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ABSTRACT

The Common Object Request Broker Architecture (CORBA) proposed by the 

Object M anagement Group (OMG) is a widely accepted standard to provide a system 

level framework in design and implementation of distributed objects. The core o f the 

Object M anagement Architecture (OMA) is an Object Request Broker (ORB), which 

provides transparency of object location, activation, and communications. However, the 

specification provided by the OMG is not sufficient. For instance, there is no security 

specifications when handling object requests through the ORBs. The lack of such a 

security service prevents the use of CORBA from handling sensitive data such as personal 

and corporate financial information.

In view of the above, this thesis identifies, explores, and provides an approach to 

handling secure objects in a distributed environment along with a persistent object service 

using the CORBA specification. The research specifically involves the design and 

implementation of a secured distributed object service. This object service requires a 

persistent service and object storage for storing and retrieving security specific 

information. To provide a secure distributed object environment, a secure object service 

using the specifications provided by the OMG has been designed and implemented. In 

addition, to preserve the persistence o f secure information, an object service has been 

implemented to provide a persistent data store.

The secure object service can provide a framework for handling distributed 

object in applications requiring security clearance such as distributed banking, online 

stock tradings, internet shopping, geographic and medical information systems.
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C h a pt e r  1

In t r o d u c t io n

A distributed database is a collection of data that belongs logically to the same 

system but is physically spread over the sites of a computer network [17]. Design of 

distributed databases by this definition can increase the performance o f database 

applications in two aspects: by reducing the amount of irrelevant data accessed by the 

applications and by reducing the amount o f data transferred in processing the 

applications [22]. The object-oriented concept for representing real-world entities, on the 

other hand, can be added onto the distributed database management system to provide 

encapsulation, type and class hierarchies, inheritance, and operator polymorphism.

An object is one o f the main forms of abstraction used in object-oriented 

programming methodologies. An object includes a “state” and “behavior”. An instance 

o f data is called a state. Operations that can be performed on the data are called behavior. 

An object includes both the state and the behavior. A class or type, is a specification of 

the object’s state and behavior [3]. Classes form a hiearchy. A class below another class 

in the hiearchy inherits all the properties of the above class. This mechanism is called 

inheritance. These set of operations form the interface to that object. Ideally, the state or 

data held in an object should be accessed or modified using only the object’s interface.



This property is called encapsulation.

Since 1987, a number of object-oriented database systems have emerged in the 

market. However, most of them have been in evaluation and preliminary prototype 

application development. None o f them have been seriously used for mission-critical 

applications [23]. The current state of object technology is itself contributing to the 

problem  via the diversity of object models. This is one of the aims of the Object 

M anagement Group (OMG) [40] to develop command models, a common interface for 

the development, and use of large-scale distributed applications using object-oriented 

technology [53]. The Common Object Request Broker Architecture (CORBA) developed 

by OMG is designed to allow integration of a wide variety o f object systems. It defines 

the high-level framework in order to develop an object-oriented database system in a 

heterogeneous distributed environment.

Currently, database systems are designed to accommodate many users and very 

large sets of data; hence performance, security and authorization, transaction 

management, concurrency control, recovery, persistent storage, and dynamic schema 

changes become important issues. These issues have been stressed in the CORBA model. 

In particular, we focus more on the areas of persistence, and security and authorization. 

CORBA can be extended to incorporate a number o f common object services which 

support basic functions for using and implementing objects. Each of the issues 

mentioned above can be solved by adding more object services. The Common Object 

Services specification released by OMG in March 1995 includes the persistent object 

service specification, but few CORBA based systems have incorporated the persistent 

storage of objects. However, the latest CORBA specification (2.0) still has not covered



how to handle the security and authorization. Research is continuing in an effort to 

incorporate security to the CORBA specification.

1.1 T h e s is  O b je c t iv e s

The objective of this thesis is to design and implement a secure distributed object- 

oriented database management system along with a persistent object service using the 

CORBA specification. The object service should provide a mechanism to protect 

sensitive object data from being released to unauthorized personnel. A persistent object 

service is required to provide methods to preserve security information in a object- 

oriented data store.

In brief, we have five major objectives:

1. Evaluation o f existing CORBA based implementations.

2. Evaluation of existing Object-Oriented Database Systems.

3. Evaluation o f various security models and requirements.

4. Addition of persistence to a CORBA based implementation.

5. Design and implementation a security model to a CORBA based implementation.

For the first three objectives, we will examine some of the CORBA based 

implementation and Object-Oriented Database Storage systems on the market that were 

developed by industry and educational institutions. Then, we will implement the 

persistence object service based on the persistence object service specification released 

by OMG. Finally, we will design and implement our security model on a CORBA based 

implementation.
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1.2 O v e r v ie w  o f  t h e  A p p r o a c h

As mentioned above, this research requires design and implementation of a 

secure object service. This thesis will provide a security model suitable to handle 

distributed objects. The model is based on a role-based environment. Each role is 

associated with a set of system privileges. A role contains authorization information to 

allow or to deny access to users. The model preserves the inheritance property of objects 

such that a role can inherit properties from other roles. An approach to operate and to 

maintain a role graph will be designed and implemented as an object service using 

CORBA specifications.

It is necessary to preserve the security information for the role-base model. In 

doing so, a persistent object service is required to store and retrieve role graph 

information in and out from an object storage. The persistent service hides the 

communication interfaces necessary to connect to an object-oriented data store.

The overall design consists of three main software components. They are: a role- 

based authorization interface, a persistent object service to an object store, and an event 

handler. The role-based authorization interface provides functions to perform security 

check on users and to maintain the role graph security information. The persistent object 

service allows permanent and secure storage for the security information. The event 

handler provides mechanism to allow the role-based authorization interface to perform 

security checks for object requests through the Object Request Brokers (ORBs). The 

ORB is the core o f the object management system to identify, locate and handle object 

requests.

This thesis includes a detailed description of the design and implementation of



secure object service. It also includes an implementation of persistent object service in 

use with an object-oriented database system.

1.3 T a r g e t  A p p l ic a t io n  E n v ir o n m e n t

Secure distributed object management has become a hot issue with the increasing 

demands on internet services and distributed applications. Financial institutions such as 

banks and stock brokers start to provide on-line services to customers. The information 

requested can be complicated objects such as monthly financial reports with spreadsheets 

and graphical charts. The role-based model can provide security control for user 

authentication. This model is flexible and can be used to handle multimedia objects.

Another application is in handling distributed data o f a corporation. Large 

corporations are trying to handle complex objects distributed among their various 

locations. The complex objects can incorporate financial data, employee information and 

business plans. The data are classified and security clearance is necessary for information 

request. The data can also be distributed into different database systems at remote 

locations. CORBA with the role-based security service introduced in this thesis can 

provide a standard framework with authentication control to implement distributed 

applications on these data.

1.4  S c o p e

Distributed object management covers a broad area in computer science. It covers 

computer network issues, distributed computing issues, object management issues and so 

on. This thesis addresses issues of providing a secure distributed object-oriented database



management system to handle sensitive data transfer using CORBA specification. The 

implementation will use ORBeline by Post Modern Computing as the CORBA 

implementation. ORBeline is a commercial CORBA implementation. It provides a 

general framework for developing CORBA compliant applications on distributed objects.

This work does not address all current issues related to distributed object-oriented 

database management. Rather, it addresses the critical problems existing in the widely 

accepted standard CORBA. The prototype introduced in this thesis is not sufficient to 

cover all the limitations o f CORBA. Data encryption on transferring objects is another 

research topic. Other critical issues related to distributed object-oriented database 

management system include locking mechanisms, optimization methodologies and 

interoperability issues in ORBs.

1.5  O r g a n iz a t io n  o f  t h e  T h e sis

The remaining chapters of this thesis are organized as follows: Chapter 2 is the 

research context and related works. This will include discussion on some CORBA based 

distributed objects management systems and some object-oriented database systems 

currently available on the market. The model of persistent storage will also be discussed 

in this chapter. In addition, we will evaluate several security models which could be used 

on our object-oriented database system. Chapter 3 will focus in detail on the design and 

implementation o f a persistent object service in use with an object-oriented database 

system. Three protocols will be discussed for handling persistent objects. The three are 

the Direct Access Protocol, the Dynamic Data Object Protocol and the OD M G ’93 

Protocol [12]. The implementation of the persistent service is provided with description



of the CORBA Interface Definition Language (IDL). Implementation to persistent 

service for storing and retrieving objects in and out from an object-oriented database 

system will also be explained. Chapter 4 is the design and implementation o f the role- 

based security model. Our abstract design model will be given in this chapter. Also, 

codes and explanation will be provided to implement the security service and to integrate 

it to CORBA. Chapter 5 will conclude our research work in this area and suggest some 

future extensions to our model.



C h a p t e r  2

R e se a r c h  C o n t e x t

Object-oriented technology emerged in late 1960s with the introduction of the 

SIM ULA language. The object paradigm has been used in various areas since then. The 

most powerful capabilities from the object-oriented technology are class inheritance and 

encapsulation of knowledge. Today’s database systems have been used not only in 

medium-size database systems, but also in very large database systems. Data handled by 

database systems no longer reside on single machines. They may be distributed over 

high-speed networks. Types of data stored in a database range from simple text data to 

multimedia data involving image, audio and video. The idea of data hiding resulted from 

the object relation can hide the complexity of today’s database systems to the database 

developers, end-users, database administrators. Overloading, overriding, and late binding 

capabilities from object-oriented concepts can reduce significant amounts o f time in 

application development [45]. However, the advancement from this technology on the 

area o f distributed database development has been slowed down by the fact that no 

standardized framework exists for the developers. The Object M anagement Group 

(OMG) [40] was formed in 1989 with the purpose of creating standards allowing for the 

interoperability and portability of distributed object-oriented applications. A large group
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of companies including the major players in the commercial distributed object-oriented 

computing arena have joined OMG for creation of a standard specification for a 

framework in distributed object-oriented database environments. The Common Object 

Request Broker Architecture released by OMG is a concrete description of the interfaces 

and services provided by the compliant core elements in the architecture [58]. But still, 

there are other issues that have not yet been handled by the CORBA specification such as 

security, one of the key elements in distributed object-oriented database system. The 

enforced security policies are directly affected by the based architecture.

This chapter will first briefly describe CORBA, then will evaluate some of the 

existing CORBA based systems on the market. Next, we will move our attention to some 

existing object-oriented database systems. Finally, several security models will be 

discussed.

2 .1  D is t r ib u t e d  O b j e c t  T e c h n o l o g ie s

This section will discuss the current technologies available to handle distributed 

object. To begin with, the Common Object Request Broker Architecture (CORBA) by 

the Object Management Group (OMG) [40] will be presented. A number o f CORBA 

based systems have become available on the market since the release of CORBA 

specification version 1.1 by OMG. There are also some CORBA like systems such as 

Xeros PARC’s ILU [20] and Stratus/ISIS Reliable Distributed Objects (RDO). CORBA 

based systems are IBM ’s DSOM [54], Iona’s Orbix [37], DEC’s Object Broker [36], 

Expersoft’s PowerBroker, ILOG’s ILOG Broker, H P 's ORBplus, PostModern 

Com puting’s ORBeline [38], Prism Technologies’ OpenBase, and Sun M icrosystems’
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N EO™ [55]. O f these CORBA based systems, three will be discussed; namely, IBM ’s 

SOM [54], Sun M icrosystems’ NEO [55] and PostModern Computing’s ORBeline [38]. 

Their basic features, functionalities, and their compliance to CORBA specification will 

be evaluated.

2 .1 .1  C O R B A

The Common Object Request Broker Architecture (CORBA) is designed to allow 

integration o f a wide variety of object systems. It comprises o f various key interfaces, 

services, and the core element, the Object Request Broker (ORB). The ORB is like a 

postal system and is basically responsible for routing client requests to objects. The 

objects can reside on a local computer system or a remote one. The client is unaware of 

the location o f the recipient object and the recipient object does not know the location of 

the client. All of the communication between client and object is performed by the ORB 

and such activity happens transparently as if all the participants were on a single 

computer system.

2 .1 .1 .1  S t r u c t u r e  o f  a n  O b je c t  R e q u e s t  B r o k e r

Figure 1 shows a request being sent by a client to an object implementation. The 

client wishes to perform an operation on the object and the object implementation is the 

code and data that actually implements the object. The ORB is responsible for all of the 

mechanisms required to find the object implementation for the request, to prepare the 

object implementation to receive the request, and to communicate the data making up the



request. The client will not know where the object is located or what programming 

language implements the object implementation [40].

Client Object Implementation

Request

Figure 1: Client sending a request through the Object Request Broker

Figure 2 shows the structure o f the Object Request Broker (ORB). In order to 

make a request, the client can use the Dynamic Invocation interface which is the same 

interface independent of the target object’s interface. Or, the client can use the IDL stubs 

which are specific to the interface of the object. It is also possible for the client to call 

other ORB interfaces.

There are two ways for the object implementation to receive the request from the 

client, either through the IDL generated skeleton or through a dynamic skeleton. The 

object implementation can call the object adapter during the process o f the request.
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Object ImplementationClient

ynamicStatic IDL 
Skeleton Object

Adapter
Ske etonIDL

Stubs
ORB 

Interface
Dynamic
Invocation

ORB Core

k \ \ \ \ \ S  Interface identical for all ORB im plem entations 

X / / / / / A  There may be multiple object adap ters

There are s tu b s  and a skeleton for each object type 

ORB-dependent interface

ti
Up-call interface

Normal call 
interface

Figure 2: The Structure of Object Request Broker Interfaces [40]

The primary way to invoke services provided by the ORB is through the Object 

Adapter. It can provide services such as generation and interpretation o f object 

references, object implementation activation and deactivation, mapping objects 

references to implementations, and registration o f object implementations.

Interfaces can be defined in an Interface Definition Language (IDL). The 

language defines the types and structure of objects and the operation and the parameters 

to those operations. During a runtime, interfaces can be added to or referred from an 

Interface Repository Service. The Interface Repository Service provides persistent 

objects that represent the interface defined in the IDL available at a runtime.
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This is just an overview of the functionalities of ORB. For more detail 

description, please refer to the CORBA specification 2.0 released by OMG in July 1995 

[40],

CORBA provides a general framework for a distributed object-oriented system. 

Any Object Request Broker (ORB) with CORBA compliance can be interoperable under 

this framework. For example, the ORB of IBM ’s DSOM can communicate with the ORB 

of NEO from Sun Microsystems to locate and perform distributed object requests. In the 

following section, a few CORBA based systems will be discussed.

2.1.2 IBM’S DSOM

IBM ’s SOM (System Object Model) [54] is fully based on CORBA standards and 

supports operating systems such as OS/2, AIX/6000 and MS Windows. It also provides 

OMG Common Object Services such as Persistent service that allows objects to be 

stored or restored to and from a repository that can be a file system, database or object 

database. The Persistent service will be discussed in the next chapter. SOM also provides 

frameworks such as replication and emitter frameworks. The Replication framework 

enables an object to be replicated in the address spaces of several processes distributed 

about a network. Each replicated object can be updated; the framework will guarantee 

that the updates are serialized. The Emitter framework aims to reduce the complication 

in software development. SOM ’s Interface Definition Language (SOM IDL) compiles 

with CORBA’s standard for IDL; it also adds constructs specific to SOM. There are two 

IDL compilers that include SOM, SOM IDL and OIDL which is the OMG CORBA IDL 

compiler. Programming languages supported by SOM are C and C++. In order to address
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the cross-platform interoperability problem, SOM relies on its distributed object 

framework, sometimes called DSOM (Distributed SOM). DSOM is a set of SOM  classes 

that transparently extends the method dispatch mechanisms embodied in the SOM 

runtime engine to allow methods to be invoked, in a programmer transparent way, on 

objects in a different address space or on a different machine from the caller. DSOM is 

fully CORBA compatible, supporting all CORBA data types, functionality and 

programming interfaces. Currently, fully interoperable versions of the DSOM framework 

are available for SOM on AIX, OS/2 and Windows [54].

2.1.3 S u n  M ic r o sy st e m s ’ NEO™

N EO ™  formerly called Distributed Objects Everywhere (DOE) is a more 

powerful system than DSOM. It not only provides a full CORBA Specification 2.0 

facility but also numerous Common Object Services to support the CORBA framework 

such as Naming, Persistent Storage Manager, Associations, Properties, Events, and Life 

Cycle Services [55]. Life Cycle Services, for instance, define services and conventions 

for creating, deleting, copying and moving objects. In distributed environment, life cycle 

services create a set o f services and conventions for clients to perform life cycle 

operations on objects in different locations. Similar to DSOM, N E O ™  provides 

language bindings for C/C++ [41]. NEO’s Object Request Brokers (ORBs) can also 

interoperate with other CORBA compatible ORBs such as Iona’ Orbix for MS Windows 

on PC based platforms. With the recent development o f Java™ , an object-oriented 

programming language developed by SunSoft, it can provide Internet access to NEO 

environment through Java scripts.
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ORBeline is a complete implementation of the CORBA specification 1.1. It 

provides all the features specified in the specification. ORBeline’s Smart Agent and 

Dynamic Directory Service provides an easy way for migration and replication of 

objects. Special features are fault-tolerance, failure recovery and event handling. 

ORBeline can interoperate with other major ORB products [38]. On the other hand, 

ORBeline only provides language bindings for C++. Other Common Object Services 

such as Persistent Object Services are not supported in the current version. The 

implementation o f persistent services and security (to be discussed in the next chapter) 

will be built on top of ORBeline to provide a complete CORBA framework for Object- 

Oriented Database Management System in a distributed environment. Advantages of 

ORBeline includes its availability and completeness to CORBA specification.

2 .2  P e r s is t e n t  O b je c t  S t o r e s

Object-Oriented Database Systems (OODSs) became available on the market in 

late 1980s. Many object-oriented database systems are currently available from both 

commercial vendors and educational institutions. Earlier OODSs are 0 2  [2] [15][27][28], 

Orion [24], and Iris [18]. Object Store from Object Design, Inc. [25] is one o f the latest 

generation of commercial OODSs. Many OODSs are developed by research laboratories 

and educational institutions such as Exodus from University o f Wisconsin, Madison 

[9][ 10], ODE and EOS from AT&T Bell Labs [5], OBST from Forschungszentrum 

Informatik, Germany [11], and Texas Persistent Store from University o f Texas, Austin
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[52], Before we move on to the next section, two terms, persistent object and transient 

object will be defined. The term “persistent object” can be defined as an object which is 

valid beyond the life-time of the process that created it [23]. On the other hand, transient 

object’s lifetime ends when the process that created it terminates. In the following, we 

provide a brief discussion of a database architecture which is based on Texas Persistent 

Store, Exodus and EOS.

2 .2 .1  T e x a s  P e r s is t e n t  S t o r e

Texas Persistent Store, developed at the University of Texas at Austin, is a 

persistent storage system written in C++. One o f the key feature of the design is the use 

o f pointer swizzling at page fault time. This technique makes use of the virtual memory 

management scheme available in most current systems. In Texas Persistent Store model, 

persistent objects are treated similarly as the transient objects. The only difference is 

persistent objects are loaded into virtual memory transparently from disk. Transient 

objects are resident in the memory throughout their life. Therefore, it is not necessary to 

distinguish between persistent objects and transient objects in the client code.

Objects can be retrieved by name in Texas Persistent Store model. W hen a rooted 

object is requested by name, a page of virtual memory is reserved and protected. The 

actual object will not be loaded into the reserved page until the object is actually 

referenced. If the rooted object, has been page faulted into virtual memory, then a page 

will be reserved and protected for each successor object from the root. This process will 

be continued in this manner. Hence, pages of virtual memory are reserved one pointer 

ahead for each object being page faulted into virtual memory [52].
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The technique of pointer swizzling at page fault time has also been used in the 

commercial product, ObjectStore [25]. The main advantage o f this technique is 

providing an efficient method for a high performance object storage system.

2.2.2 EXODUS

EXODUS is one of the extensible DBMS projects developed in late 80s and early 

90s at the University of Wisconsin, Madison [7]. The goal of the project is to develop a 

set o f primitive DBMS facilities for constructing application specific DBMS. One o f the 

m ajor facilities of EXODUS is the storage manager which provides the basic procedures 

for file operations such as file creation, deletion and scans. It also provides procedures 

for storing and destroying objects from a file. Small objects and large objects are treated 

differently in EXODUS. Objects that can be stored in one page are treated as small 

objects. The storage manager will automatically convert an object to a large object if it 

exceeds the size limit of a page. The object identifier (OID) of a small object points to 

the disk location o f the object. For the large object, its OID points to the object header 

instead. A large object is an uninterpreted byte sequences. It is represented as a B+ tree 

index on byte position within the object plus a collection of leaf blocks [9].

EXODUS provides another way to support persistence with the introduction of E 

language. The E language is an extension of C++. It defines the DB (database) attributes 

and a couple o f predefined classes for manipulation of persistent objects. Generic classes 

for unknown types are also added to enhance the development of database 

implementation. Generic classes can be used with one or more unknown types within the 

class definition. Type information can be provided when the class is actually declared.
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The idea of generic class is very similar to the template class of C++ which has been 

introduced in the later version of C++.

The successor of EXODUS is Scalable Heterogeneous Object REpository 

(SHORE) which was developed at the University of W isconsin at Madison [10]. The 

objective o f SHORE is to provide heterogeneous object management for object-oriented 

database and file systems. A parallel version of SHORE has also been developed which 

is built on top of PV M 1 for interprocess communication [10].

2 .2 .3  E O S

EOS is a storage manager developed at AT&T Bell Labs [6] for high 

performance DBMSs. The EOS is serving as the storage manager for the OODBMS, 

ODE which is also developed at AT&T Bell Labs. EOS provides extensive support for 

large objects. Objects can be named and retrieved by name efficiently. EOS also follows 

the ODM G-93 standards proposed by the Object Database M anagement Group [12] to 

provide persistent reference to an object type.

Objects are stored in the database or storage areas which can be UNIX files or 

raw disk partitions. Storage areas can be shared or private. The EOS server will control 

the access for multi-users for the shared areas. Users can create private areas on local 

machine for faster performance. In EOS, there are two kinds o f object representations, 

file objects and ordinary objects. File objects are objects which are related. This 

approach provides a mechanism for sequential scanning o f objects within a file. Ordinary

1 PVM is a set of message passing libraries written in C or Fortran for 
implementation of parallel programs in a heterogeneous environment [20].
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objects and file objects have object headers attached to them. The object header contains 

information of the object such as the object length, whether the object is named or 

unamed and so on. The header only occupies two bytes of space. A handle is a object 

reference from which we use it to perform object operation. An object handle must be 

obtained first before one can operate the object. The handle contains the address o f the 

object in the EOS buffer pool. The page where the object is located will then be locked. 

W hen the object handle is released, the page will be unlocked.

The way EOS defined large and small objects is similar to EXODUS. A small 

object is an object which can fit into one page, the object is large otherwise. Users will 

see no differences in accessing small or large objects. In addition, EOS provides access 

to portions of an object. It is useful for handling a very large object [6].

EOS is a rather complete implementation o f a persistent object store. It has all the 

basic features for a data storage system such as concurrency control, logging, transaction 

commit and abort, checkpoint, and recovery from system crash. It can be extended by 

associating actions with certain primitive events. Primitive events are low-level events 

such as page fault, object fault, transaction commit and so on. In our complete 

implementation of a distributed OODBMS based on CORBA, EOS has been used to 

serve as a persistent object store. EOS has both C and C++ bindings. There are several 

advantages for choosing EOS as the persistent store over the others. First of all, EOS has 

a C++ binding and actually EOS is implemented in C++. Secondly, EOS is a more 

complete database system which provides reliable functionalities. Moreover, EOS 

provides persistent reference ability which conforms to the ODMG-93 standards [12]. 

Lastly, EOS is very easy to use and to install when compared to EXODUS and Texas
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Persistent Store. Even though EOS provides a client-server architecture, one can still use 

the CORBA structure to handle all requests and operations to the persistent store. Clients 

can send requests to the server o f the persistent storage only through the Object Request 

Broker (ORB) rather than the default communication routines provided by EOS.

So far, we have gone through some basic concepts of the Common Object 

Request Broker Architecture (CORBA), three commercial implementation o f CORBA, 

and three persistent storage systems. In the next section, we will discuss some of the 

security models for our environment. We will focus more on the security models for the 

object-oriented database management system (OODBMS).

2 .3  S e c u r it y  M o d e l s

Distributed object-oriented databases provide real-life relationships to the stored 

objects. M aintenance of the complex object relations and distribution o f processing over 

a network pose some challenges for the database security which addresses the issues of 

confidentiality, integrity and denial of service [35]. Various models for security have 

been proposed for dealing with this complex system. Generally speaking, we can divide 

these models into two categories; namely, mandatory access control and discretionary 

access control. Mandatory security mechanisms are used to enforce multilevel security 

by classifying the data and users into various security levels and then implementing the 

appropriate security policies of the organization [17]. Such policies are necessary to 

fulfill the requirements set by some organizations such as the Department o f Defense 

(DoD) [14]. On the other hand, discretionary security mechanisms are identity-based 

access control policies. They usually grant privileges to users including capability to
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read, write, or update specific data.

In the following sections, we will discuss, in detail, multilevel security including 

the concept of polyinstantiation. Next, we will move our focus on some discretionary 

security models such as negative and positive authorizations, strong and weak 

authorizations, and finally roles model.

2 .3 .1  M u l t il e v e l  S e c u r it y  M e c h a n is m s

The concept of multilevel security comes with the classification of users in 

computer systems. A user who attempts to access specific classification o f data requires 

clearance for such classification or higher security privileges. Thus, there is a 

hierarchical sensitivity level in a security classification system such as Top-secret, Secret, 

Confidential and Unclassified. In addition, there is also a set o f nonhierarchical 

categories in association with the hierarchical sensitivity level [30]. For example, a user 

having clearance for the secret level can access information classified in that level or 

lower such as confidential and unclassified. However, this user can not access 

information on the top-secret level. On the other hand, users who want to access 

information on a specific security level and in a specific category are required to have 

clearance for both.

Most commonly used models for multilevel security are defined in the Bell and 

LaPadula security model [4]. This model classifies each subject such as user, account or 

program, and object such as relation, tuple, column or operation into one o f the security 

classifications, Top-secret, Secret, Confidential or Unclassified. For simplicity, we only 

use these four security classifications to describe the model. There are two properties or
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restrictions for the subject and object classifications:

1. Simple security property: A subject S is not allowed to have “read” access to an 

object O Unless Class i f icat ion(S)>Classi f icat ion(0) .

2. *-property: A subject S is not allowed to have “write” access to an object O unless

classif icat ion(S) < c lass i f icat ion(O).

It is obvious that the simple security property guarantees that no subject can read 

an object whose security classification is higher than the classification o f the subject. The 

*-property prohibits a subject from writing into an object that has lower security 

classification than that of the subject. This property prevents information flow from 

higher to lower security level.

The multilevel classification system leads to the concept of polyinstantiation. 

Polyinstantiation arises where several tuples can have the same primary key but have 

different attribute values for users in different classification level. The situation arises 

because of the simple security property which allows users with higher classification to 

read attributes of objects with equal or lower classification level. Therefore, users with 

higher security level will be able to read more information from the same primary key of 

the search than users with lower security level [46].

Even though most of the commercial DBMSs use discretionary access control 

mechanisms, multilevel security is still required in government, military and corporate 

applications. Operating systems such as UNICOS for Cray Supercomputers incorporate 

an option for using multilevel security to handle the user access on the system.
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Discretionary access control models usually involves granting and revoking 

privileges. Many relational DBMSs, such as Oracle, use this technique for database 

access. ORION, one o f the early development of OODBMSs, has developed a formal 

model o f discretionary security for object-oriented databases [47][48]. The model is 

comprised o f positive and negative authorization. The notion of strong and weak 

authorization was also introduced in that model [31].

The Department of Defense (DoD) has provided metrics for secure systems. The 

metrics divide security level into 7 levels, A l, B3, B2, B l, C2, C l and D, with A1 the 

most secure and D the least. Secure systems at level C l and C2 must provide 

discretionary access control. For level B l and up, systems must provide both 

discretionary and mandatory access control. In the following sections, three of the 

discretionary security models, positive and negative authorizations, strong and weak 

authorizations, and roles will be discussed.

2.3.2.1 P o sit iv e  a n d  N e g a t iv e  A u t h o r iz a t io n s

Positive and negative authorizations are sufficient to satisfy the requirement at 

Class B3 for the criteria set by the DoD. Positive authorizations explicitly specify users’ 

right to access information while negative authorizations explicitly deny users from 

accessing the information.

Implementation of such authorized schemes requires an object to carry two lists, 

one for positive authorization and the other for negative authorization. A user must
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belong to an object’s positive authorization list in order to have access permission on the 

object. On the other hand, a user must not belong to the negative authorization list in 

order to access the object. A combination o f the positive and negative authorizations 

provides an easy way to achieve the goal of discretionary access control. However, as 

pointed out by Rabitti et al. [47][48], there is a situation where the positive 

authorizations may conflict with the negative authorizations [47][48]. For example, if  a 

user has been put in both the positive and negative authorization lists, it is not clear 

whether the system should allow or deny the user from accessing the object. This 

situation may not happen at the same object. However, since child objects inherit the 

properties from their parent objects, the situation might occur in which a user’s name is 

in the positive authorization list o f an object and the same user’s name is in the negative 

authorization list o f one of the descendents of the object. To solve this problem, the 

concept of strong and weak authorizations is introduced.

2 3 .2.2 S t r o n g  a n d  W e a k  A u t h o r i z a t i o n s

As in ORION, a strong authorization cannot be overridden by other authorization 

while a weak authorization can be overridden by a strong authorization. Therefore, the 

problem would be solved in the example described in the previous section if  we assign 

weak positive authorization in one place and strong negative authorization in the other 

for the same user. It is still possible to have conflicts such as weak positive authorization 

and weak negative authorization assigned for the same user at an object. However, this 

conflict can be detected by a simple tool which browses through the object hierarchy and 

finds the conflicts.
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Another approach has been suggested by Lunt [29] to solve the problem in 

positive and negative authorizations. Such an approach takes denials as higher 

precedence. This approach can also be interpreted as all negative authorizations to be 

strong and all positive authorizations to be weak. One advantage o f having precedence 

on denials is the assurance that specific users and groups cannot obtain authorization to 

an object without explicit authorization [31].

2.3.23  R o l e -B a se d  Sec u r it y

User roles have been used in several applications to provide discretionary access 

control. In UNIX, for example, there are certain built-in roles such as superuser, 

operator, system administrator, and so on. Each role have been granted certain privileges 

by the system. A system administrator can create a role for a particular purpose, delete a 

role or modify a role’s privilege. Named protection domains (NPDS) proposed by 

Baldwin [1] is a facility for specifying user roles. Other research has been done to 

employ user-role model for object-oriented database security such as the models 

suggested by Ting et al. [57] and Nyanchama et al. [32][34].

Role-based security provides a flexible way to manage a large object hierarchy. 

Each role is provided with sufficient privileges to carry its function only and therefore 

role-based implementation is based on the principle of least privilege [56]. Roles can 

have overlapping privileges. The object-oriented hierarchy can apply to the role-based 

model. A role can be the child of another role. In this case, the child role will inherit all 

predefined privileges set from its parent role. The child role then can have other 

privileges not in its ancestor roles. Therefore, the role hierarchy can always be built from
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a basic role or root role which have minimal privileges. Child roles can be generated 

from the root role and other roles can be created in this manner.

Figure 3 shows a privilege graph suggested by Baldwin [1]. Each subject or user 

can be assigned one or more roles. Each role, on the other hand, is either assigned some 

privileges or inherits from other role(s). For example, subject A and B are both assigned 

to role o f Account Supervisor. The role Account Supervisor is a child of Account Clerk 

that implies Account Supervisor will have all the privileges from the role o f Account 

Clerk. Therefore Account Supervisor will have the privilege to Compile Accounts. In 

additional to this privilege, Account Supervisor also has privilege to Audit Accounts 

which Account Clerk does not have. It is also possible for a single subject to have more 

than one role. Subject G, for example, has been assigned to role o f Shipping Manager 

and System Administrator. Thus, Subject G will have the privileges o f creating Shipping 

Orders and Creating Computer Accounts.

The hierarchy graph of roles should preserve the acyclic property in order to 

provide decretionary access control over the privilege set. Nyanchama, et al. [34] 

presented a formal graph model for the acyclic role organization.

So far, we have discussed some of the existing models suitable for secure object- 

oriented database systems. Multilevel security is too restrictive in a way that may not be 

applicable to most commercial applications. Positive and negative authorizations are 

inherited with ambiguity which can be solved by an association with strong and weak 

authorizations. A role-based model is flexible and extendable such that we can extend 

this model to cover some of the features from multilevel security. Our design of security 

mechanisms on Common Object Request Broker Architecture (CORBA) will be based
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on the role-based model which will be discussed in detail in the next chapter.

Subject(Users) Roles Hierarchy Privileges(Functionality)

Compile
Accounts

Account
Supervisor Account Clerk

Audit
AccountsGeneral Manager

Shipping Clerk

Shipping
OrderShipping Manager

Create
Computer
Accounts

System Administrator

£>  Child of relation

^  Assigned Role(s) or Privilege(s)

Figure 3: Baldwin’s Privilege Graph

2 .4  T h e s is  C o n t r ib u t io n s

The multi-level security requirements provide guidelines for designing a security 

model. The guidelines are necessary to assert the validity o f the security model. The role- 

based security model provides a fundamental model for user authentication. However, 

the object relationships of roles can cause conflicts in resolving the user privileges. The 

addition of positive and negative, and strong and weak authorizations can help to resolve 

these conflicts. These issues are going to be discussed in chapter 4.

The persistent object store provides a physical storage for storing persistent
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security information for the role-based security design. EOS by the AT&T Bell 

Laboratories is the persistent object store in our implementation. EOS is also ODM G’93- 

compliant which simplify the implementation of the persistent object service for 

CORBA.

ORBeline by the PostModern Computing provides a basic CORBA 

implementation. It provides the Interface Definition Language compiler for 

preprocessing interface definitions. The security and persistent object services are 

implemented on top of ORBeline.

2 .5  S u m m a r y

Evaluation of existing distributed object technologies is one o f the objective of 

this thesis. In section 2.1, the general framework of CORBA is explained. Three 

commercial CORBA implementations, IBM ’s DSOM, Sun M icrosystem ’s NEO and 

PostM odern Computing’s ORBeline are evaluated. IBM ’s DSOM includes more 

common object services which provide additional functionalities for distributed 

application. NEO by Sun M icrosystem has recently incorporated with Java as its front 

end interface. The widely adopted internet programming language Java may lead NEO to 

be a leading CORBA implementation for internet users.

Two o f the persistent object stores, Texas Persistent Store and EXODUS are 

developed in academic institutions while EOS is developed by AT&T Bell Labs. The 

major differences among them is the ease of use and installation. EOS is best o f the 

three. It provides minimal set of functions to manage persistent objects. It also provides 

object clustering for creating file object to allow efficient mechanism for object
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management. EOS is designed to handle both large and small objects.

Finally, the discretionary security models provide primary concepts for the design 

of our security service. Our design can also be extended to a multilevel security model.

The next chapter discusses three persistent protocols for designing the persistent 

object service. The design and implementation of our persistent object service is 

explained with the use o f EOS as the persistent object store.



C h a p t e r  3

D e s ig n  a n d  I m p le m e n ta t io n  
o f  P e r s i s t e n t  O b j e c t  
S e r v ic e  U s in g  CORBA

3.1  In t r o d u c t io n  t o  P e r s is t e n c e

An object whose lifetime is transient is allocated memory that is managed by the 

programming language run-time system. Sometimes a transient object is declared in the 

heading of a procedure and is allocated memory from the stack frame created by the 

programming language run-time system when the procedure is invoked. That memory is 

released when the procedure returns. Other transient objects are scoped by a process 

rather than a procedure activation and are typically allocated to either static memory or 

the heap by the programming language system. When the process terminates, the 

memory is deallocated. An object whose lifetime is persistent is allocated memory and 

storage managed by the ODBMS run-time system. The objects continue to exist after the 

procedure or process that creates them terminates [12]. The goal of creating a persistent 

object service using CORBA is to provide common interfaces for Object Request 

Brokers (ORBs) to restore and to manage the persistent state of objects [41]. The 

persistent object service will be used in converting a dynamic/transient object to a

30
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persistent object. Dynamic object is volatile and is typically resided in memory. System 

failures, for instances, will end the lifetime of a dynamic object. To preserve the 

persistent state o f an object, means should be provided to transfer contents o f objects 

from memory to physical storage such as disk. Persistent object service therefore serves 

this purpose for maintaining the object state persistence between virtual and physical 

storage. As shown in Figure 4, Persistent Object service will convert an object from its 

dynamic state to a persistent state and vice versa. In order for all ORBs to locate the 

desired object, a persistent handle or reference should be created for each persistent 

object. This handle identifies the location o f an persistent object. The persistent handle 

must be unique for different objects managed by the ORBs.

Object at 
Persistent 

State

Object at 
Dynamic 

State

Persistent Object Service

Figure 4: Function of Persistent Object Service

In the next few sections we shall describe several protocols from the specification 

of Common Object Services (COS) published by the Object M anagement Group (OMG) 

[41]. Then we shall discuss the ODM G’93 protocol on persistence. The design of our 

persistent model is similar to the ODM G’93 protocol and is also part of the COS 

specification. We now move on to our design and implementation o f the persistent store
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3.2 OMG P e r sist e n t  O b je c t  S e r v ic e s  P r o to c o l s

Common Object Services Specification describes three basic protocols including 

the ODM G’93 protocol to support persistent object handling. CORBA already provides a 

persistent reference handling interface that is the object_to_string, string_to_object, 

release, and so on [41]. These operations allow conversion of object to type string and 

vice versa and should be sufficient for most o f object manipulation by clients. Three 

protocols will be discussed in this section; namely, the Direct Access Protocol (PDS_DA 

which stands for Persistent Data Store with Direct Access), the Dynamic Data Object 

(DDO) protocol and the ODM G’93 protocol.

3.2.1 T h e  D ir e c t  A ccess  (PDS_DA) P r o to c o l

Direct Access Protocol represents a persistent object as one or more 

interconnected data objects. The persistent data of an object is described as a single data 

object which might be a root of tree containing the object data. It is similar to represent a 

persistent object as a heap in some persistent object store. In the case o f multiple data 

object (an object consists of several instances of data objects), it requires object traversal 

from the root object followed by the stored object references.

It is necessary to define the type of each data object within an object. Fortunately, 

the Interface Definition Language (IDL) provided by CORBA includes the Data 

Definition Language (DDL) which can be used in describing object types during the 

interface definition.
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As shown in Figure 5, PDS_DA is an object reference to multiple data objects 

such as instances o f object A and object B. Each persistent object is represented by a 

PDS object reference handle (PDS_DA) in the figure. PDS can locate the data object 

references within a persistent object from the PDS_DA handle and thus it can perform 

operations on data object references to get and to modify the attributes of data objects. 

Attributes can be normal data types defined by DDL or can also be another object 

instance.

Direct Access Protocol is a simple and direct method to achieve persistence. 

Implementation of the protocol requires only interface preprocessing facility such as the 

Data Definition Language (DDL) or Interface Definition Language (IDL).

Figure 5: Direct Access Protocol Interfaces

3.2.2 T h e  D y n a m ic  D a ta  O bje c t  (DDO) P r o t o c o l

A Dynamic Data Object (DDO) is a Datastore-neutral representation o f an

r Object (Client of PDS) A
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object’s persistent data [41]. Datastore-neutral representation is the simplest form to 

describe an object data independent with datastore type. A DDO is an object containing 

all data o f a single object. Data contained in a dynamic data can be divided into three 

categories: description of a DDO, data item and data property. Data item comprises of 

data property and data item information. Figure 6 shows an example o f a DDO structure. 

The data item can store both data types and data methods o f an object.

DDO can be optimized in use with specialized types o f data store. It provides a 

fast and simple storage and retrieval mechanism for different types of data store.

a DDO

PID data_count = 2 object_type

a data item

data id = 1

data_name=”” data_value=any

property_cnt=2

a property

property_id=l

I property_name=””

property_value=any

a property

property _id=2

property _name=”

property_value=any

a data item

data_id = 2

data_name=”” data_value=any

property _cnt=l

a property

property _id= 1

property_name=v

property_value=any

Figure 6: Structure of a DDO [41]
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3.2.3 T h e  ODMG’93 P r o t o c o l

The OD M G’93 protocol proposed by the Object Database M anagement Group is 

similar to the Direct Access Protocol we discussed before. The only difference between 

them are that the ODM G’93 protocol uses an Object Definition Language (ODL) to 

define an object interface instead of using the Data Definition Language (DDL) and 

ODM G’93 protocol uses programming language mapping defined for data object 

specified in ODM G’93, rather than the CORBA IDL attribute operations [41]. The IDL 

attribute operations define the data types in interface definition.

After reviewing three protocols with two different approaches, our 

implementation of the persistent object service will use the Direct Access Protocol 

(PDS_DA). One reason of choosing this over the ODM G’93 protocol is that CORBA 

IDL already defines the DDL for writing the object interface, even though the OD M G’93 

protocol has been widely used by most database vendors. We have to rewrite a 

preprocessor compiler if we choose to use the ODM G’93 protocol. Conversion from the 

PDS_DA protocol to the ODM G’93 protocol is straightforward since the ODL can be 

easily interpreted as DDL. In the following section, we are going to discuss our 

persistent object service in use with the EOS storage manager developed by AT&T Bell 

Laboratories.

3 .3  D e s ig n  o f  t h e  P e r s is t e n t  O b j e c t  S e r v ic e

Our aim is to provide persistent object services for one or more datastore 

interconnected through the CORBA communication layer. To achieve this goal, our
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design should be able to adapt different object data stores. Throughout this section, we 

will provide a high level overview o f our design.

We use a Persistent Object Manager (POM) to identify the object type, data store 

and the corresponding persistent data store for an object. POM contains a table o f object 

type, datastore type and persistent data store. In our implementation, each persistent 

object has a persistent ID which is a combination of the type, location and name o f an 

object. When the POM receive a request from client to set or get an object, the client will 

pass the PID of the specified object. The POM can then locate the object information 

from the PDS registry and identify the protocol and data store to store or to restore the 

object.

Figure 7 shows the role of POM to handle requests from different clients and to 

establish connections between clients and persistent data stores. We plan to use EOS as a 

persistent object store for our Role security model. Client 1 will first send request to the 

POM for retrieving information of the Role graph object with pidl which is the 

persistent ID for the object. The POM will then look up the object location at the 

persistent datastore (pdsl) from the registry with the information submitted by the client. 

Afterward, a connection will be established between the client 1 and the EOS data store 

(pdsl). Client will not know in which protocol or datastore the object is located. All the 

transparency is handled by the POM and the Object Request Brokers (ORBs). Similar 

approach can be used if we would like to add on capabilities to handle different object 

stores such as ObjectStore by Object Design, Inc. [25] and Versant. There are no strict 

rules for using protocols with different object stores. Figure 7 just shows an example for 

various combination of protocols and data stores.
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datastore_type=ObjectStoredatastore_type=EOS datastore_type=Versant
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PDS_DA| Protocol Object_type Datastore_type PDS

Rolegraph EOS pdslDDO
Protocol Spreadsheet ObjectStore pds2

Image Versant pds3

pds2pdsl pds3

ObjectStoreEOS Versant

Figure 7: The role of POM

There are dependency issues regarding different methods for object management 

with different data stores. Therefore, we need to provide interfaces for different data 

stores. Figure 7 has shown another key component other than the POM that is the pds’s. 

For example, pdsl and pds2 are required for EOS and ObjectStore respectively. A PDS, 

persistent data store, is a data store and protocol dependent interface. To be specific,
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there are two basic functionalities of PDS.

1. Interacting with the object to retrieve and to store data in and out using a specific 

protocol which has been discussed earlier in this chapter.

2. Interacting with the data store to retrieve and to store an object. In our case, we will 

provide an interface for handling objects in and out from EOS storage manager.

In the following section, we will focus on our implementation o f the persistent 

object service.

3 .4  I m p l e m e n t a t io n  o f  P e r s is t e n t  O b j e c t  S e r v ic e

Throughout this section, we will explain our implementation o f the persistent 

object service in details by providing both CORBA IDL interfaces and our C++ class 

definitions. IDL interfaces, in general, provide a high level description o f object classes 

and will directly map to C++ classes by the IDL compiler. Classes generated by IDL 

interfaces involving virtual base classes which should be implemented by implementors.

3 .4 .1  P e r s is t e n t  Id e n t if ie r  (P ID )

In order for the Persistent Object M anager (POM) to locate a persistent object, 

each persistent object is associated with an unique ID. In our implementation, a PID 

consists of a datastore type o f an object, a object ID to identify the object in a specific 

data store, and a hostname or an IP address o f the datastore. The IDL interface is very 

simple and is shown in Figure 8. It contains an object PID with a member datastore_type 

and a member function get_PIDString() to get the PID in CORBA::String format.
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module CosPersPID { 

interface PID {

attribute string datastore_type; 

string get_PIDString();

} ;

} ;

Figure 8: IDL for the Persistent ID interface

To implement the actual function, we need to create a derived class from the 

CosPersPID module. The definition of the derived class is shown in Figure 9. We are 

showing both the whole IDL interface and its class implementation only at this simple 

introduction. We will only give the important part of the codes for other interfaces.
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class PosPID: public CosPersPID_impl::PID_impl 

{

private:

CORBA::String _datastore_type;

CORBA::String _id;

CORBA::String _ip;

CORBA::String *_pid; 

public:

PosPID(const char *datastore, const char *id, const char *ip)

: _datastore_type(datastore), _id(id), _ip(ip), _pid(NULL)

{ )

-PosPID() {}

CORBA::String* datastore_type(); I I function to return 

datastore type

void datastore_type(const CORBA::Strings val); I I function 

to set datastore type

CORBA::String* get_PIDString(); // function to get PID as a

Figure 9: Persistent ID derived class

3.4.2 P e r s is t e n t  D a t a  S t o r e  u s in g  EOS

EOS is an efficient object database developed by AT&T Bell Labs. In EOS, data 

objects are stored in one or more EOS storage areas which are preformated by an EOS 

area format routine. Each storage area consists of a bundle of pages. The size of a page 

can be preset to a certain extent prior to formatting the storage area. A data object can be
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stored at one or more page depending on its size. Object stored in EOS are identified by 

a unique name or an object ID. EOS provides a set of routines to retrieve an object 

handle from which our client can reach the object and perform operations.

We have implemented a set of basic routines to allow the Direct Access Protocol 

to connect to and to disconnect from the EOS data store, plus operations to store, to 

restore and to remove objects. The IDL for the Persistent Data Store module is shown in 

Figure 10.

module CosPersPDS { 

interface Object {}; 

interface PDS {

PDS connect (in Object theobj, in CosPersPID::PID p); 

void disconnect (in Object theobj, in CosPersPID::PID p) ; 

void store (in Object theobj, in CosPersPID::PID p);

Object restore (in Object theobj, in CosPersPID::PID p); 

void remove (in Object theobj, in CosPersPID::PID p);

} ;

} ;

Figure 10: IDL declaration of the Persistent Data Store (PDS)

Subsequently, we define a derived class from CosPersPDS module for the client 

to connect to the EOS data store. Figure 11 shows the class definition for the persistent 

data store. An persistent object is represented by an instance o f class PosPDS where the 

object handle is _obj_data and can be obtained through a series of database operations.



Typically, the Object Request Broker needs to “connect” to a EOS server first. Then, we 

can perform various database operations such as to “store” and to “remove” an object. 

M ember functions such as “trans” , “createfile”, “openfile” , “closefile” and “com m it” are 

private operations necessary to establish connection to the EOS storage manager and are 

only used by the member functions themselves. EOS handles objects by the object 

handle. An object can be identified by its Object ID (OID) or its object name.

3 .5  S u m m a r y

We have designed and implemented a persistent data service with EOS as the 

data object storage. This is an add-on persistent facility for the CORBA implementation 

o f ORBeline by Post Modern Computing. In the next chapter, we shall describe how to 

add security to CORBA. We also explain in detail its design and implementation.
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class PosPDS: public CosPersPDS_impl::PDS_impl 

{

private:

CosPersPDS::Object *_obj_data;

int trans(); 

int createfile(); 

int openfile(); 

int closefile(); 

int commit(); 

long getobjsize(); 

public:

CosPersPDS::PDS* connect(CosPersPDS::Object* obj ,

CosPersPID::PID* p);

void disconnect(CosPersPDS::Object* obj, CosPersPID::PID* p); 

void store(CosPersPDS::Object* obj, CosPersPID::PID* p); 

CosPersPDS::Object* restore(CosPersPDS::Object* obj, 

CosPersPID::PID* p);

void remove(CosPersPDS::Object* obj, CosPersPID::PID* p);

F igu re  11: C lass  defin ition  o f  the P ersis ten t D a ta  S tore



C h a p t e r  4

D e sig n  a n d  Im p l e m e n t a t io n  
o f  A  Se c u r e  O b je c t  Se r v ic e

Security is still a missing component from CORBA specification 2.0 released in 

Fall 1995 [40]. The Object Management Group is currently requesting proposals for 

adding a security service to CORBA. All existing CORBA implementations rely on the 

system level security as the underlying security mechanism. System level security such 

as the UNIX system security mechanism is not designed for management of object 

entities. It is designed to handle file systems and control of processes. In this chapter, we 

propose our security model which can not only handle object entities but also be 

extended to meet the multilevel security requirement. This chapter is divided into two 

main parts. First section will provide a high level design of the role security model. We 

will discuss several authorization schemes to handle specific needs for the role model. 

Second section will focus on the actual implementation of the role model. We will 

present our role graph management algorithms and implementation o f the security 

service on CORBA.

44



4.1  D e s ig n  o f  t h e  R o l e  S e c u r it y  M o d e l
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We have discussed different types o f security mechanisms including multilevel, 

discretionary, authorizations and role-based security models in Chapter 2. Our task is to 

design and implement a security service add-on to a CORBA implementation. The 

security service should be extendable to different levels of security requirements set by 

the DoD. In the following sections, we will introduce our basic design o f a role security 

model. Then, we will add on various authorization schemes to cover the limitations of 

the role model. In addition, an abstract model o f the design described in a Booch 

diagram [7] will be discussed at the end.

4 .1 .1  T h e  R o l e  M o d e l

A role model consists of a collection o f privileges and a set of users who can 

access the role. Privilege is an access right for system information. A role can inherit the 

privilege from other roles. Before presenting our design model, we will use the following 

definition throughout this section.

Definition 3: 4> is a universal set of roles.

Definition 4: Privilege set: P(%)  is the privilege set o f role %.

Definition 5: Senior Role: Let 91 be a set of roles. Role % is a senior o f role 91 if  and 

only if Vi|/((v|/ e  91) -> (P (\|/) c  />(%)))

Definition 6: Junior Role: A role V)/ is a junior role o f role % if and only if 

( P ( V ) c P ( x ) )

We also define a super role which is the senior role of all other roles within the
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role graph. The duty o f the super role is to maintain the role graph. A User that belongs 

to the super role can add a new role to and delete a role from a role graph. Role graph 

modification can be only performed by users that belong to the super role. In a 

distributed database system, it may be impossible to have a super role which can manage 

all databases distributed in a wide area network. In our design, the super role exists only 

in local area network.

We design our role model as a graph containing all roles for a local area network. 

The role graph is an acyclic directed graph. Graph traversal is unidirectional. Senior roles 

can access their junior roles, but not the reverse. This prevents data from being accessed 

by users without necessary security clearance. Senior roles also inherit the privileges of 

their junior roles. Figure 12 shows a graphical model of a role graph. It is represented as 

a multi-level role tree. The role tree is a hiearchical structure in which the superior roles 

have rights to access more system privileges. The role graph shown in Figure 12contains 

redundant role paths. For example, role B can reach role L from path BL or from paths 

BE and EL. Paths BE and EL already implies role L is a junior role o f both role B and 

role E. Therefore, we can remove the path BL without altering the privilege set of role B 

and role E.

Figure 13 shows the simplified version of the previous role graph with minimum 

redundancy. Each role still preserves its system privileges as the previous graph. The 

graph still have more than one path to a particular role, but we can not eliminate the 

paths since the system privileges among those roles will be changed. Two more 

properties will be added on top of the role-based security model and they will be 

discussed in the following two sections.
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Root Role

_ Level 0-A
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Figure 12: A typical role graph

Root Role

-  Level 0
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Level 2

Level 3

-  Level 4

F ig u re  13: S im plified  ro le  g raph  w ith  m in im um  red u n d an cy
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4 .1 .2  I m p l ic it  a n d  E x p l ic it  P r iv il e g e s

In our role graph design, a role can have two different kinds of privileges. One is 

explicit privilege which belongs to the privilege set associated with the role. The other is 

implicit privilege which belongs to the privilege sets associated with the junior roles. In 

order to obtain both the implicit and explicit privileges o f a role, we need to perform a 

role graph traversal along the role paths. In general, we will perform a Breadth First 

Search (BFS) to collect both the implicit and explicit privileges for a role.

4 .1 .3  A u t h o r i z a t io n  P r o p e r t ie s

4 .1 .3 .1  P o s it iv e  a n d  N e g a t iv e  A c c e s s  C o n t r o l

It is necessary to have positive and negative authorization in a role graph 

implementation. Positive authorization is used to explicitly grant access to a set of users. 

Negative authorization is used to deny access rights to a set of users. Thus, each role will 

incorporate a list o f users who have rights to access the current role and a list o f users 

whose access will be denied to the current role. This explicit access and denial properties 

is mandatory to fulfill the DoD multilevel security requirements [14].

4 .1 .3 .2  W e a k  a n d  S t r o n g  A c c e s s  C o n t r o l

Positive and negative authorization may cause conflict under certain situations. 

Figure 14 shows an example of a conflict resulting from improper role graph 

management. User Sam is in both the access and denial lists o f Role A. Should we allow
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or deny the access to Sam? To preserve minimum access rights for users, we assign the 

denial list to have stronger authorization than access list. Therefore, in this example, Sam 

does not have access rights to role A.

Role A 

Access list: Sam, Susan 

Denial list: Ann, Joan, Sam

Role B Role C

Figure 14: Example of conflicts between access and denial list

4 .1 .4  R o l e  G r a p h  M a in te n a n c e  P r o p e r t ie s

4 .1 .4 .1  R o l e  A d d it io n  a n d  D e l e t i o n

Any operation performed on a role graph must preserve the consistency o f the 

security infrastructure. After adding a new role to a role graph, the acyclic property must 

be preserved. When a new role is being added, new paths are generated from its 

immediate senior and junior roles. Redundant edges are removed to minimize the edges 

in the graph. Figure 15 shows the result of removing redundant edges. After adding new 

role X, edge BC and edge AC can be removed since they can be replaced by edge BX 

and XC, and AX and XC respectively.
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Senior Roles Senior Roles Senior Roles

before addition 
o f Role X

Addition of 
R oleX

after addition 
of R oleX

Figure 15: Addition of new role

Senior Roles Senior Roles Senior Roles

Inherit role property After deletionBefore deletion

Figure 16: Deletion of role

On the other hand, when a role is deleted, edges associated with the deleted role
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are removed at the same time. New edges are added to preserve the role hierarchy o f the 

role graph. Figure 16 shows the deletion of role X. W hen role X is deleted from the 

graph, without proper modification, role A and role B will no longer be the senior role of 

role C. In that case, the privilege sets of role A and role B are reduced. In our design, we 

try to keep the roles inheritance to be the same after the role deletion so that role A and 

role B are still the senior roles of role C after the deletion. Therefore, we add new edges 

AC and BC to eliminate privilege reduction from deleting role X.

4 .1 .5  H ig h  L e v e l  D e s ig n  f o r  t h e  R o l e  M o d e l

During our design process, we employ the Booch Method [7] for designing 

object-oriented applications. It provides models for representing complex object 

relationships, class inheritance, access control among classes, and so on. Figure 17 

shows our design in a Booch Diagram. We summarize the basic components in the 

design model in the diagram.

Each icon with hyphenated line boundary in the diagram represents a class. We 

have two abstract classes CosRID and CosRoles. CosRID represents the common object 

service for manipulation on role identifier while CosRoles represents the common object 

service for operation on Roles. The little triangle with a letter ‘A’ indicates that the class 

is abstract. These abstract classes should be defined in the interface using the Interface 

Definition Language (IDL) in order to allow the Object Request Broker to locate the 

objects. Class CosRID is a basic class to handle the Role identifier (RID) which is the 

key to identify a role. Class RID is derived from class CosRID and therefore class RID 

inherits all the methods of class CosRID. RID consists of three attributes; a role ID, a
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hostname/IP address and a role name. Two member operations are necessary to retrieve 

the role ID and the role name.

\
/

/  \ .
RID

Role ID I 
hostname/IP v 
Role name 
get_RIDstring()' 
get_Rnamestring()

/  Role \
privilege set N 

I "J users access list 
x  users denial list /  

) junior role list  ̂
canAccess()

\

I
J

\  “  RolesGraph
/   ̂ super role

( isJunior()
__ \ remove()

\  \  update()
\  inPrivatePrivilegeSet() 1 V add()

I\ inUnionPrivilegeSet()
\  __ '

I

\
/

r  CosRID 1 -
/ get_RIDstring() 

get_Rnamestring()

} idlRole 
canAccessQ

\  idlRolesGraph N 
I removeQ '

\
/

r
/

 ,  v
\  inPrivatePrivilegeSet() / update()
(, inUnionPrivilegeSet() \  add()

^  y '

j
V

CosRoles

Figure 17: Booch diagram of our Role graph design

Class idlRole is a virtual class which contains three virtual functions. Virtual 

functions are functions that will be defined in a derived class. Function “canAccess” 

checks if a user can access the current role. Function “inPrivatePrivilegeSet” checks if a
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user has explicit rights to access a specified privilege. Function “inUnionPrivilegeSet” 

checks if a user has implicit rights to access a specified privilege. The actual 

implementation o f these functions are done on the derived class Role. Class Role also 

includes four attributes; a privilege set containing the explicit privileges o f the role, a 

users’ access list containing a set of users who have rights to access the role, a users’ 

denial list containing a set o f users whose access to the current role will be denied, and a 

set o f junior roles.

Class idlRolesGraph contains three virtual functions which perform basic role 

graph maintainence such as adding a new role, updating an existing role and removing a 

role from the role graph. These operations require special properties which will be 

discussed in the next section. The actual implementation o f class idlRolesGraph is a 

class RolesGraph which has additional attributes and member functions. Function 

“isJunior” will check if a role x is a junior role of role y. The word junior role here can 

be implicit junior which simply means role x is a descendent of role y. The diagram also 

shows that the RolesGraph has access rights to the protected members of class Role. It is 

represented by the special strip and filled circle at class RolesGraph in the diagram.

We have described our design as an abstract model. The next section will present 

our implementation interfaces and class definition in details.

4 .2  I m p l e m e n t a t io n  o f  t h e  S e c u r it y  M o d e l

In this section, we first present our implementation o f roles. Then we show how 

the role implementation can be integrated as a CORBA service.
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4 .2 .1  R o l e  Im p l e m e n t a t io n

A role graph is the key o f our security model. During the implementation, the 

feature o f data hiding from C++ will help us to protect data and member functions from 

being accessed without access rights. Figure 18 shows the IDL of role module describing 

the two interfaces: the interface o f idlRole and the interface of idlRolesGraph. The 

interface idlRole performs a stand alone operation for a role such as checking access 

right for a user. The interface idlRolesGraph performs basic graph maintainence such as 

adding, deleting and updating a role in a role graph. In general, to check access rights of 

a user for a system privilege, we first find out a role X associated with the user and then 

check if the privilege is in the role’s union privilege set which is the union o f the 

privilege set of the role and its junior roles. It can be done by a simple traversal o f the 

nodes in the subtree headed by the role X.

Before a new role is added, we first check to see if  the acyclic property is 

preserved after addition. If  so, we add the new role and minimize the redundant paths 

within the role graph. Deletion requires new paths creation from the senior roles to the 

junior roles of the deleted role as explained in previous section.



#include "CosRID.idl" 

module CosRoles { 

struct auth_para { 

string login; 

string ip;

} ;

typedef sequence<string> seqld; 

typedef sequence<auth_para> seqAuth; 

typedef sequence<CosRID::idlRID> seqRid; 

interface idlRole {

boolean canAccess(in string login, in string ip);

boolean inPrivatePrivset(in string privld);

boolean inUnionPrivset(in string login, in string ip, in

string privID);

} ;

interface idlRolesGraph {

idlRolesGraph remove (in CosRID::idlRID rid); 

idlRolesGraph add (in seqRid seniorset, in idlRole role) 

idlRolesGraph update (in seqRid seniorset, in idlRole

new_role, in CosRID::idlRID rid);

) ;

} ;

Figure 18: IDL of Role Module
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CORBA supports a collection of services that provide basic functions for using 

and implementing objects. Object services are necessary to construct in any distributed 

application and are always independent of application domains. Examples o f object 

services are naming service to bind or to resolve a name to an object relative to a naming 

context, event service to deliver asynchronous events, and life cycle service to define 

conventions for creating, deleting, copying and moving objects. Object services allow an 

add-on facilities capability for CORBA. We implemented our security service as a 

common object service on CORBA.

Client

Dyna
Invocati

Object Implementation

ORB
Interface

Static IDL 
Skeleton

D ynam icynamic
Skeleton

ORB Core

V / / / / /A
Object
Adapter

K X W W 'i Interface identical for all ORB im plem entations 

V / / / / Z \  There may be multiple object adap ters 

■ ■ H I  There a re  s tu b s  and a  skeleton for each  object type 

I 1 O RB-dependent interface

R equest from client

Up-call interface

Normal call 
interface

F igu re  19: C lien t requests m ech an ism  on  C O R B A
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Figure 19 shows how clients issue request for object implementation through the 

Object Request Broker (ORB). Client requests can come either from Dynamic 

Invocation Interface or from IDL stubs. When ORB receives a request from the client, it 

will try to locate the requested object implementation through communication with 

ORBs which are distributed in the network. After the ORB locates the object 

implementation, the request will pass to the object implementation through Object 

Adapters where all the Common Object Services are located. We have implemented our 

Security Service as a common object service registered to the object adapters. It is shown 

in Figure 20. Therefore, all requests are validated by the security service for their access 

rights.

Client Object Implementation

EKSH
IDL

Stubs

ORB Core

Security.Service

r \X \\V \J  Interface identical for all ORB im plem entations 

X / / / / / A  There may be multiple object adap ters

There are s tu b s  and a skeleton for each object type 

D ORB-dependent interface

Client request forward to  Object Implementation by ORB Core

F igu re  20: O b jec t im p lem en ta tion  rece iv ing  req u est th rough  the O b jec t A d ap te rs
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There are different kinds of object adapters for various uses. The Basic Object 

Adapter (BOA), for example, can be used for most ORB objects with conventional 

implementations. Our implementation uses the Basic Object Adapter to define our 

security services. Figure 21 shows the IDL implementation of the security service. In this 

example, we create a sample server which will be called by clients. The sample server 

will register itself during the start-up so that The ORB will first locate the host where the 

sample server is located and then the security services will check the access right of the 

client for the sample server. Exceptions will be raised if the client permission is denied.

struct SecurityAssoc 
{

string host_name;
SampleServerserver;

} ;
interface SecurityMonitor 
{

exception PermissionDenied {};

SampleServer get_server() raises ( PermissionDenied,);

) ;

Figure 21: IDL Implementation o f Security M onitor Service

Figure 22 shows the class definition for the Security M onitor Service. We 

implemented the SecurityEventHandler as a derived class from the BOA event handler 

class. SecurityEventHandler redefines the pre_method of the BOA event handler. Pre­

method o f the event handler will be invoked every time a client performs a method 

invocation on any method of the object implementation from server. The principal of the 

client, which includes a user ID and a hostname, the object’s interface and object names 

and environment are passed to this method. Once the SecurityEventHandler is registered
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to the BOA, any attempt to access server object implementation without proper security 

clearance will result in a permission denied exception being raised. Routines for access 

authorization have been discussed in the previous section.

class SecurityEventHandler: public CORBA::BOA::IMPLEventHandler 

{

protected:

void pre_method (const CORBA::Principal& princ, 

const char *interface, const 

CORBA::Object& obj,

CORBA::ULong methodid,

CORBA::Environments env);

} ;

class SecurityMonitorServer: public SecurityMonitor_impl 

{
friend SecurityEventHandler; 
public:

SecurityMonitorServer(const char *name) : 
SecurityMonitor_impl(name) {}

-SecurityMonitorServer() {}

SampleServer *get_server(CORBA::Environments env);
};

Figure 22: Class Definition for the Security M onitor Service

The next section is an example showing how to use the security services we 

designed and implemented to provide authorization controls over distributed object 

implementations.
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4 .3  A n  A p p l ic a t io n  E x a m p l e

This is an example to show the usage of our security services to perform access 

rights authentication. We have created a computational server which will perform a 

simple binary operation to multiply two real numbers. Clients will send request to obtain 

the result from this operation through the Object Request Broker (ORB). The ORB will 

locate the object implementation of the computational server from the network. Our 

security monitor services described in the previous section provide access rights 

authorization at the beginning o f any request for object implementations.

There are two kinds o f access rights authorizations in this example. The first 

authorization is performed prior to registration of the computational server to the ORB. 

This authorization provides security control for creating object implementations at the 

server side. This kind of security control can prevent users from creating insecure object 

implementations to release system information to unauthorized clients. The second 

authorization is performed when the client is requesting the computational server. The 

ORB will pass the client’s information to the security services which will then check the 

inherited role o f the client. If  the client belongs to a role which has access to the 

computational server, the ORB will pass the request to the computational server to 

perform the multiplication. Result will be returned to the client via the ORB. Otherwise, 

the ORB will inform the client that his/her permission to the computational server is 

denied. Both authorization tests are handled by the Security M onitor Server.
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int main(int argc, char **argv)

{

signal(SIGINT, sighandler);

MonitorServer server("SecurityMonitor"); 

int c ;

CORBA::BOA *boa = CORBA::BOA::instance();

// Create Role graph 

create_rolesgraph();

CORBA::Environment env; 

boa->event_handler(Sserver, env,

new SecurityEventHandler); 

if ( env.check_exception() ) {

cout << "Error registering event handler." << endl; 

cout << env;

}

CORBA: :BOA: :impl_is_ready() ; 

return 0;

)

Figure 23: Main function of Security M onitor Server

Figure 23 shows the main function of the Security M onitor Server (SMS) which 

is implemented using the Basic Object Adapter (BOA). At the beginning, we calls 

function create_rolesgraph to create a role graph and store it as a persistent object in 

EOS object store for later use. We then register the SMS to the BOA event handler and 

create an new security event handler for SMS. The purpose of the SMS is to monitor
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various computational server while the security event handler will perform pre-method 

authorization tests on any client requests. SMS will raise an exception if the 

authorization test o f the security event handler is failed. Otherwise, the ORB will 

continue to perform object request for the computational server.

void SecurityEventHandler::pre_method(const 

CORBA::Principals princ, ...) {

CORBA::String name;

CORBA::String hostname;

RolesGraph *persistent_rolesgraph;

CORBA::String priv("Access to comp, server"); 

name = princ.userName(); 

hostname = princ.hostName();

cout << "Checking validity for user " << name <<

" at host " << hostname << endl; 

persistent_rolesgraph = get_rolesgraph(); 

if (persistent_rolesgraph->checkSecurity(name, 

hostname, priv))

cout << "Security test passed!" << endl;

else

env.exception_value(new

CORBA::StExcep::NO_PERMISSION);

}

Figure 24: Class Implementation o f the Security Event Handler

Figure 24 shows the class implementation for the security event handler. The
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function will obtain the “Prinicipal” of the client information from the ORB. The 

“Principal” contains username, host name and other information of the client. Security 

event handler will then call the function “get_rolesgraph” to restore the persistent role 

graph from the EOS object store. The role graph has been stored in EOS during the 

initialization of the Security M onitor Server as shown in Figure 23. Finally, it calls the 

checkSecurity member function of RolesGraph to perform security check on client.

The function checkSecurity is shown in Figure 25. This function will first find 

out the associated role of the user which is represented by “user_role”. It returns error if 

the user does not associate with any role. Subsequently, we perform security check for 

the user to see if the user has access rights to create or to use the computational server. 

The function inUnionPrivset as shown in Figure 25 performs a Breadth First Search 

(BFS) to all the junior roles of the “user_role” to check if the privilege to create or to use 

the computational server is belongs to one o f its junior roles. If the client pass this final 

test, its request for the computational server will be proceeded by the ORB. Otherwise, 

an exception will be raised for denial permission.

This example shows the use of our security services to provide access rights 

authorization. The M onitor Security Server and the Security Event Handler used in this 

application can be reused for other distributed object applications using CORBA. The 

full implementation for role graph management, persistent object service, secure object 

services and the application example are provided in Appendix.
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CORBA::Boolean RolesGraph::checkSecurity(CORBA::String& login,

CORBA::Stringk ip, CORBA::Strings privXD){ 

int i; long rid=0; Role *user_role; 

for (i =0; i < _userinfo.length(); i++) { 

if ((_userinfo[i].login() == login) &&

(_userinfo[i].ip() == ip)) {

cout << "Username " << login << " exists." << endl; 

rid = _userinfo[i].rid_long(); 

break;

}

)

if (!rid) {

cout << "Can't find security information of user " << 

login << endl; 

return FALSE;

}

user_role = _node_ptr[rid];

if (!user_role->canAccess(login, ip) return FALSE; 

if (user_role->inUnionPrivset(login, ip, privID)) {

cout << "User " << login <<

" pass security clearance for " << privID << endl; 

return TRUE;

)

return FALSE;

}

Figure 25: Function to perform security check for a user
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4 .4  S u m m a r y

We have presented our design of the role-based security model and its 

implementation. We have also integrated the Security Service to CORBA. CORBA 

provides a nice communication layer for distributed client and server application. We 

find it very easy to implement distributed applications. Next chapter is a conclusion for 

this thesis. We shall discuss our implementation which concerns CORBA and suggest 

possible extension on CORBA and our security model.



C h a p t e r  5

Co n c l u d in g  R e m a r k s

5.1 S u m m a r y  o n  P e r s is t e n t  a n d  S e c u r it y  M o d e l s

Our design o f persistent model is based on some existing models and can provide 

the need to make our role graph persistence. Our security model, on the other hand, is a 

new attempt to use an object model to handle security. The model is implemented in C++ 

classes, but can be easily implemented on other non object-oriented languages. Security 

is still a missing component from CORBA specification 2.0 [40]. The Object 

M anagement Group has been requesting for a proposal for adding a security service to 

CORBA. All existing CORBA implementations rely on the system level security as the 

underlying security mechanism. Object entities contain real life relationship which is 

difficult to handle by general security models. The security prototype we have designed 

and implemented can not only handle object entities but also be extended to meet the 

multilevel security requirement. We can also extend our model to provide data 

encryption during the message passing between the client and server through the ORBs 

and the Security Services.

There are limitations in our security model, but they can be easily fixed. For
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example, the class of role and role graph make usage o f several pointer references to role 

objects and its private members. It is possible for computer hackers to obtain references 

to these pointers and hence creating security holes.

5 .2  I m p l e m e n t a t io n  Is s u e s  o n  C O R B A

CORBA is going to be a standard system for building distributed application in 

the future. It is not difficult to build applications on top of CORBA. However, CORBA 

IDL provides limited data types which limits the functionality of the IDL interface. We 

have implemented our Security Service on a heterogeneous network on coupled Sun 

Sparc stations running Solaris 2.4, Solaris 2.5 and SunOS 4.1.4. The Object Request 

Brokers can communicate efficiently to locate the desired object method across the 

network.

5 .3  F u t u r e  W o r k

There are still some concerns about the role of CORBA within the Object- 

Oriented Database Management System (OODBMS). ODBMS nowadays is required to 

support millions of fine-grained objects. Fast and efficient access to the objects is almost 

required by all applications. The role of CORBA is to provide a more efficient 

mechanism to handle millions o f distributed objects located across the internet. There are 

more issues to be considered such as how to provide locking transaction through 

CORBA between distributed data stores.

Other issues such as interoperability among various ORBs from different vendors 

are in the final testing process. IBM SOM, Expersoft, Orbix, Sunsoft NEO and other
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CORBA implementors are going to release their interoperability versions in few months. 

Sunsoft, PostM odem Computing and Iona have announced their Java front-end for their 

CORBA products which will allow internet access to object methods through CORBA. 

In the near future, CORBA will be the underlying layer for most o f the distributed 

applications.



APPENDIX I

PERSISTENT IDENTIFIER PROGRAM

#ifndef _posPID_h 
#define posPID h

class PosPID: public CosPersPID_impl::PID_impl 
{
private:

CORBA::String _datastore_type;
CORBA::String _id;
CORBA::String _ip;
CORBA::String *_pid;

public:
PosPID(const char *datastore, const char *id, const char *ip) 

: _datastore_type(datastore), _id(id), _ip(ip), _pid(NULL) 
{}

-PosPID() {}

CORBA::String* datastore_type();
void datastore_type(const CORBA::Strings val);
CORBA::String* get_PIDString();

} ;

#endif
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#include <stdlib.h>
#include <string.h> 
ttinclude "CosPersPID_s.hh"
#include "posPID.h"

CORBA::String* PosPID::datastore_type()
{
return &_datastore_type;

}

void PosPID::datastore_type(const CORBA::Strings val) 
{
_datastore_type = val;

}

CORBA::String* PosPID::get_PIDString()
{
int i ;
char newstring[255];

for (i = 0; i < _ip.length(); i++)
newstring[i] =  ip[i];

newstring[i] = '\0'; 
strcat (newstring, 
strcat (newstring, _id);

_pid = new CORBA::String(newstring); 
return _pid;

}



APPENDIX II

PERSISTENT OBJECT SERVICE PROGRAM

#ifndef _posPDS_h 
#define _posPDS_h 
#include "eos.h"

class PosPDS: public CosPersPDS_impl::PDS_impl 
{
private:

// Persistence related data

CosPersPDS::Object *_obj_data;
CosPersPID::PID *_pid; 
unsigned _refcount;
CORBA::String _datastore_type; 
long _obj_size;

I I Datastore (EOS) related data

eosdatabase *_eosdb; 
eosobj *_eosoh; 
eosfile *_eosfh; 
eosoid _eosoid;

CORBA::String _db_na 
CORBA: : String *_fnair

int trans(); 
int createfile(); 
int openfileU; 
int closefileU; 
int commit(); 
long getobjsize();

public:

PosPDS(CosPersPDS::Object* obj, CosPersPID::PID* p)
: _obj_data(obj), _pid(p), _refcount(0), _fname(p- 

>get_PIDString()) {

// database descriptor 
// object handle 
// file handle 
I I object id
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_db_name = "/tmp/eos_area/roledatabase";
_datastore_type = "EOS.2.0.2";

}
-PosPDS();

CosPersPDS::PDS* connect(CosPersPDS::Object* obj, CosPersPID::PID* 
void disconnect(CosPersPDS::Object* obj, CosPersPID::PID* p) ; 
void store(CosPersPDS::Object* obj, CosPersPID::PID* p); 
CosPersPDS::Object* restore(CosPersPDS::Object* obj,

CosPersPID::PID* p);
void remove(CosPersPDS::Object* obj, CosPersPID::PID* p); 
void setobjsize(long objsize);
void persRef(CosPersPDS::Object* obj1, CosPersPID::PID* pi, CosPer 

sPDS::Object* obj2, CosPersPID::PID* p2);

#endif



#include <stdlib.h>
#include <string.h>
#include "CosPersPDS_s.hh"
#include "posPDS.h"

char *stringtochars(char *outchars, CORBA::String *str)
{
int i ;
CORBA::String pidstring; 

pidstring = *str;
outchars = (char *) malloc(sizeof(char)*(str->length() + 1)); 
for (i = 0; i < str->length(); i++) {

outchars[i] = pidstring[i];
}
outchars [i] = 'Non­
return outchars;

PosPDS::-PosPDS()
{
_obj_data = NULL; 
delete [] _fname; 
delete [] _eosdb; 
delete [] _eosoh; 
delete [] _eosfh;

}

CosPersPDS::PDS* PosPDS::connect(CosPersPDS::Object* obj, CosPer­
sPID: :PID* p)
{
cout << "_datastore_type " << _datastore_type << " p- 

>datastore_type "
<< *p->datastore_type() << endl; 

if (strcmp(_datastore_type, *p->datastore_type()) != 0) {
cerr << "Wrong datastore type!!" << endl; 
exit(-2);

}

if (_refcount >=2) {
disconnect(_obj_data, _pid);

}

// connect the object to its persistent state
if ((_eosdb = eosdatabase::open(_db_name, 0, 1, 0)) == NULL) { 

cerr << "Cannot create database " << _db_name << endl; 
return NULL;

) else if (transO == 0) {
cout << "trans" << endl; 
return NULL;

)
_refcount++; 
return this;
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int PosPDS::trans()
{
if (eostrans::begin(0) != 0) {

cerr << "Cannot start transaction" << endl; 
return 0; // Failure

} else
return 1; // Sucess

int PosPDS::createfile()
{
if ((_eosfh = eosfile::create(_eosdb, *_fname)) == NULL) { 

cerr << "Cannot create file " << *_fname << endl; 
return 0;

} else
return 1;

int PosPDS::openfile()
{
char * fnameChars;
CORBA::String tmpstring;
int i ;

tmpstring = *_fname;
fnameChars = (char *) malloc(sizeof(char)*(_fname->length() + 1));
for (i =0; i < _fname->length(); i++) 

fnameChars[i] = tmpstring[i];
fnameChars[i] = '\0';
if ((_eosfh = eosfile::open(_eosdb, fnameChars)) == NULL) { 

cerr << "Cannot open file " << fnameChars << endl; 
return 0;

} else
return 1;

int PosPDS::closefile()
{
if (_eosfh->close() != 0) {

cerr << "Cannot close file" << endl; 
return 0;

) else
return 1;

int PosPDS::commit()
{
if (eostrans::commit() != 0) {

cerr << "Cannot commit transaction" << endl; 
return 0;

} else
return 1;
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void PosPDS::disconnect(CosPersPDS::Object* obj, CosPersPID::PID* p)
{
if (_refcount < 1) {

cerr << "Cannot disconnect " << (char *) p->get_PIDString() << endl 
<< "_refcount = " << _refcount << endl;

exit (-2);
}
if (_eosdb->close() != 0) {

cerr << "Cannot close database" << endl; 
exit (-2);

} else {
_eosdb = NULL;
_eosoh = NULL;
_eosfh = NULL;
_pid = NULL;
_refcount--;

}
}

void PosPDS::store(CosPersPDS::Object* obj, CosPersPID::PID* p)
{

// save the persistent state of an object

eosobj *eosoh; // object handle
char *pidchars; 
long strlength;

// Add routine to distinguish update and create later

// Preliminary verion: have not yet taken into account of concurrency 
I I control

if ((eosoh = eosobj::create((int) getobjsize(), _eosdb, obj)) == NULL)
{

cerr << "Cannot create persistent object" << endl; 
exit(-2);

)

_eosoid = eosoh->oid();
pidchars = stringtochars(pidchars, p->get_PIDString()); 
printf ("pidchars = %s\n", pidchars); 
eosoid tmpoid; 
eos_Ref_Any objRef;
if ((tmpoid = _eosdb->oid_of(pidchars)) == eosoid::null) 

cout << pidchars << " not exist" << endl; 
if (eosoh->name_set((const char *) pidchars) != 0) 

cerr << "Cannot set object name" << endl; 
cout << "Object name is " << eosoh->name() << endl; 
if (eosoh->release() != 0) {

cerr << "Cannot release object handle" << endl; 
exit(-2);

)



if (PosPDS::commit() == 0)
cerr << "Cannot commit transaction" << endl;

}

CosPersPDS::Object* PosPDS::restore(CosPersPDS::Object* obj, CosPer­
sPID: :PID* p)
{

// loads the object's persistent state unless a store or other 
// mutating operation is performed on the persistent state

eosfilescan *eosfs; // filescan handle
char *pidchars;

pidchars = stringtochars(pidchars, p->get_PIDString());

if ((_eosoh = eosobj::get(_eosdb, pidchars, eosobj::HDR_ONLY)) == 
NULL) {

cerr << "Cannot get object handle" << endl; 
return NULL;

}

_obj_data = (CosPersPDS::Object *) _eosoh->mptr(); 
if (_eosoh->release() != 0) {

cerr << "Cannot release object" << endl; 
exit (-2);

)
if (commit() == 0)

cerr << "Cannot commit transaction" << endl; 
return _obj_data;

)

void PosPDS::remove(CosPersPDS::Object* obj, CosPersPID::PID* p)
{

// delete the object's persistent data from the datastore indicated 
//by the PID.

// Preliminary verion: have not taken into account of concurrency 
// control

eosobj *oh; 
char *pidchars;

pidchars = stringtochars(pidchars, p->get_PIDString()); 
if ((oh = eosobj::get(_eosdb, pidchars, eosobj::HDR_ONLY)) == NULL) 
cerr << "Cannot get object handle" << endl; 
exit(-2);

}
if (oh->destroy() != 0) {

cerr << "Cannot destroy object" << endl; 
exit(-2);

}
if (commit() == 0)

cerr << "Cannot commit transaction" << endl;
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void PosPDS::setobjsize(long objsize)
{
_obj_size = objsize;

}

long PosPDS::getobjsize()
{
return _obj_size;

}

void PosPDS::persRef(CosPersPDS::Object* obj1, CosPersPID::PID* pi, 
CosPersPDS::Object* obj2, CosPersPID::PID* p2)

{
I I save the persistent state of an object

eosobj *eosoh; // object handle
char *pidchars;
long strlength;
eos_Ref_Any *persobj;
eosoid tmpoid;

pidchars = stringtochars(pidchars, pl->get_PIDString());
*persobj = _eosdb->lookup_object(pidchars);

if (PosPDS::commit() == 0)
cerr << "Cannot commit transaction" << endl;

}



APPENDIX III

ROLE IDENTIFIER PROGRAM

#ifndef _RID_h 
#define _RID_h

#include "misc.h"

class RID: public CosRID_impl::idlRID_impl 
{

private:
long _id;
CORBA::String _ip;
CORBA::String _name;

public:
RID(const char ‘name, const char *ip) ; 

-RIDO {}

RID& operator=(RID &rid);
CORBA::String* get_RIDstring(); 
long get_RIDlong();
CORBA::String* get_RnameString();

} ;

ttendif
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#include <stdlib.h>
#include <string.h>
#include ./persist_store/CosPersPID_s.hh" 
#include ./persist_store/posPID.h"
#include "CosRID_s.hh"
#include "misc.h"
#include "RID.h"

RID::RID(const char *name, const char *ip)
{
char ridname[255]; 
int thisid;

_ip = ip;
_name = name; 
strcpy(ridname, name);
_id = hash(ridname);

)

RID& RID::operator=(RID &rid)
{

_ip = rid._ip;
_name = rid._name;
_id = rid._id;

return *this;
}

CORBA::String* RID::get_RIDstring()
{
CORBA::String *rid; 
char newstring[255];

itoa(_id, newstring);

rid = new CORBA::String(newstring); 
return rid;

}

long RID::get_RIDlong()
{
return _id;

}

CORBA::String* RID::get_RnameString()
{
CORBA::String *rid=new CORBA::String(_name); 

return rid;
}



APPENDIX IV

ROLE GRAPH PROGRAM

#ifndef _Roles_h 
#define _Roles_h

#include <seqmac.h>
#include "CosRoles_c.hh"
#include "RID.h"

enum {FALSE, TRUE};
enum STATUS {ALLOWED, DENIALED, UNKNOWN};

class Role;

class Item {
friend class List; 
friend class Role; 
friend class RolesGraph; 

private:
Role *val;
Item *next;
ItemfRole *value, Item *item = 0)
{

val = value; 
next = item;

}
} ;

class List 
{
public:

List ()
{

list = 0; 
at_end = 0; 
current = 0 ;
_length = 0;

}
-List () { remove(); }
CORBA::Boolean append(Role* node); I I TRUE if append is success
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I I  FALSE if node already exists
Role *iterator(); I I  Return first item value on the list 
CORBA::Boolean remove(Role* node); // TRUE if node is deleted 
// FALSE if node doesn't exist 
I I  or list is empty
Role *remove_first(); // remove first role
List& operator=(List Scl);
void remove!); // Remove all items
CORBA::Boolean is_present(Role *node);
CORBA::Boolean is_empty();
void reset_current(); I I  Reset current pointer 
long length();

void display(); 
private:

Item *list;
Item *at_end;
Item ‘current; 
long _length;

) ;

class Role: public CosRoles_impl::idlRole_impl 
{

private:

CosRID::idlRID *_rid;
CosRoles::seqld _privset;
CosRoles::seqld _union_privset;
CosRoles::seqAuth _accessList;
CosRoles::seqAuth _denialList;
CosRoles::seqld *getPrivset();
CosRoles::seqAuth *getAccessList();
CosRoles::seqAuth *getDenialList();

public:

Role(CosRID::idlRID *rid, CosRoles::seqld privset,
CosRoles::seqAuth accessList,
CosRoles::seqAuth denialList, List *juniorList)

: _rid(rid), _privset(privset), _accessList(accessList), 
_denialList(denialList), _juniorList(juniorList)

{} ;

RoleO {};

-Role() ;

Role& operator=(Role &r);
I I  Check if this login with this ip can access this role or not. 
CORBA::Boolean canAccess(const CORBA::StringSc login,

const CORBA::String& ip);
CORBA::Boolean inPrivatePrivset(const CORBA::Strings privID); 
CORBA::Boolean inUnionPrivset(const CORBA::StringSc login,
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const CORBA::String& ip, 
const CORBA::Strings privID);

CosRID::idlRID *getRIDp();

protected:

friend class RolesGraph;

List *_juniorList; 
long childCountU const;
CORBA::Boolean addJunior(Role* node);
CORBA::Boolean removeJunior(Role* node);
CORBA::Boolean addPriv(const CORBA::Strings privID);
CORBA::Boolean isPrivJunior(CosRID::idlRID *rid);

} ;

class RolesGraph : public CosRoles_impl::idlRolesGraph_impl 
{
public:

RolesGraph(); I I  Default constructor: build an empty
role graph

RolesGraph(Role *root); // build a graph with root 

-RolesGraph();

RolesGraphS operator=(RolesGraphS rg);
Role* Root() const; // return pointer to the root if authorized

Role* Node (RID rid); I I  return pointer to the node with the rid

CORBA::Boolean isJunior(CosRID::idlRID *ridl, CosRID::idlRID 
*rid2) const;

// return TRUE if role with ridl is a junior 
// role of the role with rid2

CORBA::Boolean isCycle(List *seniorList, Role* role);
I I  return TRUE if cycle exists after adding role 
I I  return FALSE otherwise

RolesGraph* removeRedundantPaths(); // Optional optimization routine 

CosRoles::idlRolesGraph* remove(CosRID::idlRID* rid);

RolesGraph* add(List *seniorList, Role* role);

RolesGraph* update(List *seniorList, Role* new_role,
CosRID::idlRID* rid);

CORBA::Boolean addUser(CORBA::Strings login, CORBA::Strings ip,
RID *rid);



CORBA::Boolean delUser(CORBA::Strings login, CORBA::Strings ip); 

CORBA::Boolean checkSecurity(CORBA::Strings login, CORBA::Strings
ip.

CORBA::Strings privID);

private:

displayGraph();

Role* _node_ptr[MAXTABLE+1];

Role* _root;
CORBA::Boolean isCycle(Role* role); // Check if this role is in a 

cycle.
CosRoles::seqUserlnfo _userinfo;

} ;

#endif



84

#include <stdlib.h>
♦include <string.h>
♦include "CosRoles_s.hh"
♦include "RID.h"
♦include "Roles.h"
♦include "misc.h"

CORBA::Boolean List::is_empty()
{
return list == 0 ? TRUE : FALSE;

}

CORBA::Boolean List::append(Role *val) 
{
Item *pt = new Item(val);
Item *iter_list = list; 
if (list == 0) {

list = new Itern(val); 
list->next = 0; 
at_end = list;

}
else {

while (iter_list) {
if (iter_list->val == val) 
return FALSE;
iter_list = iter_list->next;

}
at_end->next = pt; 
at_end = pt;

}
_length++; 
return TRUE;

void List::display()
{

for (Item *pt = list; pt; pt = pt->next)
cout << * (pt->val->getRIDp()->get_RIDstring()) << " ";

cout << endl;
}

Role *List::remove_first()
{
Role *tmprole;

if (list == 0) 
return 0;

else {
tmprole = list->val; 
list = list->next;
_length--;

)
return tmprole;



void List::remove()
{

Item *pt = list; 
while (pt) {

Item *tmp = pt; 
pt = pt->next;

)
list = at_end = current = 0; 
_length = 0;

CORBA::Boolean List::is_present(Role *item) { 
if (list == 0) 

return FALSE; 
if (list->val == item || at_end->val == item) 

return TRUE;
Item *pt = list->next; 
for (; pt != at_end; pt = pt->next) 

if (pt->val == item) 
return TRUE; 

return FALSE;

CORBA::Boolean List::remove(Role *val)
{

Item *pt = list;
Role *del_role;

if (pt && pt->val == val) {
Item *tmp = pt->next; 
del_role = pt->val; 
list = tmp;
_length--; // _length should be zero after 
return TRUE;

)
if (_length == 0) {

return FALSE;
)
Item *prev = pt;
pt = pt->next;
while (pt) {

if (pt->val == val) { 
prev->next = pt->next; 
if (at_end == pt) 
at_end = prev; 
del_role = pt->val; 
pt = prev->next;
_length--; 
return TRUE;

}
else {

prev = p t ; 
pt = pt->next;



86

}
}
return FALSE;

}

Role *List::iterator()
{
Role* tmprole;

if (is_empty()) {
cout << "In iterator: list is empty, 
return 0;

}
else if (!current) { 

return 0;
}
else if (current == at_end || at_end = 

tmprole = current->val; 
current = 0; 
return tmprole;

}
tmprole = current->val;
current = current->next;
return tmprole;

void List::reset_current()
{
if (!is_empty()) 

current = list;
}

List& List::operator=(List &1)
{
Item *tmpitem;
Item *listiterator;

listiterator = l.list; 
remove();
while(tmpitem = listiterator) { 

append(tmpitem->val); 
listiterator = listiterator->next;

}
return *this;

long List::length() 
{
return _length;

}

Role::-Role()
{
CORBA::ULong i;

<< endl;

list) {

<6?



for (i = 0; i < _accessList.length(); i++)
_privset.remove(i) ; 

for (i = 0; i < _accessList.length(); i++)
_accessList.remove(i) ; 

for (i = 0; i < _denialList.length(); i++)
_denialList.remove(i);

}

RoleS Role::operator=(Role Srole)
{

_rid = role._rid;
_privset = role._privset;
_union_privset = role._union_privset;
_accessList = role._accessList;
_denialList = role,_denialList;

return *this;
}

CosRoles::seqld *Role::getPrivset()
{
return S_privset;

}

CosRoles::seqAuth *Role::getAccessList()
{
return S_accessList;

)

CosRoles::seqAuth *Role::getDenialList()
{
return S_denialList;

}

CosRID::idlRID *Role::getRIDp()
{
return _rid;

}

CORBA::Boolean Role::inPrivatePrivset(const CORBA::Strings privID) 
{
for (int i = 0; i < _privset.length(); i++) 

if (privID == _privset[i]) 
return TRUE; 

return FALSE;
}

CORBA::Boolean Role::inUnionPrivset(const CORBA::String& login,
const CORBA::Strings ip, 
const CORBA::Strings privID)

{
long toprid;
Role *cur_role, *junior_role;
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List *queue = new List;
CosRoles::auth_para auth_parameters;
STATUS visited[MAXTABLE];

if(canAccess(login, ip)) {
if (inPrivatePrivset(privID) ) {

return TRUE;
)

}
else {

cout << login << " at " << ip << " can not access this role." << 
endl ;

return FALSE;
}
cout << "pass current role test" << endl; 
toprid = getRIDp()->get_RIDlong(); 
cout << "rid is " << toprid << endl; 
for (int i = 0; i < MAXTABLE; i++) 

visited[i] = UNKNOWN; 
cur_role = this; 
visited[toprid] = ALLOWED; 
queue->append(cur_role); 
while (!queue->is_empty()) {

cur_role = queue->remove_first() ; 
cur_role->_juniorList->display(); 
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong(); 
if (visited[toprid] == UNKNOWN) { 
queue->append(junior_role);

// Routine to check authority and to gather whole privilege set 

for (int i = 0; i < junior_role->getDenialList()->length() ;
i + +) {

CosRoles::seqAuth *denial_list; 
denial_list = junior_role->getDenialList(); 
auth_parameters = (*denial_list)[i]; 
if ((auth_parameters.login() == login) &&

(auth_parameters.ip() == ip)) (
visited[toprid] = DENIALED;

}
}
if (visited[toprid] == UNKNOWN) {

for (int i = 0; i < junior_role->getAccessList()->length(); i++)
{

CosRoles::seqAuth *access_list; 
access_list = junior_role->getAccessList(); 
auth_parameters = (*access_list)[i]; 
if ((auth_parameters.login() == login) &&

(auth_parameters.ip() == ip)) {
visited[toprid] = ALLOWED;
if (junior_role->inPrivatePrivset(privID) == TRUE) 
return TRUE;
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}
}

}
if (visited[toprid] == UNKNOWN) {

if (junior_role->inPrivatePrivset(privID) == TRUE) { 
cout << "inherit access allowed" << endl; 
return TRUE;

}
}
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited; 
return FALSE;

}

CORBA::Boolean Role::canAccess(const CORBA::Strings login,
const CORBA::Strings ip)

{
Role *junior_role;
CosRoles::auth_para auth_parameters; 
int i ;

junior_role = this;
for (i = 0; i < junior_role->getDenialList()->length() ; i++) {
CosRoles::segAuth *denial_list; 
denial_list = junior_role->getDenialList(); 
auth_parameters = (*denial_list) [i] ; 
if ((auth_parameters.login() == login) SS 

(auth_parameters.ip() == ip)) {
return FALSE;

}
)
for (i =0; i < junior_role->getAccessList()->length(); i++) {

CosRoles::seqAuth *access_list; 
access_list = junior_role->getAccessList(); 
auth_parameters = (*access_list)[i]; 
if ((auth_parameters.login() == login) SS 

(auth_parameters.ip() == ip)) { 
return TRUE;

}
)
return FALSE;

CORBA::Boolean Role::isPrivJunior(CosRID::idlRID *rid)
{
Role *junior_role, *cur_role; 

cur_role = this;
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

if (rid->get_RIDlong() == junior_role->getRIDp()->get_RIDlong()) {
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cur_role->_juniorList->reset_current(); 
return TRUE;

}
}
return FALSE;

}

long Role::childCount() const 
{
return _juniorList->length();

}

CORBA::Boolean Role::addJunior(Role* node)
{
return (_juniorList->append(node) ) ;

)

CORBA::Boolean Role::removeJunior(Role* node)
{
return (_juniorList->remove(node));

}

CORBA::Boolean Role::addPriv(const CORBA::String& privID) 
{
if (!inPrivatePrivset(privID)) {

_privset.append(privID); 
return TRUE;

}
else

return FALSE;
)

RolesGraph::RolesGraph()
{
_root = 0;
for (int i=0; i < MAXTABLE; i++)
_node_ptr[i] = 0;

}

RolesGraph::RolesGraph(Role *root)
{
long toprid;
Role *cur_role, *junior_role;
CORBA::Boolean visited[MAXTABLE];
List ‘queue = new List; 
int i ;

for (i=0; i < MAXTABLE; i++)
_node_ptr[i] = 0;

_root = root;

toprid = root->getRIDp()->get_RIDlong(); 
node ptrftoprid] = root;
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for (i = 0; i < MAXTABLE; i++) 
visited[i] = FALSE; 

cur_role = root; 
visited[toprid] = TRUE; 
queue->append(cur_role); 
while {!queue->is_empty()) {

cur_role = queue->remove_first(); 
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong(); 
if (visited[toprid] == FALSE) { 
queue->append(junior_role); 
visited[toprid] = TRUE;
_node_ptr[toprid] = junior_role;
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited;

}

RolesGraph::-RolesGraph()
{
delete _root; 
delete [] _node_ptr;

}

RolesGraphk RolesGraph::operator=(RolesGraph &rg)
{

int i ;

for (i = 0; i < MAXTABLE; i++)
_node_ptr[i] = rg._node_ptr[i];

_root = rg._root;

return *this;
}

Role *RolesGraph::Root() const 
{
return _root;

}

Role *RolesGraph::Node(RID rid)
{

if (_node_ptr[rid.get_RIDlong()]) {
return node otrfrid.qet RIDlong()];

}
else

return 0;
}

CORBA::Boolean RolesGraph::isJunior(CosRID::idlRID *junior_rid,



CosRID::idlRID *senior_rid) const
{

long toprid;
Role *cur_role, *junior_role;
List ‘queue = new List;

CORBA::Boolean visited[MAXTABLE];

toprid = senior_rid->get_RIDlong();
if (_node_ptr[toprid] ==0) // Junior role doesn't exist 

return FALSE;

for (int i = 0; i < MAXTABLE; i++) 
visitedfi] = FALSE; 

cur_role = _node_ptr[toprid]; 
visited[toprid] = TRUE; 
queue->append(cur_role); 
while (!gueue->is_empty()) {

cur_role = queue->remove_first(); 
cur_role->_juniorList->reset_current();
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong(); 
if (visited[toprid] == FALSE) { 
queue->append(junicr_role); 
visited[toprid] = TRUE;
if (junior_rid->get_RIDlong() == toprid) { 

cur_role->_juniorList->reset_current(); 
delete [] visited; 
return TRUE;

}
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited; 
return FALSE;

// Perform BFS starting from role to look for cycle.

CORBA::Boolean RolesGraph::isCycle(Role *role)
{

long thisrid, toprid;
Role *cur_role, *junior_role;
CORBA::Boolean visited[MAXTABLE];
List ‘queue = new List;

thisrid = role->getRIDp()->get_RIDlong(); 
for (int i = 0; i < MAXTABLE; i++) 

visited[i] = FALSE;
cur_role = role;
visited[thisrid] = FALSE; I I  Allow access twice 
queue->append(cur_role) ; 
while (!queue->is_empty()) {
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cur_role = queue->remove_first();
cur_role->_juniorList->reset_current(); // double insured 
while (junior_role = cur_role->_juniorList->iterator()) {

toprid = junior_role->getRIDp()->get_RIDlong(); 
if (visited[toprid] == FALSE) { 
queue->append(junior_role); 
visited[toprid] = TRUE; 
if (toprid == thisrid) 

return TRUE;
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited;
return FALSE;

}

// Perform BFS on every roles with the graph to check if there exists 
cycle.

CORBA: .-Boolean RolesGraph:: isCycle (List *seniorList, Role *role)
{
List *added_seniorlist = new List;
Role *cur_role;
CORBA::Boolean visited[MAXTABLE];
CORBA::Boolean role_added[MAXTABLE];
CORBA::Boolean ret;
int i ;

for (i = 0; i < MAXTABLE; i++) {
visited[i] = FALSE; 
role_added[i] = FALSE;

}
seniorList->reset_current();
while (cur_role = seniorList->iterator()) {

if (added_seniorlist->append(cur_role) == FALSE) { 
added_seniorlist->remove(cur_role);

}
if (cur_role->addJunior(role) == TRUE) {

role_added[cur_role->getRIDp()->get_RIDlong()] = TRUE;
}

}
ret = FALSE;
for (i = 0; i <= MAXTABLE; i++) {

if (cur_role = _node_ptr[i]) {
cout << "isCycle testing " << *(cur_role->getRIDp()- 

>get_RnameString())
<< " with RID " << i << endl; 
if (isCycle(cur_role)) {
cout << " forms cycle" << endl; 
ret = TRUE; 
break;
}
else



cout << " doesn't form cycle" << endl;
}

}
added_seniorlist->reset_current();
while (cur_role = added_seniorlist->iterator() ) {

if (role_added[cur_role->getRIDp()->get_RIDlong()] == TRUE) 
cur_role->removeJunior(role);

)
delete [] visited; 
delete [] role_added; 
delete added_seniorlist; 
return ret;

CosRoles::idlRolesGraph* RolesGraph::remove(CosRID::idlRID* rid)
{
long thisrid, toprid;
Role *cur_role, *junior_role, *del_role, *add_role;
CORBA::Boolean visited[MAXTABLE];
List *gueue = new List;
CORBA::Boolean done;

del_role = _node_ptr[rid->get_RIDlong()]; 
thisrid = _root->getRIDp()->get_RIDlong(); 
for (int i = 0; i < MAXTABLE; i++) 
visited[i] = FALSE; 

cur_role = _root; 
visited[thisrid] = TRUE; 
queue->append(cur_role); 
done = FALSE;
while (!queue->is_empty()) {

cur_role = queue->remove_first(); 
if (cur_role->isPrivJunior(rid)) {

cout << *(rid->get_RnameString()) << " is a private junior of " 
<< * (cur_role->getRIDp()->get_RnameString()) << endl; 
cur_role->_juniorList->display(); 
if (cur_role->removeJunior(del_role)) {
del_role->_juniorList->reset_current(); 
while (add_role = del_role->_juniorList->iterator()) 

cur_role->addJunior (add_role) ; 
delete del_role;
}
cur_role->_juniorList->display(); 
done = TRUE;

}
else

done = FALSE; 
cur_role->_juniorList->reset_current();
while (!done && (junior_role = cur_role->_juniorList->iterator())) 

toprid = junior_role->getRIDp()->get_RIDlong(); 
if (visited[toprid] == FALSE) { 

queue->append(junior_role); 
visited[toprid] = TRUE; 
if (junior_role->isPrivJunior(rid)) {
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if (junior_role->removeJunior(del_role)) {
del_role->_juniorList->reset_current(); 
while (add_role = del_role->_juniorList->iterator()) 

junior_role->addJunior(add_role); 
delete del_role;

}
else {

cout << "Error: removing junior role" << endl; 
return 0;

}
}
}

}
cur_role->_juniorList->reset_current();

}
_node_ptr[rid->get_RIDlong()] = 0; 
delete [] visited; 
return this;

}

// Add new role to role graph.
// Remove redundant paths.

RolesGraph* RolesGraph::add(List *seniorList, Role* role)
{
Role *senior_role, *add_role, *junior_role;
CosRID::idlRID *add_rid;

if (isCycle(seniorList, role)) 
return 0;

cout << "passed cycle test" << endl;
if (_node_ptr[role->getRIDp()->get_RIDlong()]) { // Should not happen

cout << "Error: RID already exists" << endl; 
return 0;

)
else

_node_ptr[role->getRIDp()->get_RIDlong()] = role; 
role->_juniorList->reset_current();
while (junior_role = role->_juniorList->iterator()) {

if (_node_ptr[junior_role->getRIDp()->get_RIDlong()] == 0)
_node_ptr[junior_role->getRIDp()->get_RIDlong()] = junior_role; 

else if (_node_ptr[junior_role->getRIDp()->get_RIDlong()] !=
junior_role) (

cout << "Inconsistent node ptrs!" << endl; 
exit(0);

}
}
seniorList->reset_current();
while (senior_role = seniorList->iterator()) {

role->_juniorList->reset_current();
I I Remove immediate redundant paths 
while (add_role = role->_juniorList->iterator()) {

if (senior_role->isPrivJunior(add_role->getRIDp())) 
senior_role->_juniorList->remove(add_role);



)
senior_role->addJunior(role);

}
return this;

}

RolesGraph* RolesGraph::update(List *seniorList, Role* new_role, 
CosRID::idlRID* oldrid)

{
if (oldrid->get_RIDlong() != new_role->getRIDp()->get_RIDlong())

cout << "Warning: RIDs are different!" << endl;
RolesGraph::remove(oldrid);
RolesGraph::add(seniorList, new_role); 
return this;

// Display the whole role graph

RolesGraph::displayGraph()
{
long thisrid;
Role *cur_role, *junior_role;
CORBA::Boolean visited[MAXTABLE];
List *queue = new List;

thisrid = _root->getRIDp()->get_RIDlong(); 
cout << "In displayGraph: root is " << thisrid << endl; 
for (int i = 0; i < MAXTABLE; i++) 
visited[i] = FALSE; 

cur_role = _root;
visited[thisrid] = TRUE; // Allow access twice
queue->append(cur_role);
cout << "Roles Graph:" << endl;
while (!queue->is_empty()) {

cur_role = queue->remove_first();
cur_role->_juniorList->reset_current(); // double insured 
cout << *(cur_role->getRIDp()->get_RnameString()) <<

<< endl;
while (junior_role = cur_role->_juniorList->iterator()) {

thisrid = junior_role->getRIDp()->get_RIDlong(); 
cout << " "

<< *(junior_role->getRIDp()->get_RnameString()) << endl; 
if (visited[thisrid] == FALSE) { 
queue->append(junior_role); 
visited[thisrid] = TRUE;
}

}
cur_role->_juniorList->reset_current();

}
delete [] visited; 
return FALSE;

CORBA::Boolean RolesGraph::addUser(CORBA::Strings login,
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CORBA::String& ip,
RID *rid)

int i ;
CosRoles::user_info userinfo;

for (i = 0; i < _userinfo.length(); i++) { 
if ((_userinfo[i].login() == login) SS 

(_userinfo[i].ip() == ip)) {
cout << "Username " << login << " exists." << endl; 
return FALSE;

)
}
userinfo.login() = login; 
userinfo.ip() = ip;
userinfo.rid_long() = rid->get_RIDlong();
_userinfo.append(userinfo) ; 
return TRUE;

)

CORBA::Boolean RolesGraph::delUser(CORBA::Strings login,
CORBA::Strings ip)

{
int i ;

for (i = 0; i < _userinfo.length(); i++)
if (_userinfo[i].login() == login SS _userinfo[i].ip() == ip) ( 

_userinfo.remove(i); 
return TRUE;

)
return FALSE;

}

CORBA::Boolean RolesGraph::checkSecurity(CORBA::Strings login,
CORBA::Strings ip,
CORBA::Strings privID)

{
int i ; 
long rid=0;
Role *user_role;

cout << "In checkSecurity : " << endl; 
for (i = 0; i < _userinfo.length(); i++) {

if ((_userinfo[i].login() == login) SS 
(_userinfo[i].ip() == ip)) { 
cout << "Username " << login << " exists and belongs to role

" << endl;
rid = _userinfo[i).rid_long();
// cout << * (_node_ptr[rid]->getRIDp()-

>get_RnameString()) << endl; 
break;

}
}
cout << "here 2 "  «  endl;



if (!rid) {
cout << "Can't find security information of user " << login 

<< endl; 
return FALSE;

}
else

cout << "rid is " << rid << endl; 
user_role = _node_ptr[rid] ; 
if (!user_role->canAccess(login, ip)) 

return FALSE;
if (user_role->inUnionPrivset(login, ip, privID)) (

cout << "User " << login << " pass security clearance for " 
<< privID << endl; 

return TRUE;
}
cout << "after check inUnionPrivset" << endl; 
return FALSE;



APPENDIX V

SECURITY MONITOR PROGRAM

ttifndef _monitor_h 
ttdefine _monitor_h

// Monitor server program. Caches compute servers

#include "comp_c.hh"// ComputeServer client 
#include "CosRoles_s.hh"
#include "RXD.h"

class SecurityEventHandler: public CORBA::BOA::IMPLEventHandler 
{
protected:

void pre_method (const CORBA::Principals princ,
const char ‘interface, const CORBA::Objects obj, 
CORBA::ULong methodid, CORBA::Environments env);

} ;

class MonitorServer: public CosRoles..impl::Monitor_impl 
{

friend SecurityEventHandler; 
private:

CosRoles::ServerList_servers;
CORBA::ULong_cur_index;
CosRoles::AccessControlList_userList; I I  temporary move from pri­

vate

protected:
void unbind(const CORBA::Principals princ, const char ‘interface, 

const CORBA::Objects obj);
public:

MonitorServer(const char ‘name) : Monitor_impl(name) {
_cur_index = 0;}

-MonitorServer() {}
void add_user(const char ‘name);
void register_server(ComputeServer ‘server);
ComputeServer *get_server(CORBA::Environments env);

) ;
#endif

99
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#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include ./persist_store/CosPersPID_s.hh" 
#include ./persist_store/posPID.h" 
#include "../persist_store/CosPersPDS_s.hh" 
#include ./persist_store/posPDS.h" 
#include "CosRID_s.hh"
#include "CosRoles_s.hh"
#include "RID.h"
#include "Roles.h"
#include "misc.h"
#include "monsrv.h"

extern RolesGraph *rolesgraph; 
void create_rolesgraph(void); 
RolesGraph *get_rolesgraph(void);

void SecurityEventHandler::pre_method(const CORBA::Principals princ,
const char *interface, const

CORBA::Objects obj,
CORBA::ULong methodid,

CORBA:Environments env)
{

CORBA::String name;
CORBA::String hostname;
RolesGraph *persistent_rolesgraph;

CORBA::String priv("Access to project files");

name = princ.userName(); 
hostname = princ.hostName(); 

cout << "Checking validity for user " << princ.userName() << " 
at host "

<< princ.hostName() << endl; 

persistent_rolesgraph = get_rolesgraph();
if (persistent_rolesgraph->checkSecurity(name, hostname, priv)) 

cout << "Security test passed!" << endl;
else

env.exception_value(new CORBA::StExcep::NO_PERMISSION);
}

void MonitorServer::unbind(const CORBA::Principals princ, const char *, 
const CORBA::Objects )

{
CORBA::ULong num_servers = _servers.length(); 
for (CORBA::ULong i = num_servers; i > 0; i--) {

ServerAssocS server = _servers[i — 1]; 
if ( server.host_name() == princ.hostName() SS 

server.pid() == princ.pid() )
.servers.remove(i-1);

}
}
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void MonitorServer::add_user(const char *name)
{

_userList.append(new CORBA::String(name));
}

void MonitorServer::register_server(ComputeServer ‘server)
{

// Get client info
const CORBA::Principal *princ = _principal();

ServerAssoc ‘assoc = new ServerAssoc; 
assoc->host_name() = princ->hostName(); 
assoc->pid() = princ->pid(); 
assoc->server(server);

cout << "host name is " << princ->hostName() << ", pid is " << 
princ->pid()

<< ", loginName is " << princ->loginName() << ", password is
\ \

<< princ->password() << endl;

// NOTE: We do not need to _duplicate the server
// (Increment the ref count) since append on sequences automati­

cally
// increment the ref count. The ref count is decrmented when 
// the element is removed/ sequence is deleted.
_servers.append(assoc);

}

// Uses Round Robin scheduling to give out ComputeServer Objects 
ComputeServer *MonitorServer::get_server(CORBA::Environments env)
{

//if ( ! valid_user(_principal()) ) {
// env.exception_value(new PermissionDenied);
// return NULL;
/ / }

if ( _servers.length() == 0) {
env.exception_value(new NoServers); 
return NULL;

}
if ( _cur_index >= _servers.length() )

_cur_index = 0;
ComputeServer ‘server = _servers[_cur_index++].server(); 
server->_duplicate();// Return value is released by ORB 
return server;

)

void sighandler(int)
{

exit(0);
)
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int main(int argc, char **argv)
{

signal (SIGINT, sighandler) ;
MonitorServer server("TestMonitor");

CORBA::BOA *boa = CORBA::BOA::instance();

// Create Role graph

create_rolesgraph();

// Attach the event handler to implementation so that unbind 
// gets called when clients disconnect

CORBA::Environment env;

boa->event_handler(&server, env, new SecurityEventHandler);

if ( env.check_exception() ) {
cout << "Error registering event handler." << endl; 
cout << env;

}

CORBA::BOA::impl_is_ready(); 
return 0;

}



APPENDIX VI

ROLE GRAPH INITIALIZATION PROGRAM

#include <stdlib.h>
#include <string.h>
#include ./persist_store/CosPersPID_s.hh"
#include "../persist_store/posPID.h"
#include ./persist_store/CosPersPDS_s.hh"
#include ./persist_store/posPDS.h"
#include "CosRID_s.hh"
#include "CosRoles_s.hh"
#include "RID.h"
#include "Roles.h"
#include "misc.h"

table_type symboltable[MAXTABLE+1];
RolesGraph *rolesgraph;

void create_rolesgraph()
{
RID *ridO = new RID("Root", "flash.adb.com");
RID *ridl = new RID("Project Manager", "flash.adb.com") 
RID *rid2 = new RID("Office Manager", "flash.adb.com"); 
RID *rid3 = new RID("Reception", "flash.adb.com");
RID *rid4 = new RID("Engineer", "flash.adb.com");
RID *rid5 = new RID("Sr Engineer", "flash.adb.com");

CORBA :String *priv_a = new CORBA
CORBA :String *priv_b = new CORBA
CORBA
files

:String 
') ;

*priv_c = new CORBA

CORBA :String *priv_d = new CORBA:
CORBA::String 
account");

*priv_e new CORBA:

CORBA :String *priv_f = new CORBA
CORBA :String *priv_g = new CORBA
CORBA :String *priv_h = new CORBA
CORBA :String *priv_i = new CORBA

CORBA :String *loginO = new CORBA:
CORBA :String *loginl = new CORBA:

:String("Access to reception desk"); 
:String("Personal files");
:String("Check out development

:String("Incoming phone calls");
:String("Create new computer

:String("Issue checks");
:String("Access to project files");
:String("Cancel projects");
:String("Order office supplies");

:String("john");
:String("eugene");

103
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CORBA: 
CORBA: 
CORBA: 
CORBA: 
CORBA: 
CORBA: 
CORBA: 
CORBA: 
CORBA:

String
String
String
String
String
String
String
String
String

*login2 
*login3 
*login4 
*login5 
*login6 
*login7 
*login8 
*login9 
*ipO =

new
new
new
new
new
new
new
new

CORBA
CORBA
CORBA
CORBA
CORBA
CORBA
CORBA
CORBA

:String("sharon");
:String("michael"); 
:String("michelle") 
:String("william"); 
:String("tom");
:String("cheryl");
:String("jean");
:String("dave");

new CORBA::String("flash.adb.com")

CosRoles::seqld privsetO, privsetl, privset2, privset3, privset4, 
privset5;

CosRoles::seqAuth al_reception, al_off_man, al_engineer, al_sr_engineer, 
al_proj_man, al_root;

CosRoles::seqAuth dl_reception, dl_off_man, dl_engineer, dl_sr_engineer, 
dl_proj_man, dl_root;

CosRoles::auth_para auth_parameterO, auth_parameterl, auth_parameter2, 
auth_parameter3, auth_parameter4, auth_parameter5, auth_parameter6, 
auth_parameter7, auth_parameter8, auth_parameter9;

CORBA::String *priv_j = new CORBA::String("Audit accounts");
CosRoles::seqld privset_fc;
CosRoles::seqAuth al_fc, dl_fc;
CosRoles::auth_para auth_parameterlO;
CORBA::String *loginlO = new CORBA::String("tim");

for (int i = 0; i < MAXTABLE+1; i++)
*(symboltable[i].name) = '\0';

privsetO.append(*priv_a) 
privsetO.append!*priv_d) 
privsetl.append(*priv_c) 
privsetl.append(*priv_g) 
privset2.append(*priv_b) 
privset2.append(*priv_i) 
privset2.append(*priv_f) 
privset3.append(*priv_g) 
privset4.append(*priv_h) 
privset5.append(*priv_e)

auth_parameterO.login(*login0); 
auth_parameterO.ip(*ipO);

auth_parameterl.login(*loginl); 
auth_parameterl.ip(*ip0);

auth_parameter2.login(*login2); 
auth_parameter2.ip(*ip0);

auth_parameter3.login(*login3); 
auth_parameter3.ip(* ipO);
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auth_parameter4.login(*login4); 
auth_parameter4.ip(*ip0);

auth_parameter5.login(*login5); 
auth_parameter5.ip(*ipO);

auth_parameter6.login(*login6); 
auth_parameter6.ip(*ip0);

auth_parameter7.login(*login7); 
auth_parameter7.ip(*ip0);

auth_parameter8.login(*login8); 
auth_parameter8.ip(* ipO);

auth_parameter9.login(*login9); 
auth_parameter9.ip(* ipO);

al_reception.append(auth_parameter2); 
al_reception.append(auth_parameter7); 
dl_reception.append(auth_parameter3); 
dl_reception.append(auth_parameter5); 
al_engineer.append(auth_parameter3); 
al_engineer.append(auth_parameter6); 
al_engineer.append(auth_parameter4); 
dl_engineer.append(auth_parameter2); 
dl_engineer.append(auth_parameter7); 
dl_engineer.append(auth_parameter5); 
al_off_man.append(auth_parameter8); 
dl_off_man.append(auth_parameter2) ; 
dl_off_man.append(auth_parameter7); 
dl_off_man.append(auth_parameter3); 
dl_o f f_man.append(auth_parameter6); 
al_sr_engineer.append(auth_parameterO); 
dl_sr_engineer.append(auth_parameter 8); 
dl_sr_engineer.append(auth_parameter3); 
al proi man.append(auth_parameter9); 
dl_proj_man.append(auth_parameterO); 
dl_proj_man.append(auth_parameter8); 
al_root.append(auth_parameterl); 
dl_root.append(auth_parameter9);

List *jl_reception = new List;
List *jl_off_man = new List;
List *jl_proj_man = new List;
List *jl_sr_engineer = new List;
List *jl_engineer = new List;
List *jl_root = new List;

Role *role_reception = new Role(rid3, privsetO, al_reception,
dl_reception, jl_reception);

Role *role_engineer = new Role(rid4, privsetl, al_reception,
dl_reception, jl_engineer);
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jl_off_man->append(role_reception);
Role *role_off_man = new Role(rid2, privset2, al_off_man,

dl_off_man, jl_off_man); 
jl_sr_engineer->append(role_engineer); 
jl_sr_engineer->append(role_reception);
Role *role_sr_engineer = new Role(rid5, privset3, al_sr_engineer,

dl_sr_engineer, jl_sr_engineer);

Role *role__proj_man = new Role(ridl, privset4, al_proj_man,
dl_proj_man, jl_proj_man);

Role *role_root = new Role(rid0, privset5, al_root, 
dl_root, jl_root);

rolesgraph = new RolesGraph(role_root); 
List *s1 = new List; 
sl->append(role_root); 
rolesgraph->add(si, role_proj_man);
List *sl2 = new List; 
sl2->append(role_proj_man); 
rolesgraph->add(sl2, role_sr_engineer); 
rolesgraph->add(sl2, role_off_man);

Role *role;
role = rolesgraph->Root();
cout << "Root role is " << *(role->getRIDp()->get_RnameString()) << 

endl ;

RID rid6("Financial Controller", "flash.adb.com");
privset_fc.append(*priv_j);
auth_parameterlO.login(*loginlO);
auth_parameterlO.ip(*ipO);
al_fc.append(auth_parameterlO) ;
dl_fc.append(auth_parameter2);
dl_fc.append(auth_parameter9) ;
List *jl_fc = new List; 
jl_fc->append(role_engineer) ; 
jl_fc->append(role_off_man);
Role *role_fc = new Role(&rid6, privset_fc, al_fc, dl_fc, jl_fc); 
List *sl_fc = new List; 
sl_fc->append(role_root);

rolesgraph->addUser(*login2, 
rolesgraph->addUser(*login3, 
rolesgraph->addUser(*login4, *ipO, rid4) 
rolesgraph->addUser(*login6, 
rolesgraph->addUser(*login7, *ipO, rid3) 
rolesgraph->addUser(*login8, 
rolesgraph->addUser(*login9, *ipO, ridl)

// Creating persistent rolesgraph

ipO, rid5)
ipO, ridO)
ipO, rid3)
ipO, rid4)
ipO, rid4)
ipO, rid4)
ipO, rid3)
ipO, rid2)
ipO, ridl)

RolesGraph *newobj;



newobj = rolesgraph;
PosPID newpid("EOS.2.0.2", "Rolegraph", "flash.adb.com");
CORBA::String *newstring;

newstring = newpid.get_PIDString() ; 
cout << *newstring << endl;
PosPDS *newpds = new PosPDS((CosPersPDS::Object *) newobj, knewpid) 

// Remove persistent role graph

newpds->connect((CosPersPDS::Object *) newobj, Snewpid); 
newpds->remove((CosPersPDS::Object *) newobj, knewpid); 
newpds->disconnect((CosPersPDS::Object *) newobj, &newpid);

newpds->setobj size((long) sizeof(RolesGraph));

// Store persistent role graph

newpds->connect((CosPersPDS::Object *) newobj, &newpid); 
newpds->store((CosPersPDS::Object *) newobj, &newpid); 
newpds->disconnect((CosPersPDS::Object *) newobj, &newpid);

RolesGraph *get_rolesgraph(void)
{

/ *
cout << "Start testing isCycle......" «  endl;
if (rolesgraph->isCycle(sl_fc, role_fc))

cout << "Cycle exists after adding role, "
<< *(role_fc->getRIDp()->get_RnameString()) << endl;

else
cout << "Cycle doesn't exist after adding role, "

<< *(role_fc->getRIDp()->get_RnameString()) << endl;

if (rolesgraph->isJunior(rid4, ridl))
cout << *(rid4.get_RnameString()) << " is a junior of " <<

*(ridl.get_RnameString()) << endl;
else

cout << *(rid4.get_RnameString()) << " is not a junior of " <<
*(ridl.get_RnameString()) << endl;
* /

// rolesgraph->displayGraph();

PosPID newpid("EOS.2.0.2", "Rolegraph", "flash.adb.com");
CORBA::String *newstring;
RolesGraph *getobj = new RolesGraph;

newstring = newpid.get_PIDString() ; 
cout << *newstring << endl;
PosPDS *newpds = new PosPDS((CosPersPDS::Object *) getobj, &newpid) 

newpds->connect((CosPersPDS::Object *) getobj, &newpid);



f ((getobj = (RolesGraph *) newpds->restore((CosPersPDS::Object *
getobj,
&newpid)) != NULL) {

cout << "After restore" << endl;
cout << "Object ptr after restoring is " << getobj << endl; 
getobj->displayGraph();

} else
cout << "return null from restore" << endl; 

cout << "Before disconnect" << endl;
newpds->disconnect((CosPersPDS::Object *) getobj, knewpid); 
cout << "After disconnect" << endl;

return getobj;
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