
UNLV Retrospective Theses & Dissertations

1-1-1996

An approach to building a secure and persistent distributed object An approach to building a secure and persistent distributed object

management system management system

Yu Kin Ho
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Ho, Yu Kin, "An approach to building a secure and persistent distributed object management system"
(1996). UNLV Retrospective Theses & Dissertations. 594.
http://dx.doi.org/10.25669/kbdx-qqdn

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/kbdx-qqdn
mailto:digitalscholarship@unlv.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality o f the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

An Approach to Building a Secure and Persistent Distributed
Object Management System

by

Yu Kin Ho

A thesis submitted in partial fulfillment o f the requirements
for the degree of

Master of Science

in

Computer Science

Department of Computer Science
University of Nevada, Las Vegas

May 1996

UMI Number: 1380518

UMI Microform 1380518
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

The Thesis o f Yu Kin Ho for the degree o f M aster in Computer Science is approved.

Chairperson, Kia Makki, Ph.D.

Examining Committee Member, John Minor, Ph.D.

\ P . q k

Examining Committee Member, Evangelos Yfantis, Ph.D.

Graduate Faculty Representative, Bahram Nassersharif, Ph.D.

 7

Dean of the Graduate College, Ronald Smith, Ph.D.

University o f Nevada, Las Vegas

May 1996

ii

ABSTRACT

The Common Object Request Broker Architecture (CORBA) proposed by the

Object M anagement Group (OMG) is a widely accepted standard to provide a system

level framework in design and implementation of distributed objects. The core o f the

Object M anagement Architecture (OMA) is an Object Request Broker (ORB), which

provides transparency of object location, activation, and communications. However, the

specification provided by the OMG is not sufficient. For instance, there is no security

specifications when handling object requests through the ORBs. The lack of such a

security service prevents the use of CORBA from handling sensitive data such as personal

and corporate financial information.

In view of the above, this thesis identifies, explores, and provides an approach to

handling secure objects in a distributed environment along with a persistent object service

using the CORBA specification. The research specifically involves the design and

implementation of a secured distributed object service. This object service requires a

persistent service and object storage for storing and retrieving security specific

information. To provide a secure distributed object environment, a secure object service

using the specifications provided by the OMG has been designed and implemented. In

addition, to preserve the persistence o f secure information, an object service has been

implemented to provide a persistent data store.

The secure object service can provide a framework for handling distributed

object in applications requiring security clearance such as distributed banking, online

stock tradings, internet shopping, geographic and medical information systems.

T a b l e o f C o n t e n t s

ABSTRACT ... iii

LIST OF F IG U R E S ... vii

A C K N O W LED G EM EN TS.. viii

CHAPTER 1 IN TR O D U C TIO N ...1
1.1 Thesis O b jec tives ..3
1.2 Overview of the A pproach ..4
1.3 Target Application E nv ironm en t...5
1.4 Scope .. 5
1.5 Organization of the T h e s is ..6

CHAPTER 2 RESEARCH C O N T E X T ...8
2.1 Distributed Object T echno log ies...9

2.1.1 C O R B A ...10
2.1.1.1 Structure of an Object Request B ro k e r10

2.1.2 IBM ’s DSOM ... 13
2.1.3 Sun M icrosystems’ N E O ™ .. 14
2.1.4 PostModem Computing’s O R B eline ...15

2.2 Persistent Object S to re s ...15
2.2.1 Texas Persistent S t o r e ..16
2.2.2 E X O D U S .. 17
2.2.3 EOS ... 18

2.3 Security M o d e ls ..20
2.3.1 Multilevel Security M echan ism s... 21
2.3.2 Discretionary Security Mechanisms .. 23

2.3.2.1 Positive and Negative A uthorizations.................................... 23
2.3.2.2 Strong and W eak Authorizations ... 24
2.3.2.3 Role-Based S e c u r i ty ..25

2.4 Thesis Contributions ...27
2.5 Summary ... 28

CHAPTER 3 DESIGN AND IMPLEMENTATION OF PERSISTENT OBJECT
SERVICE USING C O R B A ..30

3.1 Introduction to Persistence..30

3.2 OMG Persistent Object Services P ro to c o ls .. 32
3.2.1 The Direct Access (PDS_DA) Protocol ... 32
3.2.2 The Dynamic Data Object (DDO) Protocol 33
3.2.3 The ODM G’93 Protocol ...35

3.3 Design o f the Persistent Object S e rv ice ...35
3.4 Implementation of Persistent Object S e rv ice ..38

3.4.1 Persistent Identifier (PID) .. 38
3.4.2 Persistent Data Store using E O S ...40

3.5 Summary ... 42

CHAPTER 4 DESIGN AND IMPLEMENTATION OF A SECURE OBJECT
S E R V IC E ... 44

4.1 Design of the Role Security M o d e l ..45
4.1.1 The Role M o d e l .. 45
4.1.2 Implicit and Explicit P riv ileg es ... 48
4.1.3 Authorization Properties .. 48

4.1.3.1 Positive and Negative Access Control48
4.1.3.2 W eak and Strong Access C o n tro l ...48

4.1.4 Role Graph Maintenance Properties .. 49
4.1.4.1 Role Addition and Deletion ..49

4.1.5 High Level Design for the Role M o d e l ..51
4.2 Implementation of the Security Model ... 53

4.2.1 Role Im plem entation ... 54
4.2.2 Integration of Security Services on C O R B A 56

4.3 An Application E x a m p le ..60
4.4 Summary ... 65

CHAPTER 5 CONCLUDING R E M A R K S.. 66
5.1 Summary on Persistent and Security Models ..66
5.2 Implementation Issues on C O R B A ..67
5.3 Future W o rk ...67

APPENDIX I: PERSISTENT IDENTIFIER PR O G R A M ..69

APPENDIX II: PERSISTENT OBJECT SERVICE PR O G R A M71

APPENDIX III: ROLE IDENTIFIER PR O G R A M ...78

APPENDIX IV: ROLE GRAPH PR O G R A M .. 80

APPENDIX V: SECURITY MONITOR PROGRAM .. 99

v

APPENDIX VI: ROLE GRAPH INITIALIZATION PR O G R A M103

BIBLIOGRAPHY ..109

vi

List of Figures

Figure 1: Client sending a request through the Object Request Broker11
Figure 2: The Structure of Object Request Broker Interfaces [40]12
Figure 3: Baldwin’s Privilege G ra p h ..27
Figure 4: Function of Persistent Object Service ... 31
Figure 5: Direct Access Protocol Interfaces .. 33
Figure 6: Structure of a DDO [4 1] .. 34
Figure 7: The role o f P O M .. 37
Figure 8: IDL for the Persistent ID in te rface .. 39
Figure 9: Persistent ID derived c l a s s ..40
Figure 10: IDL declaration of the Persistent Data Store (P D S)...................................... 41
Figure 11: Class definition of the Persistent Data Store ..43
Figure 12: A typical role graph ...47
Figure 13: Simplified role graph with minimum redu n d an cy ...47
Figure 14: Example of conflicts between access and denial l i s t49
Figure 15: Addition of new ro le ...50
Figure 16: Deletion of r o le .. 50
Figure 17: Booch diagram of our Role graph d e s ig n ...52
Figure 18: IDL of Role M o d u le ... 55
Figure 19: Client requests mechanism on C O R B A ...56
Figure 20: Object implementation receiving request through the Object Adapters . 57
Figure 21: IDL Implementation of Security M onitor S e rv ic e ...58
Figure 22: Class Definition for the Security M onitor S e rv ice ...59
Figure 23: Main function of Security M onitor S e rv e r .. 61
Figure 24: Class Implementation of the Security Event Handler62
Figure 25: Function to perform security check for a u s e r ..64

A C K N O W LED G EM EN TS

It gives me great pleasure to acknowledge and thank those who have helped me

overcome various obstacles in the course o f my graduate studies.

If I were to name an ideal teacher and advisor it would be Dr. Kia M akki. He was

always there and ready to help as my teacher and advisor. Despite his busy schedule, Dr.

K ia Makki recom m ended the topic and has always made time to supply and discuss many

ideas and to make many technical contributions. H is excellent suggestions and criticisms

were enormously helpful in the classification and development o f this work. My

discussions with him have been extremely rewarding because o f his insight knowledge

and quick grasp o f the essentials o f the problem. The ideas included in this thesis are the

result of our intense discussions; it has always been a challenge to propose an idea and

justify it to him. I also thank him for his immense patience in carefully reading, correcting

and constructively criticizing with his thoughtful insights all the drafts o f m y thesis and

providing enlighting comments. This thesis would not have been in its present form

without his continuing support, suggestions, corrections, comments, and technical

contributions. I am deeply indebted to him for personal, moral, and professional support

and guidance in research and ethics.

I would also like to express my deepest gratitude and appreciation to Dr. Niki

Pissinou from The Center for Advanced Com puter Studies at the University o f

Southwestern Louisiana, for her early suggestions and valuable advice during the course

o f my thesis work and for her inspiring guidance and encouragement. Despite her busy

schedule she has spent time to edit several drafts of this thesis. Her com m ents have been

very helpful in making the technical presentation o f this thesis clearer. H er suggestions

and criticism s on the technical aspects o f the thesis have been invaluable. Her suggestions

have had a great impact on this document. I am also very grateful to Dr. Pissinou’s

database research group, for their previous work in this area and providing me with a

research context for the development of this thesis.

I also would like to thank other m em bers o f my thesis committee Dr. Bahram

Nassersharif, Dr. John M inor and Dr. Evangelos Yfantis for their comments and serving

on my thesis committee. I also like to thank the staffs in the National Supercomputing

Center for Energy and Environment for their support and providing computer resources. I

specially thank Ms. Justine Clarkin for proof reading the early draft o f my thesis.

C h a pt e r 1

In t r o d u c t io n

A distributed database is a collection of data that belongs logically to the same

system but is physically spread over the sites of a computer network [17]. Design of

distributed databases by this definition can increase the performance o f database

applications in two aspects: by reducing the amount of irrelevant data accessed by the

applications and by reducing the amount o f data transferred in processing the

applications [22]. The object-oriented concept for representing real-world entities, on the

other hand, can be added onto the distributed database management system to provide

encapsulation, type and class hierarchies, inheritance, and operator polymorphism.

An object is one o f the main forms of abstraction used in object-oriented

programming methodologies. An object includes a “state” and “behavior”. An instance

o f data is called a state. Operations that can be performed on the data are called behavior.

An object includes both the state and the behavior. A class or type, is a specification of

the object’s state and behavior [3]. Classes form a hiearchy. A class below another class

in the hiearchy inherits all the properties of the above class. This mechanism is called

inheritance. These set of operations form the interface to that object. Ideally, the state or

data held in an object should be accessed or modified using only the object’s interface.

This property is called encapsulation.

Since 1987, a number of object-oriented database systems have emerged in the

market. However, most of them have been in evaluation and preliminary prototype

application development. None o f them have been seriously used for mission-critical

applications [23]. The current state of object technology is itself contributing to the

problem via the diversity of object models. This is one of the aims of the Object

M anagement Group (OMG) [40] to develop command models, a common interface for

the development, and use of large-scale distributed applications using object-oriented

technology [53]. The Common Object Request Broker Architecture (CORBA) developed

by OMG is designed to allow integration of a wide variety o f object systems. It defines

the high-level framework in order to develop an object-oriented database system in a

heterogeneous distributed environment.

Currently, database systems are designed to accommodate many users and very

large sets of data; hence performance, security and authorization, transaction

management, concurrency control, recovery, persistent storage, and dynamic schema

changes become important issues. These issues have been stressed in the CORBA model.

In particular, we focus more on the areas of persistence, and security and authorization.

CORBA can be extended to incorporate a number o f common object services which

support basic functions for using and implementing objects. Each of the issues

mentioned above can be solved by adding more object services. The Common Object

Services specification released by OMG in March 1995 includes the persistent object

service specification, but few CORBA based systems have incorporated the persistent

storage of objects. However, the latest CORBA specification (2.0) still has not covered

how to handle the security and authorization. Research is continuing in an effort to

incorporate security to the CORBA specification.

1.1 T h e s is O b je c t iv e s

The objective of this thesis is to design and implement a secure distributed object-

oriented database management system along with a persistent object service using the

CORBA specification. The object service should provide a mechanism to protect

sensitive object data from being released to unauthorized personnel. A persistent object

service is required to provide methods to preserve security information in a object-

oriented data store.

In brief, we have five major objectives:

1. Evaluation o f existing CORBA based implementations.

2. Evaluation of existing Object-Oriented Database Systems.

3. Evaluation o f various security models and requirements.

4. Addition of persistence to a CORBA based implementation.

5. Design and implementation a security model to a CORBA based implementation.

For the first three objectives, we will examine some of the CORBA based

implementation and Object-Oriented Database Storage systems on the market that were

developed by industry and educational institutions. Then, we will implement the

persistence object service based on the persistence object service specification released

by OMG. Finally, we will design and implement our security model on a CORBA based

implementation.

4

1.2 O v e r v ie w o f t h e A p p r o a c h

As mentioned above, this research requires design and implementation of a

secure object service. This thesis will provide a security model suitable to handle

distributed objects. The model is based on a role-based environment. Each role is

associated with a set of system privileges. A role contains authorization information to

allow or to deny access to users. The model preserves the inheritance property of objects

such that a role can inherit properties from other roles. An approach to operate and to

maintain a role graph will be designed and implemented as an object service using

CORBA specifications.

It is necessary to preserve the security information for the role-base model. In

doing so, a persistent object service is required to store and retrieve role graph

information in and out from an object storage. The persistent service hides the

communication interfaces necessary to connect to an object-oriented data store.

The overall design consists of three main software components. They are: a role-

based authorization interface, a persistent object service to an object store, and an event

handler. The role-based authorization interface provides functions to perform security

check on users and to maintain the role graph security information. The persistent object

service allows permanent and secure storage for the security information. The event

handler provides mechanism to allow the role-based authorization interface to perform

security checks for object requests through the Object Request Brokers (ORBs). The

ORB is the core o f the object management system to identify, locate and handle object

requests.

This thesis includes a detailed description of the design and implementation of

secure object service. It also includes an implementation of persistent object service in

use with an object-oriented database system.

1.3 T a r g e t A p p l ic a t io n E n v ir o n m e n t

Secure distributed object management has become a hot issue with the increasing

demands on internet services and distributed applications. Financial institutions such as

banks and stock brokers start to provide on-line services to customers. The information

requested can be complicated objects such as monthly financial reports with spreadsheets

and graphical charts. The role-based model can provide security control for user

authentication. This model is flexible and can be used to handle multimedia objects.

Another application is in handling distributed data o f a corporation. Large

corporations are trying to handle complex objects distributed among their various

locations. The complex objects can incorporate financial data, employee information and

business plans. The data are classified and security clearance is necessary for information

request. The data can also be distributed into different database systems at remote

locations. CORBA with the role-based security service introduced in this thesis can

provide a standard framework with authentication control to implement distributed

applications on these data.

1.4 S c o p e

Distributed object management covers a broad area in computer science. It covers

computer network issues, distributed computing issues, object management issues and so

on. This thesis addresses issues of providing a secure distributed object-oriented database

management system to handle sensitive data transfer using CORBA specification. The

implementation will use ORBeline by Post Modern Computing as the CORBA

implementation. ORBeline is a commercial CORBA implementation. It provides a

general framework for developing CORBA compliant applications on distributed objects.

This work does not address all current issues related to distributed object-oriented

database management. Rather, it addresses the critical problems existing in the widely

accepted standard CORBA. The prototype introduced in this thesis is not sufficient to

cover all the limitations o f CORBA. Data encryption on transferring objects is another

research topic. Other critical issues related to distributed object-oriented database

management system include locking mechanisms, optimization methodologies and

interoperability issues in ORBs.

1.5 O r g a n iz a t io n o f t h e T h e sis

The remaining chapters of this thesis are organized as follows: Chapter 2 is the

research context and related works. This will include discussion on some CORBA based

distributed objects management systems and some object-oriented database systems

currently available on the market. The model of persistent storage will also be discussed

in this chapter. In addition, we will evaluate several security models which could be used

on our object-oriented database system. Chapter 3 will focus in detail on the design and

implementation o f a persistent object service in use with an object-oriented database

system. Three protocols will be discussed for handling persistent objects. The three are

the Direct Access Protocol, the Dynamic Data Object Protocol and the OD M G ’93

Protocol [12]. The implementation of the persistent service is provided with description

of the CORBA Interface Definition Language (IDL). Implementation to persistent

service for storing and retrieving objects in and out from an object-oriented database

system will also be explained. Chapter 4 is the design and implementation o f the role-

based security model. Our abstract design model will be given in this chapter. Also,

codes and explanation will be provided to implement the security service and to integrate

it to CORBA. Chapter 5 will conclude our research work in this area and suggest some

future extensions to our model.

C h a p t e r 2

R e se a r c h C o n t e x t

Object-oriented technology emerged in late 1960s with the introduction of the

SIM ULA language. The object paradigm has been used in various areas since then. The

most powerful capabilities from the object-oriented technology are class inheritance and

encapsulation of knowledge. Today’s database systems have been used not only in

medium-size database systems, but also in very large database systems. Data handled by

database systems no longer reside on single machines. They may be distributed over

high-speed networks. Types of data stored in a database range from simple text data to

multimedia data involving image, audio and video. The idea of data hiding resulted from

the object relation can hide the complexity of today’s database systems to the database

developers, end-users, database administrators. Overloading, overriding, and late binding

capabilities from object-oriented concepts can reduce significant amounts o f time in

application development [45]. However, the advancement from this technology on the

area o f distributed database development has been slowed down by the fact that no

standardized framework exists for the developers. The Object M anagement Group

(OMG) [40] was formed in 1989 with the purpose of creating standards allowing for the

interoperability and portability of distributed object-oriented applications. A large group

9

of companies including the major players in the commercial distributed object-oriented

computing arena have joined OMG for creation of a standard specification for a

framework in distributed object-oriented database environments. The Common Object

Request Broker Architecture released by OMG is a concrete description of the interfaces

and services provided by the compliant core elements in the architecture [58]. But still,

there are other issues that have not yet been handled by the CORBA specification such as

security, one of the key elements in distributed object-oriented database system. The

enforced security policies are directly affected by the based architecture.

This chapter will first briefly describe CORBA, then will evaluate some of the

existing CORBA based systems on the market. Next, we will move our attention to some

existing object-oriented database systems. Finally, several security models will be

discussed.

2 .1 D is t r ib u t e d O b j e c t T e c h n o l o g ie s

This section will discuss the current technologies available to handle distributed

object. To begin with, the Common Object Request Broker Architecture (CORBA) by

the Object Management Group (OMG) [40] will be presented. A number o f CORBA

based systems have become available on the market since the release of CORBA

specification version 1.1 by OMG. There are also some CORBA like systems such as

Xeros PARC’s ILU [20] and Stratus/ISIS Reliable Distributed Objects (RDO). CORBA

based systems are IBM ’s DSOM [54], Iona’s Orbix [37], DEC’s Object Broker [36],

Expersoft’s PowerBroker, ILOG’s ILOG Broker, H P 's ORBplus, PostModern

Com puting’s ORBeline [38], Prism Technologies’ OpenBase, and Sun M icrosystems’

10

N EO™ [55]. O f these CORBA based systems, three will be discussed; namely, IBM ’s

SOM [54], Sun M icrosystems’ NEO [55] and PostModern Computing’s ORBeline [38].

Their basic features, functionalities, and their compliance to CORBA specification will

be evaluated.

2 .1 .1 C O R B A

The Common Object Request Broker Architecture (CORBA) is designed to allow

integration o f a wide variety of object systems. It comprises o f various key interfaces,

services, and the core element, the Object Request Broker (ORB). The ORB is like a

postal system and is basically responsible for routing client requests to objects. The

objects can reside on a local computer system or a remote one. The client is unaware of

the location o f the recipient object and the recipient object does not know the location of

the client. All of the communication between client and object is performed by the ORB

and such activity happens transparently as if all the participants were on a single

computer system.

2 .1 .1 .1 S t r u c t u r e o f a n O b je c t R e q u e s t B r o k e r

Figure 1 shows a request being sent by a client to an object implementation. The

client wishes to perform an operation on the object and the object implementation is the

code and data that actually implements the object. The ORB is responsible for all of the

mechanisms required to find the object implementation for the request, to prepare the

object implementation to receive the request, and to communicate the data making up the

request. The client will not know where the object is located or what programming

language implements the object implementation [40].

Client Object Implementation

Request

Figure 1: Client sending a request through the Object Request Broker

Figure 2 shows the structure o f the Object Request Broker (ORB). In order to

make a request, the client can use the Dynamic Invocation interface which is the same

interface independent of the target object’s interface. Or, the client can use the IDL stubs

which are specific to the interface of the object. It is also possible for the client to call

other ORB interfaces.

There are two ways for the object implementation to receive the request from the

client, either through the IDL generated skeleton or through a dynamic skeleton. The

object implementation can call the object adapter during the process o f the request.

12

Object ImplementationClient

ynamicStatic IDL
Skeleton Object

Adapter
Ske etonIDL

Stubs
ORB

Interface
Dynamic
Invocation

ORB Core

k \ \ \ \ \ S Interface identical for all ORB im plem entations

X / / / / / A There may be multiple object adap ters

There are s tu b s and a skeleton for each object type

ORB-dependent interface

ti
Up-call interface

Normal call
interface

Figure 2: The Structure of Object Request Broker Interfaces [40]

The primary way to invoke services provided by the ORB is through the Object

Adapter. It can provide services such as generation and interpretation o f object

references, object implementation activation and deactivation, mapping objects

references to implementations, and registration o f object implementations.

Interfaces can be defined in an Interface Definition Language (IDL). The

language defines the types and structure of objects and the operation and the parameters

to those operations. During a runtime, interfaces can be added to or referred from an

Interface Repository Service. The Interface Repository Service provides persistent

objects that represent the interface defined in the IDL available at a runtime.

13

This is just an overview of the functionalities of ORB. For more detail

description, please refer to the CORBA specification 2.0 released by OMG in July 1995

[40],

CORBA provides a general framework for a distributed object-oriented system.

Any Object Request Broker (ORB) with CORBA compliance can be interoperable under

this framework. For example, the ORB of IBM ’s DSOM can communicate with the ORB

of NEO from Sun Microsystems to locate and perform distributed object requests. In the

following section, a few CORBA based systems will be discussed.

2.1.2 IBM’S DSOM

IBM ’s SOM (System Object Model) [54] is fully based on CORBA standards and

supports operating systems such as OS/2, AIX/6000 and MS Windows. It also provides

OMG Common Object Services such as Persistent service that allows objects to be

stored or restored to and from a repository that can be a file system, database or object

database. The Persistent service will be discussed in the next chapter. SOM also provides

frameworks such as replication and emitter frameworks. The Replication framework

enables an object to be replicated in the address spaces of several processes distributed

about a network. Each replicated object can be updated; the framework will guarantee

that the updates are serialized. The Emitter framework aims to reduce the complication

in software development. SOM ’s Interface Definition Language (SOM IDL) compiles

with CORBA’s standard for IDL; it also adds constructs specific to SOM. There are two

IDL compilers that include SOM, SOM IDL and OIDL which is the OMG CORBA IDL

compiler. Programming languages supported by SOM are C and C++. In order to address

14

the cross-platform interoperability problem, SOM relies on its distributed object

framework, sometimes called DSOM (Distributed SOM). DSOM is a set of SOM classes

that transparently extends the method dispatch mechanisms embodied in the SOM

runtime engine to allow methods to be invoked, in a programmer transparent way, on

objects in a different address space or on a different machine from the caller. DSOM is

fully CORBA compatible, supporting all CORBA data types, functionality and

programming interfaces. Currently, fully interoperable versions of the DSOM framework

are available for SOM on AIX, OS/2 and Windows [54].

2.1.3 S u n M ic r o sy st e m s ’ NEO™

N EO ™ formerly called Distributed Objects Everywhere (DOE) is a more

powerful system than DSOM. It not only provides a full CORBA Specification 2.0

facility but also numerous Common Object Services to support the CORBA framework

such as Naming, Persistent Storage Manager, Associations, Properties, Events, and Life

Cycle Services [55]. Life Cycle Services, for instance, define services and conventions

for creating, deleting, copying and moving objects. In distributed environment, life cycle

services create a set o f services and conventions for clients to perform life cycle

operations on objects in different locations. Similar to DSOM, N E O ™ provides

language bindings for C/C++ [41]. NEO’s Object Request Brokers (ORBs) can also

interoperate with other CORBA compatible ORBs such as Iona’ Orbix for MS Windows

on PC based platforms. With the recent development o f Java™ , an object-oriented

programming language developed by SunSoft, it can provide Internet access to NEO

environment through Java scripts.

2 .1 .4 P o s t m o d e r n C o m p u t in g ’s O R B e l in e

15

ORBeline is a complete implementation of the CORBA specification 1.1. It

provides all the features specified in the specification. ORBeline’s Smart Agent and

Dynamic Directory Service provides an easy way for migration and replication of

objects. Special features are fault-tolerance, failure recovery and event handling.

ORBeline can interoperate with other major ORB products [38]. On the other hand,

ORBeline only provides language bindings for C++. Other Common Object Services

such as Persistent Object Services are not supported in the current version. The

implementation o f persistent services and security (to be discussed in the next chapter)

will be built on top of ORBeline to provide a complete CORBA framework for Object-

Oriented Database Management System in a distributed environment. Advantages of

ORBeline includes its availability and completeness to CORBA specification.

2 .2 P e r s is t e n t O b je c t S t o r e s

Object-Oriented Database Systems (OODSs) became available on the market in

late 1980s. Many object-oriented database systems are currently available from both

commercial vendors and educational institutions. Earlier OODSs are 0 2 [2] [15][27][28],

Orion [24], and Iris [18]. Object Store from Object Design, Inc. [25] is one o f the latest

generation of commercial OODSs. Many OODSs are developed by research laboratories

and educational institutions such as Exodus from University o f Wisconsin, Madison

[9][10], ODE and EOS from AT&T Bell Labs [5], OBST from Forschungszentrum

Informatik, Germany [11], and Texas Persistent Store from University o f Texas, Austin

16

[52], Before we move on to the next section, two terms, persistent object and transient

object will be defined. The term “persistent object” can be defined as an object which is

valid beyond the life-time of the process that created it [23]. On the other hand, transient

object’s lifetime ends when the process that created it terminates. In the following, we

provide a brief discussion of a database architecture which is based on Texas Persistent

Store, Exodus and EOS.

2 .2 .1 T e x a s P e r s is t e n t S t o r e

Texas Persistent Store, developed at the University of Texas at Austin, is a

persistent storage system written in C++. One o f the key feature of the design is the use

o f pointer swizzling at page fault time. This technique makes use of the virtual memory

management scheme available in most current systems. In Texas Persistent Store model,

persistent objects are treated similarly as the transient objects. The only difference is

persistent objects are loaded into virtual memory transparently from disk. Transient

objects are resident in the memory throughout their life. Therefore, it is not necessary to

distinguish between persistent objects and transient objects in the client code.

Objects can be retrieved by name in Texas Persistent Store model. W hen a rooted

object is requested by name, a page of virtual memory is reserved and protected. The

actual object will not be loaded into the reserved page until the object is actually

referenced. If the rooted object, has been page faulted into virtual memory, then a page

will be reserved and protected for each successor object from the root. This process will

be continued in this manner. Hence, pages of virtual memory are reserved one pointer

ahead for each object being page faulted into virtual memory [52].

17

The technique of pointer swizzling at page fault time has also been used in the

commercial product, ObjectStore [25]. The main advantage o f this technique is

providing an efficient method for a high performance object storage system.

2.2.2 EXODUS

EXODUS is one of the extensible DBMS projects developed in late 80s and early

90s at the University of Wisconsin, Madison [7]. The goal of the project is to develop a

set o f primitive DBMS facilities for constructing application specific DBMS. One o f the

m ajor facilities of EXODUS is the storage manager which provides the basic procedures

for file operations such as file creation, deletion and scans. It also provides procedures

for storing and destroying objects from a file. Small objects and large objects are treated

differently in EXODUS. Objects that can be stored in one page are treated as small

objects. The storage manager will automatically convert an object to a large object if it

exceeds the size limit of a page. The object identifier (OID) of a small object points to

the disk location o f the object. For the large object, its OID points to the object header

instead. A large object is an uninterpreted byte sequences. It is represented as a B+ tree

index on byte position within the object plus a collection of leaf blocks [9].

EXODUS provides another way to support persistence with the introduction of E

language. The E language is an extension of C++. It defines the DB (database) attributes

and a couple o f predefined classes for manipulation of persistent objects. Generic classes

for unknown types are also added to enhance the development of database

implementation. Generic classes can be used with one or more unknown types within the

class definition. Type information can be provided when the class is actually declared.

18

The idea of generic class is very similar to the template class of C++ which has been

introduced in the later version of C++.

The successor of EXODUS is Scalable Heterogeneous Object REpository

(SHORE) which was developed at the University of W isconsin at Madison [10]. The

objective o f SHORE is to provide heterogeneous object management for object-oriented

database and file systems. A parallel version of SHORE has also been developed which

is built on top of PV M 1 for interprocess communication [10].

2 .2 .3 E O S

EOS is a storage manager developed at AT&T Bell Labs [6] for high

performance DBMSs. The EOS is serving as the storage manager for the OODBMS,

ODE which is also developed at AT&T Bell Labs. EOS provides extensive support for

large objects. Objects can be named and retrieved by name efficiently. EOS also follows

the ODM G-93 standards proposed by the Object Database M anagement Group [12] to

provide persistent reference to an object type.

Objects are stored in the database or storage areas which can be UNIX files or

raw disk partitions. Storage areas can be shared or private. The EOS server will control

the access for multi-users for the shared areas. Users can create private areas on local

machine for faster performance. In EOS, there are two kinds o f object representations,

file objects and ordinary objects. File objects are objects which are related. This

approach provides a mechanism for sequential scanning o f objects within a file. Ordinary

1 PVM is a set of message passing libraries written in C or Fortran for
implementation of parallel programs in a heterogeneous environment [20].

19

objects and file objects have object headers attached to them. The object header contains

information of the object such as the object length, whether the object is named or

unamed and so on. The header only occupies two bytes of space. A handle is a object

reference from which we use it to perform object operation. An object handle must be

obtained first before one can operate the object. The handle contains the address o f the

object in the EOS buffer pool. The page where the object is located will then be locked.

W hen the object handle is released, the page will be unlocked.

The way EOS defined large and small objects is similar to EXODUS. A small

object is an object which can fit into one page, the object is large otherwise. Users will

see no differences in accessing small or large objects. In addition, EOS provides access

to portions of an object. It is useful for handling a very large object [6].

EOS is a rather complete implementation o f a persistent object store. It has all the

basic features for a data storage system such as concurrency control, logging, transaction

commit and abort, checkpoint, and recovery from system crash. It can be extended by

associating actions with certain primitive events. Primitive events are low-level events

such as page fault, object fault, transaction commit and so on. In our complete

implementation of a distributed OODBMS based on CORBA, EOS has been used to

serve as a persistent object store. EOS has both C and C++ bindings. There are several

advantages for choosing EOS as the persistent store over the others. First of all, EOS has

a C++ binding and actually EOS is implemented in C++. Secondly, EOS is a more

complete database system which provides reliable functionalities. Moreover, EOS

provides persistent reference ability which conforms to the ODMG-93 standards [12].

Lastly, EOS is very easy to use and to install when compared to EXODUS and Texas

20

Persistent Store. Even though EOS provides a client-server architecture, one can still use

the CORBA structure to handle all requests and operations to the persistent store. Clients

can send requests to the server o f the persistent storage only through the Object Request

Broker (ORB) rather than the default communication routines provided by EOS.

So far, we have gone through some basic concepts of the Common Object

Request Broker Architecture (CORBA), three commercial implementation o f CORBA,

and three persistent storage systems. In the next section, we will discuss some of the

security models for our environment. We will focus more on the security models for the

object-oriented database management system (OODBMS).

2 .3 S e c u r it y M o d e l s

Distributed object-oriented databases provide real-life relationships to the stored

objects. M aintenance of the complex object relations and distribution o f processing over

a network pose some challenges for the database security which addresses the issues of

confidentiality, integrity and denial of service [35]. Various models for security have

been proposed for dealing with this complex system. Generally speaking, we can divide

these models into two categories; namely, mandatory access control and discretionary

access control. Mandatory security mechanisms are used to enforce multilevel security

by classifying the data and users into various security levels and then implementing the

appropriate security policies of the organization [17]. Such policies are necessary to

fulfill the requirements set by some organizations such as the Department o f Defense

(DoD) [14]. On the other hand, discretionary security mechanisms are identity-based

access control policies. They usually grant privileges to users including capability to

21

read, write, or update specific data.

In the following sections, we will discuss, in detail, multilevel security including

the concept of polyinstantiation. Next, we will move our focus on some discretionary

security models such as negative and positive authorizations, strong and weak

authorizations, and finally roles model.

2 .3 .1 M u l t il e v e l S e c u r it y M e c h a n is m s

The concept of multilevel security comes with the classification of users in

computer systems. A user who attempts to access specific classification o f data requires

clearance for such classification or higher security privileges. Thus, there is a

hierarchical sensitivity level in a security classification system such as Top-secret, Secret,

Confidential and Unclassified. In addition, there is also a set o f nonhierarchical

categories in association with the hierarchical sensitivity level [30]. For example, a user

having clearance for the secret level can access information classified in that level or

lower such as confidential and unclassified. However, this user can not access

information on the top-secret level. On the other hand, users who want to access

information on a specific security level and in a specific category are required to have

clearance for both.

Most commonly used models for multilevel security are defined in the Bell and

LaPadula security model [4]. This model classifies each subject such as user, account or

program, and object such as relation, tuple, column or operation into one o f the security

classifications, Top-secret, Secret, Confidential or Unclassified. For simplicity, we only

use these four security classifications to describe the model. There are two properties or

22

restrictions for the subject and object classifications:

1. Simple security property: A subject S is not allowed to have “read” access to an

object O Unless Class i f icat ion(S)>Classi f icat ion(0) .

2. *-property: A subject S is not allowed to have “write” access to an object O unless

classif icat ion(S) < c lass i f icat ion(O).

It is obvious that the simple security property guarantees that no subject can read

an object whose security classification is higher than the classification o f the subject. The

*-property prohibits a subject from writing into an object that has lower security

classification than that of the subject. This property prevents information flow from

higher to lower security level.

The multilevel classification system leads to the concept of polyinstantiation.

Polyinstantiation arises where several tuples can have the same primary key but have

different attribute values for users in different classification level. The situation arises

because of the simple security property which allows users with higher classification to

read attributes of objects with equal or lower classification level. Therefore, users with

higher security level will be able to read more information from the same primary key of

the search than users with lower security level [46].

Even though most of the commercial DBMSs use discretionary access control

mechanisms, multilevel security is still required in government, military and corporate

applications. Operating systems such as UNICOS for Cray Supercomputers incorporate

an option for using multilevel security to handle the user access on the system.

2.3.2 D isc r e t io n a r y Se c u r it y M ec h a n ism s

23

Discretionary access control models usually involves granting and revoking

privileges. Many relational DBMSs, such as Oracle, use this technique for database

access. ORION, one o f the early development of OODBMSs, has developed a formal

model o f discretionary security for object-oriented databases [47][48]. The model is

comprised o f positive and negative authorization. The notion of strong and weak

authorization was also introduced in that model [31].

The Department of Defense (DoD) has provided metrics for secure systems. The

metrics divide security level into 7 levels, A l, B3, B2, B l, C2, C l and D, with A1 the

most secure and D the least. Secure systems at level C l and C2 must provide

discretionary access control. For level B l and up, systems must provide both

discretionary and mandatory access control. In the following sections, three of the

discretionary security models, positive and negative authorizations, strong and weak

authorizations, and roles will be discussed.

2.3.2.1 P o sit iv e a n d N e g a t iv e A u t h o r iz a t io n s

Positive and negative authorizations are sufficient to satisfy the requirement at

Class B3 for the criteria set by the DoD. Positive authorizations explicitly specify users’

right to access information while negative authorizations explicitly deny users from

accessing the information.

Implementation of such authorized schemes requires an object to carry two lists,

one for positive authorization and the other for negative authorization. A user must

24

belong to an object’s positive authorization list in order to have access permission on the

object. On the other hand, a user must not belong to the negative authorization list in

order to access the object. A combination o f the positive and negative authorizations

provides an easy way to achieve the goal of discretionary access control. However, as

pointed out by Rabitti et al. [47][48], there is a situation where the positive

authorizations may conflict with the negative authorizations [47][48]. For example, if a

user has been put in both the positive and negative authorization lists, it is not clear

whether the system should allow or deny the user from accessing the object. This

situation may not happen at the same object. However, since child objects inherit the

properties from their parent objects, the situation might occur in which a user’s name is

in the positive authorization list o f an object and the same user’s name is in the negative

authorization list o f one of the descendents of the object. To solve this problem, the

concept of strong and weak authorizations is introduced.

2 3 .2.2 S t r o n g a n d W e a k A u t h o r i z a t i o n s

As in ORION, a strong authorization cannot be overridden by other authorization

while a weak authorization can be overridden by a strong authorization. Therefore, the

problem would be solved in the example described in the previous section if we assign

weak positive authorization in one place and strong negative authorization in the other

for the same user. It is still possible to have conflicts such as weak positive authorization

and weak negative authorization assigned for the same user at an object. However, this

conflict can be detected by a simple tool which browses through the object hierarchy and

finds the conflicts.

25

Another approach has been suggested by Lunt [29] to solve the problem in

positive and negative authorizations. Such an approach takes denials as higher

precedence. This approach can also be interpreted as all negative authorizations to be

strong and all positive authorizations to be weak. One advantage o f having precedence

on denials is the assurance that specific users and groups cannot obtain authorization to

an object without explicit authorization [31].

2.3.23 R o l e -B a se d Sec u r it y

User roles have been used in several applications to provide discretionary access

control. In UNIX, for example, there are certain built-in roles such as superuser,

operator, system administrator, and so on. Each role have been granted certain privileges

by the system. A system administrator can create a role for a particular purpose, delete a

role or modify a role’s privilege. Named protection domains (NPDS) proposed by

Baldwin [1] is a facility for specifying user roles. Other research has been done to

employ user-role model for object-oriented database security such as the models

suggested by Ting et al. [57] and Nyanchama et al. [32][34].

Role-based security provides a flexible way to manage a large object hierarchy.

Each role is provided with sufficient privileges to carry its function only and therefore

role-based implementation is based on the principle of least privilege [56]. Roles can

have overlapping privileges. The object-oriented hierarchy can apply to the role-based

model. A role can be the child of another role. In this case, the child role will inherit all

predefined privileges set from its parent role. The child role then can have other

privileges not in its ancestor roles. Therefore, the role hierarchy can always be built from

26

a basic role or root role which have minimal privileges. Child roles can be generated

from the root role and other roles can be created in this manner.

Figure 3 shows a privilege graph suggested by Baldwin [1]. Each subject or user

can be assigned one or more roles. Each role, on the other hand, is either assigned some

privileges or inherits from other role(s). For example, subject A and B are both assigned

to role o f Account Supervisor. The role Account Supervisor is a child of Account Clerk

that implies Account Supervisor will have all the privileges from the role o f Account

Clerk. Therefore Account Supervisor will have the privilege to Compile Accounts. In

additional to this privilege, Account Supervisor also has privilege to Audit Accounts

which Account Clerk does not have. It is also possible for a single subject to have more

than one role. Subject G, for example, has been assigned to role o f Shipping Manager

and System Administrator. Thus, Subject G will have the privileges o f creating Shipping

Orders and Creating Computer Accounts.

The hierarchy graph of roles should preserve the acyclic property in order to

provide decretionary access control over the privilege set. Nyanchama, et al. [34]

presented a formal graph model for the acyclic role organization.

So far, we have discussed some of the existing models suitable for secure object-

oriented database systems. Multilevel security is too restrictive in a way that may not be

applicable to most commercial applications. Positive and negative authorizations are

inherited with ambiguity which can be solved by an association with strong and weak

authorizations. A role-based model is flexible and extendable such that we can extend

this model to cover some of the features from multilevel security. Our design of security

mechanisms on Common Object Request Broker Architecture (CORBA) will be based

27

on the role-based model which will be discussed in detail in the next chapter.

Subject(Users) Roles Hierarchy Privileges(Functionality)

Compile
Accounts

Account
Supervisor Account Clerk

Audit
AccountsGeneral Manager

Shipping Clerk

Shipping
OrderShipping Manager

Create
Computer
Accounts

System Administrator

£> Child of relation

^ Assigned Role(s) or Privilege(s)

Figure 3: Baldwin’s Privilege Graph

2 .4 T h e s is C o n t r ib u t io n s

The multi-level security requirements provide guidelines for designing a security

model. The guidelines are necessary to assert the validity o f the security model. The role-

based security model provides a fundamental model for user authentication. However,

the object relationships of roles can cause conflicts in resolving the user privileges. The

addition of positive and negative, and strong and weak authorizations can help to resolve

these conflicts. These issues are going to be discussed in chapter 4.

The persistent object store provides a physical storage for storing persistent

28

security information for the role-based security design. EOS by the AT&T Bell

Laboratories is the persistent object store in our implementation. EOS is also ODM G’93-

compliant which simplify the implementation of the persistent object service for

CORBA.

ORBeline by the PostModern Computing provides a basic CORBA

implementation. It provides the Interface Definition Language compiler for

preprocessing interface definitions. The security and persistent object services are

implemented on top of ORBeline.

2 .5 S u m m a r y

Evaluation of existing distributed object technologies is one o f the objective of

this thesis. In section 2.1, the general framework of CORBA is explained. Three

commercial CORBA implementations, IBM ’s DSOM, Sun M icrosystem ’s NEO and

PostM odern Computing’s ORBeline are evaluated. IBM ’s DSOM includes more

common object services which provide additional functionalities for distributed

application. NEO by Sun M icrosystem has recently incorporated with Java as its front

end interface. The widely adopted internet programming language Java may lead NEO to

be a leading CORBA implementation for internet users.

Two o f the persistent object stores, Texas Persistent Store and EXODUS are

developed in academic institutions while EOS is developed by AT&T Bell Labs. The

major differences among them is the ease of use and installation. EOS is best o f the

three. It provides minimal set of functions to manage persistent objects. It also provides

object clustering for creating file object to allow efficient mechanism for object

29

management. EOS is designed to handle both large and small objects.

Finally, the discretionary security models provide primary concepts for the design

of our security service. Our design can also be extended to a multilevel security model.

The next chapter discusses three persistent protocols for designing the persistent

object service. The design and implementation of our persistent object service is

explained with the use o f EOS as the persistent object store.

C h a p t e r 3

D e s ig n a n d I m p le m e n ta t io n
o f P e r s i s t e n t O b j e c t
S e r v ic e U s in g CORBA

3.1 In t r o d u c t io n t o P e r s is t e n c e

An object whose lifetime is transient is allocated memory that is managed by the

programming language run-time system. Sometimes a transient object is declared in the

heading of a procedure and is allocated memory from the stack frame created by the

programming language run-time system when the procedure is invoked. That memory is

released when the procedure returns. Other transient objects are scoped by a process

rather than a procedure activation and are typically allocated to either static memory or

the heap by the programming language system. When the process terminates, the

memory is deallocated. An object whose lifetime is persistent is allocated memory and

storage managed by the ODBMS run-time system. The objects continue to exist after the

procedure or process that creates them terminates [12]. The goal of creating a persistent

object service using CORBA is to provide common interfaces for Object Request

Brokers (ORBs) to restore and to manage the persistent state of objects [41]. The

persistent object service will be used in converting a dynamic/transient object to a

30

31

persistent object. Dynamic object is volatile and is typically resided in memory. System

failures, for instances, will end the lifetime of a dynamic object. To preserve the

persistent state o f an object, means should be provided to transfer contents o f objects

from memory to physical storage such as disk. Persistent object service therefore serves

this purpose for maintaining the object state persistence between virtual and physical

storage. As shown in Figure 4, Persistent Object service will convert an object from its

dynamic state to a persistent state and vice versa. In order for all ORBs to locate the

desired object, a persistent handle or reference should be created for each persistent

object. This handle identifies the location o f an persistent object. The persistent handle

must be unique for different objects managed by the ORBs.

Object at
Persistent

State

Object at
Dynamic

State

Persistent Object Service

Figure 4: Function of Persistent Object Service

In the next few sections we shall describe several protocols from the specification

of Common Object Services (COS) published by the Object M anagement Group (OMG)

[41]. Then we shall discuss the ODM G’93 protocol on persistence. The design of our

persistent model is similar to the ODM G’93 protocol and is also part of the COS

specification. We now move on to our design and implementation o f the persistent store

using EOS developed by AT&T Bell Laboratory.

32

3.2 OMG P e r sist e n t O b je c t S e r v ic e s P r o to c o l s

Common Object Services Specification describes three basic protocols including

the ODM G’93 protocol to support persistent object handling. CORBA already provides a

persistent reference handling interface that is the object_to_string, string_to_object,

release, and so on [41]. These operations allow conversion of object to type string and

vice versa and should be sufficient for most o f object manipulation by clients. Three

protocols will be discussed in this section; namely, the Direct Access Protocol (PDS_DA

which stands for Persistent Data Store with Direct Access), the Dynamic Data Object

(DDO) protocol and the ODM G’93 protocol.

3.2.1 T h e D ir e c t A ccess (PDS_DA) P r o to c o l

Direct Access Protocol represents a persistent object as one or more

interconnected data objects. The persistent data of an object is described as a single data

object which might be a root of tree containing the object data. It is similar to represent a

persistent object as a heap in some persistent object store. In the case o f multiple data

object (an object consists of several instances of data objects), it requires object traversal

from the root object followed by the stored object references.

It is necessary to define the type of each data object within an object. Fortunately,

the Interface Definition Language (IDL) provided by CORBA includes the Data

Definition Language (DDL) which can be used in describing object types during the

interface definition.

33

As shown in Figure 5, PDS_DA is an object reference to multiple data objects

such as instances o f object A and object B. Each persistent object is represented by a

PDS object reference handle (PDS_DA) in the figure. PDS can locate the data object

references within a persistent object from the PDS_DA handle and thus it can perform

operations on data object references to get and to modify the attributes of data objects.

Attributes can be normal data types defined by DDL or can also be another object

instance.

Direct Access Protocol is a simple and direct method to achieve persistence.

Implementation of the protocol requires only interface preprocessing facility such as the

Data Definition Language (DDL) or Interface Definition Language (IDL).

Figure 5: Direct Access Protocol Interfaces

3.2.2 T h e D y n a m ic D a ta O bje c t (DDO) P r o t o c o l

A Dynamic Data Object (DDO) is a Datastore-neutral representation o f an

r Object (Client of PDS) A

34

object’s persistent data [41]. Datastore-neutral representation is the simplest form to

describe an object data independent with datastore type. A DDO is an object containing

all data o f a single object. Data contained in a dynamic data can be divided into three

categories: description of a DDO, data item and data property. Data item comprises of

data property and data item information. Figure 6 shows an example o f a DDO structure.

The data item can store both data types and data methods o f an object.

DDO can be optimized in use with specialized types o f data store. It provides a

fast and simple storage and retrieval mechanism for different types of data store.

a DDO

PID data_count = 2 object_type

a data item

data id = 1

data_name=”” data_value=any

property_cnt=2

a property

property_id=l

I property_name=””

property_value=any

a property

property _id=2

property _name=”

property_value=any

a data item

data_id = 2

data_name=”” data_value=any

property _cnt=l

a property

property _id= 1

property_name=v

property_value=any

Figure 6: Structure of a DDO [41]

35

3.2.3 T h e ODMG’93 P r o t o c o l

The OD M G’93 protocol proposed by the Object Database M anagement Group is

similar to the Direct Access Protocol we discussed before. The only difference between

them are that the ODM G’93 protocol uses an Object Definition Language (ODL) to

define an object interface instead of using the Data Definition Language (DDL) and

ODM G’93 protocol uses programming language mapping defined for data object

specified in ODM G’93, rather than the CORBA IDL attribute operations [41]. The IDL

attribute operations define the data types in interface definition.

After reviewing three protocols with two different approaches, our

implementation of the persistent object service will use the Direct Access Protocol

(PDS_DA). One reason of choosing this over the ODM G’93 protocol is that CORBA

IDL already defines the DDL for writing the object interface, even though the OD M G’93

protocol has been widely used by most database vendors. We have to rewrite a

preprocessor compiler if we choose to use the ODM G’93 protocol. Conversion from the

PDS_DA protocol to the ODM G’93 protocol is straightforward since the ODL can be

easily interpreted as DDL. In the following section, we are going to discuss our

persistent object service in use with the EOS storage manager developed by AT&T Bell

Laboratories.

3 .3 D e s ig n o f t h e P e r s is t e n t O b j e c t S e r v ic e

Our aim is to provide persistent object services for one or more datastore

interconnected through the CORBA communication layer. To achieve this goal, our

36

design should be able to adapt different object data stores. Throughout this section, we

will provide a high level overview o f our design.

We use a Persistent Object Manager (POM) to identify the object type, data store

and the corresponding persistent data store for an object. POM contains a table o f object

type, datastore type and persistent data store. In our implementation, each persistent

object has a persistent ID which is a combination of the type, location and name o f an

object. When the POM receive a request from client to set or get an object, the client will

pass the PID of the specified object. The POM can then locate the object information

from the PDS registry and identify the protocol and data store to store or to restore the

object.

Figure 7 shows the role of POM to handle requests from different clients and to

establish connections between clients and persistent data stores. We plan to use EOS as a

persistent object store for our Role security model. Client 1 will first send request to the

POM for retrieving information of the Role graph object with pidl which is the

persistent ID for the object. The POM will then look up the object location at the

persistent datastore (pdsl) from the registry with the information submitted by the client.

Afterward, a connection will be established between the client 1 and the EOS data store

(pdsl). Client will not know in which protocol or datastore the object is located. All the

transparency is handled by the POM and the Object Request Brokers (ORBs). Similar

approach can be used if we would like to add on capabilities to handle different object

stores such as ObjectStore by Object Design, Inc. [25] and Versant. There are no strict

rules for using protocols with different object stores. Figure 7 just shows an example for

various combination of protocols and data stores.

37

datastore_type=ObjectStoredatastore_type=EOS datastore_type=Versant

Role Graph Obj. A GIF imageSpreadsheet A

ODMG
‘93
Protocol

POM______

PDS Registry
PDS_DA| Protocol Object_type Datastore_type PDS

Rolegraph EOS pdslDDO
Protocol Spreadsheet ObjectStore pds2

Image Versant pds3

pds2pdsl pds3

ObjectStoreEOS Versant

Figure 7: The role of POM

There are dependency issues regarding different methods for object management

with different data stores. Therefore, we need to provide interfaces for different data

stores. Figure 7 has shown another key component other than the POM that is the pds’s.

For example, pdsl and pds2 are required for EOS and ObjectStore respectively. A PDS,

persistent data store, is a data store and protocol dependent interface. To be specific,

38

there are two basic functionalities of PDS.

1. Interacting with the object to retrieve and to store data in and out using a specific

protocol which has been discussed earlier in this chapter.

2. Interacting with the data store to retrieve and to store an object. In our case, we will

provide an interface for handling objects in and out from EOS storage manager.

In the following section, we will focus on our implementation o f the persistent

object service.

3 .4 I m p l e m e n t a t io n o f P e r s is t e n t O b j e c t S e r v ic e

Throughout this section, we will explain our implementation o f the persistent

object service in details by providing both CORBA IDL interfaces and our C++ class

definitions. IDL interfaces, in general, provide a high level description o f object classes

and will directly map to C++ classes by the IDL compiler. Classes generated by IDL

interfaces involving virtual base classes which should be implemented by implementors.

3 .4 .1 P e r s is t e n t Id e n t if ie r (P ID)

In order for the Persistent Object M anager (POM) to locate a persistent object,

each persistent object is associated with an unique ID. In our implementation, a PID

consists of a datastore type o f an object, a object ID to identify the object in a specific

data store, and a hostname or an IP address o f the datastore. The IDL interface is very

simple and is shown in Figure 8. It contains an object PID with a member datastore_type

and a member function get_PIDString() to get the PID in CORBA::String format.

39

module CosPersPID {

interface PID {

attribute string datastore_type;

string get_PIDString();

} ;

} ;

Figure 8: IDL for the Persistent ID interface

To implement the actual function, we need to create a derived class from the

CosPersPID module. The definition of the derived class is shown in Figure 9. We are

showing both the whole IDL interface and its class implementation only at this simple

introduction. We will only give the important part of the codes for other interfaces.

40

class PosPID: public CosPersPID_impl::PID_impl

{

private:

CORBA::String _datastore_type;

CORBA::String _id;

CORBA::String _ip;

CORBA::String *_pid;

public:

PosPID(const char *datastore, const char *id, const char *ip)

: _datastore_type(datastore), _id(id), _ip(ip), _pid(NULL)

{)

-PosPID() {}

CORBA::String* datastore_type(); I I function to return

datastore type

void datastore_type(const CORBA::Strings val); I I function

to set datastore type

CORBA::String* get_PIDString(); // function to get PID as a

Figure 9: Persistent ID derived class

3.4.2 P e r s is t e n t D a t a S t o r e u s in g EOS

EOS is an efficient object database developed by AT&T Bell Labs. In EOS, data

objects are stored in one or more EOS storage areas which are preformated by an EOS

area format routine. Each storage area consists of a bundle of pages. The size of a page

can be preset to a certain extent prior to formatting the storage area. A data object can be

41

stored at one or more page depending on its size. Object stored in EOS are identified by

a unique name or an object ID. EOS provides a set of routines to retrieve an object

handle from which our client can reach the object and perform operations.

We have implemented a set of basic routines to allow the Direct Access Protocol

to connect to and to disconnect from the EOS data store, plus operations to store, to

restore and to remove objects. The IDL for the Persistent Data Store module is shown in

Figure 10.

module CosPersPDS {

interface Object {};

interface PDS {

PDS connect (in Object theobj, in CosPersPID::PID p);

void disconnect (in Object theobj, in CosPersPID::PID p) ;

void store (in Object theobj, in CosPersPID::PID p);

Object restore (in Object theobj, in CosPersPID::PID p);

void remove (in Object theobj, in CosPersPID::PID p);

} ;

} ;

Figure 10: IDL declaration of the Persistent Data Store (PDS)

Subsequently, we define a derived class from CosPersPDS module for the client

to connect to the EOS data store. Figure 11 shows the class definition for the persistent

data store. An persistent object is represented by an instance o f class PosPDS where the

object handle is _obj_data and can be obtained through a series of database operations.

Typically, the Object Request Broker needs to “connect” to a EOS server first. Then, we

can perform various database operations such as to “store” and to “remove” an object.

M ember functions such as “trans” , “createfile”, “openfile” , “closefile” and “com m it” are

private operations necessary to establish connection to the EOS storage manager and are

only used by the member functions themselves. EOS handles objects by the object

handle. An object can be identified by its Object ID (OID) or its object name.

3 .5 S u m m a r y

We have designed and implemented a persistent data service with EOS as the

data object storage. This is an add-on persistent facility for the CORBA implementation

o f ORBeline by Post Modern Computing. In the next chapter, we shall describe how to

add security to CORBA. We also explain in detail its design and implementation.

43

class PosPDS: public CosPersPDS_impl::PDS_impl

{

private:

CosPersPDS::Object *_obj_data;

int trans();

int createfile();

int openfile();

int closefile();

int commit();

long getobjsize();

public:

CosPersPDS::PDS* connect(CosPersPDS::Object* obj ,

CosPersPID::PID* p);

void disconnect(CosPersPDS::Object* obj, CosPersPID::PID* p);

void store(CosPersPDS::Object* obj, CosPersPID::PID* p);

CosPersPDS::Object* restore(CosPersPDS::Object* obj,

CosPersPID::PID* p);

void remove(CosPersPDS::Object* obj, CosPersPID::PID* p);

F igu re 11: C lass defin ition o f the P ersis ten t D a ta S tore

C h a p t e r 4

D e sig n a n d Im p l e m e n t a t io n
o f A Se c u r e O b je c t Se r v ic e

Security is still a missing component from CORBA specification 2.0 released in

Fall 1995 [40]. The Object Management Group is currently requesting proposals for

adding a security service to CORBA. All existing CORBA implementations rely on the

system level security as the underlying security mechanism. System level security such

as the UNIX system security mechanism is not designed for management of object

entities. It is designed to handle file systems and control of processes. In this chapter, we

propose our security model which can not only handle object entities but also be

extended to meet the multilevel security requirement. This chapter is divided into two

main parts. First section will provide a high level design of the role security model. We

will discuss several authorization schemes to handle specific needs for the role model.

Second section will focus on the actual implementation of the role model. We will

present our role graph management algorithms and implementation o f the security

service on CORBA.

44

4.1 D e s ig n o f t h e R o l e S e c u r it y M o d e l

45

We have discussed different types o f security mechanisms including multilevel,

discretionary, authorizations and role-based security models in Chapter 2. Our task is to

design and implement a security service add-on to a CORBA implementation. The

security service should be extendable to different levels of security requirements set by

the DoD. In the following sections, we will introduce our basic design o f a role security

model. Then, we will add on various authorization schemes to cover the limitations of

the role model. In addition, an abstract model o f the design described in a Booch

diagram [7] will be discussed at the end.

4 .1 .1 T h e R o l e M o d e l

A role model consists of a collection o f privileges and a set of users who can

access the role. Privilege is an access right for system information. A role can inherit the

privilege from other roles. Before presenting our design model, we will use the following

definition throughout this section.

Definition 3: 4> is a universal set of roles.

Definition 4: Privilege set: P(%) is the privilege set o f role %.

Definition 5: Senior Role: Let 91 be a set of roles. Role % is a senior o f role 91 if and

only if Vi|/((v|/ e 91) -> (P (\|/) c />(%)))

Definition 6: Junior Role: A role V)/ is a junior role o f role % if and only if

(P (V) c P (x))

We also define a super role which is the senior role of all other roles within the

46

role graph. The duty o f the super role is to maintain the role graph. A User that belongs

to the super role can add a new role to and delete a role from a role graph. Role graph

modification can be only performed by users that belong to the super role. In a

distributed database system, it may be impossible to have a super role which can manage

all databases distributed in a wide area network. In our design, the super role exists only

in local area network.

We design our role model as a graph containing all roles for a local area network.

The role graph is an acyclic directed graph. Graph traversal is unidirectional. Senior roles

can access their junior roles, but not the reverse. This prevents data from being accessed

by users without necessary security clearance. Senior roles also inherit the privileges of

their junior roles. Figure 12 shows a graphical model of a role graph. It is represented as

a multi-level role tree. The role tree is a hiearchical structure in which the superior roles

have rights to access more system privileges. The role graph shown in Figure 12contains

redundant role paths. For example, role B can reach role L from path BL or from paths

BE and EL. Paths BE and EL already implies role L is a junior role o f both role B and

role E. Therefore, we can remove the path BL without altering the privilege set of role B

and role E.

Figure 13 shows the simplified version of the previous role graph with minimum

redundancy. Each role still preserves its system privileges as the previous graph. The

graph still have more than one path to a particular role, but we can not eliminate the

paths since the system privileges among those roles will be changed. Two more

properties will be added on top of the role-based security model and they will be

discussed in the following two sections.

47

Root Role

_ Level 0-A

) Level

Level 2-E

Level 3
- H

q _) Level 4
- M -

Figure 12: A typical role graph

Root Role

- Level 0

_ Level

Level 2

Level 3

- Level 4

F ig u re 13: S im plified ro le g raph w ith m in im um red u n d an cy

48

4 .1 .2 I m p l ic it a n d E x p l ic it P r iv il e g e s

In our role graph design, a role can have two different kinds of privileges. One is

explicit privilege which belongs to the privilege set associated with the role. The other is

implicit privilege which belongs to the privilege sets associated with the junior roles. In

order to obtain both the implicit and explicit privileges o f a role, we need to perform a

role graph traversal along the role paths. In general, we will perform a Breadth First

Search (BFS) to collect both the implicit and explicit privileges for a role.

4 .1 .3 A u t h o r i z a t io n P r o p e r t ie s

4 .1 .3 .1 P o s it iv e a n d N e g a t iv e A c c e s s C o n t r o l

It is necessary to have positive and negative authorization in a role graph

implementation. Positive authorization is used to explicitly grant access to a set of users.

Negative authorization is used to deny access rights to a set of users. Thus, each role will

incorporate a list o f users who have rights to access the current role and a list o f users

whose access will be denied to the current role. This explicit access and denial properties

is mandatory to fulfill the DoD multilevel security requirements [14].

4 .1 .3 .2 W e a k a n d S t r o n g A c c e s s C o n t r o l

Positive and negative authorization may cause conflict under certain situations.

Figure 14 shows an example of a conflict resulting from improper role graph

management. User Sam is in both the access and denial lists o f Role A. Should we allow

49

or deny the access to Sam? To preserve minimum access rights for users, we assign the

denial list to have stronger authorization than access list. Therefore, in this example, Sam

does not have access rights to role A.

Role A

Access list: Sam, Susan

Denial list: Ann, Joan, Sam

Role B Role C

Figure 14: Example of conflicts between access and denial list

4 .1 .4 R o l e G r a p h M a in te n a n c e P r o p e r t ie s

4 .1 .4 .1 R o l e A d d it io n a n d D e l e t i o n

Any operation performed on a role graph must preserve the consistency o f the

security infrastructure. After adding a new role to a role graph, the acyclic property must

be preserved. When a new role is being added, new paths are generated from its

immediate senior and junior roles. Redundant edges are removed to minimize the edges

in the graph. Figure 15 shows the result of removing redundant edges. After adding new

role X, edge BC and edge AC can be removed since they can be replaced by edge BX

and XC, and AX and XC respectively.

50

Senior Roles Senior Roles Senior Roles

before addition
o f Role X

Addition of
R oleX

after addition
of R oleX

Figure 15: Addition of new role

Senior Roles Senior Roles Senior Roles

Inherit role property After deletionBefore deletion

Figure 16: Deletion of role

On the other hand, when a role is deleted, edges associated with the deleted role

51

are removed at the same time. New edges are added to preserve the role hierarchy o f the

role graph. Figure 16 shows the deletion of role X. W hen role X is deleted from the

graph, without proper modification, role A and role B will no longer be the senior role of

role C. In that case, the privilege sets of role A and role B are reduced. In our design, we

try to keep the roles inheritance to be the same after the role deletion so that role A and

role B are still the senior roles of role C after the deletion. Therefore, we add new edges

AC and BC to eliminate privilege reduction from deleting role X.

4 .1 .5 H ig h L e v e l D e s ig n f o r t h e R o l e M o d e l

During our design process, we employ the Booch Method [7] for designing

object-oriented applications. It provides models for representing complex object

relationships, class inheritance, access control among classes, and so on. Figure 17

shows our design in a Booch Diagram. We summarize the basic components in the

design model in the diagram.

Each icon with hyphenated line boundary in the diagram represents a class. We

have two abstract classes CosRID and CosRoles. CosRID represents the common object

service for manipulation on role identifier while CosRoles represents the common object

service for operation on Roles. The little triangle with a letter ‘A’ indicates that the class

is abstract. These abstract classes should be defined in the interface using the Interface

Definition Language (IDL) in order to allow the Object Request Broker to locate the

objects. Class CosRID is a basic class to handle the Role identifier (RID) which is the

key to identify a role. Class RID is derived from class CosRID and therefore class RID

inherits all the methods of class CosRID. RID consists of three attributes; a role ID, a

52

hostname/IP address and a role name. Two member operations are necessary to retrieve

the role ID and the role name.

\
/

/ \ .
RID

Role ID I
hostname/IP v
Role name
get_RIDstring()'
get_Rnamestring()

/ Role \
privilege set N

I "J users access list
x users denial list /

) junior role list ̂
canAccess()

\

I
J

\ “ RolesGraph
/ ̂ super role

(isJunior()
__ \ remove()

\ \ update()
\ inPrivatePrivilegeSet() 1 V add()

I\ inUnionPrivilegeSet()
\ __ '

I

\
/

r CosRID 1 -
/ get_RIDstring()

get_Rnamestring()

} idlRole
canAccessQ

\ idlRolesGraph N
I removeQ '

\
/

r
/

 , v
\ inPrivatePrivilegeSet() / update()
(, inUnionPrivilegeSet() \ add()

^ y '

j
V

CosRoles

Figure 17: Booch diagram of our Role graph design

Class idlRole is a virtual class which contains three virtual functions. Virtual

functions are functions that will be defined in a derived class. Function “canAccess”

checks if a user can access the current role. Function “inPrivatePrivilegeSet” checks if a

53

user has explicit rights to access a specified privilege. Function “inUnionPrivilegeSet”

checks if a user has implicit rights to access a specified privilege. The actual

implementation o f these functions are done on the derived class Role. Class Role also

includes four attributes; a privilege set containing the explicit privileges o f the role, a

users’ access list containing a set of users who have rights to access the role, a users’

denial list containing a set o f users whose access to the current role will be denied, and a

set o f junior roles.

Class idlRolesGraph contains three virtual functions which perform basic role

graph maintainence such as adding a new role, updating an existing role and removing a

role from the role graph. These operations require special properties which will be

discussed in the next section. The actual implementation o f class idlRolesGraph is a

class RolesGraph which has additional attributes and member functions. Function

“isJunior” will check if a role x is a junior role of role y. The word junior role here can

be implicit junior which simply means role x is a descendent of role y. The diagram also

shows that the RolesGraph has access rights to the protected members of class Role. It is

represented by the special strip and filled circle at class RolesGraph in the diagram.

We have described our design as an abstract model. The next section will present

our implementation interfaces and class definition in details.

4 .2 I m p l e m e n t a t io n o f t h e S e c u r it y M o d e l

In this section, we first present our implementation o f roles. Then we show how

the role implementation can be integrated as a CORBA service.

54

4 .2 .1 R o l e Im p l e m e n t a t io n

A role graph is the key o f our security model. During the implementation, the

feature o f data hiding from C++ will help us to protect data and member functions from

being accessed without access rights. Figure 18 shows the IDL of role module describing

the two interfaces: the interface o f idlRole and the interface of idlRolesGraph. The

interface idlRole performs a stand alone operation for a role such as checking access

right for a user. The interface idlRolesGraph performs basic graph maintainence such as

adding, deleting and updating a role in a role graph. In general, to check access rights of

a user for a system privilege, we first find out a role X associated with the user and then

check if the privilege is in the role’s union privilege set which is the union o f the

privilege set of the role and its junior roles. It can be done by a simple traversal o f the

nodes in the subtree headed by the role X.

Before a new role is added, we first check to see if the acyclic property is

preserved after addition. If so, we add the new role and minimize the redundant paths

within the role graph. Deletion requires new paths creation from the senior roles to the

junior roles of the deleted role as explained in previous section.

#include "CosRID.idl"

module CosRoles {

struct auth_para {

string login;

string ip;

} ;

typedef sequence<string> seqld;

typedef sequence<auth_para> seqAuth;

typedef sequence<CosRID::idlRID> seqRid;

interface idlRole {

boolean canAccess(in string login, in string ip);

boolean inPrivatePrivset(in string privld);

boolean inUnionPrivset(in string login, in string ip, in

string privID);

} ;

interface idlRolesGraph {

idlRolesGraph remove (in CosRID::idlRID rid);

idlRolesGraph add (in seqRid seniorset, in idlRole role)

idlRolesGraph update (in seqRid seniorset, in idlRole

new_role, in CosRID::idlRID rid);

) ;

} ;

Figure 18: IDL of Role Module

4.2.2 In t e g r a t io n o f Sec u r it y Se r v ic e s on CORBA
56

CORBA supports a collection of services that provide basic functions for using

and implementing objects. Object services are necessary to construct in any distributed

application and are always independent of application domains. Examples o f object

services are naming service to bind or to resolve a name to an object relative to a naming

context, event service to deliver asynchronous events, and life cycle service to define

conventions for creating, deleting, copying and moving objects. Object services allow an

add-on facilities capability for CORBA. We implemented our security service as a

common object service on CORBA.

Client

Dyna
Invocati

Object Implementation

ORB
Interface

Static IDL
Skeleton

D ynam icynamic
Skeleton

ORB Core

V / / / / /A
Object
Adapter

K X W W 'i Interface identical for all ORB im plem entations

V / / / / Z \ There may be multiple object adap ters

■ ■ H I There a re s tu b s and a skeleton for each object type

I 1 O RB-dependent interface

R equest from client

Up-call interface

Normal call
interface

F igu re 19: C lien t requests m ech an ism on C O R B A

57

Figure 19 shows how clients issue request for object implementation through the

Object Request Broker (ORB). Client requests can come either from Dynamic

Invocation Interface or from IDL stubs. When ORB receives a request from the client, it

will try to locate the requested object implementation through communication with

ORBs which are distributed in the network. After the ORB locates the object

implementation, the request will pass to the object implementation through Object

Adapters where all the Common Object Services are located. We have implemented our

Security Service as a common object service registered to the object adapters. It is shown

in Figure 20. Therefore, all requests are validated by the security service for their access

rights.

Client Object Implementation

EKSH
IDL

Stubs

ORB Core

Security.Service

r \X \\V \J Interface identical for all ORB im plem entations

X / / / / / A There may be multiple object adap ters

There are s tu b s and a skeleton for each object type

D ORB-dependent interface

Client request forward to Object Implementation by ORB Core

F igu re 20: O b jec t im p lem en ta tion rece iv ing req u est th rough the O b jec t A d ap te rs

58

There are different kinds of object adapters for various uses. The Basic Object

Adapter (BOA), for example, can be used for most ORB objects with conventional

implementations. Our implementation uses the Basic Object Adapter to define our

security services. Figure 21 shows the IDL implementation of the security service. In this

example, we create a sample server which will be called by clients. The sample server

will register itself during the start-up so that The ORB will first locate the host where the

sample server is located and then the security services will check the access right of the

client for the sample server. Exceptions will be raised if the client permission is denied.

struct SecurityAssoc
{

string host_name;
SampleServerserver;

} ;
interface SecurityMonitor
{

exception PermissionDenied {};

SampleServer get_server() raises (PermissionDenied,);

) ;

Figure 21: IDL Implementation o f Security M onitor Service

Figure 22 shows the class definition for the Security M onitor Service. We

implemented the SecurityEventHandler as a derived class from the BOA event handler

class. SecurityEventHandler redefines the pre_method of the BOA event handler. Pre­

method o f the event handler will be invoked every time a client performs a method

invocation on any method of the object implementation from server. The principal of the

client, which includes a user ID and a hostname, the object’s interface and object names

and environment are passed to this method. Once the SecurityEventHandler is registered

59

to the BOA, any attempt to access server object implementation without proper security

clearance will result in a permission denied exception being raised. Routines for access

authorization have been discussed in the previous section.

class SecurityEventHandler: public CORBA::BOA::IMPLEventHandler

{

protected:

void pre_method (const CORBA::Principal& princ,

const char *interface, const

CORBA::Object& obj,

CORBA::ULong methodid,

CORBA::Environments env);

} ;

class SecurityMonitorServer: public SecurityMonitor_impl

{
friend SecurityEventHandler;
public:

SecurityMonitorServer(const char *name) :
SecurityMonitor_impl(name) {}

-SecurityMonitorServer() {}

SampleServer *get_server(CORBA::Environments env);
};

Figure 22: Class Definition for the Security M onitor Service

The next section is an example showing how to use the security services we

designed and implemented to provide authorization controls over distributed object

implementations.

60

4 .3 A n A p p l ic a t io n E x a m p l e

This is an example to show the usage of our security services to perform access

rights authentication. We have created a computational server which will perform a

simple binary operation to multiply two real numbers. Clients will send request to obtain

the result from this operation through the Object Request Broker (ORB). The ORB will

locate the object implementation of the computational server from the network. Our

security monitor services described in the previous section provide access rights

authorization at the beginning o f any request for object implementations.

There are two kinds o f access rights authorizations in this example. The first

authorization is performed prior to registration of the computational server to the ORB.

This authorization provides security control for creating object implementations at the

server side. This kind of security control can prevent users from creating insecure object

implementations to release system information to unauthorized clients. The second

authorization is performed when the client is requesting the computational server. The

ORB will pass the client’s information to the security services which will then check the

inherited role o f the client. If the client belongs to a role which has access to the

computational server, the ORB will pass the request to the computational server to

perform the multiplication. Result will be returned to the client via the ORB. Otherwise,

the ORB will inform the client that his/her permission to the computational server is

denied. Both authorization tests are handled by the Security M onitor Server.

61

int main(int argc, char **argv)

{

signal(SIGINT, sighandler);

MonitorServer server("SecurityMonitor");

int c ;

CORBA::BOA *boa = CORBA::BOA::instance();

// Create Role graph

create_rolesgraph();

CORBA::Environment env;

boa->event_handler(Sserver, env,

new SecurityEventHandler);

if (env.check_exception()) {

cout << "Error registering event handler." << endl;

cout << env;

}

CORBA: :BOA: :impl_is_ready() ;

return 0;

)

Figure 23: Main function of Security M onitor Server

Figure 23 shows the main function of the Security M onitor Server (SMS) which

is implemented using the Basic Object Adapter (BOA). At the beginning, we calls

function create_rolesgraph to create a role graph and store it as a persistent object in

EOS object store for later use. We then register the SMS to the BOA event handler and

create an new security event handler for SMS. The purpose of the SMS is to monitor

62

various computational server while the security event handler will perform pre-method

authorization tests on any client requests. SMS will raise an exception if the

authorization test o f the security event handler is failed. Otherwise, the ORB will

continue to perform object request for the computational server.

void SecurityEventHandler::pre_method(const

CORBA::Principals princ, ...) {

CORBA::String name;

CORBA::String hostname;

RolesGraph *persistent_rolesgraph;

CORBA::String priv("Access to comp, server");

name = princ.userName();

hostname = princ.hostName();

cout << "Checking validity for user " << name <<

" at host " << hostname << endl;

persistent_rolesgraph = get_rolesgraph();

if (persistent_rolesgraph->checkSecurity(name,

hostname, priv))

cout << "Security test passed!" << endl;

else

env.exception_value(new

CORBA::StExcep::NO_PERMISSION);

}

Figure 24: Class Implementation o f the Security Event Handler

Figure 24 shows the class implementation for the security event handler. The

63

function will obtain the “Prinicipal” of the client information from the ORB. The

“Principal” contains username, host name and other information of the client. Security

event handler will then call the function “get_rolesgraph” to restore the persistent role

graph from the EOS object store. The role graph has been stored in EOS during the

initialization of the Security M onitor Server as shown in Figure 23. Finally, it calls the

checkSecurity member function of RolesGraph to perform security check on client.

The function checkSecurity is shown in Figure 25. This function will first find

out the associated role of the user which is represented by “user_role”. It returns error if

the user does not associate with any role. Subsequently, we perform security check for

the user to see if the user has access rights to create or to use the computational server.

The function inUnionPrivset as shown in Figure 25 performs a Breadth First Search

(BFS) to all the junior roles of the “user_role” to check if the privilege to create or to use

the computational server is belongs to one o f its junior roles. If the client pass this final

test, its request for the computational server will be proceeded by the ORB. Otherwise,

an exception will be raised for denial permission.

This example shows the use of our security services to provide access rights

authorization. The M onitor Security Server and the Security Event Handler used in this

application can be reused for other distributed object applications using CORBA. The

full implementation for role graph management, persistent object service, secure object

services and the application example are provided in Appendix.

64

CORBA::Boolean RolesGraph::checkSecurity(CORBA::String& login,

CORBA::Stringk ip, CORBA::Strings privXD){

int i; long rid=0; Role *user_role;

for (i =0; i < _userinfo.length(); i++) {

if ((_userinfo[i].login() == login) &&

(_userinfo[i].ip() == ip)) {

cout << "Username " << login << " exists." << endl;

rid = _userinfo[i].rid_long();

break;

}

)

if (!rid) {

cout << "Can't find security information of user " <<

login << endl;

return FALSE;

}

user_role = _node_ptr[rid];

if (!user_role->canAccess(login, ip) return FALSE;

if (user_role->inUnionPrivset(login, ip, privID)) {

cout << "User " << login <<

" pass security clearance for " << privID << endl;

return TRUE;

)

return FALSE;

}

Figure 25: Function to perform security check for a user

65

4 .4 S u m m a r y

We have presented our design of the role-based security model and its

implementation. We have also integrated the Security Service to CORBA. CORBA

provides a nice communication layer for distributed client and server application. We

find it very easy to implement distributed applications. Next chapter is a conclusion for

this thesis. We shall discuss our implementation which concerns CORBA and suggest

possible extension on CORBA and our security model.

C h a p t e r 5

Co n c l u d in g R e m a r k s

5.1 S u m m a r y o n P e r s is t e n t a n d S e c u r it y M o d e l s

Our design o f persistent model is based on some existing models and can provide

the need to make our role graph persistence. Our security model, on the other hand, is a

new attempt to use an object model to handle security. The model is implemented in C++

classes, but can be easily implemented on other non object-oriented languages. Security

is still a missing component from CORBA specification 2.0 [40]. The Object

M anagement Group has been requesting for a proposal for adding a security service to

CORBA. All existing CORBA implementations rely on the system level security as the

underlying security mechanism. Object entities contain real life relationship which is

difficult to handle by general security models. The security prototype we have designed

and implemented can not only handle object entities but also be extended to meet the

multilevel security requirement. We can also extend our model to provide data

encryption during the message passing between the client and server through the ORBs

and the Security Services.

There are limitations in our security model, but they can be easily fixed. For

66

67

example, the class of role and role graph make usage o f several pointer references to role

objects and its private members. It is possible for computer hackers to obtain references

to these pointers and hence creating security holes.

5 .2 I m p l e m e n t a t io n Is s u e s o n C O R B A

CORBA is going to be a standard system for building distributed application in

the future. It is not difficult to build applications on top of CORBA. However, CORBA

IDL provides limited data types which limits the functionality of the IDL interface. We

have implemented our Security Service on a heterogeneous network on coupled Sun

Sparc stations running Solaris 2.4, Solaris 2.5 and SunOS 4.1.4. The Object Request

Brokers can communicate efficiently to locate the desired object method across the

network.

5 .3 F u t u r e W o r k

There are still some concerns about the role of CORBA within the Object-

Oriented Database Management System (OODBMS). ODBMS nowadays is required to

support millions of fine-grained objects. Fast and efficient access to the objects is almost

required by all applications. The role of CORBA is to provide a more efficient

mechanism to handle millions o f distributed objects located across the internet. There are

more issues to be considered such as how to provide locking transaction through

CORBA between distributed data stores.

Other issues such as interoperability among various ORBs from different vendors

are in the final testing process. IBM SOM, Expersoft, Orbix, Sunsoft NEO and other

68

CORBA implementors are going to release their interoperability versions in few months.

Sunsoft, PostM odem Computing and Iona have announced their Java front-end for their

CORBA products which will allow internet access to object methods through CORBA.

In the near future, CORBA will be the underlying layer for most o f the distributed

applications.

APPENDIX I

PERSISTENT IDENTIFIER PROGRAM

#ifndef _posPID_h
#define posPID h

class PosPID: public CosPersPID_impl::PID_impl
{
private:

CORBA::String _datastore_type;
CORBA::String _id;
CORBA::String _ip;
CORBA::String *_pid;

public:
PosPID(const char *datastore, const char *id, const char *ip)

: _datastore_type(datastore), _id(id), _ip(ip), _pid(NULL)
{}

-PosPID() {}

CORBA::String* datastore_type();
void datastore_type(const CORBA::Strings val);
CORBA::String* get_PIDString();

} ;

#endif

69

70

#include <stdlib.h>
#include <string.h>
ttinclude "CosPersPID_s.hh"
#include "posPID.h"

CORBA::String* PosPID::datastore_type()
{
return &_datastore_type;

}

void PosPID::datastore_type(const CORBA::Strings val)
{
_datastore_type = val;

}

CORBA::String* PosPID::get_PIDString()
{
int i ;
char newstring[255];

for (i = 0; i < _ip.length(); i++)
newstring[i] = ip[i];

newstring[i] = '\0';
strcat (newstring,
strcat (newstring, _id);

_pid = new CORBA::String(newstring);
return _pid;

}

APPENDIX II

PERSISTENT OBJECT SERVICE PROGRAM

#ifndef _posPDS_h
#define _posPDS_h
#include "eos.h"

class PosPDS: public CosPersPDS_impl::PDS_impl
{
private:

// Persistence related data

CosPersPDS::Object *_obj_data;
CosPersPID::PID *_pid;
unsigned _refcount;
CORBA::String _datastore_type;
long _obj_size;

I I Datastore (EOS) related data

eosdatabase *_eosdb;
eosobj *_eosoh;
eosfile *_eosfh;
eosoid _eosoid;

CORBA::String _db_na
CORBA: : String *_fnair

int trans();
int createfile();
int openfileU;
int closefileU;
int commit();
long getobjsize();

public:

PosPDS(CosPersPDS::Object* obj, CosPersPID::PID* p)
: _obj_data(obj), _pid(p), _refcount(0), _fname(p-

>get_PIDString()) {

// database descriptor
// object handle
// file handle
I I object id

71

_db_name = "/tmp/eos_area/roledatabase";
_datastore_type = "EOS.2.0.2";

}
-PosPDS();

CosPersPDS::PDS* connect(CosPersPDS::Object* obj, CosPersPID::PID*
void disconnect(CosPersPDS::Object* obj, CosPersPID::PID* p) ;
void store(CosPersPDS::Object* obj, CosPersPID::PID* p);
CosPersPDS::Object* restore(CosPersPDS::Object* obj,

CosPersPID::PID* p);
void remove(CosPersPDS::Object* obj, CosPersPID::PID* p);
void setobjsize(long objsize);
void persRef(CosPersPDS::Object* obj1, CosPersPID::PID* pi, CosPer

sPDS::Object* obj2, CosPersPID::PID* p2);

#endif

#include <stdlib.h>
#include <string.h>
#include "CosPersPDS_s.hh"
#include "posPDS.h"

char *stringtochars(char *outchars, CORBA::String *str)
{
int i ;
CORBA::String pidstring;

pidstring = *str;
outchars = (char *) malloc(sizeof(char)*(str->length() + 1));
for (i = 0; i < str->length(); i++) {

outchars[i] = pidstring[i];
}
outchars [i] = 'Non­
return outchars;

PosPDS::-PosPDS()
{
_obj_data = NULL;
delete [] _fname;
delete [] _eosdb;
delete [] _eosoh;
delete [] _eosfh;

}

CosPersPDS::PDS* PosPDS::connect(CosPersPDS::Object* obj, CosPer­
sPID: :PID* p)
{
cout << "_datastore_type " << _datastore_type << " p-

>datastore_type "
<< *p->datastore_type() << endl;

if (strcmp(_datastore_type, *p->datastore_type()) != 0) {
cerr << "Wrong datastore type!!" << endl;
exit(-2);

}

if (_refcount >=2) {
disconnect(_obj_data, _pid);

}

// connect the object to its persistent state
if ((_eosdb = eosdatabase::open(_db_name, 0, 1, 0)) == NULL) {

cerr << "Cannot create database " << _db_name << endl;
return NULL;

) else if (transO == 0) {
cout << "trans" << endl;
return NULL;

)
_refcount++;
return this;

74

int PosPDS::trans()
{
if (eostrans::begin(0) != 0) {

cerr << "Cannot start transaction" << endl;
return 0; // Failure

} else
return 1; // Sucess

int PosPDS::createfile()
{
if ((_eosfh = eosfile::create(_eosdb, *_fname)) == NULL) {

cerr << "Cannot create file " << *_fname << endl;
return 0;

} else
return 1;

int PosPDS::openfile()
{
char * fnameChars;
CORBA::String tmpstring;
int i ;

tmpstring = *_fname;
fnameChars = (char *) malloc(sizeof(char)*(_fname->length() + 1));
for (i =0; i < _fname->length(); i++)

fnameChars[i] = tmpstring[i];
fnameChars[i] = '\0';
if ((_eosfh = eosfile::open(_eosdb, fnameChars)) == NULL) {

cerr << "Cannot open file " << fnameChars << endl;
return 0;

} else
return 1;

int PosPDS::closefile()
{
if (_eosfh->close() != 0) {

cerr << "Cannot close file" << endl;
return 0;

) else
return 1;

int PosPDS::commit()
{
if (eostrans::commit() != 0) {

cerr << "Cannot commit transaction" << endl;
return 0;

} else
return 1;

75

void PosPDS::disconnect(CosPersPDS::Object* obj, CosPersPID::PID* p)
{
if (_refcount < 1) {

cerr << "Cannot disconnect " << (char *) p->get_PIDString() << endl
<< "_refcount = " << _refcount << endl;

exit (-2);
}
if (_eosdb->close() != 0) {

cerr << "Cannot close database" << endl;
exit (-2);

} else {
_eosdb = NULL;
_eosoh = NULL;
_eosfh = NULL;
_pid = NULL;
_refcount--;

}
}

void PosPDS::store(CosPersPDS::Object* obj, CosPersPID::PID* p)
{

// save the persistent state of an object

eosobj *eosoh; // object handle
char *pidchars;
long strlength;

// Add routine to distinguish update and create later

// Preliminary verion: have not yet taken into account of concurrency
I I control

if ((eosoh = eosobj::create((int) getobjsize(), _eosdb, obj)) == NULL)
{

cerr << "Cannot create persistent object" << endl;
exit(-2);

)

_eosoid = eosoh->oid();
pidchars = stringtochars(pidchars, p->get_PIDString());
printf ("pidchars = %s\n", pidchars);
eosoid tmpoid;
eos_Ref_Any objRef;
if ((tmpoid = _eosdb->oid_of(pidchars)) == eosoid::null)

cout << pidchars << " not exist" << endl;
if (eosoh->name_set((const char *) pidchars) != 0)

cerr << "Cannot set object name" << endl;
cout << "Object name is " << eosoh->name() << endl;
if (eosoh->release() != 0) {

cerr << "Cannot release object handle" << endl;
exit(-2);

)

if (PosPDS::commit() == 0)
cerr << "Cannot commit transaction" << endl;

}

CosPersPDS::Object* PosPDS::restore(CosPersPDS::Object* obj, CosPer­
sPID: :PID* p)
{

// loads the object's persistent state unless a store or other
// mutating operation is performed on the persistent state

eosfilescan *eosfs; // filescan handle
char *pidchars;

pidchars = stringtochars(pidchars, p->get_PIDString());

if ((_eosoh = eosobj::get(_eosdb, pidchars, eosobj::HDR_ONLY)) ==
NULL) {

cerr << "Cannot get object handle" << endl;
return NULL;

}

_obj_data = (CosPersPDS::Object *) _eosoh->mptr();
if (_eosoh->release() != 0) {

cerr << "Cannot release object" << endl;
exit (-2);

)
if (commit() == 0)

cerr << "Cannot commit transaction" << endl;
return _obj_data;

)

void PosPDS::remove(CosPersPDS::Object* obj, CosPersPID::PID* p)
{

// delete the object's persistent data from the datastore indicated
//by the PID.

// Preliminary verion: have not taken into account of concurrency
// control

eosobj *oh;
char *pidchars;

pidchars = stringtochars(pidchars, p->get_PIDString());
if ((oh = eosobj::get(_eosdb, pidchars, eosobj::HDR_ONLY)) == NULL)
cerr << "Cannot get object handle" << endl;
exit(-2);

}
if (oh->destroy() != 0) {

cerr << "Cannot destroy object" << endl;
exit(-2);

}
if (commit() == 0)

cerr << "Cannot commit transaction" << endl;

77

void PosPDS::setobjsize(long objsize)
{
_obj_size = objsize;

}

long PosPDS::getobjsize()
{
return _obj_size;

}

void PosPDS::persRef(CosPersPDS::Object* obj1, CosPersPID::PID* pi,
CosPersPDS::Object* obj2, CosPersPID::PID* p2)

{
I I save the persistent state of an object

eosobj *eosoh; // object handle
char *pidchars;
long strlength;
eos_Ref_Any *persobj;
eosoid tmpoid;

pidchars = stringtochars(pidchars, pl->get_PIDString());
*persobj = _eosdb->lookup_object(pidchars);

if (PosPDS::commit() == 0)
cerr << "Cannot commit transaction" << endl;

}

APPENDIX III

ROLE IDENTIFIER PROGRAM

#ifndef _RID_h
#define _RID_h

#include "misc.h"

class RID: public CosRID_impl::idlRID_impl
{

private:
long _id;
CORBA::String _ip;
CORBA::String _name;

public:
RID(const char ‘name, const char *ip) ;

-RIDO {}

RID& operator=(RID &rid);
CORBA::String* get_RIDstring();
long get_RIDlong();
CORBA::String* get_RnameString();

} ;

ttendif

78

79

#include <stdlib.h>
#include <string.h>
#include ./persist_store/CosPersPID_s.hh"
#include ./persist_store/posPID.h"
#include "CosRID_s.hh"
#include "misc.h"
#include "RID.h"

RID::RID(const char *name, const char *ip)
{
char ridname[255];
int thisid;

_ip = ip;
_name = name;
strcpy(ridname, name);
_id = hash(ridname);

)

RID& RID::operator=(RID &rid)
{

_ip = rid._ip;
_name = rid._name;
_id = rid._id;

return *this;
}

CORBA::String* RID::get_RIDstring()
{
CORBA::String *rid;
char newstring[255];

itoa(_id, newstring);

rid = new CORBA::String(newstring);
return rid;

}

long RID::get_RIDlong()
{
return _id;

}

CORBA::String* RID::get_RnameString()
{
CORBA::String *rid=new CORBA::String(_name);

return rid;
}

APPENDIX IV

ROLE GRAPH PROGRAM

#ifndef _Roles_h
#define _Roles_h

#include <seqmac.h>
#include "CosRoles_c.hh"
#include "RID.h"

enum {FALSE, TRUE};
enum STATUS {ALLOWED, DENIALED, UNKNOWN};

class Role;

class Item {
friend class List;
friend class Role;
friend class RolesGraph;

private:
Role *val;
Item *next;
ItemfRole *value, Item *item = 0)
{

val = value;
next = item;

}
} ;

class List
{
public:

List ()
{

list = 0;
at_end = 0;
current = 0 ;
_length = 0;

}
-List () { remove(); }
CORBA::Boolean append(Role* node); I I TRUE if append is success

80

I I FALSE if node already exists
Role *iterator(); I I Return first item value on the list
CORBA::Boolean remove(Role* node); // TRUE if node is deleted
// FALSE if node doesn't exist
I I or list is empty
Role *remove_first(); // remove first role
List& operator=(List Scl);
void remove!); // Remove all items
CORBA::Boolean is_present(Role *node);
CORBA::Boolean is_empty();
void reset_current(); I I Reset current pointer
long length();

void display();
private:

Item *list;
Item *at_end;
Item ‘current;
long _length;

) ;

class Role: public CosRoles_impl::idlRole_impl
{

private:

CosRID::idlRID *_rid;
CosRoles::seqld _privset;
CosRoles::seqld _union_privset;
CosRoles::seqAuth _accessList;
CosRoles::seqAuth _denialList;
CosRoles::seqld *getPrivset();
CosRoles::seqAuth *getAccessList();
CosRoles::seqAuth *getDenialList();

public:

Role(CosRID::idlRID *rid, CosRoles::seqld privset,
CosRoles::seqAuth accessList,
CosRoles::seqAuth denialList, List *juniorList)

: _rid(rid), _privset(privset), _accessList(accessList),
_denialList(denialList), _juniorList(juniorList)

{} ;

RoleO {};

-Role() ;

Role& operator=(Role &r);
I I Check if this login with this ip can access this role or not.
CORBA::Boolean canAccess(const CORBA::StringSc login,

const CORBA::String& ip);
CORBA::Boolean inPrivatePrivset(const CORBA::Strings privID);
CORBA::Boolean inUnionPrivset(const CORBA::StringSc login,

82

const CORBA::String& ip,
const CORBA::Strings privID);

CosRID::idlRID *getRIDp();

protected:

friend class RolesGraph;

List *_juniorList;
long childCountU const;
CORBA::Boolean addJunior(Role* node);
CORBA::Boolean removeJunior(Role* node);
CORBA::Boolean addPriv(const CORBA::Strings privID);
CORBA::Boolean isPrivJunior(CosRID::idlRID *rid);

} ;

class RolesGraph : public CosRoles_impl::idlRolesGraph_impl
{
public:

RolesGraph(); I I Default constructor: build an empty
role graph

RolesGraph(Role *root); // build a graph with root

-RolesGraph();

RolesGraphS operator=(RolesGraphS rg);
Role* Root() const; // return pointer to the root if authorized

Role* Node (RID rid); I I return pointer to the node with the rid

CORBA::Boolean isJunior(CosRID::idlRID *ridl, CosRID::idlRID
*rid2) const;

// return TRUE if role with ridl is a junior
// role of the role with rid2

CORBA::Boolean isCycle(List *seniorList, Role* role);
I I return TRUE if cycle exists after adding role
I I return FALSE otherwise

RolesGraph* removeRedundantPaths(); // Optional optimization routine

CosRoles::idlRolesGraph* remove(CosRID::idlRID* rid);

RolesGraph* add(List *seniorList, Role* role);

RolesGraph* update(List *seniorList, Role* new_role,
CosRID::idlRID* rid);

CORBA::Boolean addUser(CORBA::Strings login, CORBA::Strings ip,
RID *rid);

CORBA::Boolean delUser(CORBA::Strings login, CORBA::Strings ip);

CORBA::Boolean checkSecurity(CORBA::Strings login, CORBA::Strings
ip.

CORBA::Strings privID);

private:

displayGraph();

Role* _node_ptr[MAXTABLE+1];

Role* _root;
CORBA::Boolean isCycle(Role* role); // Check if this role is in a

cycle.
CosRoles::seqUserlnfo _userinfo;

} ;

#endif

84

#include <stdlib.h>
♦include <string.h>
♦include "CosRoles_s.hh"
♦include "RID.h"
♦include "Roles.h"
♦include "misc.h"

CORBA::Boolean List::is_empty()
{
return list == 0 ? TRUE : FALSE;

}

CORBA::Boolean List::append(Role *val)
{
Item *pt = new Item(val);
Item *iter_list = list;
if (list == 0) {

list = new Itern(val);
list->next = 0;
at_end = list;

}
else {

while (iter_list) {
if (iter_list->val == val)
return FALSE;
iter_list = iter_list->next;

}
at_end->next = pt;
at_end = pt;

}
_length++;
return TRUE;

void List::display()
{

for (Item *pt = list; pt; pt = pt->next)
cout << * (pt->val->getRIDp()->get_RIDstring()) << " ";

cout << endl;
}

Role *List::remove_first()
{
Role *tmprole;

if (list == 0)
return 0;

else {
tmprole = list->val;
list = list->next;
_length--;

)
return tmprole;

void List::remove()
{

Item *pt = list;
while (pt) {

Item *tmp = pt;
pt = pt->next;

)
list = at_end = current = 0;
_length = 0;

CORBA::Boolean List::is_present(Role *item) {
if (list == 0)

return FALSE;
if (list->val == item || at_end->val == item)

return TRUE;
Item *pt = list->next;
for (; pt != at_end; pt = pt->next)

if (pt->val == item)
return TRUE;

return FALSE;

CORBA::Boolean List::remove(Role *val)
{

Item *pt = list;
Role *del_role;

if (pt && pt->val == val) {
Item *tmp = pt->next;
del_role = pt->val;
list = tmp;
_length--; // _length should be zero after
return TRUE;

)
if (_length == 0) {

return FALSE;
)
Item *prev = pt;
pt = pt->next;
while (pt) {

if (pt->val == val) {
prev->next = pt->next;
if (at_end == pt)
at_end = prev;
del_role = pt->val;
pt = prev->next;
_length--;
return TRUE;

}
else {

prev = p t ;
pt = pt->next;

86

}
}
return FALSE;

}

Role *List::iterator()
{
Role* tmprole;

if (is_empty()) {
cout << "In iterator: list is empty,
return 0;

}
else if (!current) {

return 0;
}
else if (current == at_end || at_end =

tmprole = current->val;
current = 0;
return tmprole;

}
tmprole = current->val;
current = current->next;
return tmprole;

void List::reset_current()
{
if (!is_empty())

current = list;
}

List& List::operator=(List &1)
{
Item *tmpitem;
Item *listiterator;

listiterator = l.list;
remove();
while(tmpitem = listiterator) {

append(tmpitem->val);
listiterator = listiterator->next;

}
return *this;

long List::length()
{
return _length;

}

Role::-Role()
{
CORBA::ULong i;

<< endl;

list) {

<6?

for (i = 0; i < _accessList.length(); i++)
_privset.remove(i) ;

for (i = 0; i < _accessList.length(); i++)
_accessList.remove(i) ;

for (i = 0; i < _denialList.length(); i++)
_denialList.remove(i);

}

RoleS Role::operator=(Role Srole)
{

_rid = role._rid;
_privset = role._privset;
_union_privset = role._union_privset;
_accessList = role._accessList;
_denialList = role,_denialList;

return *this;
}

CosRoles::seqld *Role::getPrivset()
{
return S_privset;

}

CosRoles::seqAuth *Role::getAccessList()
{
return S_accessList;

)

CosRoles::seqAuth *Role::getDenialList()
{
return S_denialList;

}

CosRID::idlRID *Role::getRIDp()
{
return _rid;

}

CORBA::Boolean Role::inPrivatePrivset(const CORBA::Strings privID)
{
for (int i = 0; i < _privset.length(); i++)

if (privID == _privset[i])
return TRUE;

return FALSE;
}

CORBA::Boolean Role::inUnionPrivset(const CORBA::String& login,
const CORBA::Strings ip,
const CORBA::Strings privID)

{
long toprid;
Role *cur_role, *junior_role;

88

List *queue = new List;
CosRoles::auth_para auth_parameters;
STATUS visited[MAXTABLE];

if(canAccess(login, ip)) {
if (inPrivatePrivset(privID)) {

return TRUE;
)

}
else {

cout << login << " at " << ip << " can not access this role." <<
endl ;

return FALSE;
}
cout << "pass current role test" << endl;
toprid = getRIDp()->get_RIDlong();
cout << "rid is " << toprid << endl;
for (int i = 0; i < MAXTABLE; i++)

visited[i] = UNKNOWN;
cur_role = this;
visited[toprid] = ALLOWED;
queue->append(cur_role);
while (!queue->is_empty()) {

cur_role = queue->remove_first() ;
cur_role->_juniorList->display();
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong();
if (visited[toprid] == UNKNOWN) {
queue->append(junior_role);

// Routine to check authority and to gather whole privilege set

for (int i = 0; i < junior_role->getDenialList()->length() ;
i + +) {

CosRoles::seqAuth *denial_list;
denial_list = junior_role->getDenialList();
auth_parameters = (*denial_list)[i];
if ((auth_parameters.login() == login) &&

(auth_parameters.ip() == ip)) (
visited[toprid] = DENIALED;

}
}
if (visited[toprid] == UNKNOWN) {

for (int i = 0; i < junior_role->getAccessList()->length(); i++)
{

CosRoles::seqAuth *access_list;
access_list = junior_role->getAccessList();
auth_parameters = (*access_list)[i];
if ((auth_parameters.login() == login) &&

(auth_parameters.ip() == ip)) {
visited[toprid] = ALLOWED;
if (junior_role->inPrivatePrivset(privID) == TRUE)
return TRUE;

89

}
}

}
if (visited[toprid] == UNKNOWN) {

if (junior_role->inPrivatePrivset(privID) == TRUE) {
cout << "inherit access allowed" << endl;
return TRUE;

}
}
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited;
return FALSE;

}

CORBA::Boolean Role::canAccess(const CORBA::Strings login,
const CORBA::Strings ip)

{
Role *junior_role;
CosRoles::auth_para auth_parameters;
int i ;

junior_role = this;
for (i = 0; i < junior_role->getDenialList()->length() ; i++) {
CosRoles::segAuth *denial_list;
denial_list = junior_role->getDenialList();
auth_parameters = (*denial_list) [i] ;
if ((auth_parameters.login() == login) SS

(auth_parameters.ip() == ip)) {
return FALSE;

}
)
for (i =0; i < junior_role->getAccessList()->length(); i++) {

CosRoles::seqAuth *access_list;
access_list = junior_role->getAccessList();
auth_parameters = (*access_list)[i];
if ((auth_parameters.login() == login) SS

(auth_parameters.ip() == ip)) {
return TRUE;

}
)
return FALSE;

CORBA::Boolean Role::isPrivJunior(CosRID::idlRID *rid)
{
Role *junior_role, *cur_role;

cur_role = this;
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

if (rid->get_RIDlong() == junior_role->getRIDp()->get_RIDlong()) {

90

cur_role->_juniorList->reset_current();
return TRUE;

}
}
return FALSE;

}

long Role::childCount() const
{
return _juniorList->length();

}

CORBA::Boolean Role::addJunior(Role* node)
{
return (_juniorList->append(node)) ;

)

CORBA::Boolean Role::removeJunior(Role* node)
{
return (_juniorList->remove(node));

}

CORBA::Boolean Role::addPriv(const CORBA::String& privID)
{
if (!inPrivatePrivset(privID)) {

_privset.append(privID);
return TRUE;

}
else

return FALSE;
)

RolesGraph::RolesGraph()
{
_root = 0;
for (int i=0; i < MAXTABLE; i++)
_node_ptr[i] = 0;

}

RolesGraph::RolesGraph(Role *root)
{
long toprid;
Role *cur_role, *junior_role;
CORBA::Boolean visited[MAXTABLE];
List ‘queue = new List;
int i ;

for (i=0; i < MAXTABLE; i++)
_node_ptr[i] = 0;

_root = root;

toprid = root->getRIDp()->get_RIDlong();
node ptrftoprid] = root;

91

for (i = 0; i < MAXTABLE; i++)
visited[i] = FALSE;

cur_role = root;
visited[toprid] = TRUE;
queue->append(cur_role);
while {!queue->is_empty()) {

cur_role = queue->remove_first();
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong();
if (visited[toprid] == FALSE) {
queue->append(junior_role);
visited[toprid] = TRUE;
_node_ptr[toprid] = junior_role;
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited;

}

RolesGraph::-RolesGraph()
{
delete _root;
delete [] _node_ptr;

}

RolesGraphk RolesGraph::operator=(RolesGraph &rg)
{

int i ;

for (i = 0; i < MAXTABLE; i++)
_node_ptr[i] = rg._node_ptr[i];

_root = rg._root;

return *this;
}

Role *RolesGraph::Root() const
{
return _root;

}

Role *RolesGraph::Node(RID rid)
{

if (_node_ptr[rid.get_RIDlong()]) {
return node otrfrid.qet RIDlong()];

}
else

return 0;
}

CORBA::Boolean RolesGraph::isJunior(CosRID::idlRID *junior_rid,

CosRID::idlRID *senior_rid) const
{

long toprid;
Role *cur_role, *junior_role;
List ‘queue = new List;

CORBA::Boolean visited[MAXTABLE];

toprid = senior_rid->get_RIDlong();
if (_node_ptr[toprid] ==0) // Junior role doesn't exist

return FALSE;

for (int i = 0; i < MAXTABLE; i++)
visitedfi] = FALSE;

cur_role = _node_ptr[toprid];
visited[toprid] = TRUE;
queue->append(cur_role);
while (!gueue->is_empty()) {

cur_role = queue->remove_first();
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong();
if (visited[toprid] == FALSE) {
queue->append(junicr_role);
visited[toprid] = TRUE;
if (junior_rid->get_RIDlong() == toprid) {

cur_role->_juniorList->reset_current();
delete [] visited;
return TRUE;

}
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited;
return FALSE;

// Perform BFS starting from role to look for cycle.

CORBA::Boolean RolesGraph::isCycle(Role *role)
{

long thisrid, toprid;
Role *cur_role, *junior_role;
CORBA::Boolean visited[MAXTABLE];
List ‘queue = new List;

thisrid = role->getRIDp()->get_RIDlong();
for (int i = 0; i < MAXTABLE; i++)

visited[i] = FALSE;
cur_role = role;
visited[thisrid] = FALSE; I I Allow access twice
queue->append(cur_role) ;
while (!queue->is_empty()) {

93

cur_role = queue->remove_first();
cur_role->_juniorList->reset_current(); // double insured
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong();
if (visited[toprid] == FALSE) {
queue->append(junior_role);
visited[toprid] = TRUE;
if (toprid == thisrid)

return TRUE;
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited;
return FALSE;

}

// Perform BFS on every roles with the graph to check if there exists
cycle.

CORBA: .-Boolean RolesGraph:: isCycle (List *seniorList, Role *role)
{
List *added_seniorlist = new List;
Role *cur_role;
CORBA::Boolean visited[MAXTABLE];
CORBA::Boolean role_added[MAXTABLE];
CORBA::Boolean ret;
int i ;

for (i = 0; i < MAXTABLE; i++) {
visited[i] = FALSE;
role_added[i] = FALSE;

}
seniorList->reset_current();
while (cur_role = seniorList->iterator()) {

if (added_seniorlist->append(cur_role) == FALSE) {
added_seniorlist->remove(cur_role);

}
if (cur_role->addJunior(role) == TRUE) {

role_added[cur_role->getRIDp()->get_RIDlong()] = TRUE;
}

}
ret = FALSE;
for (i = 0; i <= MAXTABLE; i++) {

if (cur_role = _node_ptr[i]) {
cout << "isCycle testing " << *(cur_role->getRIDp()-

>get_RnameString())
<< " with RID " << i << endl;
if (isCycle(cur_role)) {
cout << " forms cycle" << endl;
ret = TRUE;
break;
}
else

cout << " doesn't form cycle" << endl;
}

}
added_seniorlist->reset_current();
while (cur_role = added_seniorlist->iterator()) {

if (role_added[cur_role->getRIDp()->get_RIDlong()] == TRUE)
cur_role->removeJunior(role);

)
delete [] visited;
delete [] role_added;
delete added_seniorlist;
return ret;

CosRoles::idlRolesGraph* RolesGraph::remove(CosRID::idlRID* rid)
{
long thisrid, toprid;
Role *cur_role, *junior_role, *del_role, *add_role;
CORBA::Boolean visited[MAXTABLE];
List *gueue = new List;
CORBA::Boolean done;

del_role = _node_ptr[rid->get_RIDlong()];
thisrid = _root->getRIDp()->get_RIDlong();
for (int i = 0; i < MAXTABLE; i++)
visited[i] = FALSE;

cur_role = _root;
visited[thisrid] = TRUE;
queue->append(cur_role);
done = FALSE;
while (!queue->is_empty()) {

cur_role = queue->remove_first();
if (cur_role->isPrivJunior(rid)) {

cout << *(rid->get_RnameString()) << " is a private junior of "
<< * (cur_role->getRIDp()->get_RnameString()) << endl;
cur_role->_juniorList->display();
if (cur_role->removeJunior(del_role)) {
del_role->_juniorList->reset_current();
while (add_role = del_role->_juniorList->iterator())

cur_role->addJunior (add_role) ;
delete del_role;
}
cur_role->_juniorList->display();
done = TRUE;

}
else

done = FALSE;
cur_role->_juniorList->reset_current();
while (!done && (junior_role = cur_role->_juniorList->iterator()))

toprid = junior_role->getRIDp()->get_RIDlong();
if (visited[toprid] == FALSE) {

queue->append(junior_role);
visited[toprid] = TRUE;
if (junior_role->isPrivJunior(rid)) {

95

if (junior_role->removeJunior(del_role)) {
del_role->_juniorList->reset_current();
while (add_role = del_role->_juniorList->iterator())

junior_role->addJunior(add_role);
delete del_role;

}
else {

cout << "Error: removing junior role" << endl;
return 0;

}
}
}

}
cur_role->_juniorList->reset_current();

}
_node_ptr[rid->get_RIDlong()] = 0;
delete [] visited;
return this;

}

// Add new role to role graph.
// Remove redundant paths.

RolesGraph* RolesGraph::add(List *seniorList, Role* role)
{
Role *senior_role, *add_role, *junior_role;
CosRID::idlRID *add_rid;

if (isCycle(seniorList, role))
return 0;

cout << "passed cycle test" << endl;
if (_node_ptr[role->getRIDp()->get_RIDlong()]) { // Should not happen

cout << "Error: RID already exists" << endl;
return 0;

)
else

_node_ptr[role->getRIDp()->get_RIDlong()] = role;
role->_juniorList->reset_current();
while (junior_role = role->_juniorList->iterator()) {

if (_node_ptr[junior_role->getRIDp()->get_RIDlong()] == 0)
_node_ptr[junior_role->getRIDp()->get_RIDlong()] = junior_role;

else if (_node_ptr[junior_role->getRIDp()->get_RIDlong()] !=
junior_role) (

cout << "Inconsistent node ptrs!" << endl;
exit(0);

}
}
seniorList->reset_current();
while (senior_role = seniorList->iterator()) {

role->_juniorList->reset_current();
I I Remove immediate redundant paths
while (add_role = role->_juniorList->iterator()) {

if (senior_role->isPrivJunior(add_role->getRIDp()))
senior_role->_juniorList->remove(add_role);

)
senior_role->addJunior(role);

}
return this;

}

RolesGraph* RolesGraph::update(List *seniorList, Role* new_role,
CosRID::idlRID* oldrid)

{
if (oldrid->get_RIDlong() != new_role->getRIDp()->get_RIDlong())

cout << "Warning: RIDs are different!" << endl;
RolesGraph::remove(oldrid);
RolesGraph::add(seniorList, new_role);
return this;

// Display the whole role graph

RolesGraph::displayGraph()
{
long thisrid;
Role *cur_role, *junior_role;
CORBA::Boolean visited[MAXTABLE];
List *queue = new List;

thisrid = _root->getRIDp()->get_RIDlong();
cout << "In displayGraph: root is " << thisrid << endl;
for (int i = 0; i < MAXTABLE; i++)
visited[i] = FALSE;

cur_role = _root;
visited[thisrid] = TRUE; // Allow access twice
queue->append(cur_role);
cout << "Roles Graph:" << endl;
while (!queue->is_empty()) {

cur_role = queue->remove_first();
cur_role->_juniorList->reset_current(); // double insured
cout << *(cur_role->getRIDp()->get_RnameString()) <<

<< endl;
while (junior_role = cur_role->_juniorList->iterator()) {

thisrid = junior_role->getRIDp()->get_RIDlong();
cout << " "

<< *(junior_role->getRIDp()->get_RnameString()) << endl;
if (visited[thisrid] == FALSE) {
queue->append(junior_role);
visited[thisrid] = TRUE;
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited;
return FALSE;

CORBA::Boolean RolesGraph::addUser(CORBA::Strings login,

97

CORBA::String& ip,
RID *rid)

int i ;
CosRoles::user_info userinfo;

for (i = 0; i < _userinfo.length(); i++) {
if ((_userinfo[i].login() == login) SS

(_userinfo[i].ip() == ip)) {
cout << "Username " << login << " exists." << endl;
return FALSE;

)
}
userinfo.login() = login;
userinfo.ip() = ip;
userinfo.rid_long() = rid->get_RIDlong();
_userinfo.append(userinfo) ;
return TRUE;

)

CORBA::Boolean RolesGraph::delUser(CORBA::Strings login,
CORBA::Strings ip)

{
int i ;

for (i = 0; i < _userinfo.length(); i++)
if (_userinfo[i].login() == login SS _userinfo[i].ip() == ip) (

_userinfo.remove(i);
return TRUE;

)
return FALSE;

}

CORBA::Boolean RolesGraph::checkSecurity(CORBA::Strings login,
CORBA::Strings ip,
CORBA::Strings privID)

{
int i ;
long rid=0;
Role *user_role;

cout << "In checkSecurity : " << endl;
for (i = 0; i < _userinfo.length(); i++) {

if ((_userinfo[i].login() == login) SS
(_userinfo[i].ip() == ip)) {
cout << "Username " << login << " exists and belongs to role

" << endl;
rid = _userinfo[i).rid_long();
// cout << * (_node_ptr[rid]->getRIDp()-

>get_RnameString()) << endl;
break;

}
}
cout << "here 2 " « endl;

if (!rid) {
cout << "Can't find security information of user " << login

<< endl;
return FALSE;

}
else

cout << "rid is " << rid << endl;
user_role = _node_ptr[rid] ;
if (!user_role->canAccess(login, ip))

return FALSE;
if (user_role->inUnionPrivset(login, ip, privID)) (

cout << "User " << login << " pass security clearance for "
<< privID << endl;

return TRUE;
}
cout << "after check inUnionPrivset" << endl;
return FALSE;

APPENDIX V

SECURITY MONITOR PROGRAM

ttifndef _monitor_h
ttdefine _monitor_h

// Monitor server program. Caches compute servers

#include "comp_c.hh"// ComputeServer client
#include "CosRoles_s.hh"
#include "RXD.h"

class SecurityEventHandler: public CORBA::BOA::IMPLEventHandler
{
protected:

void pre_method (const CORBA::Principals princ,
const char ‘interface, const CORBA::Objects obj,
CORBA::ULong methodid, CORBA::Environments env);

} ;

class MonitorServer: public CosRoles..impl::Monitor_impl
{

friend SecurityEventHandler;
private:

CosRoles::ServerList_servers;
CORBA::ULong_cur_index;
CosRoles::AccessControlList_userList; I I temporary move from pri­

vate

protected:
void unbind(const CORBA::Principals princ, const char ‘interface,

const CORBA::Objects obj);
public:

MonitorServer(const char ‘name) : Monitor_impl(name) {
_cur_index = 0;}

-MonitorServer() {}
void add_user(const char ‘name);
void register_server(ComputeServer ‘server);
ComputeServer *get_server(CORBA::Environments env);

) ;
#endif

99

100

#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include ./persist_store/CosPersPID_s.hh"
#include ./persist_store/posPID.h"
#include "../persist_store/CosPersPDS_s.hh"
#include ./persist_store/posPDS.h"
#include "CosRID_s.hh"
#include "CosRoles_s.hh"
#include "RID.h"
#include "Roles.h"
#include "misc.h"
#include "monsrv.h"

extern RolesGraph *rolesgraph;
void create_rolesgraph(void);
RolesGraph *get_rolesgraph(void);

void SecurityEventHandler::pre_method(const CORBA::Principals princ,
const char *interface, const

CORBA::Objects obj,
CORBA::ULong methodid,

CORBA:Environments env)
{

CORBA::String name;
CORBA::String hostname;
RolesGraph *persistent_rolesgraph;

CORBA::String priv("Access to project files");

name = princ.userName();
hostname = princ.hostName();

cout << "Checking validity for user " << princ.userName() << "
at host "

<< princ.hostName() << endl;

persistent_rolesgraph = get_rolesgraph();
if (persistent_rolesgraph->checkSecurity(name, hostname, priv))

cout << "Security test passed!" << endl;
else

env.exception_value(new CORBA::StExcep::NO_PERMISSION);
}

void MonitorServer::unbind(const CORBA::Principals princ, const char *,
const CORBA::Objects)

{
CORBA::ULong num_servers = _servers.length();
for (CORBA::ULong i = num_servers; i > 0; i--) {

ServerAssocS server = _servers[i — 1];
if (server.host_name() == princ.hostName() SS

server.pid() == princ.pid())
.servers.remove(i-1);

}
}

101

void MonitorServer::add_user(const char *name)
{

_userList.append(new CORBA::String(name));
}

void MonitorServer::register_server(ComputeServer ‘server)
{

// Get client info
const CORBA::Principal *princ = _principal();

ServerAssoc ‘assoc = new ServerAssoc;
assoc->host_name() = princ->hostName();
assoc->pid() = princ->pid();
assoc->server(server);

cout << "host name is " << princ->hostName() << ", pid is " <<
princ->pid()

<< ", loginName is " << princ->loginName() << ", password is
\ \

<< princ->password() << endl;

// NOTE: We do not need to _duplicate the server
// (Increment the ref count) since append on sequences automati­

cally
// increment the ref count. The ref count is decrmented when
// the element is removed/ sequence is deleted.
_servers.append(assoc);

}

// Uses Round Robin scheduling to give out ComputeServer Objects
ComputeServer *MonitorServer::get_server(CORBA::Environments env)
{

//if (! valid_user(_principal())) {
// env.exception_value(new PermissionDenied);
// return NULL;
/ / }

if (_servers.length() == 0) {
env.exception_value(new NoServers);
return NULL;

}
if (_cur_index >= _servers.length())

_cur_index = 0;
ComputeServer ‘server = _servers[_cur_index++].server();
server->_duplicate();// Return value is released by ORB
return server;

)

void sighandler(int)
{

exit(0);
)

102

int main(int argc, char **argv)
{

signal (SIGINT, sighandler) ;
MonitorServer server("TestMonitor");

CORBA::BOA *boa = CORBA::BOA::instance();

// Create Role graph

create_rolesgraph();

// Attach the event handler to implementation so that unbind
// gets called when clients disconnect

CORBA::Environment env;

boa->event_handler(&server, env, new SecurityEventHandler);

if (env.check_exception()) {
cout << "Error registering event handler." << endl;
cout << env;

}

CORBA::BOA::impl_is_ready();
return 0;

}

APPENDIX VI

ROLE GRAPH INITIALIZATION PROGRAM

#include <stdlib.h>
#include <string.h>
#include ./persist_store/CosPersPID_s.hh"
#include "../persist_store/posPID.h"
#include ./persist_store/CosPersPDS_s.hh"
#include ./persist_store/posPDS.h"
#include "CosRID_s.hh"
#include "CosRoles_s.hh"
#include "RID.h"
#include "Roles.h"
#include "misc.h"

table_type symboltable[MAXTABLE+1];
RolesGraph *rolesgraph;

void create_rolesgraph()
{
RID *ridO = new RID("Root", "flash.adb.com");
RID *ridl = new RID("Project Manager", "flash.adb.com")
RID *rid2 = new RID("Office Manager", "flash.adb.com");
RID *rid3 = new RID("Reception", "flash.adb.com");
RID *rid4 = new RID("Engineer", "flash.adb.com");
RID *rid5 = new RID("Sr Engineer", "flash.adb.com");

CORBA :String *priv_a = new CORBA
CORBA :String *priv_b = new CORBA
CORBA
files

:String
') ;

*priv_c = new CORBA

CORBA :String *priv_d = new CORBA:
CORBA::String
account");

*priv_e new CORBA:

CORBA :String *priv_f = new CORBA
CORBA :String *priv_g = new CORBA
CORBA :String *priv_h = new CORBA
CORBA :String *priv_i = new CORBA

CORBA :String *loginO = new CORBA:
CORBA :String *loginl = new CORBA:

:String("Access to reception desk");
:String("Personal files");
:String("Check out development

:String("Incoming phone calls");
:String("Create new computer

:String("Issue checks");
:String("Access to project files");
:String("Cancel projects");
:String("Order office supplies");

:String("john");
:String("eugene");

103

104

CORBA:
CORBA:
CORBA:
CORBA:
CORBA:
CORBA:
CORBA:
CORBA:
CORBA:

String
String
String
String
String
String
String
String
String

*login2
*login3
*login4
*login5
*login6
*login7
*login8
*login9
*ipO =

new
new
new
new
new
new
new
new

CORBA
CORBA
CORBA
CORBA
CORBA
CORBA
CORBA
CORBA

:String("sharon");
:String("michael");
:String("michelle")
:String("william");
:String("tom");
:String("cheryl");
:String("jean");
:String("dave");

new CORBA::String("flash.adb.com")

CosRoles::seqld privsetO, privsetl, privset2, privset3, privset4,
privset5;

CosRoles::seqAuth al_reception, al_off_man, al_engineer, al_sr_engineer,
al_proj_man, al_root;

CosRoles::seqAuth dl_reception, dl_off_man, dl_engineer, dl_sr_engineer,
dl_proj_man, dl_root;

CosRoles::auth_para auth_parameterO, auth_parameterl, auth_parameter2,
auth_parameter3, auth_parameter4, auth_parameter5, auth_parameter6,
auth_parameter7, auth_parameter8, auth_parameter9;

CORBA::String *priv_j = new CORBA::String("Audit accounts");
CosRoles::seqld privset_fc;
CosRoles::seqAuth al_fc, dl_fc;
CosRoles::auth_para auth_parameterlO;
CORBA::String *loginlO = new CORBA::String("tim");

for (int i = 0; i < MAXTABLE+1; i++)
*(symboltable[i].name) = '\0';

privsetO.append(*priv_a)
privsetO.append!*priv_d)
privsetl.append(*priv_c)
privsetl.append(*priv_g)
privset2.append(*priv_b)
privset2.append(*priv_i)
privset2.append(*priv_f)
privset3.append(*priv_g)
privset4.append(*priv_h)
privset5.append(*priv_e)

auth_parameterO.login(*login0);
auth_parameterO.ip(*ipO);

auth_parameterl.login(*loginl);
auth_parameterl.ip(*ip0);

auth_parameter2.login(*login2);
auth_parameter2.ip(*ip0);

auth_parameter3.login(*login3);
auth_parameter3.ip(* ipO);

105

auth_parameter4.login(*login4);
auth_parameter4.ip(*ip0);

auth_parameter5.login(*login5);
auth_parameter5.ip(*ipO);

auth_parameter6.login(*login6);
auth_parameter6.ip(*ip0);

auth_parameter7.login(*login7);
auth_parameter7.ip(*ip0);

auth_parameter8.login(*login8);
auth_parameter8.ip(* ipO);

auth_parameter9.login(*login9);
auth_parameter9.ip(* ipO);

al_reception.append(auth_parameter2);
al_reception.append(auth_parameter7);
dl_reception.append(auth_parameter3);
dl_reception.append(auth_parameter5);
al_engineer.append(auth_parameter3);
al_engineer.append(auth_parameter6);
al_engineer.append(auth_parameter4);
dl_engineer.append(auth_parameter2);
dl_engineer.append(auth_parameter7);
dl_engineer.append(auth_parameter5);
al_off_man.append(auth_parameter8);
dl_off_man.append(auth_parameter2) ;
dl_off_man.append(auth_parameter7);
dl_off_man.append(auth_parameter3);
dl_o f f_man.append(auth_parameter6);
al_sr_engineer.append(auth_parameterO);
dl_sr_engineer.append(auth_parameter 8);
dl_sr_engineer.append(auth_parameter3);
al proi man.append(auth_parameter9);
dl_proj_man.append(auth_parameterO);
dl_proj_man.append(auth_parameter8);
al_root.append(auth_parameterl);
dl_root.append(auth_parameter9);

List *jl_reception = new List;
List *jl_off_man = new List;
List *jl_proj_man = new List;
List *jl_sr_engineer = new List;
List *jl_engineer = new List;
List *jl_root = new List;

Role *role_reception = new Role(rid3, privsetO, al_reception,
dl_reception, jl_reception);

Role *role_engineer = new Role(rid4, privsetl, al_reception,
dl_reception, jl_engineer);

106

jl_off_man->append(role_reception);
Role *role_off_man = new Role(rid2, privset2, al_off_man,

dl_off_man, jl_off_man);
jl_sr_engineer->append(role_engineer);
jl_sr_engineer->append(role_reception);
Role *role_sr_engineer = new Role(rid5, privset3, al_sr_engineer,

dl_sr_engineer, jl_sr_engineer);

Role *role__proj_man = new Role(ridl, privset4, al_proj_man,
dl_proj_man, jl_proj_man);

Role *role_root = new Role(rid0, privset5, al_root,
dl_root, jl_root);

rolesgraph = new RolesGraph(role_root);
List *s1 = new List;
sl->append(role_root);
rolesgraph->add(si, role_proj_man);
List *sl2 = new List;
sl2->append(role_proj_man);
rolesgraph->add(sl2, role_sr_engineer);
rolesgraph->add(sl2, role_off_man);

Role *role;
role = rolesgraph->Root();
cout << "Root role is " << *(role->getRIDp()->get_RnameString()) <<

endl ;

RID rid6("Financial Controller", "flash.adb.com");
privset_fc.append(*priv_j);
auth_parameterlO.login(*loginlO);
auth_parameterlO.ip(*ipO);
al_fc.append(auth_parameterlO) ;
dl_fc.append(auth_parameter2);
dl_fc.append(auth_parameter9) ;
List *jl_fc = new List;
jl_fc->append(role_engineer) ;
jl_fc->append(role_off_man);
Role *role_fc = new Role(&rid6, privset_fc, al_fc, dl_fc, jl_fc);
List *sl_fc = new List;
sl_fc->append(role_root);

rolesgraph->addUser(*login2,
rolesgraph->addUser(*login3,
rolesgraph->addUser(*login4, *ipO, rid4)
rolesgraph->addUser(*login6,
rolesgraph->addUser(*login7, *ipO, rid3)
rolesgraph->addUser(*login8,
rolesgraph->addUser(*login9, *ipO, ridl)

// Creating persistent rolesgraph

ipO, rid5)
ipO, ridO)
ipO, rid3)
ipO, rid4)
ipO, rid4)
ipO, rid4)
ipO, rid3)
ipO, rid2)
ipO, ridl)

RolesGraph *newobj;

newobj = rolesgraph;
PosPID newpid("EOS.2.0.2", "Rolegraph", "flash.adb.com");
CORBA::String *newstring;

newstring = newpid.get_PIDString() ;
cout << *newstring << endl;
PosPDS *newpds = new PosPDS((CosPersPDS::Object *) newobj, knewpid)

// Remove persistent role graph

newpds->connect((CosPersPDS::Object *) newobj, Snewpid);
newpds->remove((CosPersPDS::Object *) newobj, knewpid);
newpds->disconnect((CosPersPDS::Object *) newobj, &newpid);

newpds->setobj size((long) sizeof(RolesGraph));

// Store persistent role graph

newpds->connect((CosPersPDS::Object *) newobj, &newpid);
newpds->store((CosPersPDS::Object *) newobj, &newpid);
newpds->disconnect((CosPersPDS::Object *) newobj, &newpid);

RolesGraph *get_rolesgraph(void)
{

/ *
cout << "Start testing isCycle......" « endl;
if (rolesgraph->isCycle(sl_fc, role_fc))

cout << "Cycle exists after adding role, "
<< *(role_fc->getRIDp()->get_RnameString()) << endl;

else
cout << "Cycle doesn't exist after adding role, "

<< *(role_fc->getRIDp()->get_RnameString()) << endl;

if (rolesgraph->isJunior(rid4, ridl))
cout << *(rid4.get_RnameString()) << " is a junior of " <<

*(ridl.get_RnameString()) << endl;
else

cout << *(rid4.get_RnameString()) << " is not a junior of " <<
*(ridl.get_RnameString()) << endl;
* /

// rolesgraph->displayGraph();

PosPID newpid("EOS.2.0.2", "Rolegraph", "flash.adb.com");
CORBA::String *newstring;
RolesGraph *getobj = new RolesGraph;

newstring = newpid.get_PIDString() ;
cout << *newstring << endl;
PosPDS *newpds = new PosPDS((CosPersPDS::Object *) getobj, &newpid)

newpds->connect((CosPersPDS::Object *) getobj, &newpid);

f ((getobj = (RolesGraph *) newpds->restore((CosPersPDS::Object *
getobj,
&newpid)) != NULL) {

cout << "After restore" << endl;
cout << "Object ptr after restoring is " << getobj << endl;
getobj->displayGraph();

} else
cout << "return null from restore" << endl;

cout << "Before disconnect" << endl;
newpds->disconnect((CosPersPDS::Object *) getobj, knewpid);
cout << "After disconnect" << endl;

return getobj;

Bibliography

[1] Baldwin, R. (1990). “Naming & Grouping Privileges to Simplify Security
M anagement in Large Databases” . Proceeding o f 1990 IEEE Symposium on
Research in Security and Privacy, pages 116-132. IEEE Computer Society Press,
May 1990.

[2] Bancilhon, F. Delobel, C. and Kanellakis, P. editors, (1991). “Building an Object-
Oriented Database System - The Story of 0 2 ” . Morgan Kaufmann Publishers.

[3] Barton, J. and Nackman, L. (1995). Scientific and Engineering in C++. Addisen-
Wesley, Menlo Park, California.

[4] Bell, D. and LaPadula, L., (1976). “Secure Computer Systems: Unified Exposition and
Multics Interpretation” . Technical Report ESD-TR-75-306, The MITRE
Corporation, Bedford, Mass., March 1976.

[5] Bertino, E., Martino, L., (1993). Object-Oriented Database Systems, Concepts and
Architectures, Addison-Wesley Publishing Company.

[6] Biliris, A., Panagos, E. EOS User’s Guide Release 2.2. AT&T Bell Laboratories,
Murray Hill, NJ.

[7] Booch, G.Object-Oriented Analysis and Design, Second edition, The Benjamin/
Cummings Publishing Company, Inc. 1994.

[8] Cahill, V., Baker, S., Tangney, B., Horn, C., Harris, N., (1992). “On Object
Orientation as a Paradigm for General Purpose Distributed Operating Systems”.
Proceedings of the ACM SIGOPS European Workshop, December, 1992.

[9] Carey, M., DeWitt, D., Graefe, G., Haight, D., Richardson, J., Schuh, D., Shekita, E.,
and Vandenberg, S., (1990). “The EXODUS Extensible DBMS Project: An
Overview” . In S. Zdonik and D. M aier eds., Readings in Object-Oriented
Databases, Morgan-Kaufman, 1990.

[10] Carey, M., DeWitt, D., Franklin, M., Hall, N., McAuliffe, M., Naughton, J., Schuh,
D., Solomon, M., Tan, C., Tsatalos, O., White, S., and Zwilling, M., (1994).
“Shoring Up Persistent Applications” . Proceeding of the 1994 ACM SIGMOD
Conference, Minneapolis, MN, May 1994.

109

110

[11] Casais, E., Ranft, M., Schiefer, B., Theobald, D. and Zimmer, W. (1992). “OBST -
An Overview”, Technical Report FZI.039.1, Forschungszentrum Informatik (FZI).

[12] Cattell, R. Object Database Standard: ODMG-93. Contributions by T. Atwood, J.
Dubl, G. Ferran, M. Loomis, and D. Wade. Morgan Kaufmann, San Mateo,
California, 1993.

[13] Chakravarthy, S., Anwar, E., Maugis, L., (1993). “Design and Implementation of
Active Capability for an Object-Oriented Database”. Tech. Report UF-CIS-TR-93-
001, University of Florida, January 1993.

[14] Department of Defense. (1985). Department o f Defense Trusted Com puter System
Evaluation Criteria, DOD 5200.28-STD.

[15] Deux, et al., (1990). “The Story of 0 2 ”, IEEE Transactions on Knowledge and Data
Engineering.

[16] Dogac, A., Altinel, M. Ozkan, C., Durusoy, I., (1995). “Implementation Aspects of
an Object-Oriented DBMS”. SIGMOD Record, Vol. 24, No. 1, M arch 1995.

[17] Elmasri, R., Navathe, S., (1994). Fundamentals of Database Systems, The Benjamin/
Cummings Publishing Company, Inc.

[18] Fishman, et al. (1987). “Overview o f the Iris DBMS”. ACM Transactions on Office
Information Systems, vol. 5, No. 1, January 1987.

[19] Garcia-Molina, H., Hsu, M., (1995). “Distributed Databases” . In W. Kim editor,
Modern Database Systems, ACM Press, 1995.

[20] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V.
PVM, Parallel Virtual Machine, A Users’ Guide and Tutorial for Network Parallel
Computing. MIT Press, 1994.

[21] Janssen, B. Severson, D., Spreitzer, M., (1995). ILU 1.8 Reference Manual. Xerox
Corporation, March 1995.

[22] Karlapalem, K., Navathe, S., Morsi, M., (1995). “Issues in Distribution Design of
Object-Oriented Databases” . In M. Ozsu, U. Dayal, and P. Valduriez, editors,
Distributed
Object Management, Morgan Kaufmann, 1995.

[23] Kim, W., (1993). “Object-Oriented Database Systems: Promises, Reality, and
Future”. In W. Kim editor, Modern Database Systems, ACM Press, 1995.

I l l

[24] Kim W., Ballou, N., Chou, H., Garza, J. and Woelk, D. (1989). “Features o f the
ORION Object-Oriented Database System”. Object-Oriented Concepts, Databases
and Applications, Kim and Lochovsky (editors), ACM Press, 1989.

[25] Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. “The ObjectStore database
system ”. Communications of the ACM, 34(10):50-63, October 1991.

[26] Lawrence, L., (1993). “The Roles of Roles” . Computers & Security, 12(1993) 15-21,
Elsevier Science Publishers Ltd.

[27] Lecluse, C., Richard, P. and Velez, F., (1990). “An Object-Oriented Data M odel”,
Readings in Object Oriented Database Systems, Zdonik and M aier (editors)
Morgan Kaufmann.

[28] Lecluse, C. and Richard, P. (1989). “The 0 2 Database Programming Language” ,
Proceedings of the Fifteenth International Conference on Very Large Databases,
August 1989, p. 411.

[29] Lunt, T. (1989). “Access Control Policies: Some Unanswered Questions” . Computers
and Security, February, 1989.

[30] Lunt, T.,(1992). “Sea View”. In T. Lunt editor, Research Directions in Database
Security, Springer-Verlag, 1992.

[31] Lunt, T., (1995). “Authorization in Object-Oriented Databases” . In W. Kim editor,
M odern Database Systems, ACM Press, 1995.

[32] Nyanchama, M. Osborn, S., (1993), “Role-Based Security: Pros, Cons, & Some
Research Directions” . ACM SIGSAC Review, 2(2): 11-17, June 1993.

[33] Nyanchama, M. Osborn, S., (1993), “Role-Based Security, Object Oriented
Databases & Separation of Duty” . Technical Report no. 442, University of
Western Ontario, October, 1993.

[34] Nyanchama, M., Osborn, S., (1994), “Access Rights Administration in Role-Based
Security Systems”. In Database Security VIII: Status & Prospects, August 1994.

[35] Nyanchama, M., Osborn, S., (1995). “Database Security Issues in Distributed Object-
Oriented Databases” . In M. Ozsu, U. Dayal, and P. Valduriez, editors, Distributed
Object Management, Morgan Kaufmann, 1995.

[36] ObjectBroker W hite Paper. Digital Equipment Corporation, 1995.

[37] The Orbix Architecture. Iona Technologies, Ltd., January 1995.

[38] Orbeline User’s Guide. PostModern Computing, 1994.

[39] Olivier, M., Solms, S., (1994). “A Taxonomy for Secure Object-Oriented Databases” .
ACM Transactions on Database Systems, Vol. 19, No. 1, March 1994, p. 3-46.

[40] OMG-CORBA (1995). The Common Object Request Broker: Architecture and
Specification. Revision 2.0, Object Management Group, July 1995.

[41] OMG-COSS (1995). CORBAservices: Common Object Services Specification,
Object M anagement Group, March 1995.

[42] OMG-TC-95.3.3 (1995). OSTF RFP3 Submission CORBA Security. OMG
Document Number 95-3-3, March 1995.

[43] OM G-TC-93.11.3 (1993). IBM/JOSS Object Services Persistence Service
Specification, Submission to OMG, OMG TC Document Number 93.11.3.
Revised November 15, 1993.

[44] OMG-TC-93.5.7 (1993). IBM Object Persistence Service, Submission to OMG,
OMG TC Document 93.5.7.

[45] Pissinou, N., Makki, K. and Park, E. K. (1994). “Towards a Framework for
Integrating Multilevel Secure Models and Temporal Data Models” . Proceedings of
the ACM International Conference on Information and Knowledge M anagement,
pp. 280-287, Gaithersburg, Maryland, November 1994.

[46] Pissinou, N., Makki, K., Vanapipat, K. and Rajashekhar, B. (1996). “On Building
Distributed Applications” . Proceedings o f the International Conference on Parallel
Processing, vol. II, Bloomingdale, IL, August, 1996.

[47] Rabitti, F., Woelk, D., and Kim, W. (1988). “A Model o f Authorization for Object-
Oriented and Semantic Databases”. Proceedings of the International Conference
on Extending Database Technology, 1988.

[48] Rabitti, F., Bertino, E., Kim, W., and Woelk, D. (1991). “A Model of Authorization
for Next Generation Database Systems” . ACM Trans, on Database Systems, vol.
16, no. 1, p88-131, March 1991.

[49] Sandhu, R., Thomas, R., Jajodia, S., (1992). “Supporting timing-channel free
computations in multilevel secure object-oriented databases” . In C. Landwehr and
S. Jajodia editors, Database Security, V: Status and Prospects, 1992, North-
Holland.

112

[50] Schmidt, D., Vinoski, S., (1995). “Object Interconnections-M odeling Distributed
Object Applications”. SIGS C++ Report magazine, February 1995.

[51] Schmidt, D., Vinoski, S., (1995). “Object Interconnections-Comparing Alternative
Client-side Distributed Programming Techniques” . SIGS C++ Report magazine,
May 1995.

[52] Singhal, V., Kakkad, S., Wilson, P. (1992). “Texas: An Efficient, Portable Persistent
Store” . Fifth International Workshop on Persistent Object Systems, San Miniato,
Italy, September 1992.

[53] Soley, R., Kent, W. (1995). “The OMG Object Model” . In W. Kim editor, Modern
Database Systems, ACM Press, 1995.

[54] SOMobjects Developer Toolkit, Technical Overview, Version 2.0, IBM Corp.
November 1993.

[55] SunSoft’s DOE Product family-Product Overview, Sun M icrosystems, Inc. 1995.

[56] Thomsen, D. (1991). “Role-Based Application Design and Enforcement” . In S.
Jajodia and C. E. Landwehr, editors, Database Security, IV: Status and Prospects,
p. 151-168. North-Holland, 1991.

[57] Ting, T., Dermurjan, S., Hu., M., (1992). “Requirements Capabilities and
Functionalities o f User-Role Based Security for an Object-Oriented Design
M odel”. In C. E. Landwehr and S. Jajodia, editors, Database Security V: Status &
Prospects, p. 275-296. North-Holland, 1992.

[58] Vinoski, S. (1993). “Distributed Object Computing with CORBA”. C++ Report
magazine, July/August 1993.

[59] Wells, D., Blakeley, J., (1995). “Distribution and Persistence in the Open Object-
Oriented Database System”. In M. Ozsu, U. Dayal, and P. Valduriez, editors,
Distributed Object Management, Morgan Kaufmann, 1995.

113

	An approach to building a secure and persistent distributed object management system
	Repository Citation

	00001.tif

