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Application of an hp-adaptive Finite Element Method for 
Thermal Flow Problems 

Xiuling Wang* and Darrell W. Pepper†   
 

University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4027 

Numerical results are presented for a set of convective thermal flow problems using an hp-
adaptive finite element technique. The hp-adaptive model is based on mesh refinement and 
spectral order incensement to produce enhanced accuracy while attempting to minimize 
computational requirements. An a-posteriori error estimator based on the L2 norm is 
employed to guide the adaptation procedure. Example test cases consisting of natural 
convection in a differentially heated enclosure, flow with forced convection heat transfer 
over a backward facing step and natural convection within an enclosed partition are 
presented. Numerical results are compared with published data in the literature. 

Nomenclature 
A       Advection matrix 
B       Body force 

vF   Load vector for velocity 

TF   Load vector for temperature 

eh   Characteristic element length 
h        Element size 
t   Time 
T   Temperature 

hk   Diffusion coefficient 

vK   Diffusion matrix for velocity 

T
K   Diffusion matrix for temperature 
M   Mass matrix  

iN   Shape function 
p  Shape function order 
P  Pressure  

rP       Prandtl number  

eP  Peclet number  

eR  Reynolds number  

aR  Rayleigh number  
V   Velocity vector  
α       Petrov-Galerkin weighting factor 
γ      Petrov-Galerkin stability parameter 
ρ  Density  
L  Linear orthogonal projection operator 
∇  Divergence operator 
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I. Introduction 
he finite element method (FEM) is one of the most popular numerical tools for solving thermal flow problems, 
due to its ability to easily deal with irregular geometries, accuracy, and use of general-purpose algorithms. 

Adaptive FEM is especially powerful as it can provide significantly enhanced accuracy with less computational cost 
than using uniform refined and enriched meshes.  

There are four main categories of adaptation: (1) h-adaptation, where the element sizes vary while the order of 
the shape functions are constant; (2) p-adaptation, where the element sizes are constant while the order of the shape 
functions increase to meet desired accuracy requirements; (3) r-adaptation, where the nodes are redistributed in an 
existing mesh in the process of adaptation; (4) hp-adaptation, which is the combination of both h- and p-adaptation. 
hp-adaptive schemes are among the best mesh-based schemes with the potential payoff of obtaining exponential 
convergence rates [1] [2].  However, limited applications of hp-adaptive techniques for solving fluid flow problems 
are seen in the literature and even less for solving fluid flow with heat transfer [3] - [6]. 
 In this study, an hp-adaptive FEM is employed to solve incompressible flows with heat transfer effects. The 
basic methodology and adaptive strategy are presented for the numerical model. The numerical model is validated 
using benchmark problems for flow with forced convective heat transfer over a backward facing step and natural 
convection within a differentially heated enclosure. Results are compared with published data. Natural convection 
within a partitioned enclosure is also examined.  

II. hp-Adaptive Finite Element Model 
The nondimensional form of the governing equations for convective thermal flow can be written as: 
 
Continuity equation: 
 0V∇ =i  (1) 
 Momentum equation: 

 2
visc grav

V V V p C V C T
t

∂
+ ∇ = −∇ + ∇ +

∂
i  (2) 

 
Energy equation: 

 2
viscT

T V T C T
t

∂
+ ∇ = ∇

∂
i  (3) 

 
For forced and natural convection problems, the corresponding values for viscC , viscTC  and gravC are listed in 

Table 1. 

 
Applying the Galerkin weighted residual method and replacing the variables V and T with the trial functions 
 i iV( , t) N ( )V (t)= ∑x x  (4) 

 i iT( , t) N ( )T (t)= ∑x x  (5) 
 
the matrix equivalent forms for the integral expressions can be obtained: 

 V[M]{V} ([K] [A(V)]){V} {F }+ + =
i

 (6) 

 T T[M]{T} ([K ] [A(V)]){T} {F }+ + =
i

 (7) 
 

T 

                                                                  Table 1. viscC viscTC gravC Values 

Convection viscC  viscTC  gravC  

Forced 1 / Re 1 / Pe 0 
Natural Pr 1 Pr Ra 
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The governing equations are solved using a projection algorithm. Detailed descriptions regarding projection 
algorithms are discussed in Chorin et al [7]. The matrix coefficients in the finite element formulations are defined as 
(summation convention is employed): 

 [ ] i jM N N d
Ω

= Ω∫  (8) 

 ( ) ( ) j
i k k

j

N
A V N N V d

xΩ

∂
= Ω

∂∫  (9) 

 [ ] i j
V visc

i j

N N
K C d

x xΩ

∂ ∂
= Ω

∂ ∂∫  (10) 

 [ ] i j
T viscT

i j

N N
K C d

x xΩ

∂ ∂
= Ω

∂ ∂∫  (11) 

 { } ( ) j
v i i visc i i

j

V
F N f x d C N n d

xΩ Γ

∂
= Ω + Γ

∂∫ ∫  (12) 

 { }T i iF N Qd N qd
Ω Γ

= Ω + Γ∫ ∫  (13) 

A Petrov-Galerkin scheme is used to weight the advection terms in the governing equations. The altered 
weighting function skews the interpolation function in the upwind direction so that dispersion and added diffusion 
introduced by the standard Galerkin formulation can be minimized. The weighting scheme is defined as    
   

 
2

e
i i i

h
W N V N

V
α

= + ⋅∇⎡ ⎤⎣ ⎦ (14) 

 2coth
2
γα

γ
= −  (15) 

where α is Petrov-Galerkin weighting factor, eh  is the characteristic element length and γ is the Petrov-Galerkin 
stability parameter. 

For forced and natural convection problems, the corresponding values for γ  are listed in Table 2. 
 
 
 
 
 
 
 
 
 Mass lumping is used to obtain a fully explicit time scheme. The inverse of the mass matrix becomes:  

 1 1[ ]
i

M
m

− =  (16) 

 The most important rules in adaptive FEM procedures are listed as: (1) 1-Irregular mesh adaptation rules for h-
adaptation: an element is refined only if its neighbors are at the same or higher level (1-Irregular mesh). This rule 
guarantees that multiple constraint nodes are avoided; (2) the minimum rule is followed in p-adaptation: the order 
for an edge common for two elements never exceeds the orders of the neighboring middle nodes; (3) the adaptation 
rules for h- and p- are combined together in hp-adaptation. In addition to these rules, continuity of the global basis 
functions are also required – this is achieved by employing constraints at the interfaces of elements supporting edge 
functions of different order.  

Various adaptation strategies exist in literature [8] – [11]. The hp-adaptive FEM strategy employed in this study 
follows three steps and guided by an a posterior error estimator which is based on the L2 norm calculation: three 
consecutive hp- adaptive meshes are constructed for solving the system in order to reach a preset target error: an 
initial coarse mesh, the intermediate h-adaptive mesh, and the final hp- adaptive mesh obtained by applying p- 
adaptive enrichments on the intermediate mesh. The p- adaptation is continued when the problem solution is pre-
asymptotic.  

Table 2. γ  Values 
Convection γ  

Forced Re PreV h ⋅  
Natural PreV h Ra ⋅  
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III. Natural Convection in a Squared Enclosure 
Many engineering problems of practical interest deal with buoyant flows in enclosures, such as thermal 

insulation of buildings, heat transfer within attics and roofs, cooling of nuclear reactor cores, etc. Natural convection 
in a square enclosure has been studied extensively over the past 30 years. In 1983, De Vahl Davis [12] provided 
accurate benchmark solutions for natural convection in a square enclosure using a finite difference 
streamfunction/vorticity formulation with an 81 x 81 mesh.  

In this study the hp-adaptive FEM algorithm is first applied to solve natural convection heat transfer in a 
differentially heated squared enclosure with Ra = 10000.  

 Figure 1 shows the problem geometry and boundary conditions. The nondimensional enclosure 
( 0 1,0 1x y≤ ≤ ≤ ≤ ) is heated on one wall, cooled on the other, with the top and bottom walls insulated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 An initial computation is based on a coarse mesh consisting of 20 x 20 bilinear quadrilateral elements. The initial 
order for the coarse mesh is 1. The final hp-adapted mesh is shown in Fig. 2. The total number of elements in the 
final mesh is 1894 with 5469 DOF. The final mesh is obtained after 3-level h- and p-adaptation. The mesh is refined 
and enriched in the boundary layers along the walls.  
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Steady state results are shown in Figs. 3 - 5 for velocity vectors, streamlines and isotherms, respectively. Results 

compared to de Vahl Davis [12] are listed in Table 3. 

 
Fig. 1 Geometry and boundary condition for 2-

D Natural Convection. 

 
Fig. 2 Final hp-adaptive mesh for Ra=104 
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Fig. 3 Velocity vectors for Ra=104 

                           
(a)                                                                                    (b) 

Fig. 4 Streamlines for Ra=104 (a) hp-adaptive results (b) benchmark results [12] 

                             
(a)                                                                                  (b) 

Fig. 5 Isothermals for Ra=104  (a) hp-adaptive results (b) benchmark results [12] 
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IV. Forced Convection in a 2D Backward Facing Step 
 Two-dimensional flow over a backward facing step is a well known benchmark case which has been studied 
extensively over many years. The problem is easy to set up with known (expected) results at various Reynolds 
numbers.  

 In 1992, Blackwell and Pepper [13] introduced the problem of flow over a backward facing step with heat 
transfer as a benchmark test problem. Twelve different numerical simulations were presented and the results were 
compared with the numerical results obtained by Gartling [14] and experimental results from Armaly et al. [15]. 
 In this study, the hp-adaptive algorithm is applied to the backward facing step with heat transfer effects. For 
comparative purposes, Re = 800 and Pr = 0.71. The boundary conditions settings are the same settings as Blackwell 
and Pepper [13]: 

For inlet flow:  

 

10, 0
2( )

18 (1 2 ), 1
2

for y
u y

y y for y

⎧ ≤ ≤⎪⎪= ⎨
⎪ − < ≤
⎪⎩

 (17) 

 ( ) 0v y =  (18) 

 ( ) ( )2 21 1( ) 1 4 1 1 4 1 1
5 2

T y y y for y⎡ ⎤⎡ ⎤= − − − − < ≤⎢ ⎥⎣ ⎦ ⎣ ⎦
 (19) 

 ( ) 10 0
2

T y for y
x

∂
= ≤ <

∂
 (20) 

On upper and lower walls: 
 ( ) ( ) 0u y v y= =  (21) 

 32ˆ
5

T n∇ ⋅ =  (22) 

where n̂  is the outward unit vector normal to the domain boundary. For outlet flow, 
 0p =  (23) 
The problem configuration and boundary conditions are shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 

  
The initial mesh consists of 700 elements and 765 DOFs. The intermediate h-adaptive mesh shown in Fig. 7 

consists of 1762 elements and 1760 DOFs, which is obtained after a 3-level h-adaptation. The final hp-adaptive 
mesh is obtained for up to 3-level p- adaptation on the intermediate h-adaptive mesh, which is shown in Fig. 8. The 
final mesh consists of 1762 elements and 3802 DOFs (x:y ratio is 0.25).  

 

                     Table 3. Comparison solutions for 2D natural convection in an enclosure 
 
Case Pr Ra Umax  (x) Umax (y) Vmax (y) Vmax (x) 
Benchmark [12] 0.7 104 16.178 0.823 19.617 0.119 
Present results 0.7 104 16.180 0.827 19.600 0.120 

 
Fig. 6 Problem configuration and boundary conditions 
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Steady state simulation results for streamfunction and temperature are shown in Figs. 9 and 10, respectively.  

 
 
 
 
 
 
 
 
 
 
 

 

 
The locations and sizes of the lower wall eddy and upper wall eddy are listed in Tables 4 and 5 and compare 

closely with results obtained by Gartling [14]. Comparisons of velocity profiles at different cross sessions are made 
between the hp-adaptive results and benchmark data from Gartling [14], which are shown in Fig. 11. Temperature 
profiles are compared between present hp-adaptive results and Emery et al’s and Dyne et al’s results from [13], 
which are shown in Fig. 12. Excellent agreement is observed. 

 

 
Fig. 7 Intermediate h-adaptive mesh 

 
Fig. 8 Final hp-adaptive mesh 

 
Fig. 9 Streamfunction contours 

 
Fig. 10  Isotherms 
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Table 4. Comparison of lower wall eddy locations and sizes with 
the bench mark solution by Gartling [14] 

Case Vortex Center 
(x, y) 

Cell Length 
(H) 

Benchmark [14] (3.35, -0.2) 6.10 
Present result (3.35, -0.2) 6.00 

Table 5. Comparison of upper wall eddy locations and sizes 
with the bench mark solution by Gartling [14] 

Case Vortex Center 
(x, y) 

Separation 
(x, y) 

Reattachment 
(x, y) 

Cell Length 
(H) 

Benchmark [14] (7.40, 0.30) (4.85, 0.5) (10.48, 0.5) 5.63 
Present result (7.39, 0.31) (4.81, 0.5) (10.45, 0.5) 5.56 

              
Fig. 12 Comparison of temperature profiles (a) T profile compared with Emery et al.’s results [13] (b) T 

profile compared with Dyne et al.’s results [13] 

           
(a) (b) 

Fig. 11 Comparison of velocity profiles                                                             
(a) u profile compared with [14] (b) v profile compared with [14] 
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V. Natural Convection in an Enclosed Partition 
 Natural convection in partially divided enclosures has attracted the attention of both experimental and theoretical 
researchers in recent years. Practical applications include heat transfer across thermo pane windows, solar collectors, 
fire spread and energy transfer in rooms and buildings, cooling of nuclear reactors and heat exchanger design [16]. 

In many situations, a partial obstruction extends from a surface, e.g., a printed circuit or a ceiling beam in a room. 
Research results show that the heat transfer between two heated side walls is reduced when a partial partition is 
present. 

 The partition, along with the top and bottom walls, is insulated. The left and right walls are maintained at hot and 
cold temperatures, respectively; Ra=104. The problem domain is defined as0 2,0 1x y≤ ≤ ≤ ≤ , as shown in Fig. 13. 

 
 
 
 
 
 
 
 
 
 
 
  
The initial coarse mesh consisted of 820 quadrilateral elements with 893 nodes, as shown in Fig. 14. The initial 

order for the coarse mesh is 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 The final hp-adaptive mesh is shown in Fig. 15. The h-adaptation preceded over 3 levels while the p-adaptation 

reached 3rd order. The final mesh consists of 3313 elements and 6926 DOF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be seen from the final adapted mesh that the mesh is finer in the vertical boundary layers, along with 

higher order shape functions. This occurs as a result of the flow becoming accelerated around the partition corners 
and along the vertical walls.  

 

 
Fig. 13 Partial divided enclosure  

 
Fig. 14 Initial computational mesh 

 
Fig. 15 Final hp- adaptive mesh 
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 The error distribution shown in Fig. 16 shows those regions of the problem domain where much of the activity is 
generated with regards to both h- and p-adaptation, and closely follows the pattern exhibited in Fig. 15.  

Steady state results for velocity vectors and temperature are shown in Figs. 17 and 18, respectively. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16 Error distributions 

 
Fig. 18 Temperature contours 

 
Fig. 17 Velocity vectors 

D
ow

nl
oa

de
d 

by
 A

sh
le

y 
Pe

rk
in

s 
on

 M
ar

ch
 1

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
00

6-
58

9 



 
American Institute of Aeronautics and Astronautics 

 

11

VI. Discussion 
In order to initially determine the computational efficiency of the adaptive algorithms, the following numerical 

experiment was conducted: solve for differentially heated natural convection within an enclosure with Ra = 105 
using a globally uniform h- refined and p- enriched mesh (uniform refine up to 3-levels and uniform enrichment up 
to 3rd order) and the hp-adaptive algorithm (refined up to 3-levels and enriched to 3rd order). Results show that the 
globally h- refined and p- enriched algorithm consumed almost 18X more CPU time (projected) than the hp- 
adaptive algorithm. The employment of the hp- adaptive algorithm significantly reduced the computational effort, as 
shown in Table 6. 

 

 

VII. Conclusion and future work  
 In this study, an hp-adaptive finite element technique has been developed and applied to both forced and natural 
convection problems. The hp-adaptive algorithm utilizes both mesh refinement (h) and spectral order incensement 
(p). The numerical method generates very accurate results with less computational effort than globally fine meshes 
attempting to achieve similar residual error. Thermal problems such as natural convection in a square enclosure, 
forced convection heat transfer associated with flow downstream of a backward facing step, and natural convection 
in a partition enclosure are investigated. Results agree well with data in the literature.  
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