
Civil & Environmental Engineering and 
Construction Faculty Publications 

Civil & Environmental Engineering and 
Construction Engineering 

3-1-2019 

Changes in Snow Phenology from 1979 to 2016 over the Tianshan Changes in Snow Phenology from 1979 to 2016 over the Tianshan 

Mountains, Central Asia Mountains, Central Asia 

Tao Yang 
Chinese Academy of Sciences, yangtao515@mails.ucas.ac.cn 

Qian Li 
Chinese Academy of Sciences, liqian0109@mails.ucas.ac.cn 

Sajjad Ahmad 
University of Nevada, Las Vegas, sajjad.ahmad@unlv.edu 

Hongfei Zhou 
Chinese Academy of Sciences, zhouhf@ms.xjb.ac.cn 

Lanhai Li 
Chinese Academy of Sciences, lilh@ms.xjb.ac.cn 
Follow this and additional works at: https://digitalscholarship.unlv.edu/fac_articles 

 Part of the Climate Commons, Geotechnical Engineering Commons, and the Hydraulic Engineering 

Commons 

Repository Citation Repository Citation 
Yang, T., Li, Q., Ahmad, S., Zhou, H., Li, L. (2019). Changes in Snow Phenology from 1979 to 2016 over the 
Tianshan Mountains, Central Asia. Remote Sensing, 11(5), 1-16. MDPI. 
http://dx.doi.org/10.3390/rs11050499 

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Article has been accepted for inclusion in Civil & Environmental Engineering and Construction Faculty 
Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/fac_articles
https://digitalscholarship.unlv.edu/fac_articles
https://digitalscholarship.unlv.edu/cee
https://digitalscholarship.unlv.edu/cee
https://digitalscholarship.unlv.edu/fac_articles?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/188?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/255?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1087?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1087?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.3390/rs11050499
mailto:digitalscholarship@unlv.edu


remote sensing  

Article

Changes in Snow Phenology from 1979 to 2016 over
the Tianshan Mountains, Central Asia

Tao Yang 1,2 , Qian Li 1,2 , Sajjad Ahmad 3 , Hongfei Zhou 1 and Lanhai Li 1,4,5,6,*
1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,

Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China;
yangtao515@mails.ucas.ac.cn (T.Y.); liqian0109@mails.ucas.ac.cn (Q.L.); zhouhf@ms.xjb.ac.cn (H.Z.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas,

4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, USA; sajjad.ahmad@unlv.edu
4 CAS Research Center for Ecology and Environment of Central Asia, 818 South Beijing Road, Urumqi 830011, China
5 Ili Station for Watershed Ecosystem Research, Chinese Academy of Sciences, 818 South Beijing Road,

Urumqi 830011, China
6 Xinjiang Regional Center of Resources and Environmental Science Instrument, Chinese Academy of

Sciences, 818 South Beijing Road, Urumqi 830011, China
* Correspondence: lilh@ms.xjb.ac.cn; Tel.: +86-991-7823125

Received: 2 January 2019; Accepted: 25 February 2019; Published: 1 March 2019
����������
�������

Abstract: Snowmelt from the Tianshan Mountains (TS) is a major contributor to the water resources of
the Central Asian region. Thus, changes in snow phenology over the TS have significant implications
for regional water supplies and ecosystem services. However, the characteristics of changes in
snow phenology and their influences on the climate are poorly understood throughout the entire
TS due to the lack of in situ observations, limitations of optical remote sensing due to clouds, and
decentralized political landscapes. Using passive microwave remote sensing snow data from 1979
to 2016 across the TS, this study investigates the spatiotemporal variations of snow phenology and
their attributes and implications. The results show that the mean snow onset day (Do), snow end
day (De), snow cover duration days (Dd), and maximum snow depth (SDmax) from 1979 to 2016
were the 78.2nd day of hydrological year (DOY), 222.4th DOY, 146.2 days, and 16.1 cm over the TS,
respectively. Dd exhibited a spatial distribution of days with a temperature of <0 ◦C derived from
meteorological station observations. Anomalies of snow phenology displayed the regional diversities
over the TS, with shortened Dd in high-altitude regions and the Fergana Valley but increased Dd
in the Ili Valley and upper reaches of the Chu and Aksu Rivers. Increased SDmax was exhibited in
the central part of the TS, and decreased SDmax was observed in the western and eastern parts of
the TS. Changes in Dd were dominated by earlier De, which was caused by increased melt-season
temperatures (Tm). Earlier De with increased accumulation of seasonal precipitation (Pa) influenced
the hydrological processes in the snowmelt recharge basin, increasing runoff and earlier peak runoff
in the spring, which intensified the regional water crisis.

Keywords: climate change; snow cover duration; snow depth; passive microwave remote sensing;
runoff; Tianshan Mountains

1. Introduction

Snow plays a critical role in regional and global water cycles, as well as in climate systems [1–3].
Snow cover influences land surface energy budgets and atmospheric circulation patterns due to its
high surface albedo and good thermal insulation [4–8]. Snow phenology, i.e., the snow onset day,
snow end day, and snow cover duration, is essential in the representation of snow variability and has
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direct implications on the growth of vegetation, snowmelt timing, freshwater supply, and irrigation
in snowmelt-dominated basins [5,9–14]. Therefore, it is necessary and meaningful to investigate the
spatiotemporal variability of snow phenology.

Compared with the sparse observations of meteorological stations, remote sensing is an effective
way to monitor snow dynamics of past decades on regional and global scales [4,8,15–17]. Optical remote
sensing uses the normalized difference snow index (NDSI) to identify the snow cover extent with a high
resolution [18,19]. Snow phenology conditions are mainly influenced by the variability of the snow
cover extent [8,20,21]. Increasing temperatures have shortened the snow cover duration (Dd) [6,22],
delayed the snow onset day (Do) [23], and resulted in an earlier snow end day (De) [24]. In contrast,
enhanced mid-latitude westerlies have caused an enlarged snow cover extent in High Asia and Tibet with
prolonged Dd, earlier Do, and later De [25–27]. However, the cloud mask and lack of snow depth detection
methods limit the application of snow products from optical remote sensing [28–31]. Passive microwave
remote sensing based on the microwave spectral gradient method provides a potential way to monitor
the spatiotemporal variations of snow depth and snow cover under cloudy conditions [32–34]. The snow
depth products retrieved from passive microwave sensors have been successfully applied in vegetation
phenology [35–37], snow climatology, and snow hydrology [12,31,38–40].

Situated in inland Eurasia and far away from the oceans, the Tianshan Mountains (TS) are
called the water tower of Central Asia. The main rivers that are recharged by glacier/snow melt
water (e.g., the Ili River, Syr Darya River, Amu Darya River, Tarim River, and Chu River) originate
from the TS, forming one of the largest irrigated zones in the world [41–43]. Previous studies
indicated that the TS have experienced a significant warming trend over the past few decades [44–46].
The snowfall/precipitation ratio showed a decreasing trend accompanied by increasing temperatures
in the TS [47], which intensified glacier and snow melt [2], leading to increasing runoff and earlier
peak runoff from glacier/snow melt in these recharging river basins [45,48–50]. Several studies have
investigated the impact of glacier change on water resources in the TS [42,51–53], but only a few
studies have addressed the snow cover changes with optical remote sensing [54,55]. In addition,
different moisture sources cause diverse climate zones in the TS [56,57], but most studies have focused
on only a part of the TS, especially on the areas within China [43,58]. Research on the snow phenology
concerning the entire TS and its response to the different climate types in the sub-regions is lacking.
Therefore, it is necessary to survey the spatiotemporal variability of snow phenology and its potential
influencing factors throughout the entire TS.

This study investigated the variability of snow phenology from 1979 to 2016 based on passive
microwave snow depth data from the TS. The objectives of this study were as follows: (1) to derive
snow phenology, including Do, De, Dd, and SDmax from daily snow depth data; (2) to analyze the
spatiotemporal distributions and trends of snow phenology, as well as their potential influencing
factors; and (3) to discuss the potential impact of the changes of snow phenology on water resources.
This is the first study to describe snow phenology using passive microwave snow depth data for the
entire TS. The results will help to improve the understanding of snow phenology and lead to better
management of the regional water resources.

2. Data and Method

2.1. Study Area

As the largest mountain system in Central Asia, the TS are approximately 250–350 km wide and
over 2500 km long, spanning from Uzbekistan to Kyrgyzstan, southeastern Kazakhstan, and Xinjiang
(China) with 800,000 km2 (Figure 1a) [59]. The TS have abundant precipitation due to westerly
circulation and unique topography, exhibiting heavily glaciated and snow-covered regions [42,60].
The people living in the surrounding areas are heavily dependent on glacier/snow melt water for
their fresh water supply [41,61,62]. The TS are geographically divided into four parts: I. the Western
Tianshan Mountains (WTS), II. The Northern Tianshan Mountains (NTS), III. The Central Tianshan



Remote Sens. 2019, 11, 499 3 of 16

Mountains (CTS), and IV. The Eastern Tianshan Mountains (ETS) [41,43]. The annual mean
precipitation across the TS is 329.3 mm, which is concentrated between April and June, and the annual
mean temperature is 4.6 ◦C (Figure 1c). The WTS and NTS are characterized by a relatively humid
climate, while the CTS and ETS have a typical continental climate [63]. The maximum precipitation in
the NTS and ETS occurs in the spring and early summer, which is later than that in the WTS (from late
winter to early spring) but earlier than that in the CTS (summer) [59].
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Figure 1. (a) Location of the Tianshan Mountains (TS) and the distribution of the meteorological
stations. (b) Annual precipitation over the TS from 1979 to 2016 (Global Precipitation Climatology
Centre products (GPCC)). (c) Monthly distribution of precipitation and temperature in the TS during
1979–2016 (GPCC and Global Historical Climatology Network 2 and Climate Anomaly Monitoring
System (GHCN_CAMS)). (d) Averaged snow depth time series over the TS during 1979–2016.

2.2. Datasets

2.2.1. Remote Sensing Snow Depth Products

The passive microwave snow depth dataset, within the range from 60–140◦E and 15–55◦N at 25 km
spatial resolution (http://westdc.westgis.ac.cn), which is derived from the brightness temperature
data from the National Snow and Ice Data Center (NSIDC), including the scanning multichannel
radiometer (SMMR) (1978–1987), special sensor microwave/imager (SSM/I) (1987–2007), and special
sensor microwave imager/sounder (SSMI/S) (2008–2016), was employed in this study. The time
consistency of this dataset was improved by cross calibration of the light temperatures of different
sensors [64]. This daily database was developed through a modified Chang algorithm, which was
based on the in situ snow data of China, taking the impact of forest cover, liquid water content
in snow layer, and surface water body into consideration [11,30,64,65]. Compared with the snow
depth from SSM/I and SSMI/S, this dataset has high accuracy and low biases in China [65] and
allows the successful investigation of snow depth in China, the Tibetan Plateau, northeastern China,
and Xinjiang [11,27,30,31].

2.2.2. Precipitation and Temperature Datasets

The daily surface air temperature and precipitation data from 50 meteorological stations
in the TS for 1979–2016 were collected from the China Meteorological Administration (CMA)

http://westdc.westgis.ac.cn
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(http://data.cma.cn) and National Climate Data Center (NCDC) (https://www.ncdc.noaa.gov).
The data from meteorological stations were applied to analyze the number of days during which the
temperature was below 0 ◦C in the study area. Monthly gridded surface air temperature (1979–2016)
was derived from the Global Historical Climatology Network 2 and Climate Anomaly Monitoring
System (GHCN_CAMS, http://www.esrl.noaa.gov/psd/). The gridded 2 m temperature datasets
were merged from two large individual datasets of station observations with 0.5◦ × 0.5◦ spatial
resolution [66]. The gridded surface air temperature data were resampled to 0.25◦ × 0.25◦ spatial
resolution for resolution consistency. The Global Precipitation Climatology Centre products (GPCC,
https://www.dwd.de/EN/ourservices/gpcc/gpcc.html) were more suitable for precipitation research
in Central Asia when compared with the climatic research unit (CRU) and Willmott and Matsuura
(WM) precipitation data [67]. Therefore, monthly precipitation gridded data at 0.25◦ × 0.25◦ spatial
resolution from 1979 to 2016 were derived from the GPCC (V2018), which were based on data from
more than 79,000 stations [68]. The gridded data concerning air temperature and precipitation were
used to investigate the relationship between snow phenology changes and climate variations in the TS.
As a typical snowmelt-dominated river in the TS, the Kaidu River was chosen to discuss the variability
of snow phenology impacts on water resources. The daily runoff data in the Kaidu River from 1979 to
2011 were collected from the Xinjiang Hydrological Bureau.

2.3. Methodology

2.3.1. Snow Phenology Calculation

To investigate the variability of snow phenology over the TS, this study defined the period from
September to the following August as a snow hydrological year. The snow cover onset day (Do) for the
hydrological year was defined as the first day of the first five consecutive snow cover days on each grid
to reduce the influence of instantaneous snow on the snow phenology computations [27]. The snow
cover end day (De) for the hydrological year was defined as the last day of the last five consecutive
snow cover days on each grid. The snow cover duration (Dd) for the hydrological year was calculated
from Do to De. The period from September to the following February was defined as the accumulation
season, and the period from March to August was defined as the melt season, with the maximum
snow depth (SDmax) peaking around March (Figure 1d).

2.3.2. Sensitivity Analysis of Snow Phenology

The mean monthly air temperature (Ta) and total monthly precipitation (Pa) during the
accumulation season, maximum snow depth (SDmax), mean monthly air temperature (Tm), and total
monthly precipitation (Pm) during the melt season were applied to quantify their contributions to
snow phenology over the TS. According to Peng et al. [1,69] and Chen et al. [1,69], a multiple linear
regression model (Equation (1)) can be used to analyze the variability of Do, which was mainly driven
by Ta and Pa.

Do = β1 × Ta + β2 × Pa + β3 (1)

where the regression coefficients β1 and β2 were defined as the sensitivity of Do to Ta and the sensitivity
of Do to Pa, respectively.

De was mainly determined by the Tm and SDmax, and the SDmax in the snow season was
dependent on Ta and Pa [1,69]. Thus, Equations (2) and (3) were employed in the sensitivity analysis
of SDmax and De, respectively.

SDmax = β4 × Ta + β5 × Pa + β6 (2)

De = β7 × Tm + β8 × SDmax + β9. (3)

The regression coefficients β4 and β5 in Equation (2) were defined as the sensitivity of SDmax to
Ta and SDmax to Pa. Similarly, the regression coefficients β7 and β8 in Equation (3) were defined as the

http://data.cma.cn
https://www.ncdc.noaa.gov
http://www.esrl.noaa.gov/psd/
https://www.dwd.de/EN/ourservices/gpcc/gpcc.html


Remote Sens. 2019, 11, 499 5 of 16

sensitivity of De to Tm and De to SDmax. β3, β6, and β9 are the residual error. Therefore, the sensitivity
analysis was performed based on Equations (1)–(3) to detect the attributes of the snow phenology
changes over the TS.

2.3.3. Trend Analysis and Statistical Analysis

The trends in snow phenology, air temperature, and precipitation were calculated by the
Mann–Kendall (M-K) test [70,71], which is a nonparametric method of monotonic trends that has
successfully been applied to detect trends in a time series [72,73]. The Sen method was used to estimate
the slope of the trend [74]. The significance of a trend was assumed if the Z (M-K) value was unequal
to zero with a significance level of less than 0.05. The variations in snow phenology and its relationship
with air temperature and precipitation were investigated by correlation analysis and linear regression.

2.3.4. Contributions of Do and De to Dd

The standardized z-score was used to quantify the contributions of Do and De to Dd anomalies.
The standard score of a raw score x [75] can be defined as follows:

z =
x− µ

σ
(4)

where µ is the mean of Do, De, and Dd over the TS from 1979 to 2016 and σ is the standard deviation of
Do, De, and Dd in the corresponding period. By regressing the z-scores of Dd against the z-scores of Do

and De, the contributions of Do and De to Dd anomalies can be derived from the regression coefficients.

3. Results

3.1. Climatology of Snow Phenology over the TS

Spatial distributions of Do, De, Dd, and SDmax over the TS during 1979–2016 are shown in
Figure 2. The mean Do, De, Dd, and SDmax across the TS during 1979–2016 were the 78.2nd day of
the hydrological year (DOY; i.e., 17 November), 222.4th DOY (i.e., 10 April), 146.2 days, and 16.1 cm,
respectively. Snow cover appeared earlier in the upper reaches of the Syr Darya, Aksu, Kaidu, and Ili
Rivers and later in the Ili Valley, Fergana Valley, and edge of the TS (Figure 2a). On the other hand,
the spatial distribution of De was opposite to the pattern of Do (Figure 2b): later De corresponded
to earlier Do, and vice versa. Combining the patterns of Do and De, the spatial distribution of Dd
displayed a longer period in the upper reaches of the Aksu and the Kaidu Rivers, but a shorter period
in the Ili Valley, Fergana Valley, and edge of the TS (Figure 2c). The large values in SDmax occurred in
the upper reaches of the Syr Darya, Aksu, and Kaidu Rivers, as well as the Ili Valley, while the small
values occurred in the Fergana Valley, southern edge of the TS, eastern ETS, and lower part of the Ili
Valley (Figure 2d).
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Figure 2. Averaged snow phenology over the period of 1979–2016: (a) snow onset day Do, (b) snow
end day De, (c) snow cover duration Dd, and (d) maximum snow depth SDmax.

3.2. Changes in Snow Phenology over the TS

De and Dd in the TS experienced a significant downward trend at the 0.05 significance level
(Figure 4a). Spatial distributions of temporal trends in mean Do, De, Dd, and SDmax over the TS during
1979–2016 are displayed in Figure 3. Do was earlier in the Ili Valley and the upper reaches of the Chu
and Syr Darya Rivers but delayed on the southern slope of the TS; in particular, it was significantly
later in the high-altitude regions of the Aksu, Kaidu, and Ili Rivers, the ETS, and the Fergana Valley
(Figure 3a). Compared with the changes in Do, De was earlier across almost all of the TS; in particular,
it was significantly earlier in the high-altitude regions of the Aksu, Kaidu, and Ili Rivers, the ETS,
and the Fergana Valley but delayed in sporadic regions (Figure 3b). Combined with the variations of
Do and De, Dd decreased in the high-altitude regions of the Aksu, Kaidu, and Ili Rivers, the northern
slope of the ETS, and the Fergana Valley but increased in the upper reaches of the Chu River and the
Ili Valley (Figure 3c). The SDmax in the upper reaches of the Kaidu, Ili, and Syr Darya Rivers, and the
eastern ETS showed a significant downward trend (Figure 3d). The areas with a significant increase in
SDmax were located in the Ili Valley and the upper reaches of the Aksu and Chu Rivers.
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3.3. Contributions of Do and De to Dd

The contributions of Do and De to Dd were estimated by their normalized values over the
TS from 1979 to 2016 (Figure 4). Changes in De accounted for 52.8% of changes in Dd over the
TS during 1979–2016 (Figure 4b), while changes in Do accounted for 47.2% of the changes in Dd.
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In addition, the correlation analysis between Do, De and Dd indicated that both Do and De had a
significant (at 0.01 significance level) relationship with Dd (Figure 4c,d) during the period of 1979–2016.
However, this relationship between De and Dd (R2 = 0.68) was more significant than that between Do

and Dd (R2 = 0.39). The above results revealed that changes in De caused the most variations in the
snow season over the TS during 1979–2016.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 16 
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(normalized values); (c) Relationship between Do and Dd; (d) Relationship between De and Dd. R2 is
the coefficient of determination.

3.4. Spatiotemporal Variations of Temperature and Precipitation over the TS

This study calculated the number of days with mean air temperatures below 0 ◦C from
meteorological station observations over the TS from 1979 to 2016 to compare the results of Dd
derived from passive microwave instruments. Small values for days with a mean air temperature
<0 ◦C occurred (<120 days) at the southern edge of the TS, in the Ili Valley, and in the WTS (Figure 5a).
This pattern was generally consistent with the spatial distribution of Dd (Figure 2c). Days with
a mean air temperature <0 ◦C at all the stations showed a downward trend, and the significantly
decreasing (significance level at 0.05) stations were located in the Aksu and Kaidu Rivers, Ili Valley,
and ETS (Figure 5b).



Remote Sens. 2019, 11, 499 8 of 16
Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 16 

 
Figure 5. Spatial distribution of changes in temperature and precipitation over the TS from 1979 to 
2016. The spatial pattern of (a) days with a mean temperature of <0 °C and (b) changes from 
meteorological observations. The variations of (c) annual mean Ta, (d) Tm, (e) Pa, and (f) Pm. The black 
crosses and dots in Figure 5 indicate that the trends were significant (significance level at 0.05). 

3.5. Sensitivity Analysis of Snow Phenology over the TS 

Sensitivity analysis was performed based on Equations (1)–(3) to detect the attributes of the 
snow phenology changes over the TS, and the results are shown in Figure 6. The results showed a 
positive sensitivity of Do to Ta at 0.91 days °C−1 across the TS from 1979 to 2016, which indicated that 
the Do would be delayed 0.91 days, with Ta increased by 1 °C. In contrast, the significant negative 
sensitivity of Do to Pa was −0.11 days mm−1 (significance level at 0.01), which indicated that Do would 
be advanced 0.11 days, with Pa increased by 1 mm. The results indicated that the increased Ta would 
hinder the increase of SDmax (−0.67 cm °C−1), but the increased Pa would promote the significant 
increase of SDmax (0.04 cm mm−1, significance level at 0.05). Compared with the sensitivity of De to 
SDmax (0.29 days cm−1), the magnitude of sensitivity of De to Tm (−5.36 days °C−1, significance level at 
0.01) was significantly larger (Figure 6e,f). 

Figure 5. Spatial distribution of changes in temperature and precipitation over the TS from 1979 to 2016.
The spatial pattern of (a) days with a mean temperature of <0 ◦C and (b) changes from meteorological
observations. The variations of (c) annual mean Ta, (d) Tm, (e) Pa, and (f) Pm. The black crosses and
dots in Figure 5 indicate that the trends were significant (significance level at 0.05).

As displayed in Figure 5c,d, the Ta and Tm experienced a significant increase in almost all
of the regions over the TS (significance level at 0.05). Moreover, both the rising rates of Ta and
Tm in the upper reaches of the Syr Darya, Aksu River, NTS, and ETS reached 0.07 ◦C per year.
The increasing rate in Tm was larger than that in Ta over the TS. Pa and Pm in all regions over the
TS from 1979–2016 showed an upward trend, except for the upper reaches of the Syr Darya River
(Figure 5e,f). Pa with significant increase was observed in the upper reaches of the Aksu River, Ili Valley,
and the northern WTS, where the increase rate was above 1 mm per year. In contrast to Pa, Pm showed
significant increase in the western area of the ETS and the upper reaches of the Aksu, Ili, and Kaidu
Rivers. Although significantly increased winter temperatures over the TS were reported [43,44,47],
strengthened westerlies brought more air moisture flux [25,76,77] and increased snowfall, which was
beneficial to snow cover accumulation [47,78]. The increasing rate of precipitation was more profound
in the west TS during winter and spring and in the east TS during summer [43].

3.5. Sensitivity Analysis of Snow Phenology over the TS

Sensitivity analysis was performed based on Equations (1)–(3) to detect the attributes of the snow
phenology changes over the TS, and the results are shown in Figure 6. The results showed a positive
sensitivity of Do to Ta at 0.91 days ◦C−1 across the TS from 1979 to 2016, which indicated that the Do

would be delayed 0.91 days, with Ta increased by 1 ◦C. In contrast, the significant negative sensitivity
of Do to Pa was −0.11 days mm−1 (significance level at 0.01), which indicated that Do would be
advanced 0.11 days, with Pa increased by 1 mm. The results indicated that the increased Ta would
hinder the increase of SDmax (−0.67 cm ◦C−1), but the increased Pa would promote the significant
increase of SDmax (0.04 cm mm−1, significance level at 0.05). Compared with the sensitivity of De to
SDmax (0.29 days cm−1), the magnitude of sensitivity of De to Tm (−5.36 days ◦C−1, significance level
at 0.01) was significantly larger (Figure 6e,f).
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4. Discussion

4.1. Factors Driving Snow Phenology Changes over the TS

Changes in air temperature and precipitation played a key role in the variations in the snow
phenology over the TS. Do was more sensitive to Ta than Pa, which could be explained by the delayed
Do over the TS (Figure 4a). Do was earlier in the Ili Valley and the upper reaches of the Chu and Syr
Darya Rivers due to the significantly increased Pa and negative sensitivity of Do to Pa (Figures 3a,
5e and 6b). The significantly increased Ta and highly positive sensitivity of Do to Ta caused the
significantly delayed Do in the high-altitude regions of the Aksu, Kaidu, and Ili Rivers, the ETS, and the
Fergana Valley (Figures 3a, 5e and 6a). The significantly increased Tm and highly negative sensitivity
of De to Tm resulted in the significantly earlier De over the TS, especially in high altitude regions of
the Aksu, Kaidu, and Ili Rivers, the northern ETS, and the Fergana Valley. The significantly increased
SDmax and highly positive sensitivity of De to SDmax promoted the delayed De. Previous studies
proved that high net radiation with thin snow cover in spring across the Northern Hemisphere created
a high sensitivity of De to temperature, which resulted in earlier De over Eurasia [6,69,79].

Although the magnitude of sensitivity of SDmax to Ta was larger than Pa (Figure 6c,d),
the increased rate of Pa was larger than Ta (Figure 5c,e). For example, areas with significantly increased
SDmax, such as the central part of the ETS and the east of the WTS, as well as the west of the NTS
and CTS, were caused by the significantly increased Pa and highly positive sensitivity of SDmax to Pa

(Figures 3d, 5e and 6d). The significantly increased Ta and highly negative sensitivity of SDmax to Ta

were attributed to the significantly decreased SDmax in the eastern ETS and the upper reaches of the
Kaidu, Ili, and Syr Darya Rivers (Figures 3d, 5c and 6c).

The increased SDmax and earlier Do caused longer Dd in the upper reaches of the Chu River and
the Ili Valley (Figure 3c). The significantly increased Tm advanced the De and subsequently shortened
Dd in the high-altitude regions of the Aksu, Kaidu, and Ili Rivers, the northern ETS, and the Fergana
Valley. De dominated the snow season variations due to the higher Tm across the TS, which was
coincidental with the studies in the Northern Hemisphere [6,69,79]. However, the Do in the Tibetan
Plateau controlled the variability of snow phenology [27]. In contrast, decreased Ta, which was
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driven by the Pacific Ocean’s surface cooling in winter and amplified Arctic warming effects [80–82],
resulted in earlier Do in the Tibetan Plateau (2001–2014) [27,79].

4.2. Potential Impact of Snow Phenology Changes on Water Resources

Snow melt is an important recharge source for the TS rivers [83], which means that the variability
of snow phenology significantly impacted the local runoff regimes. The Kaidu River is a typical
snowmelt runoff river in the TS [48,84], where spring runoff from the Bayanbulak and Dashankou
stations increased by 36.5% and 11.21%, respectively, and the runoff peak advanced between the
1980s and 2000s (Figure 7a,b). Although Dd and SDmax showed downward trends in the Kaidu
River, the increased Pm and advanced De caused runoff changes. The advanced De, with increased
precipitation in the upper reaches of the Aksu, Syr Darya, Kaidu, and the Ili Rivers contributed
to increased snowmelt earlier in spring. The maximum runoff peak in the snowmelt-dominated
rivers over the TS showed an advanced trend, but the runoff in summer changed insignificantly [45].
The runoff pattern of the Syr Darya River shifted from spring and early summer to late winter and early
spring due to climate warming [45]. In the Toshkan River, an important tributary of the Aksu River,
snowmelt runoff in the cold season increased by 65% and 56% due to the rising temperatures during
the periods from 1960 to 1997 and from 1998 to 2015 [45,85], respectively. In addition, some studies
indicated that the snowfall/precipitation ratio was expected to decrease in the 21st century over the
TS, which could reduce the snow cover area and aggravate snow melt [1,86]. The runoff shift in
snowmelt-dominated rivers has a big impact on water resource management, which may increase
the risk of spring flooding and cause a time mismatch between irrigation watering and crop growth,
considering population growth and climate warming.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 16 

by the Pacific Ocean’s surface cooling in winter and amplified Arctic warming effects [80–82], 
resulted in earlier Do in the Tibetan Plateau (2001–2014) [27,79]. 

4.2. Potential Impact of Snow Phenology Changes on Water Resources 

Snow melt is an important recharge source for the TS rivers [83], which means that the variability 
of snow phenology significantly impacted the local runoff regimes. The Kaidu River is a typical 
snowmelt runoff river in the TS [48,84], where spring runoff from the Bayanbulak and Dashankou 
stations increased by 36.5% and 11.21%, respectively, and the runoff peak advanced between the 
1980s and 2000s (Figure 7a,b). Although Dd and SDmax showed downward trends in the Kaidu River, 
the increased Pm and advanced De caused runoff changes. The advanced De, with increased 
precipitation in the upper reaches of the Aksu, Syr Darya, Kaidu, and the Ili Rivers contributed to 
increased snowmelt earlier in spring. The maximum runoff peak in the snowmelt-dominated rivers 
over the TS showed an advanced trend, but the runoff in summer changed insignificantly [45]. The 
runoff pattern of the Syr Darya River shifted from spring and early summer to late winter and early 
spring due to climate warming [45]. In the Toshkan River, an important tributary of the Aksu River, 
snowmelt runoff in the cold season increased by 65% and 56% due to the rising temperatures during 
the periods from 1960 to 1997 and from 1998 to 2015 [45,85], respectively. In addition, some studies 
indicated that the snowfall/precipitation ratio was expected to decrease in the 21st century over the 
TS, which could reduce the snow cover area and aggravate snow melt [1,86]. The runoff shift in 
snowmelt-dominated rivers has a big impact on water resource management, which may increase 
the risk of spring flooding and cause a time mismatch between irrigation watering and crop growth, 
considering population growth and climate warming. 

 
Figure 7. Runoff time series from (a) Bayanbulak hydrological station (84°08′, 43°01′) and (b) 
Dashankou hydrological station (85°44′, 42°13′) in the Kaidu River. The 1980s and 2000s represent the 
average of the periods of 1980–1989 and 2000–2009, respectively. 

4.3. Limitation and Outlook 

The passive microwave data could provide effective and long series of daily snow depth data to 
monitor the snow phenology over the TS from 1979 to 2016. However, there is uncertainty in snow 
depth retrieval at high-altitude regions in the study area where in situ observations are lacking. This 
uncertainty also leads to limitations in the separation of the snow accumulation season and snow 
melt season by the maximum snow depth in high-altitude regions. Several studies pointed out that 
passive microwave remote sensing has a limited ability to detect wet snow during the snow melt 
season, which may underestimate the Dd [87–90]. Meanwhile, misclassification and error in deriving 
snow cover were attributed to relatively coarse spatial resolution, as well as the complexity of snow 
characteristics and topography [91–94]. Combined with optical remote sensing, passive microwave 
remote sensing and a land surface model can effectively improve the monitoring accuracy of snow 
phenology and snow depth [95]. In addition, five consecutive snow cover days in each grid for 
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(b) Dashankou hydrological station (85◦44′, 42◦13′) in the Kaidu River. The 1980s and 2000s represent
the average of the periods of 1980–1989 and 2000–2009, respectively.

4.3. Limitation and Outlook

The passive microwave data could provide effective and long series of daily snow depth data
to monitor the snow phenology over the TS from 1979 to 2016. However, there is uncertainty in
snow depth retrieval at high-altitude regions in the study area where in situ observations are lacking.
This uncertainty also leads to limitations in the separation of the snow accumulation season and
snow melt season by the maximum snow depth in high-altitude regions. Several studies pointed
out that passive microwave remote sensing has a limited ability to detect wet snow during the
snow melt season, which may underestimate the Dd [87–90]. Meanwhile, misclassification and
error in deriving snow cover were attributed to relatively coarse spatial resolution, as well as
the complexity of snow characteristics and topography [91–94]. Combined with optical remote
sensing, passive microwave remote sensing and a land surface model can effectively improve the
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monitoring accuracy of snow phenology and snow depth [95]. In addition, five consecutive snow
cover days in each grid for calculating Do and De can reduce the influence of instantaneous snow
on snow phenology computations. However, this method may also cause later Do and earlier De,
consequently underestimating the Dd. It neglects the spatial heterogeneity of snow by using a fixed day
to define the snow melt season and snow accumulation season in each grid, bringing uncertainty into
the sensitivity analysis of the snow phenology. Sensitivity analysis based on the monthly precipitation
and air temperature cannot discriminate between the effect of snow and rain on snow phenology
due to the insufficient daily in situ observations. A comprehensive equation, which considers the
change rate for sensitivity analysis based on the daily data, will be more quantitatively capable
of describing the change in the snow phenology parameters over the years. The daily data from
the climate model simulations and satellite products can be used for further study. Other climate
variables (such as relative humidity and wind) and complex topography also have an important
impact on snow, which require intensive observation networks and large amounts of field survey
data. Alpine vegetation plays a crucial role in a mountain ecosystem, so the variability of snow
phenology and snow depth have been reported to significantly influence vegetation growth [24,96,97].
For example, a shorter Dd would lead to an earlier start and longer growing season on the Tibetan
Plateau [10,37]. The snow water equivalent and Dd play an equal role in the growth of grassland and
sparse vegetation [98]. Moreover, the mean snow depth significantly regulates desert vegetation growth
by persistently impacting soil moisture [36]. The TS has plenty of vegetation and well-developed
animal husbandry [99]. Therefore, the relationships between the variations in snow phenology and
vegetation growth over the TS need further research.

5. Conclusions

This study investigated the spatiotemporal variability of snow phenology and snow depth over
the TS using a passive microwave daily snow depth dataset from 1979 to 2016, as well as exploring the
impacts and attributes of snow changes. The main findings of the study are as follows:

1. The snow end day and snow cover duration across the TS experienced a significant decrease,
and the snow end day dominated the variability of snow season. The snow end day was
earlier across the TS with increasing air temperatures during the melt season, especially in the
high-altitude regions and the Fergana Valley.

2. Increasing precipitation during the accumulation season may result in increased maximum snow
depth in the Ili Valley and the upper reaches of the Aksu and Chu Rivers, subsequently causing
a longer snow cover duration. The snow cover duration was shortened in the upper reaches of the
Kaidu River basin, high-altitude regions of the Aksu and Ili Rivers, northern ETS, and Fergana
Valley due to the fact that the increasing temperatures delayed the snow onset day and caused
the occurrence of an earlier snow end day.

3. The earlier snow end day with increased precipitation during the accumulation season in the
snowmelt-dominated river basins contributed to increased snowmelt and advanced the runoff
peak to earlier in spring. The increased snowmelt will increase the risk of floods. The shifted
runoff peak will introduce temporal mismatch between the water supply and the crop-growing
season, increasing the difficulties of the regional reservoir and agriculture management and
intensifying contradictions for the planning and utilization of water in neighboring countries.
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