past two decades. 

Among the many advances, the development and refinement of molecular beam epitaxy 

(M BE) has been the most important one. Crystals grown by MBE are precisely controlled 

and they form the basis for the most advanced microstructures such as superlattices and 

quantum  well structures of which high speed and high frequency opto-electronic devices 

are fabricated.

MBE is an epitaxial process involving the reaction of one or more thermal beams of

3
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atoms or molecules with crystalline surface under u ltra  high vacuum ( 10-9  torrs) condi­

tions. M BE can achieve precise control in both  chemical compositions and doping profiles. 

In this growth m ethod, the incorporation of impinging atoms (film constituent or dopant) 

into the film during growth is controlled by the surface adsorption-desorption-migration ki­

netics (the so called sticking process) ra ther than by near-equilibrium thermodynamics, as 

is the case with other conventional growth techniques such as Chemical Vapor Deposition 

(CVD) or Liquid Phase Epitaxy (LPE).

M BE crystal growth occurs via the reaction and condensation of molecules tha t  arrive 

a t the surface, ra ther than viscous or diffusive, flow. In other words, molecules do not 

collide with one another enroute to the substrate, and the molecules tha t  miss or leave the 

substrate  are pumped away almost instantaneously. As a result, multilayered structures 

with extremely abrupt interfaces can be grown and microscopic processes occuring on the 

surface apart  from the diffusion-controlled mass an d /o r  heat transport to and from the 

surface can be studied.

The most im portan t aspect of MBE is the facility to control the growth processes at 

the atomic or molecular scales (a few A).  W ith the conventional crystal growth techniques, 

growth processes can be controlled only in the macroscopic scale (a few 100A). MBE, in 

contrast to the conventional growth techniques, allows to kinetically control the microscopic 

surface kinetic processes of the growth of thin films due to the following features:

• Low growth temperatures employed in MBE growth minimize the bulk diffusion of 

atoms in the growing crystals resulting in the surface kinetic processes dominating 

the growth.

• The ultra  high vacuum of the MBE system facilitates well collimated beams and
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maintains clean crystal surfaces, while the use of nearly perfect single crystals as 

substrates produces atomistically smooth surfaces.

o In addition, a variety of in-situ analytical tools such as reflection high energy elec­

tron diffraction (RHEED), Auger electron spectroscopy (AES) flux monitors, and 

substra te  tem perature monitors facilitate continuous monitoring and atomic level 

control of the growth process.

2.2 GaAs  E xperim ental Studies

2.2.1 R ev iew  o f  E xperim enta l Studies

There has been a series of [1-15] experimental and theoretical a t tem pts  to understand the 

origin of the surface kinetic processes in the MBE growth of GaAs  (100). Foxon et. al. [3] 

studied the kinetics of Ga  and As^ interaction on G aAs  (100) surfaces. In the temperature 

range 300 — 400°A' A.S4 is non-dissociating chemisorbed on Ga  atoms from a  weakly bound 

precursor s ta te ,  but above 450° K  there is a pairwise dissociation-recombination reaction 

between As^  molecules adsorbed on adjacent Ga  lattice sites. At temperatures higher 

than 600°if a  tem perature dependent Ga  adatom population is formed by the desorption 

of A s 2 from the surface. Thus above 450°K ,  it is possible to produce GaAs  from beams 

of elements, but below this tem perature the stoichiometric compound does not form.

Foxon et. al. [4] used modulated beam technique to study the kinetics of G aAs  (100) 

surfaces. In the tem perature range 300 — 600°A' they found surface association reaction 

to occur, leading to the desorption of As.) by a first order process. Above 600°A', As2 is 

lost from the substrate  itself by a dissociation reaction, which gives rise to a temperature 

dependent Ga  adatom population, and this in turn results in a temperature dependent As2
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sticking coefficient which can result unity.

In the case of G a A s  s tudy [oj, a  iaausistion tem perature  was observed above and below 

which the surface is rougher. This transition tem perature  was observed to be flux ratio 

and tem perature dependent. The kinetics of surface roughening in this case was explained 

in terms of competition between the surface roughening processes such as adsorption and 

evaporation and the surface smoothening process such as the migration of atoms to ener­

getically stable sites.

Foxon et. al. [5] discussed the growth of binary compounds such as G aAs  and alloys 

with mixed group III and mixed group V elements. He also discussed the relation between 

growth conditions and resulting film properties for binary compounds, alloys, and inter­

faces. The Ga  and A s  populations present on the surface during growth depend on both 

substra te  tem perature  and the relative fluxes of Ga  and As atoms reaching the surface. 

As the substrate  tem perature is increased, the sticking coefficient of impurities is reduced 

and a t fixed substrate  temperatures increasing the As to Ga  ratio or changing from As.j 

to As2 reduces the arsenic vacancy concentration.

Foxon et. al. [5] also observed tha t  the properties of A l G a A s  — G a A s  modulation-doped 

structures depend upon the order in which the layers are grown. For the so called normal 

s tructure where A l G a A s  is grown on top of GaA s  the enhanced mobilities are much better 

and less sensitive to  substrate  temperatures than the equivalent inverted structures where 

G a A s  is grown on top of A lG a A s  [33]. It has been suggested [33] tha t  it is related to the 

influence of substra te  tem perature on the morphology of AlGaAs .

Chen et. al. [6] reported a systematic examination of the influence of eacli growth 

param eter on the surface kinetic processes in G aAs  M BE growth by employing RHEED
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intensity dynamics measurements on GaAs  (100). The results reveal the existence of a 

m etastable s ta te  regime where the surface migration is favored such as to form an optimal 

growth front.

2.3 D oping

Doping an epilayer during its growth by coevaporating the dopant has been the standard 

practice in M BE of semiconductors. Due to low growth rates (1 p m / h r . )  and low growth 

temperatures (limited or negligible diffusion), abrupt dopant profiles should be achiev­

able in MBE grown epilayers. However, for most semiconductors doped in-situ, either a 

smearing of the dopant profile an d /o r  surface enrichment of the dopant have been observed 

experimentally [16-32]. In addition, it has been observed tha t  some dopants incorporate 

inefficiently in some semiconductors due to excessive evaporation dictated by low binding 

energy of the dopants to the growing surface.

Many experimental and theoretical models have been proposed to explain the behaviour 

of the dopant atoms during the growth of the crystal. Iyer et. al. [16] proposed a kinetic 

model which described the time evolution of the surface concentration of dopants in terms 

of incorporation and evaporation. Their model was able to explain many experimental 

observations in the doping of Si [25]. However, it did not explicitly include the surface 

segregation phenomenon. Wood et. al. [17] employed the same model for M g  doping of 

G a A s  and arbitrarily assumed tha t  the incorporation coefficient of the dopant is linearly 

dependent on the growth rate in order to explain their experimental observations.

Bean et. al. [18] presented detailed behaviour of the n type dopant 56. Hyperabrupt 

doping profiles were produced with a resolution superior to that  obtained by CVD epitaxy



and Sb surface segregation was also detected for tem perature below 850° C .

O ta  et. al. [19] tried to study n-type doping techniques in Si  M BE by simultaneous 

arsenic ion implantation and by antimony evaporation. They grew high quality S i  MBE 

with an arsenic ion (A s+) source or an antimony effusion source. For A s+ ions at 600eV, 

the sticking coefficient was > 0.75 a t growth temperatures ranging from 750 to 950°C\ 

while th a t  evaporated antimony strongly depended on growth tem perature.

Earlier, work with n-type of dopants from separate sources has been performed. Becker 

et. al. [20] grew epitaxial S i  films on single-crystal S i  (100) substrates from an electron- 

gun source in UHV doped with gallium and aluminium from separate oven sources. Ga  

doping profiles in S i  M BE films could be controlled accurately for substra te  temperature 

in the range 1014 — 5 X 1017cm -3 but precise control of the doping has not been achieved 

for films doped with aluminium.

A segregation model by Rockett et. al. [21] accounted for the accumulation of S n  at the 

growing film surface and the corresponding S n  depletion near the film-substrate interface 

during the deposition of 5n-doped GaAs  by MBE. The calculated S n  profiles were found 

to  provide a  good fit to experimental data  obtained by secondary ion mass spectrometry.

Streit et. al. [22] performed doping of S i  in MBE systems by solid phase epitaxy. 

The doped S i  films were deposited by controlled coevaporation or Ga(p)  or Sb(n)  and Si  

a t  room tem perature on an atomically clean S i  substrate  in UHV. The amorphous fdms 

th a t  were crystallized by heating the substrate to 575°C, have advantages over normal 

evaporative doping during MBE:

(1) unity sticking coefficient of dopant (2) no smearing or carry-over of the dopant (3) 

better mobility (bulk values of n ot p  ~  1018c7n “ 3) (4 ) higher doping levels ( > 8 x 1018cm -3



9

for Ga, 8 X 1019cm -3  for Sb).

B arnett et. al. [21,23] proposed a model including the segregation phenomenon in 

which they assumed tha t  dopant atoms within several nanometers of the subsurface diffuse 

to  the surface.

Andrieu et. al. [24] proposed a new mechanism of dopants climbing to the surface 

and developed a ra te  equation model based on this assumption. Their model was able to 

explain the surface segregation phenomenon satisfactorily.

Parry et. al. [25] presented the tem perature dependence of incorporation process dur­

ing heavy Boron doping in S i  MBE. Boron doped layers were grown by S i  MBE to establish 

incorporation processes at temperatures between 900 and 450°G . For tem perature exceed­

ing 650°G a  surface accumulated phase of Boron was formed when doping levels exceeded 

solid solubility limits. Above 750°C, the measured equilibrium solubility limit was in the 

1019cm “ 3 range. Below 650°G, the processes leading to the formation of the surface phase 

were kinetically limited, manifested by a sharp increase in boron solubility limit, with com­

pletely activated levels above 1 X 102ocm~3. At intermediate temperatures the degree of 

dopant activation was found to be dependent on growth rate.

2.4 T heoretica l A nalysis

Saito and K rum bhaar [7] studied the influence of the relaxation and the surface diffusion 

processes on the kinetics of crystal growth. The Saito and K rum bhaar (SK) model is 

based on the m aster equation approach with quasi chemical approximation (QCA) and the 

SOS restriction. The SK model is generalized to crystals with any in-plane coordination 

number and is applicable to one-sublattice crystal only. By comparing the results of the
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MC simulations with tha t  of the SK model, it was shown th a t  the QCA scheme gives rise 

to reliable results on the kinetics of crystal growth for a chemical potential difference, A/r 

(between the vapor and the solid), greater than  the critical value, A/ic, for the existence of 

metastable s ta te  with infinite lifetime below even the roughening point. It was also shown 

tha t ,  in general, the surface diffusion enhances the growth rate and reduces the surface 

roughness.

A rthur et. al. [8] proposed a kinetic model involving changes in surface stoichiometry 

which gives quantitative agreement with experiment for both  desorption ra te  and sur­

face composition. His model asssumes tha t  As2 is adsorbed in a weakly-bound molecular 

precursor s ta te  from which dissociation into As atoms in As surface sites occurs. Recom­

bination of surface As atoms into the molecular s ta te  was found to happen at a rate whose 

activation energy decreases rapidly with increasing As concentration in the surface.

Weeks et. al. [9,10] investigated epitaxial crystal growth. The authors utilized the 

SOS model, in which the crystal is described by an array of columns of atoms with the 

requirement th a t  no vacancy sites may exist within the crystal, i.e., every atom  must 

possess a nearest neighbor immediately below it. This model for defect-free simple cubic 

[100] crystal growth was the subject of both analytical and computational approaches. 

Many aspects of crystal growth were simulated, including evaporation, migration, screw 

dislocations, and the roughening transistions at high temperatures.

Madhukar et. al. [11] presented a model based on Monte Carlo (MC) simulations to 

s tudy the RHEED oscillation behaviour as a function of arsenic pressure, Pas2 for low sub­

s tra te  temperatures. The oscillations decayed faster for growth with high P,\,2 compared 

to th a t  with low Pa !2- The reason for faster damping is that  the growth front roughened
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faster due to shorter migration length of Ga.  Shorter migration length and roughened 

growth front result in high Ga  vacancy concentration on the Ga  sublattice. The RHEED 

oscillation amplitude for high tem perature growth was larger and the oscillations damped 

a t  a  very slow rate. This suggests tha t  the growth front roughens a t a very slow rate  indi­

cating tha t  the Ga  atoms arriving on the surface migrate very fast to energetically favorable 

sites before getting trapped by a chemisorbing A s 2. In other words, the surface migration 

ra te  is much faster than  the A s 2 chemisorption ra te  on the GaAs  surface. Results of their 

simulation compared well with tha t  of experiments for various conditions of pressures and 

temperatures. It was concluded tha t  high substrate temperature in conjunction with low 

A s 2 to Ga pressure results in sharper growth front and low Ga vacancy concentration in 

Ga  sublattice.

Singh et. al. [12] presented a model for the growth of III-V compound semiconductors 

by M BE which is based on an atomistic MC simulations and a statistical fluctuation theory. 

Their model concerns itself with the intrinsic growth mechanism only and does not address 

the role of extrinsic effects such as the impurities. The model allows one to understand the 

microscopic nature of the growth front and the interface as well as to identify the critical 

kinetic parameters responsible for their quality. The model includes the growth parameters 

such as attachm ent,  inter and intra layer migrations. T he kinetics of the growth process 

are given by impinging flux of the cations (Ga),  the anion overpressure Pa ,2 , the surface 

migration rates of cations after attaching to the growing surface, and the evaporation rates 

of the atoms. The evaporation is assumed to be little and the incorporation ra te  to be unity. 

Singh et. al. studied the the effect of surface migration of Ga on the kinetics-controlled 

roughening of (100) GaAs  by MC simulation. It was observed that the growtli mode
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changed from two dimensional to three dimensional with increasing substra te  temperature, 

resulting in a roughening transistion for (100) GaAs.  It was pointed th a t  the roughening 

transistion described by Burton et. al. (1951) (Burton, Cabrera, Frank) (BCF) differs 

from what they observed. The roughening transistion of B CF is based on the energetics 

only, and occurs a t  a  specific tem perature, whereas the roughening th a t  Singh et. al. 

(1983) observed, is kinetically controlled and is dependent on the impingement rate and 

the surface migration kinetics of Ga.

Ghaisas et. al. (1985) using the MC technique, identified two different types of Con­

figuration Dependent Reactive Incorporation (CDRI) mechanisms i.e. Reaction Limited 

Incorporation (RLI) and Configuration Limited Reactive Incorporation (CLRI). In the case 

of RLI growth, the rates of dissociative chemisorption reactions of As? on one or two Ga 

a tom  sites are small and therefore, the chemisorption reactions control the growth. The 

growth ra te  as a  function of growth time was observed to be oscillatory and the growth 

front was ,4s-stabilized. In the case of CLRI growth, the rates of dissociating chemisorp­

tion reactions are high and therefore do not control the growth. But, the availability of 

a proper surface Ga  configuration for the efficient incorporation of A s 2 depends on the 

surface migration rate of Ga.  Growth ra te  as a function of time was constant without 

oscillation and the growth front was less /ls-stabilized.

Vvedensky et. al. [13] proposed a  growth model to study the kinetics of M BE for mon­

itoring surface growth in combination with MC simulations by calculating the evolution 

of the surface step density. Their model is one, with a single species, in which monatomic 

deposition avoids the incorporation effects. The model includes adsorption and migration 

processes. Evaporation is neglected, since for typical temperatures at which the growth is
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carried out there is negligible dissociation flux from the surface and incorporation prob­

ability is assumed to be unity. As in the solid-on-solid (SOS) the growing substrate is 

modelled by a  two dimensional matrix, the entries are the heights of columns of atoms at 

th a t  point. Their model differs from the SOS model only in tha t  evaporation is neglected.

T he evolution of the step density is shown to have a remarkable correspondence to that 

of th e  measured RHEED specular spot intensities for III-V semiconductor compounds. 

Vvedensky et. al. studied growth in a variety of systems, as a function of substrate 

tem perature and drew conclusions concerning the relation between RHEED measurements, 

kinetics, and growth quality.

Venkatasubramanian [14] developed a stochastic ra te  equation model based on the 

m aster equation approach, QCA and the SOS restriction to simulate the M BE growth of 

compound semiconductors. His model is based on the SK model. Firstly, the molecular 

beams used for growing the crystal consist only of monatomic atoms. Secondly, the atoms 

adsorb only a t sites satisfying modified solid on solid (MSOS) restriction. In other words, 

if the atoms arrive at sites where only one covalent bond can be formed, then the atoms 

desorb back into vapor. Thirdly, the interlayer diffusion of atoms is allowed to take place 

between any two layers in the sublattice.

Even though the SK model is generalized to crystals with any in-plane coordination 

number, it is applicable to one-sublattice crystal only. But, the stochastic model by 

Venkatasubramanian is suitable for zinc blende crystals and also for compound semicon­

ductor alloy.

Venkatasubramanian [15] used the stochastic model to study the MBE growth kinetics 

of a hypothetical compound semiconductor and diamond cubic alloy. lie employed the
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model to study the effects of high temperatures due to high surface diffusion ra te  on the 

growth rate, the surface roughness, and the clustering phenomenon. One of the important 

features of the stochastic model is tha t  it is not limited by the crystal size and can be 

employed to study the doping kintics in the crystals. Its m ajor limitation is tha t  it does 

not keep track of the surface atomic configuration. It  can be obtained from the available 

d a ta  using random distribution approximation.

Computer modeling of GaAs  growth has resulted in a  better understanding of the 

kinetics of the M BE growth of GaAs.  These studies have proved that  computer modeling 

is a viable and complimentary tool for understanding the growth kinetics of MBE. The 

limitation of these studies are: 1) all of them employ a rigid lattice gas model of size 

about 30 X 30 X 30 or so and therefore are not suitable for studies on stoichiometries and 

doping; 2) because of the size limitation, the conclusions are qualitative and at best semi- 

quantitative; 3) even though MC simulation of kinetics of M BE growth can be employed 

as a complimentary tool to experiments, it requires extensive experimental d a ta  such as 

surface migration parameters, desorption parameters and the incorporation parameters 

to be of value to develop the growth kinetic model; 4) the kinetic model employed was 

specified to GaA s  MBE growth and therefore, needs to be generalized to study other 

material systems.



C h ap ter  3

Surface Kinetic Processes in the 

M BE Growth of GaAs (100)

In this chapter, the stochastic model of MBE growth is employed to study the surface 

roughening kinetics in GaAs  (100). Firstly, a brief discussion of the stochastic model of 

MBE growth is presented. Then the results of the study of surface roughening kinetics of 

(100) GaAs  are presented and compared with the experimental work of Ref.[6]. Based on 

the results, a physical mechanism which adequately describes experimental observation is 

presented. Finally, a summary of this study is presented.

3.1 T he Stochastic  M odel

T he stochastic model is a rate equation model based on the condition of detailed balance. 

It describes the time evolution of semiconductor epilayer through a detailed description 

of macrovariables in terms of rates of surface processes. The surface processes considered
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in the stochastic model are: adsorption, evaporation, and migration. Two types of sur­

face migration processes, intralayer and interlayer migrations are considered. The main 

assumptions of the model are: (i) solid-on-solid (SOS) restriction (ii) random distribution 

approximation of the surface atomic configurations weighted by the energy of the config­

uration (iii)Arrhenius type ra te  equations for the surface kinetic processes (iv) exclusion 

of anti-site defects (v) exclusion of effects of surface reconstruction on the surface kinetic 

processes. The prim ary macrovariables are the concentration of the atoms in the n t!l layer, 

C(n), and the atom  vacancy bond density in the n ih layer, Q(n), as given by Eqs. 8a and 

8b of Ref.[14], These processes are pictorially represented in Fig. (3.1).

The ra te  of of adsorption can be written as the product of surface sites satisfying the 

modified solid on solid, MSOS, restriction and the flux rate. The MSOS, employed in this 

model implies th a t  two nearest neighbor surface atoms be present before an atom gets 

incorporated at a  site in between them at a layer ju s t  above as shown in Fig. (3.2). Only 

the evaporation of atoms exposed to vapor is considered since these atoms have the lowest 

binding energy and hence a higher probability of evaporation. The ra te  of evaporation 

is determined as a product of the fraction of a layer exposed to the vapor, the rate of 

evaporation of an isolated atom, and the term involving the binding energy of the atom.

The atoms th a t  arrive at non-MSOS sites are allowed to migrate rapidly in their ph- 

ysisorbed s ta te  until they find a proper site, either within the layer (intra migration) or in 

the other layers (inter migration). Unlike in the MC studies in which the interlayer diffu­

sion is allowed only between adjacent layers in the same sublattice, the stochastic model 

allows interlayer diffusion of atoms between any two layers in the same sublattice.

The evaporation and surface migration processes are described by Arrhenius type rate
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equations such as:

E a r »+ n A ' a a
R  = R 0 e - ^ f —  (3.1)

where R is the ra te  in events/sec. and R 0 is the frequency factor of the process in sec- 1 . 

E act is the activation energy of the process for an isolated terrace adatom , K aa is the 

second nearest neighbor pair interaction energy in the ( 100) plane and n is the number of 

in-plane nearest neighbors of the atom under consideration. Thus, the activation energy 

term  appearing in the argument of the exponential is coverage dependent with n equal 

to zero and four for low and high coverages, respectively. In general, the E acl for surface 

migration is smaller than that of evaporation. In this study, the E act for interlayer and 

intralayer migrations are assumed to be equal. The surface migration of an atom to non- 

MSOS site is not allowed.

3.1.1 M acrovariables

Zinc blende crystals have two sublattices, cation and anion sublattices. Therefore, two sets 

of macro-variables, one for each sublattice, should be defined. In the case of GaAs,  the 

cation (Ga ) is assumed to belong to the even sublattice and the anion (/Is) to the odd 

sublattice. The macrovariables th a t  can be defined for the 2n th layer are: concentration 

variable, Cg0(2n), the second nearest neighbor atom — vacancy bond density, Qgq(2n), the 

second nearest neighbor atom — atom  bond density, NGaGafin).  These above described 

varibles involve only one layer. In other words, the bonds used in the description of the 

above variables are inplane bonds.

^GaGai2n) = 2 Cca{2fi) — - Q c a(2n)
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for Ga -  Ga  bond density, 

and

Nvv(2n) =  2CV(2n) -  ^Q(2n) (3.2)

for vacancy-vacancy bond density.

The vacancy density, C y (2n) in the above equation is given by:

Cv(2n) = (1.0 — C(2n)),

and

C(2n) =  CGa(2n)

and

Q(2n) = QCa(2n) (3.3)

similar equations can be written for the anion sublattice (i.e.), /Is. In the derivation of 

equations (3.2) and (3.3), the inplane coordination number is assumed to be four.

In this study, Ga  is present in the cation sublattice and As  in the anion sublattice. Thus, 

two independent macrovariables for cation sublattice and two independent macrovariables 

for the anion sublattice should be considered to study the kinetics of M BE growth of GaAs.  

T he  independent variables considered are: Cc?a(2n), Q o a (2n), C ^ j(2 n + 1 )  and Q,\3(2n + 1).

The ra te  equation of G a , one of the two sublattices in the diamond cubic crystal (GaAs)  

is given below :

d C a (2r>)

di
1 ( \ N bbC 2 n -  1) „  _

11— 3— Ca(2nr
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C „ ( 2 r > )  -  2 C b(7n  +  1 )  + T ^ ]

* ( ("“'T " “ - w )J

W g a ( 2 n ) t - 2<,° °  +  ^  Q a ( 2 n )

2C„(2n)

-  e LP a | c „ ( 2 n )  - 2 C t ( 2n  +  l ) +
Ara a ( 2 n ) e - 2 t ° °  +  ^ q „ ( 2 n )

2 C a ( 2 n )

( S )

(C)

(D)

where, term  A of the above equation corresponds to the adsorption process, term B 

corresponds to  the evaporation process, term C corresponds to the intermigration of atoms 

to the n th layer from other layers and term D corresponds to the interlayer migration of 

atoms to other layers from the n th layer.

Similarly, equations for the time evolutions of the macrovariables Q g<i (2n), C ^ a(2n +  1) 

and QA,(2n  +  1) can be written. For the details of the model, the reader is directed to 

Ref.[14,15].

3.1.2 B oun dary  Conditions

The boundary conditions for the growth of the compound semiconductor G a A s  is discussed 

in this section. It is assumed tha t  the substrate is flat and that it consists of four layers- 

the first two layers of the cation (Ga)  and the other two, anion (As) sublattices. The initial 

conditions for the independent macrovariables are given by:

CCa(2n) = 1.0 n = 1,2

=  0.0

C/U( 2 n - 1 )  =  1.0 

=  0.0

n = 1,2

n = 3,..., oo (3.4)
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Qc?a(2n) =  0.0 n — 1 , .......,oo

and
QAs( 2 n + l )  = 0.0 n =  1....... ,oo (3.5)

3.2 T he GaAs  sy stem  : the m odel and output param eters

The model param eters for the present study of the MBE growth of G a A s  were obtained 

from the literature and the M BE growth parameters of Ref.[6].

The material parameters such as Ga — Ga  and As  — /Is, second nearest neighbor pair 

interaction energies are obtained from the d a ta  reported in Ref.[26].

Vca-Ga =  0.25 eV 

Va , - a 3 =  0.325 eV

The frequency factors for the evaporation and migration processes were chosen as 1.0 

x 1013/sec. The activation energy for surface migration of isolated Ga  and /Is atoms was 

chosen as 1.3 eV based on Ref.[8]. Based on Ref.[8], the activation energy for evaporation 

of an isolated As was chosen as 1.675 eV.

The MBE growth parameters for this study were obtained from the experimental data  

given in Ref.[6]. T he  growth tem perature was chosen in the range 723 — 873°K and the 

flux rate was set at 2 A/sec. The cation to anion flux ratio employed for the study was in 

the range 1 : 10 to 1 : 20. It is noted that the (100) substrate surface employed in this 

study is flat without any steps.

RHEED (reflection high energy electron diffraction) is a technique to study the growth
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kinetics and chemistry which occur on the substrate surface, using a specular beam of 

electrons. In this technique, an electron beam is made incident on the growing crystal sur­

face and the intensity of the reflected electron beam (e-beam) from the crystal surface is 

measured. T he intensity of the reflected e-beam depends on the type of interference (con­

structive or destructive) pattern undergone by the reflected electrons. Also, the interference 

pa tte rn  depends upon the path  traversed, which in turn depends upon the roughness of 

the surface. If the growing surface is smooth, the reflected electrons show constructive 

interference pa t te rn  giving rise to a strong RHEED intensity.

In this study, the intensity of a  specular spot ( 1° off Bragg) of reflection high energy 

electron diffraction system with 10 kV electron beam was calculated using kinematical 

theory of electron diffraction as a  function of growth time.

T R I { T ) =  I ( t , T ) d t  (3.6)
Jo

where I(T) is the instantaneous RHEED intensity of Off-Bragg specular spot based on 

kinematical theory of electron diffraction.

The time averaged RHEED intensities, T R I ( T ), were calculated for various growth 

temperatures.

The material and growth da ta  discussed above were employed to calculate the model 

parameters according to the procedure detailed in section IVB of Ref.[14]. The model pa­

rameters were obtained as a function of growth temperature. The time evolution equations 

given by Eqs 8 a and 8b with modifications discussed in Eq 4, and the boundary conditions 

corresponding a flat substrate described by Eq 14 of Ref.[14] were solved numerically on a 

CRAY YMF 2/216 at NSCEE, UNLV, Nevada. The CPU time for a typical growth of 20
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A of G aAs  was about 4 hours.

3.3 R esu lts  and d iscussions

Concentration profiles were obtained as a function of time for various growth temperatures. 

They are shown for 823°K, 848°K and 873°K in Fig. 3.3a-c, respectively, for flux ratio 1 

: 10. Below 823°K, the concentration profiles look similar to the profile of 823°K and 

therefore are not displayed. From Fig. (3.3), it is observed th a t  at and below 823°K, the 

growing surface is As-stabilized as is expected when the cation to anion flux ratio is 1 

: 10. As the tem perature increases, the growth surface becomes less As-stabilized. It is 

also observed tha t  the time delay between the growth of the Ga  and subsequent As layers 

is constant throughout the growth of the As layer for temperatures below 823°K. Above 

823°K, the time delay is larger at the s ta r t  of growth of As layer compared to the the 

completion of the layer. The decrease in the time delay within the growth of a  monolayer 

of As is almost linear with time. This effect is prominent and larger for higher temperatures 

and lower flux ratios.

The above observations about the time evolution of the concentration proflles can be 

explained as follows. The growth of an As layer is controlled by two surface processes; 

adsorption and evaporation. At temperatures lower than 823°K, the evaporation of surface 

As is negligible. Therefore, the growth ra te  is equal to the adsorption rate, which is 

constant during the growth of a layer. Thus, the time delay during the growth of the layer 

is constant with time. If the tem perature is above 823°K, the tem perature is high enough 

th a t  the evaporation of surface As begins. The growth of an As layer is now controlled 

by the competition between the adsorption and evaporation processes. The growth rate



is the difference between the adsorption rate and evaporation rate. The adsorption rate 

is independent of the coverage, whereas, the evaporation ra te  critically depends on the 

coverage through the activation energy for evaporation which is the binding energy of the 

a tom  as discussed under Eq. (3.1). T he binding energy of a  surface /Is pair increases 

with coverage. Therefore, at the start  of the growth of an /Is  layer, the binding energy 

of the As  pair is the smallest possible and therefore, the evaporation rate is the largest 

as given by Eq. (3.1). The growth ra te  given by the difference between the constant 

adsorption ra te  and the large evaporation rate is small. Therefore, there is a large time 

delay a t the s ta r t  of the growth. As the coverage increases, (i.e., n increases), the A s  atoms 

a tta in  more nearest neighbors, and hence their binding energy increases which results in 

a decrease of the evaporation ra te  as given by Eq. (3.1). Then, the growth rate increases 

with the coverage, which results in a continuous decrease of the the time delay. The time 

delay is more at higher temperature, due to an increase in the evaporation rate and at 

lower flux ratio due to smaller adsorption rate. The concentration profiles under similar 

tem perature conditions but for a cation to anion ratio of 1:20 are shown in Fig. 3.4a-c. 

The observed time delay for this flux ratio is found to be less than that  for flux ratio 1:10. 

This is because, at higher flux ratio ( 1:20) the rate of adsorption of As2 is twice faster 

and hence the coverage increases at faster rate. Thus in traplanar nearest neighbors, n, 

increases twice the rate of flux ratio 1:10 resulting in the decrease of time delay. Thus, 

at lower temperatures and higher flux ratios, the surface appears more /ls-stabilized. The 

description of the surface processes is in complete agreement with the mechanisms proposed 

in Ref.[6] based on the experimental observations.

The intensity of a specular spot ( 1° off Bragg) of reflection high energy electron diffrac­
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tion system with 10 kV electron beam was calculated using kinematical theory of electron 

diffraction as a function of growth time. The time averaged RHEED intensities, T R I ( T), 

were calculated for various growth temperatures. A plot of T R I { T) versus growth temper­

ature is shown in Fig. (3.5) for flux ratios 1 : 10 and 1 : 20. The T R I { T) decreases below 

and above a  certain value of T  called the transition tem perature, and is identified as 770°K 

and 800°K, respectively, for flux ratios 1 : 10 and 1 : 20. The lower T R I ( T ) above and 

below the transition tem perature is directly related to rougher surface. Below the transi­

tion tem perature, the thermal activation for surface migration is low and therefore, the Ga  

and As  a toms randomly adsorb on the surface at sites of their arrival resulting in a rough 

surface. As tem perature  increases towards the transition temperature, the thermal activa­

tion and hence surface migration increases resulting in adatoms finding energetically more 

stable sites. This surface process decreases the surface roughness. Above the transition 

tem perature, the evaporation of As  begins resulting in a rougher surface. The roughness 

of the surface directly correlates with decreased RHEED intensity due to destructive in­

terference of the electron waves reflecting from various surface layers. Thus, the RHEED 

intensity peaks a t the transition temperature. The flux ratio dependence of T R I ( T )  can 

be explained as follows. Lower flux ratio results in longer time for the formation of surface 

a tom  clusters with more than two As  atoms. This implies that  the average evaporation rate 

during the growth of monolayer of As  is larger due lower coverage dependent activation 

energy for evaporation and hence lower transition tem perature. This is in good agreement 

with the work of Chen et. al. [6].

The plot of T R I  versus temperature obtained in this study was compared with that 

of the experimental study of Chen et al. [6] and semi-quantitative agreement between the
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results was obtained. There are two main reasons for the quantitative differences between 

the results: (i) The molecular species is employed for the experiments and our work

(AS2) are different, (ii) the flux ratios employed in the experiment and our work may be 

different as experimental flux ratios are always reported in equivalent beam pressure ratios 

not in terms of rates of arrival of anion to cation as done in our work. Both of these can 

influence the result of transition tem perature quantitatively.

3.4 Sum m ary

The stochastic model of MBE growth based on the master equation approach with solid- 

on-solid restriction and quasi-chemical approximation is employed for the study of surface 

processes in (100) Ga As  growth. The growth rate, the time averaged surface roughness and 

the time averaged RHEED intensity were obtained for various growth temperatures. The 

kinetic surface roughening transition tem perature for the MBE growth of G a A s  is identified 

as 770°K and 800°K for flux ratios 1 : 10 and 1 : 20, respectively, from the temperature 

dependence of the time averaged RHEED intensity. The results of this study compare 

favorably with th a t  of the experiments obtained under similar growth conditions[6]. The 

phenomenon of kinetic surface roughening transition in the MBE growth of GaAs (100) is 

explained in terms of the competition among various surface processes such as the incor­

poration and evaporation of atoms which roughen the surface and the surface migration of 

atoms to energetically favorable sites which smoothens the process.
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#  Ga O As

Figure 3.1: A schematic representation of atomistic picture of all the kinetic processes that 

are considered for the simulation: (1) incorporation, (2) surface migration, (3 )  reevapo­

ration.
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M SOS

Figure 3.2: A pictorial representation of the MSOS restrictions.
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C h a p ter  4

M BE Doping Kinetics

In this chapter, a  rate equation model based on the master equation approach is developed 

for the study of MBE doping kinetics. The model includes elementary surface processes 

such as adsorption, evaporation and migration of atoms. First, the model is used to study 

the surface segregation phenomenon during I n  doping of Si .  Then the time and growth 

ra te  of the dopant segregation phenomenon are studied. The model is used to study S 

doping of dopants. Finally, a summary of this study is presented.

4.1 R ate E quation  M odel for D oping

The elementary surface kinetic processes tha t  control the doping kinetics are: adsorption, 

evaporation and interlayer migration of the the host atom, Si ,  and the dopant, In ,  ( I n  is 

chosen for this study, but the model is general and can be applied to any system). The 

rate of change of concentration of S i  in the n th layer can be written in terms of the rates 

of the microscopic kinetic processes discussed above. Describing the time evolution of the

31
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concentration of S i  in the n tfl layer, C (n),  we obtain:

=  J S , [ C ( n - 1 ) - C ( n )) ( /< )
a t

“ * ^ a v e , t v a , S i  / C e ( n \ \
-  R o <  r r  [ C ( n ) - C ( n +  1)] i - — 1 ) ( B )

+ R o c  Sr r L£l2L ( C ( n  -  1) -  g ( n ) l  f  Cf ’; ( n .- . ' ) tC ( ' '  +  0  -  C ( n  +  2)] +  [C ( n  -  1) -  <T(n)| ' )  ( C )
\  C(n +  1) CT(n -  1) /

^ a v e . d i  f . S i  f C c ( n ) \
-  t l '  [ C ( n )  -  C ( n  +  1)J I \ ( [ C ( n  +  1)  -  C ( n  +  2)J +  ( C ( n  -  1) -  C ( n ) J )  ( 0 )

( 4 -1)

Term A  describes the rate of adsorption of S i  on to the n tfl layer in terms of the available 

sites for adsorption, [C(n — 1) -  C(n)], and the flux rate, J s i : The description in Term A  

assumes th a t  the atoms adsorb with unity sticking probability at sites which are available 

for adsorption. Term B  describes the rate of loss of S i  from the n th layer due to evaporation 

in terms of the number of atoms exposed to vapor, [C(n) -  C{n  +  1)], the frequency

factor which is assumed to be 1013/sec. and the average activation energy for evaporation of 

S i  atoms, which depends on the concentration of the layer. In this description, it is assumed 

tha t  number of nearest neighbors for a S i  atom  increases directly as the concentration of Si  

in the layer. Note that since the dopants are in ppm  levels, they do not affect the binding 

energy of S i  atoms. Thus, the average activation energy for evaporation of a S i  atom in 

the n th layer, E ave<evatsi, is given by:

Eave,cva,Si ~  ^Wjo.eua,.St "b % EsiS\^ 5 i ( ^ )  4~ ^ ^ S » d C d ( ^ )  (^*^)

where z is the inplane coordination number which is 4 for (001) plane and 6 for ( 111) plane. 

EsiSi  and EsiD are the second nearest neighbor interaction energies of Si  -  Si  and Si  -  D
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pairs, respectively and Eiao<eva,si is the activation energy for evaporation of an isolated 

S i  a tom  on the surface. Here D  denotes dopant. (Note th a t  within the (001) and (111) 

planes, the nearest neighbor atoms are actually the second nearest neighbor atoms when 

the whole crystal is considered.) Term C  in Eq. (4.1) is the rate of gain of S i  atoms in 

the n th layer due to interlayer migration of S i  to the n th layer from the adjacent layers, 

n  — 1 and n  -f- 1. Term D  in Eq. (4.1) is the rate of loss of S i  atoms in the n th layer due to 

interlayer migration of S i  from the n th layer to the adjacent layers, n  -  1 and n  -f 1. The 

average activation energy for the migration of Si ,  E ave<(nj ,si  is given by:

Eave,dif,Si — Ei3otdiffSt 4" zEsiSiCsi^Tl) T ZE$iQC£?(n) (4.3)

where Ei30<di},si is the activation energy for interlayer migration of an isolated Si  atom.

A similar equation for the ra te  of change of dopant concentration in the n th layer can be

written by simply replacing S i  with D.  In the rate equation for the dopant, the activation 

energy for evaporation and migration should be redefined as:

&ave,eva,D = E;30,eva,D +  zEsiDC si{n ) +  z E d d Cd {n) (4.4)

and

Eave,di j ,d = Ei30<dij,D +  z E s io C s i (n )  +  z E o d Cd (^)  (4.5)

respectively, where E d d  is the D - D  atom pair interaction energy.
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4.2 R esu lts  and D iscussion

Two cases. I n  doping of S i  and B  delta doping of Si ,  are studied using the model proposed 

in section 4.1.

4 .2 .1  In doping of Si

In the description of Equations (4.4) and (4.5), the fact tha t  the second nearest neighbors 

of dopant atoms are essentially S i  atoms due to the ppm  level concentrations of I n  has 

been utilized. The activation energy for the evaporation of an isolated S i ,  E,-30,eua,5.', has 

been predicted for (100) and (111) growths to be 2.6 eV and 3.2 eV, respectively [27]. The 

second nearest neighbor interaction energy, Esis i  for ( 100) and ( 111) growths are estimated 

to  be 0.25 eV and 0.325 eV, respectively [27]. The activation energy for evaporation of I n  

is not reported in the literature. Thus, a trial and error approach was taken to fit two of 

the d a ta  points on the concentration of I n  versus j  plot reported in Ref.[28]. We obtained 

a  value of 1.6 eV and -0.25 eV for E i ,0ievaj n and E s u n, respectively. The activation 

energy for migration of an isolated S i ,  EiSOidij,si-> was chosen as 0.8 eV based on available 

experimental da ta  for activation energy for S i  [26]. E i ,0idij,in, was assumed to be equal to 

th a t  of S i  for lack of available data.

The growth parameters were chosen exactly as used for the experimental work reported 

in Ref.[29] and are presented below. The flux rate of Si ,  Js i,  was kept a t  lp m /h r .  The 

flux ratio between S i  and I n ,  J i n / J s i ,  was maintained at 2 x 10- 4 . The evaporation of S i  

was negligible in the tem perature range of this study and therefore the growth rate of the 

epilayer was approximately equal to the J s i ■ The substrate  tem perature was in the range 

500 -  750°C.
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The differential equations given by Eq. (4.1) and a similar one for I n  are coupled non­

linear first order differential equations which are not analytically integrable. Therefore, 

these equations were solved numerically on a  CRAY YMP2. The boundary condition is 

th a t  the first 4 layers are full with S i  and rest of the layers are empty at the start  of the 

growth which corresponds to assuming an atomically flat substrate. A typical run for a 

growth of 20 seconds took about 1 CRAY CPU hour.

Plots of the I n  sticking coefficient, S i n , versus time (sec.) for various growth temper­

atures of the study were obtained and analyzed. (The growths were simulated only for 

about 20 seconds due to computer time limitations.) Analysis of the d a ta  indicated that

_ r
S i n is an exponentially decaying function of time. Exponentials of the form A (T )e  TU 

were fitted for each temperature. Note tha t  A (T )  and r ( T )  are functions of temperature. 

Using A ( T )  and r (T ) ,  5/„ was obtained for the case of 3000 seconds of growth by extrap­

olation. Such an extrapolation is justified because the growth rate is constant and the 

layer-by-layer growth mode is maintained for all growth conditions in this study.

A plot of the extrapolated 5 / n versus ^  is shown in Fig. (4.1) along with the exper­

imental data. T he  agreement between the theoretical values and the experimental values 

from Ref.[29] is excellent for the entire tem perature range. The mechanism which results 

in the tem perature  dependence of 5 / n is as follows. At low temperatures, the surface seg­

regation aided evaporation of I n  (due to its repulsive interaction with the host sublattice) 

is not dominant as the thermal energy is not enough to allow this activated process. As 

tem perature increases, the interlayer migration rate of I n  to the surface increases and the 

I n  concentration increases in the surface layer. More I n  in the top surface layer, results
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in more opportunities for evaporation. Thus, a larger evaporation of I n  results a t higher 

tem perature. The evaporation rate of I n  aided by the surface segregation process is much 

larger than  the typical evaporation ra te  of atoms from the surface.

Plots of the dopant concentration, C7„, versus distance from the surface are shown in 

Fig. (4.2) for various growth times a t 660°C. It is observed tha t  the I n  concentration in the 

bulk is about the same and is independent of the time of growth. The surface concentration 

of I n ,  however, is increasing with time as expected. Note that  there is a  dip in C /n for all 

the profiles ju s t  below the surface layer. The concentration of I n  in this zone is an order of 

magnitude less than  tha t  in the bulk and many orders of magnitude less than th a t  at the 

surface. We call this region the dopant depleted zone (DDZ). The physical reason for this 

phenomenon is as follows. The dopant, I n ,  segregates from the layers below upwards due 

to the repulsive atomic interaction with the host lattice. In other words, considering the 

n ih layer, I n  atoms migrate from the n — 1(/* layer to the n th layer which increases Cjn(n) 

and to the n +  l (/l layer from the n th layer which decreases C f n(n).  The rates of these 

processes depend on the availability of I n  atoms in the respective layers th a t  are exposed 

to  vapor so th a t  they can migrate and the availability of sites in the respective layers. For 

the migrations to the n th layer compared to the migrations from the n lh, both of these 

factors are small. Thus, the rate of migration to the surface layer from the subsurface layer 

is larger than  ra te  of migration of I n  to the subsurface layer from one layer below. This 

difference in the rates results in a deficiency of I n  a toms in the subsurface layer. This 

resembles the phenomenon of a precipitation depleted zone (PDZ) which occurs near the 

grain boundaries in many alloys. This result was compared with the experimental da ta  

and a careful observation of the segregation profile d a ta  shown in Fig. (2) of Ref.[29] does



37

show tha t  there is a dip in the profile. In our result the dip is much more pronounced 

compared to  th a t  of the experiments, which may be due to stronger repulsive interaction 

energies used in our model.

Plots of the I n  segregation profiles for 853°K, 893°K, and 933°K are shown in Fig. 

(4.3). It appears th a t  the segregation profiles are similar for various temperatures except 

th a t  the bulk I n  concentrations are lower for higher tem perature which correlates well with 

Fig. (4.1). This type of a dopant depleted zone may not always be present even if the 

dopant interactions with the host lattice is repulsive. It depends on a variety of factors 

such as the growth ra te , the strength of the repulsive interaction ( E s n n), the flux ratio, 

JSi / Jin and others.

Growth Rate and Time Dependence

The growth a t 933°K was studied as a function of growth ra te  in the range 0.2 to 2 mono­

layers/sec with the dopant flux at 2 x 10-4 monolayers/sec. A plot of dopant concentration 

versus growth ra te  is shown in Fig. (4.4). The sticking coefficient decreases with growth 

ra te  due to increased evaporation. As a layer nears completion, the activation energy for 

I n  evaporation decreases increasing its evaporation rate ( I n  is squeezed out of the layer). 

If more layers are grown without increasing the dopant flux, the increased evaporation rate 

will yield a smaller sticking coefficient.

The surface concentration of I n  during S i  growth at 933°K was studied as a function 

of growth time. A plot of the surface concentration of I n  versus growth time is shown 

in Fig. (4.5). This observation agrees quantitatively with the results of llcf.[24] where a 

functional dependence of the form 1 — exp(=I )  was obtained.
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4 .2 .2  D e lta  D op in g  of Si

Unlike the previous study, here dopants are deposited in a layer in large concentration. 

Therefore, dopant-dopant pair interactions cannot be neglected and Eqs. 4.2-4.5 were used 

without any simplifications.

d-doping of S i  with B  and Sb  have been successfully a ttem pted to achieve more precise 

control of the doping profile (of the order of tens of A) and a very high dopant concentration 

(as high as 1021/c m 3) in the MBE growth of S i  [25,30]. Because the energy parameters for 

the S i  -  B  and S i  — Sb systems are unknown, a  hypothetical dopant, D,  is used in the 5 

doping studies of Si .  Even though one of the model parameters is chosen arbitrarily, the 

mechanisms illustrated and the knowledge gained through this study are valid for many 

real systems.

The growth parameters chosen for the 8 doping study were taken from Ref.[30] based on 

B  doping of Si .  T he shutter sequence for 8 doping is as follows. S i  was grown at 2 A / sec. 

for 2 seconds and then the S i  shutter was closed and simultaneously the I n  shutter was 

opened. Then, 0.3 monolayer of I n  was deposited within 1 second. Then the I n  shutter 

was closed and simultaneously the S i  shutter was opened. The S i  growth was continued 

for 17 seconds after closing the dopant shutter. The total layer thickness of S i  grown was 

about 40 A.  The growth temperatures for the study were in the tem perature range 673°K 

to 973°K. Many studies were carried out for D — D  pair interaction energies in the range 

of -EsiD to Es iD■ T he influence of E p p  was found to be negligible, the results presented 

here corresponds to  E p p  — 0.0 eV. Two sets of calculations with the interaction energies 

between S i  and dopant (E s ;d ), -0.08 eV (strong repulsion) and -0.01 eV (weak repulsion) 

were made and are reported.
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The panels in Fig. 4.6a and b show plots of I n  concentration as a  function of the depth 

of the layers for two cases (i.e.), -0.08 eV and -0.01 eV, respectively. For case 1 Fig. 4.6a, 

it is noted th a t  the peak of the dopant concentration has shifted more towards the surface 

at high temperatures compared to low temperatures. In other words, the dopant profile 

has shifted away from the layers where they were intended to be. This observation can 

be explained as follows. High temperatures result in strong surface segregation of D  due 

to increased surface migration. At low temperature the surface migration and hence the 

surface segregation are minimal and therefore, the bulk of D  atoms incorporate very close 

to or a t  the intended layers. Due to small repulsive interaction used in Fig. (4.6b), such a 

shift in the peak of D  concentration is not observed.

T he other interesting and possibly counter-intuitive observation in Figures 4.6a and b 

is th a t  as the tem perature increases, the breadth of the dopant profile decreases. In other 

words, higher tem peratures result in sharper dopant profiles. This observation is in good 

qualitative agreement with the results of the experimental work on the 8 doping of Si  

with B  [30]. Even though, the authors of Ref.[30] have attributed  this to possible higher 

error in experimental d a ta  due to rounded profiles, our work suggests a possible physical 

explanation which is as follows. First, let us observe th a t  the area under the curves of 

Figures 4.6a and b for all temperatures are about equal indicating negligible evaporation 

in this tem perature range. The sharpness of the dopant profile a t higher temperature 

is due to  the atomically smooth surface on which the dopants are incorporated. At low 

temperatures the growth surface is somewhat rougher and the segregation efTect is smaller 

and therefore, the D  atoms incorporate at lower unfilled layers and segregate to upper 

filled layers, resulting in a broader dopant profile.
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The model presented in this article is general and can be applied to any MBE doping 

system with any growth orientation. The model under special conditions may yield ana­

lytical solutions which will be helpful for process automation. Results of the present study 

show that doping kinetics is intimately linked to growth kinetics of the semiconductor epi- 

layer. Many of the theoretical models assume that  the semiconductor growth kientics is 

decoupled from the dopant kinetics which is correct only under limited circumstances. The 

limitations of the model is tha t  it requires parameters such as pair interaction energies 

and  activation energies. This limitation is not unique to  our model, but is typical of any 

theoretical study of kinetics. The other limitation of the model is its inability to grow thick 

epilayers on the order of several microns in a reasonable amount of computer time. In this 

study, this limitation is overcome by extrapolation of the results. It should be noted that 

such extrapolation schemes may not always be applicable.

4.3 Sum m ary

A rate  equation model based on the master equation approach is developed for the study of 

MBE doping kinetics. The model is applied to study the surface segregation phenomenon 

observed during I n  doping of Si .  The doping studies were performed for various growth 

conditions. T he predicted sticking coefficient of I n  versus ^  and the dopant depth profile 

shows excellent agreement with experiments. The dopant sticking coefficient decreases 

with T  due to surface segregation aided evaporation of I n  at higher temperatures. The 

surface segregation of I n  occurs due to strong repulsive interaction between I n  and the 

host lattice which results in upward migration of In.  A dopant depleted zone where the I n  

concentration is lower than tha t  in the bulk and at the surface is observed and agrees well



with experiments. The time and growth ra te  dependences of the phenomenon are studied 

and found to agree with work reported in the literature. 8 doping of S i  is studied in 

the range of 673°k to 973°K .  The results are in qualitative agreement with experimental 

results. W ith an increase in tem perature, the dopant profiles become sharper which is 

explained by smoother growth surface at higher temperatures.
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Figure 4.1: Sticking coefficient of the dopant, In ,  versus
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Figure 4.2: Dopant segregation profile for various growth times for growth a t 933°K.
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Figure 4.5: Surface concentration of dopant for various growth times at 933°K.
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Conclusion

The surface kinetics of MBE growth of (100) G aAs  and doping kinetics of I n  doped Si  

system were studied theoretically using a stochastic model based on the master equation 

approach with the solid-on-solid restriction and a quasi-chemical aproximation for various 

growth conditions. The growth rate, the time averaged surface roughness and the time 

averaged RHEED intensity were obtained for various growth temperatures. The kinetic 

surface roughening transition temperature for the MBE growth of GaAs  is identified as 

770°K and 800°K for flux ratios 1 : 10 and 1 : 20, respectively, from the temperature 

dependence of the time averaged RHEED intensity. The results of this study compare 

favorably with that  of the experiments obtained under similar growth conditions[6]. The 

phenomenon of kinetic surface roughening transition in the MBE growth of GaAs (100) is 

explained in terms of the competition among various surface processes such as the incor­

poration and evaporation of atoms which roughen the surface and the surface migration of 

atoms to energetically favorable sites which smoothens the process. In the study of surface 

segregation phenomenon of dopants, the predicted sticking coefficient of I n  versus j- and

■l.S



the dopant depth profile shows excellent agreement with experiments. The dopant sticking 

coefficient decreases with T  due to surface segregation aided evaporation of I n  at higher 

temperatures. The surface segregation of I n  occurs due to strong repulsive interaction 

between I n  and the host lattice which results in upward migration of In .  A dopant de­

pleted zone where the I n  concentration is lower than tha t  in the bulk and at the surface is 

observed and agrees well with experiments. The time and growth ra te  dependences of the 

phenomenon are studied and found to agree with work reported in the literature. S doping 

of S i  is studied in the range of 673° K to 973° K. The results are in qualitative agreement 

with experimental results. W ith an increase in temperature, the dopant profiles become 

sharper which is explained by smoother growth surface at higher temperatures.

Based on the present work, and as a continuation of this work, the following studies are 

recommended. (l)Develop the stochastic model to study other growth observations such 

as (111). (2)Use the present model to study other material systems. (3)ExpIore ways to 

relax the SOS restriction. (4)Develop a  model to obtain microstructural information from 

the output of the stochastic model.
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