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Abstract: Groundwater depletion has been one of the major challenges in recent years. Analysis
of groundwater levels can be beneficial for groundwater management. The National Aeronautics
and Space Administration’s twin satellite, Gravity Recovery and Climate Experiment (GRACE),
serves in monitoring terrestrial water storage. Increasing freshwater demand amidst recent drought
(2000–2014) posed a significant groundwater level decline within the Colorado River Basin (CRB).
In the current study, a non-parametric technique was utilized to analyze historical groundwater
variability. Additionally, a stochastic Autoregressive Integrated Moving Average (ARIMA) model
was developed and tested to forecast the GRACE-derived groundwater anomalies within the CRB.
The ARIMA model was trained with the GRACE data from January 2003 to December of 2013
and validated with GRACE data from January 2014 to December of 2016. Groundwater anomaly
from January 2017 to December of 2019 was forecasted with the tested model. Autocorrelation and
partial autocorrelation plots were drawn to identify and construct the seasonal ARIMA models.
ARIMA order for each grid was evaluated based on Akaike’s and Bayesian information criterion.
The error analysis showed the reasonable numerical accuracy of selected seasonal ARIMA models.
The proposed models can be used to forecast groundwater variability for sustainable groundwater
planning and management.

Keywords: ARIMA; GRACE; groundwater; forecast; stochastic model

1. Introduction

The portion of water stored in pore spaces of soil and rock beneath the Earth’s surface is known
as groundwater. Groundwater is a major and dependable large source of freshwater for domestic,
agricultural, and industrial users in all climatic regions of the world [1,2]. It also plays a central role
to maintain the balance in the ecosystem [3,4]. The areas with highly variable rainfall fully depend
on groundwater due to lack of adequate alternative resources of fresh water. The over-exploitation
of groundwater is a threat to the sustainability of ecosystems, water supply, and economic and
social developments [5]. More energy is needed to pump out the dwindling groundwater levels,
which triggers higher energy consumption [6]. Ground subsidence may also occur for the excessive
groundwater depletions [7,8]. Long-term sustainable groundwater from river basins has become a
major concern among scientists. It is difficult to quantify the rate of natural renewal of groundwater to
subsidize the water table depletion required for supporting the ecosystem [9]. A proper understanding
of groundwater storage (GWS) variation at spatial and temporal scale helps to understand the
hydrologic cycle and its effect on global climate change. Therefore, consistent monitoring of the
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groundwater levels and storage may help to develop better plans for maintaining balanced ecosystems,
sustainable economic development and encountering the water stress [10].

Routine monitoring of groundwater from regional to continental scale with the networks of
monitoring well is tedious, time-consuming, and expensive. The inconsistency in data collection
at the temporal scale, scarce of evenly distributed monitoring wells, the complicated subsurface
physical properties, and recharging processes make the groundwater head estimation more
complicated. Sometimes to access the hydrological data is restricted by the law enforcement
agency. Since 1970s scientists are working on satellite-based remote-sensing systems for measuring
hydrological component; groundwater is the latest addition on that [11]. Avoiding aforementioned
challenges, National Aeronautics and Space Administration (NASA)’s twin Gravity Recovery and
Climate Experiment (GRACE) mission provides the first opportunity to directly measure groundwater
changes from space through the accurate estimation of Earth’s gravity field variations over time
and space [12–14]. Unlike traditional remote sensors utilizing electromagnetic emissions, GRACE
uses K-Band microwave to estimate inter-satellite drift due to the gravitational force, the effect of
the redistribution of earth mass component including cryosphere, hydrosphere, ocean, atmosphere,
and land surface within the accuracy of a micrometer. The GRACE data is processed with numerical
models to truncate the effect of atmospheric and oceanic contributions. Therefore, GRACE-observed
mass changes mostly reflect terrestrial water storage (TWS), vertical integration of groundwater,
soil moisture (SM), surface water (SW), snow water, and vegetation water measurements. Removing
the change in surface water storage from GRACE gravity measurements yields an estimated
change in groundwater [6,15–18]. GRACE provides groundwater level variability relative to the
user-defined time baseline instead of an optimal value of groundwater level from the surface
or any datum. GRACE-derived GWS demonstrated higher potential to represent the in-situ
groundwater-level [18–21]. Many studies have already quantified groundwater variability from
GRACE gravity measurements [22–24].

Analyzing the historical variability of the GRACE-derived GWS will help to understand future
groundwater conditions. Trend analysis is one of the popular and most accepted methods of
analyzing the variability of any data and is also popular while analyzing the changes in a hydrologic
variable [25–27]. Hydro-meteorological data are often non-normally distributed where mean does not
represent the central tendencies as effectively as the median. In such cases, non-parametric tests are
often useful over parametric tests to analyze the time series data. Mann–Kendall (MK) a commonly
used non-parametric statistical test to detect the trend in hydro-meteorological data [25,26,28]. MK test
was introduced by Kendall, [29] and Mann, [30] and is thus named after them. It is the rank-based
trend detection analysis which gives the statistical significance of the trend if they are present in the
time series. Further, the magnitude of the trend is often evaluated with the Thiel-Sen approach in most
of the time series analysis [26,28,31].

Modeling and predicting of groundwater level fluctuation provides valuable information
regarding groundwater declination, trend and allowable limit of exploitation. Forecasting the potential
change in groundwater levels can help to mitigate the issues associated with water management [32].
Accurate prediction of groundwater head helps planners to augment urban, rural, and industrial
freshwater demand. Groundwater level forecasting also helps to comprehend the dynamics between
factors that affect groundwater tables. An accurate and reliable groundwater forecasting helps
to develop integrated management of groundwater and SW [5]. The comprehensive river basin
management policies require a continuous water level assessment, modeling, and forecasting.
Over the past years, the conceptual and physically-based numerical models are widely used in
groundwater simulation and quantification. These models are able to replicate the physical properties
of groundwater dynamics. However, these modeling techniques have practical limitations due to the
absence of long-term high- quality data and the complex structures of aquifers [33–36]. In such cases,
statistics-based time series analysis can be used as a suitable alternative [33,37]. The time series analysis
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is able to deal with the data that are collected at a regular interval, like groundwater measurements.
Time series analysis is widely used in groundwater resources management [38–41].

The prediction process in time series analysis highly depends on previous observations. Among
various statistical approaches, a stochastic process is commonly used to capture the trend of forecasted
data considering uncertainty. Autoregressive Integrated Moving Average (ARIMA) model is one of the
most popular models that follow the behavior of the stochastic process [42]. ARIMA and autoregressive
moving average model (ARMA) is often utilized to understand and forecast different time series data.
Unlike ARMA, ARIMA model is beneficial while working with the non-stationary time series data.
ARIMA model considers the underlying correlation and patterns in the lagged data to forecast future
data. ARIMA is the combination of differencing, auto-regression (AR), and moving average (MA)
technique. The ARIMA deals with the fewer coefficients, which is the foremost benefit of using
this model. ARIMA is the mathematical approach for predicting the future scenario considering the
changes in trends and serial correlation among the previous observations. The use of the ARIMA model
to forecast the hydrological time series data are well documented. In hydro-climatological research,
the ARIMA model was used for predicting the mean monthly streamflow [43,44], rainfall [39,45],
long-term runoff [46], river water quality and discharge [47,48], and drought [49].

The need for sustainable decisions through groundwater assessment and prediction has motivated
the current study. The inconsistency of in-situ groundwater data and the sparseness of such data at
higher spatiotemporal scale motivated utilizing the GRACE-derived groundwater anomaly in the
current study. Additionally, deterministic forecasting models can mimic the spatial variability of
groundwater while they undergo parametric uncertainties resulting in poor forecasts. Thus, to subside
such shortcomings, GRACE-derived groundwater anomaly was coupled with ARIMA model for
forecasting groundwater anomaly. The study was tested in one of the drought-affected area— the
Colorado River Basin (CRB). The Colorado River is governed by the ‘Law of River’ and suffered
severe water stress during recent climate change and increasing water demand. Addition to surface
water, decline the reductions in groundwater storage was observed. The study tests the following
research questions:

(1) Is GRACE-derived data applicable to analyze the groundwater variability in the region
undergoing drought like CRB?

(2) What are the historic spatiotemporal variations in the groundwater in the CRB?
(3) Can a stochastic ARIMA model coupled with GRACE data forecast future groundwater variability

at the selected spatiotemporal scale of the CRB?

The aforementioned research questions are addressed by utilizing GRACE-derived groundwater
changes as such data provides a longer length of data at uniform spatiotemporal scales. Before using
the GRACE data for further study, it was tested against the in-situ observations to verify its reliability.
The spatiotemporal variability of the historic GRACE-derived groundwater anomaly was tested using
non-parametric MK test, and the magnitude of the trend was analyzed with Thiel-Sen’s approach.
Then, the stochastic ARIMA model was developed by determining its parameters to accommodate the
seasonality and autocorrelation in the groundwater. Finally, the ARIMA model was tested to simulate
the historical and future groundwater variability in the CRB. The documented research reveals that
significant efforts had been made in the past to forecast groundwater conditions especially in the
regions with higher water stress. According to documented literature and the author’s knowledge,
this is the first time ARIMA is integrated with GRACE data to predict future groundwater anomalies.
ARIMA model showed promising result while simulating historical groundwater records, which can
be utilized for groundwater management. Associating the proposed model with other deterministic
models may enhance the confidence of both approaches. This novel approach may help water managers
in making sustainable groundwater policies.
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2. Study Area

The study area comprising of CRB including major rivers is illustrated in Figure 1. CRB has an
area of 657,000 km2 which sources water supply to approximately 40 million people of seven different
states (Colorado, Utah, Nevada, Arizona, California, Wyoming, and New Mexico), and Mexico [50].
CRB is divided into the lower CRB and upper CRB, where 8.6 million and 1 million people reside
respectively [51]. Streams mostly originate in the upper part of the basin approximately ninefold as
compared to the lower part. This basin provides water to a total of 22,000 km2 of irrigated land [50].
Population growth and increased irrigation in the CRB has boosted water consumption. Increasing
water demands and severe drought since 2000 have posed the declination of water levels in the
CRB’s largest reservoirs–Lake Powell and Lake Mead. To offset paucity of surface water supplies in
drought, water users have switched to using groundwater to a greater extent. But the irregularities
of groundwater reserves in CRB raises questions: how much water is already consumed, and how
long can it be sustained? Castle et al. (2014) [52] showed that the CRB experienced a loss of 41 million
acre-feet groundwater from 2003 to 2014, 77 percent of total freshwater decrement. Groundwater
pumping for irrigation triggered the losses in water storage [53]. Groundwater is being depleted at a
much faster rate than previously thought indicating that the CRB is going to experience a groundwater
decline in the coming years.Hydrology 2018, 5, x FOR PEER REVIEW  5 of 21 
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3. Data Sources

The data sets used in the analysis comprises of GRACE and Global Land Data Assimilation
System (GLDAS) data [54]. Section 3.1 provides details about the GRACE data followed by Section 3.2
which discusses how different hydrologic components of water balance equation were obtained from
GLDAS data. Section 3.2 also presents the assimilation of GRACE and GLDAS data to calculate
groundwater storage anomaly.

3.1. GRACE Data

GRACE is twin satellite launched by the NASA, and the German Aerospace Centre combined
in March 2002 for tracking down the mass redistribution of the earth by monitoring changes in
gravitational force [14]. As GRACE record cumulative signals both gravitational and non-gravitational
effects, atmospheric and oceanic effect need to be isolated to quantify the change in hydrological
mass [55,56]. GRACE provides monthly data at both 1◦ × 1◦ [57] and 0.5◦ × 0.5◦ [58] spatial resolution.
To reduce noise and measurement errors, several filtering processes such as a destriping filter, a 200 km
wide Gaussian averaging filter, and the low-pass spectral filter are applied [13]. The filtering process
for getting smoother data weakens true geophysical signals. A set of scaling factors is considered with
the data set to restore the signal [59]. The present study uses GRACE Level-3 RL 05 anomaly data,
with temporal and spatial resolution of one month and of 1◦ × 1◦ respectively, obtained from the Center
for Space Research at the University of Austin/Texas (CSR), NASA Jet Propulsion Laboratory (JPL)
and the German Research Centre for Geosciences (GFZ) to calculate GWS variations. While computing
the equivalent water height, the average of CSR, JPL, and GFZ was taken to reduce the noise [21].
The time series of variability in gravity field for each cell from January 2003 to July 2016 were used in
this study. This dataset has gaps of several months. The imputeTS [60], an R package, was used to take
care of missing values as the ARIMA model cannot deal with the time series with missing data [61].
The TWS comprises GWS, SM, SW, snow water equivalent (SWE), and canopy water storage (CWS).
The scaling factor was used to restore the information of the GRACE-derived product, ignoring the
effect of the SW component [62]. The change in TWS was calculated using the water balance equation
as shown in Equation (1).

∆TWS = ∆GWS + ∆SM + ∆SWE + ∆CWS (1)

where, ∆TWS, ∆GWS, ∆SM, ∆SWE, and ∆CWS represent the change in TWS, GWS, SM, SWE,
and CWS respectively.

3.2. Global Land Data Assimilation System (GLDAS)

GLDAS is a joint project of NASA, the National Oceanic and Atmospheric Administration, and the
National Centers for Environmental Prediction which simulate hydrologic components by integrating
ground-based and satellite observations at a higher temporal and spatial resolution [54]. GLDAS
provides hydrological data using four Land Surface Models (LSMs), i.e., the Community Land Model
(CLM) [63], Variable Infiltration Capacity (VIC) [64], Noah [65], and Mosaic [66]. To measure the
changes in GWS from GRACE TWS, the values of SM, SWE, and CWS need to be deducted from the
land surface model of GLDAS. The average of four LSMs models (CLM, VIC, Noah, and Mosaic) was
used to calculate the anomaly of SM, SWE, and CWS to minimize any biases or errors [20]. All LSMs
with a similar spatial and temporal resolution of GRACE was used in this study. The GLDAS derived
products (SM, SWE, and CWS) were also converted to the same anomaly of GRACE.

SM/SWE/CWS anomaly at time t, was evaluated as shown in Equation (2).

∆P(t)A = P(t)− P2004−2009 (2)
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where P represents SM/SWE/CWS and P2004−2009 represents corresponding average P from January
2004 to December 2009. Finally, groundwater storage anomalies (GWSA) was calculated utilizing
Equation (3) shown below.

GWSA = TWSA− SMA− SWEA–CWSA (3)

The in-situ groundwater head was obtained from monitoring stations, which was a measure of
relative height from North American Vertical Datum of 1988. Groundwater level change from different
monitoring wells was factored by respective specific yield to get GWS. Then, GWSA from the observed
value was calculated using the same equation used for GLDAS data. This GWSA had been evaluated
in terms of change in groundwater level represented hereafter as ∆GWL. Adjusted ∆GWL from in-situ
was compared with GRACE-derived ∆GWS.

4. Methodology

First, Section 4.1 discusses the evaluation of historical variations in groundwater storage. Followed
by Section 4.2 which presents the method of forecasting groundwater anomaly with the ARIMA model.

4.1. Evaluation of Trend in the Groundwater Data

MK—a rank-based test—was utilized to detect the presence of the trend in the GRACE-derived
∆GWS data. The test also revealed the statistical significance of the trend if any in each gridded data.
More details on the MK test can be obtained from Mann [30] and Kendall [29]. The current study only
considered the trend if they were detected at 5% statistical significance based on the MK test. The trend
magnitude was calculated utilizing the Theil-Sen approach [31].

4.2. ARIMA Model

The ARIMA model framework is shown in Figure 2. First, the groundwater data was procured
as presented in Section 3. Figure 2 illustrates the steps involved in developing an ARIMA model
corresponding to the GRACE-derived groundwater anomaly of one grid which was repeated for the
groundwater analysis of entire CRB. As shown in Figure 2, first the groundwater anomaly was derived
from the GRACE data which was tested for the presence of stationarity. ARIMA model parameters
were derived from the stationary data and if the data was not stationary it was derived from the
differenced data. Once, accurate model parameters were obtained, the historical inputs were then
utilized to forecast the groundwater anomaly. The equations involved in building an ARIMA model is
discussed later in this section.

Before evaluating the model parameters, stationarity in the data was evaluated. Differencing
was done to make the data stationary, and the process was accomplished for each grid as shown in
Figure 1. The non-seasonal ARIMA model with first-order differencing is expressed as Equation (4)
shown below.

y′t = c + ϕ1y′t−1 + ϕ2y′t−2 + . . . . . . + ϕpy′t−p + θ1εt−1 + θ2εt−2 + . . . + θqεt−q + εt (4)

where, c is constant, εt is white noise and ϕ1, ϕ2 . . . . . . . ϕn is autoregressive coefficients, and θ1,
θ2 . . . . . . . . . θq is the moving average coefficients. Similarly, y′t is the first order differencing obtained
by subtracting yt−1 from yt and so on.

In general, an ARIMA model is represented as ARIMA (p, d, q) where, p, d, and q are the
order of autoregression, integration (differencing), and moving average order, respectively. The more
simplified ARIMA model is mathematically expressed as shown in Equation (5) where B is the
backward shift operator. (

1− ϕ1B− ϕ2B2 − . . . . . . .ϕPBP)(1− B)Pyt

= c +
(
1 + θ1B + θ2B2 + . . . . . . .θqBq) (5)
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Most of the hydrological data follow a seasonal pattern, like monthly, quarterly etc. The autocorrelation
function (ACF) and partial autocorrelation function (PACF) test were performed to determine the
seasonality in the dataset. A time series data, attribute with the seasonality, is converted to stationary
in nature with the help of seasonal differencing. A seasonal ARIMA model is classified as an ARIMA
(p,d,q) (P,D,Q)m model, where P = order of the seasonal autoregression, D = order of seasonal
differencing, Q = order of moving average and m = the number of periods in one season.
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For the backward shift operator, B, a seasonal ARIMA (p,d,q) (P,D,Q)m can be expressed as follows:

ϕp(B)Φp(Bm)(1− B)d(1− Bm)Dyt = θq(B)Θq(Bm)εt (6)

where, ϕp(B) is Auto regressive operator, θq(B) is moving average operator, Φp(Bm) is Seasonal
autoregressive operator, and Θq(Bm) = Seasonal moving average operator.

ARIMA models require stationary time series data for modeling. The stationarity of the input
time series data needs to be identified first. If the data series has any non-stationarity component,
the non-stationarity should be removed before utilizing the data as ARIMA model inputs. The ACF
and PACF plots are used to recognize if a time series exhibits non-stationary or not. ACF shows the
correlations between time series and its own lag. PACF also depicts the correlations between the time
series and its own lag along with neglecting the effect members stay in between them. The two parallel
lines, with the x-axis, in the plots remarks 95% confidence intervals (CI) for the calculated ACF and
PACF. Besides an additive seasonal decomposition is performed to visualize the seasonal patterns of
time series data.

An additive seasonal decomposition can be written as

yt = St + Tt + Rt (7)
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where at any period t, seasonal component is represented by St, Tt is the trend component, and
Rt is the remainder component
Differencing is usually used to stationarize the nonstationary data time series. The lowest

differencing order for which time series maintain a well-defined mean value and ACF plot decays
rapidly to zero, either from above or below, is the appropriate order for differencing. ACF and PACF
generally give an idea of tentative order for moving average and autoregressive of ARIMA model.
Different order of combinations close to the potential model was generated.

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were utilized to
choose the appropriate ARIMA model. Equations (8) and (9) below present the expressions to evaluate
AIC and BIC.

AIC = 2K + Nln(
SSE

N
) (8)

BIC = 2Kln(N) + Nln(
SSE

N
) (9)

where the sum of squared errors represented by SSE is calculated as SSE = ∑N
i=1 εi

2. K is parameters
in the statistical model, N is the observations number and ε represents the white noise. The minimum
values of these AIC and BIC criteria signify better model performance [67].

The errors in the model are often accessed with the residuals. Residuals are random in nature
which cannot be explained by mathematical interpretations such as distribution with zero mean and
constant variance. They are uncorrelated and normally distributed. ACF and PACF of the residuals are
standard evaluation criteria for ARIMA model evaluation. For normally distributed residuals, all the
spikes in ACF and partial ACF should range within the threshold values [68]. The fitted model with
minimum ACF and PACF for each gridded data were used to forecast the groundwater anomalies.

5. Results and Discussion

5.1. Historical Variations in Groundwater

Figure 3a,b represent the monthly time series of GRACE-derived ∆TWS, ∆SM, ∆SWE, and ∆WCS,
after taking the average from four GLDAS LSMs, from January 2003 to December 2016 for the
both Upper and Lower Colorado River Basin. Equation (3) was used to estimate the monthly
distributed groundwater storage anomalies based on GRACE using the above-mentioned hydrological
components. GRACE-derived ∆GWS was correlated with the average of in-situ measurements in
both upper and lower CRB with the R2 value of 0.62 and 0.67 respectively. The R2 values testify good
conformity between satellite and ground-based measurement as for such analysis the R2 between 0.55
and 0.75 is ranked as good correlation [21]. Like previous studies, the larger study area leads to getting
better co-relation among GRACE and in-situ observations.

From Figure 3a, it can be observed that the groundwater storage in the upper basin declined
sharply during 2013. This can be attributed to the lowest recorded snowfall in Rocky Mountain and
extreme drought scenario in 2012 [52]. In lower CRB as observed in Figure 3b, groundwater storage
followed a decreasing trend from 2004 to 2012 before it experienced a significant depletion from 2012 to
mid-2014. On the other hand, the rise in groundwater storage was visible for a shorter period between
mid-2009 to mid-2010). Moderately wetted weather lessened the demand for surface water supplies
and groundwater recharged during this period. The consistency in groundwater head, in both upper
and lower basin, after January 2015 shows strong evidence of recovery from the drought starting from
2000 up to 2014.
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Figure 3. Average monthly time series of each hydrological component for the period of January
2003–December 2016 for (a) Upper Colorado River Basin and (b) Lower Colorado River Basin; (c) Spatial
variation of Thiel Sen Slope at the significance level of p ≤ 0.05. The significance of the trend was
obtained with the Mann-Kendal test.

Figure 3c shows the spatial variation of the trend at the statistical significance of p ≤ 0.05.
The magnitude of the trend was calculated as the Theil-Sen’s slope is represented in color on the
map. The trend magnitude was computed for each grid independently as shown in the figure.
This magnitude represents the change in the GRACE-derived ∆GWS in centimeters per year (cm/year).
The negative trend magnitude suggests the decline in ∆GWS over time while the positive trend
magnitude signifies the increase in ∆GWS over time. As evident from Figure 3c, most of the grid
(80 grids out of 94 grids) had shown the significant decline in ∆GWS at the statistical significance of
p ≤ 0.05. The maximum negative trend magnitude observed in the CRB was 2.34 cm/year. Thirteen
grids did not show any trend at the statistical significance of p ≤ 0.05, and only one grid of lower CRB
showed the increase in ∆GWS at the statistical significance of p ≤ 0.05 with the trend magnitude of
0.34 cm/year. As observed in Figure 3c, although entire CRB has experienced a decline in ∆GWS,
upper CRB has undergone more decline in the ∆GWS as compared to the ∆GWS of lower CRB.
This might be attributed to the recent management and conservation policies in the lower CRB and
varying recharge of upper and lower CRB [69]. The decline in ∆GWS deems the assessment of the
future groundwater variability in the region.

5.2. ARIMA Model Results

The ARIMA model project future ∆GWS data based on the past trend in GRACE-derived ∆GWS.
Selecting the order of ARIMA model is an iterative process which is discussed in the later part of
the paper. The absence of constant mean, variance, and autocorrelation over time make the time
series data non-stationary. Generally, the non-stationarity appears in two aspects, i.e., changes in
the parameters and the feature of the driving cause. Both are difficult to be identified without the
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prior assumed way the non-stationarity happens. Thus, the stationarity of time series data should
be tested before performing any further analysis. First, the intermediate sample results of ARIMA
forecast corresponding to the grid with centroid 110.5 ◦ W and 31.5 ◦ N referred hereafter as sample
grid is presented. After presenting the results corresponding to the sample grid the results pertaining
to all grids of CRB are presented. The ACF and PACF correlograms are drawn in order to determine
the stationarity in monthly ∆GWS data as shown in Figure 4a,b. Two dotted horizontal red lines in
the figure signify the margins at 95% CI for calculated autocorrelation and partial autocorrelation
values. Here the horizontal axis (x-axis) shows the lagged time steps while the vertical axis denotes
the correlation values for the corresponding lags. As seen in the figure, all the correlation values lie
between +1 and −1, the maximum and minimum value respectively.
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Figure 4. (a) Sample ACF (b) partial autocorrelation function (PACF) of Gravity Recovery and Climate
Experiment (GRACE)-derived ∆GWS (groundwater storage) data for an arbitrary grid and (c) Sample
seasonally differenced GRACE-derived ∆GWS data for the sample grid.

If the ACF and PACF promptly converge to zero with the increase in the time lag, the time series
is considered to be stationary. As seen in Figure 4a, the spikes in the ACF plot are over the threshold
values, and their net values are decreasing with time. This prominently indicates the presence of
non-stationarity in the groundwater. Besides, the spikes in the PACF plot don’t shut off immediately.
In the PACF plot of Figure 4b, several numbers of spikes are above the threshold. This indicates the
presence of seasonality in the data. After the occurrence of a trend or non-homogeneity, the time
series changes its regime and no longer remains stationary. It is hard to model such non-stationary
time series; thus the stationary part of the time series should be extracted before creating any model.
ARIMA is associated with the difficulty to model and forecast the time series which are subjected to
any changes in the regime. Therefore, 12-month differencing was applied to make it stationary by
removing the seasonal influence. The seasonally differenced time-series data are shown in Figure 4c.

Figure 5a,b shows the ACF and PACF plots for seasonally differenced time series corresponding
to the sample grid. These plots provide a tentative order of the ARIMA model. The ARIMA model
with the tentative order is termed hereafter as the sample model. From Figure 5a, tentative model
order cannot be obtained as the higher number of spikes are above the threshold in the ACF plot.
There is no significant spike in the PACF as shown in Figure 5b plot for non-seasonal lags, suggesting
a possible MA model of zero order. Whereas, for the seasonal component, there is a significant spike at
lag 12 signifying the first order seasonal AR corresponding to the sample grid. From this, a preliminary
seasonal ARIMA (p, 0, q) (1, 1, 0)12—the potential model was selected to simulate the inter-annual
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variability GRACE-derived ∆GWS from January of 2003 to December of 2014. In total twelve models
corresponding to the sample grid, with several combinations of orders were assumed, close to the
tentative order to estimate ARIMA model parameters. The comparison of AIC and BIC of different
models are summarized in Table 1. As shown in the table, all the model has the same orders of
differencing, as the model was selected minimizing AIC and BIC [70]. Among all models, ARIMA
(1,0,1) (1,1,1)12 showed the minimum AIC and BIC. Residual analysis of a fitted model depicts the
robustness of the model. For a well-fitted model, the residuals should behave as white noise (random).
The ACF and PACF of ARIMA (1,0,1) (1,1,1)12 model residuals for the sample grid are plotted in
Figure 5c,d respectively. As shown in Figure 5c,d, spikes of both ACF and PACF, lies within 95%
confidence level, indicating the randomness in residuals. Besides, as all the lags have coefficients below
the threshold, the absence of autocorrelation between them is confirmed.
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Figure 5. (a) Sample ACF of seasonally differenced GRACE-derived ∆GWS data; (b) PACF of seasonally
differenced GRACE-derived ∆GWS data; (c) Sample ACF of residuals ARIMA (1,0,1) (1,1,1)12 and (d)
PACF of residuals ARIMA (1,0,1) (1,1,1)12 for the sample grid.

Table 1. AIC and BIC values for different models.

Model AIC BIC

ARIMA (1,0,1) (1,1,0)12 321.65 332.23
ARIMA (1,0,1) (1,1,1)12 311.13 324.25
ARIMA (0,0,1) (0,1,1)12 452.36 460.35
ARIMA (0,0,1) (0,1,0)12 459.58 464.95
ARIMA (0,0,2) (0,1,0)12 352.74 365.87
ARIMA (1,0,2) (1,1,0)12 322.2 335.32
ARIMA (2,0,1) (1,1,0)12 312.43 328.07
ARIMA (2,0,1) (1,1,1)12 315.28 330.91
ARIMA (1,0,2) (2,1,0) 12 313.82 329.45
ARIMA (1,0,2) (1,1,1)12 311.86 327.49
ARIMA (2,0,2) (2,1,2)12 317.13 340.03
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Figure 6 depicts the time series plots of ARIMA simulations along with the GRACE-derived
monthly ∆GWS for the sample grid. The model training period (January 2003 to December 2014) clearly
illustrates the periodicity of existing GRACE-derived ∆GWS. As shown in Figure 6, the ARIMA model
forecasts were close to the GRACE-derived ∆GWS during the testing period (January 2015–December
2016) signifying good model skills. The model also captured the seasonality and the trend of ∆GWS
series remarkably well during the testing period as shown in Figure 6. In the training period,
the simulated ∆GWS followed the decreasing trend of 0.43 cm/year which was close to the decreasing
trend of GRACE-derived ∆GWS evaluated as 0.47 cm/year. On the other hand, during the testing
period, both ARIMA results and GRACE-derived ∆GWS showed the recharge in groundwater. Tillman
et al. [71] used Coupled Model Intercomparison Project Phase 5 climate projections and supported the
idea of recharge in groundwater storage of the CRB. It was observed that the model captured most of
the peaks with some minor exceptions. The incompetence of the model to capture some of the peaks
may be attributed to the presence of randomness component in the stochastic model. The selected
seasonal ARIMA model generates the groundwater storage variability with higher accuracy for the
remaining time series. The higher value of Nash–Sutcliffe efficiency (NSE) (0.89) and comparatively
lower Root Mean Square Error (RMSE) (1.04) during the training period and 0.72, 1.5 during testing
period respectively, indicating higher conformity between satellite-derived and simulated groundwater
anomaly for the sample grid. This also suggests robustness of the seasonal ARIMA model that offer
anticipated consistency and accuracy. Finally, the tested ARIMA model was utilized to forecast future
groundwater anomaly of the sample grid for 36 months.
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Similar to the sample grid, the analysis was performed for each grid corresponding to the GRACE
data within the CRB. Figure 7 shows the distribution of ARIMA model orders for each grid within
the CRB. Figure 7i,ii represents the non-seasonal and seasonal components of the ARIMA model
respectively. In Figure 7, columns (a), (b), and (c) represents autoregressive order, differencing order,
and moving average order respectively. It can be seen that the moving average and autoregressive
order both in seasonal and no-seasonal part varies between 0 and 2. The differencing order for the
seasonal part was found 1 in almost all the grids. Non-seasonal differencing order was adopted as 1 if
the seasonal differencing order was 0 and 0 if the seasonal differencing order was 1.
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Figure 7. ARIMA model order for each grid cells representing (a) autoregressive term (b) differencing
term and (c) moving average term for both (i) non-seasonal and (ii) seasonal component for the
Colorado River Basin.

The ARIMA model was then established for each grid with the order as summarized in Figure 7.
The resulting model results were promising to forecast future groundwater variability. Figure 8a shows
the monthly distribution of ARIMA forecasts during the historical period of January 2003 to December
2016 while Figure 8b shows the historical records based on GRACE-derived data for the same period
and within the CRB. Under detailed observation, it can be seen that there are 164 box plots in each
figure representing the monthly inter-quartile range of ∆GWS variability spatially within the CRB.
The whiskers on each box plots represent the corresponding 5th and 95th percentiles. While comparing
Figure 8a,b, it can be observed that the corresponding box plots are similar and the monthly variations
along the abscissa are also consistent. This validates the robustness of the ARIMA for simulating the
GRACE-derived ∆GWS. The boxplots in Figure 8c,d summarizes the distribution of RMSE and NSE
respectively during the training and testing period for CRB. The RMSE and NSE were obtained from
the simulated and GRACE-derived ∆GWS data presented in Figure 8a,b. The red line within the box
plots of Figure 8c,d represent the median value while the horizontal box edges represent the 25th and
75th percentile. The whiskers represent the 5th and 95th percentile. Further, the robustness of the
ARIMA model is established by NSE during both training and testing period which varies between
0.5 and 1. The median NSE during the training period was observed to be greater than 0.9 and that
during the testing period was approximately 0.7. This shows the model holds very good standings
as suggested by [72]. As the ARIMA model showed skillful results during the historical period from
January 2003 to December 2016, the model was utilized to forecast future groundwater anomaly from
January 2017 to December 2019.
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Figure 8. Boxplots summarizing (a) ARIMA simulated groundwater anomaly during the historical
period (January, 2003–December, 2016) (b) GRACE-derived groundwater anomaly during historical
period (c) distribution of RMSE and (d) NSE during training (January, 2003–December, 2014) and
testing period (January, 2015–December, 2016) for all grids within the Colorado River basin.

Figure 9a,b summarizes the forecasted monthly GRACE-derived ∆GWS in centimeters (cm)
for upper CRB and lower CRB respectively. Each box plot shows the distribution of a monthly
forecasted ∆GWS of entire grids independently for both upper and lower CRB. The boxes represent the
corresponding 25th, and 75th percentile ∆GWS and the red lines represent median ∆GWS. Similarly,
the whiskers represent the 5th and 95th percentiles of the corresponding ∆GWS. If the boxes lie in
the positive ordinate, it shows the month will have higher groundwater storage as compared to the
corresponding historical months. From Figure 9a,b, future groundwater in lower CRB is expected to
decline more as compared to upper CRB as the distribution of ∆GWS is more negative for lower CRB
represented by the boxes with minimal ordinates for lower CRB. It is the reflection of the ARIMA’s
property of making forecasts based on the historical variations as, during the recent historical drought
period, groundwater within arid and drought-affected regions CRB was withdrawn to supplement
the scanty surface water. Further, the ARIMA model was able to capture the seasonality in the
groundwater anomalies. From Figure 9a, it was observed ∆GWS showed positive anomaly for most of
the grids in upper CRB in the months like March, April, and May as the median ∆GWS was generally
positive. This can be attributed to the groundwater recharge from early snowmelts as a result of
changing the climate, in the snow-covered regions of upper CRB. Most of the grids especially in
lower CRB showed negative anomalies for all months. This shows the groundwater condition of
the CRB is unlikely to improve in the near future as compared to the historical records. This can be
attributed to higher evaporation and lower precipitation during dry seasons resulting from climate
change. Further, the decline in surface water availability also causes stress on groundwater. Once the
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groundwater storage is declined resulting from excessive withdrawal, it causes soil consolidation
reducing the recharge rate of groundwater. These factors combined hinders the improvement in
groundwater conditions. As the forecasted groundwater anomalies are mostly negative during
August and September, it is more likely that groundwater storage will decline during these months of
near future.
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6. Conclusions

The study presents the stochastic behavior of GRACE-derived groundwater time series data in
CRB from January 2004 to December 2016. An ARIMA model is developed using the training data
from January 2004 to December 2014 to forecast the monthly time series data from January 2015 to
December 2016. A total of eleven seasonal ARIMA models with a different order of combination are
tested to find the best fit model. The key findings of the current study are summarized below:

(1) GRACE-derived groundwater anomaly being well correlated with in-situ groundwater data
established the applicability of GRACE data in analyzing past and future groundwater analysis
in the CRB.

(2) The GRACE-derived change in monthly groundwater storage showed strong seasonality. Seasonal
differencing was promising while making forecasts with non-stationary groundwater data.

(3) The ACF and PACF plots of differencing data series were beneficial to estimate the tentative order
of the ARIMA model.

(4) ARIMA models order obtained based on the evaluation criteria (AIC and BIC) were found skillful.
The residual analysis reinforced the idea of selection of the fitted model order.

(5) ARIMA estimates of groundwater storage anomalies fit reasonably well with the observed values
as supported by RMSE and NSE skills during the historical training and testing periods.

(6) The ARIMA forecasts indicated the increase in March, April and May groundwater storage within
the major number of grids of upper CRB. This can be attributed to the early snowmelts in the
region during these months as a result of climate change.

(7) The study showed a probable decline in future groundwater storage in lower CRB for all months.
Additionally, the model also predicted the decline in near future groundwater storage within
upper CRB for the months except for March, April, and May.

The current research will be beneficial to water resource personnel as the newly tested approach
showed skillful results. The study can be tested in different regions to verify whether the model
is versatile in different varieties of watershed and hydroclimate. The stochastic modeling of
GRACE-derived groundwater storage anomalies can be effectively utilized for forecasting groundwater
behavior. This will lead in making policies for sustainable groundwater management. Addition to
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forecasting the ARIMA model coupled with GRACE data can also be utilized to study past variabilities.
This stochastic model can also be utilized to determine future water head and trend in CRB which
will facilitate water managers to allocate the resources and resolve excessive groundwater withdrawal.
Future trend analysis can also be done using the output of the fitted model. A deterministic method
can reproduce the spatial scenario but shows poor performance in terms of forecasting calculation.
On the other hand, a stochastic method like ARIMA, can’t replicate the spatial scenario but can predict
the future trend effectively. So, the future study of incorporating ARIMA with another deterministic
method can improve model performance.
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