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Abstract. Recent emerging trends for automatic behavior analysis
and understanding from infrastructure video are reviewed.
Research has shifted from high-resolution estimation of vehicle
state and instead, pushed machine learning approaches to extract
meaningful patterns in aggregates in an unsupervised fashion.
These patterns represent priors on observable motion, which can
be utilized to describe a scene, answer behavior questions such
as where is a vehicle going, how many vehicles are performing the
same action, and to detect an abnormal event. The review focuses
on two main methods for scene description, trajectory clustering
and topic modeling. Example applications that utilize the behavioral
modeling techniques are also presented. In addition, the most popular
public datasets for behavioral analysis are presented. Discussion and
comment on future directions in the field are also provided. © The
Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JEI.22.4.041113]

1 Introduction
Modern governments invest heavily in the installation and
maintenance of road networks due to safety concerns and
their vital role in economic health. Recently, cameras
have become an integral part of many transportation manage-
ment centers (TMCs) because they give traffic operations
engineers a way to view what is happening in the field.
However, most of these cameras are only in use sporadically
and rarely monitored actively. Monitors are often set to cycle
through the cameras until an operator notices an incident.
These cameras offer a rich data stream for understanding
the roadway and is a virtually untapped operational resource.

Researchers have long recognized the potential of camera
monitoring systems. A much larger number of cameras can
be actively monitored with computer assistance than a
human possibly could. However, computer monitoring
progress has been slow. Robust detection and tracking sys-
tems for vehicles have been published, but they still suffer

under adverse lighting and weather conditions or in densely
occupied scenes. In addition, a shortcoming of kinematic and
dynamic motion models—for predicting future state evolu-
tion in time—is that their performance typically degrades
quickly with increasing prediction time-horizons. This is par-
ticularly apparent when motion is complex (e.g., U-turn) or
when an internal state or intention motivates motion (deci-
sion to turn at an intersection). In these cases, the dynamic
models are not able to be precisely modeled.

In order to address these shortcomings and enable longer-
term predictive capabilities, researchers have developed new
analysis approaches based on machine learning that are moti-
vated by the observation that surveillance motion is typically
constrained by environmental structure. By observing motion
over time, the typical motion patterns can be learned and used
as a priori knowledge for prediction. The advantage of these
techniques is that they are generally applicable and do not
require manual retraining for new scenes or scenarios.

This paper provides a review of the changing landscape in
traffic behavior understanding. It highlights the shift from
explicit high-resolution tracking of vehicle state and the defi-
nition of events of interest towardmachine learning approaches
to leverage video data for meaningful pattern extraction. By
utilizing unsupervised machine learning techniques, complex
scenes can be described and analyzed automatically through
general behavior analysis frameworks. There is a need for
this type of survey because it focuses on higher-level under-
standing of traffic scenes. Recent surveys1,2 have examined
computer vision techniques for traffic analysis, but focus
more on the low-level vision processes of detection, classifi-
cation, and tracking of vehicles with very little time devoted
to analysis of the behaviors with respect to transportation.

This review focuses on two particular methods for auto-
matic description: (1) trajectory clustering and (2) topic
modeling. The scene descriptions resulting from these meth-
ods provide contextual priors on observable motion, which
can be used to answer behavior questions, such as where a
vehicle is going, how many vehicles are performing the same
action, and to detect abnormalities. Finally, a list of the most
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popular public datasets for behavior analysis is presented to
promote needed benchmarking in the field.

2 Visual Traffic Behavior
The term behavior has many different definitions depending
upon the discipline and field. The following section provides a
description of traffic behaviors from the transportation engi-
neering and computer vision perspectives. We further define
the scope of traffic behaviors within the surveillance setting.

Transportation engineers view behavior in terms of net-
work capacity management. Infrastructure systems, such
as inductive loops and radars, have been installed on roads
to collect the traditional traffic parameters of density, flow,
and speed. These measures of speed and counts of vehicles
are essential for network calibration, simulation, and support
computation of annual average daily traffic used in planning.
Since transportation engineers are concerned with network
performance, their notion of behavior is at a large scale
with a bird’s eye view. They use the information from a
large number of distributed sensors in aggregate for under-
standing network behavior.

In contrast, computer vision researchers consider behav-
ior understanding to be the ability to analyze and recognize
moving patterns and describe them using natural language.1

In addition, the scope of the behaviors is limited to the view
of the camera. Describing a behavior becomes complicated
due to the inherent complexity in defining a behavior as well
as camera imaging limitations. Behavior can be defined at
various levels of complexity, e.g., simple behavior could
be a single car speeding or more complex sequences of
events such as checkpost violations or multivehicle maneu-
vers, such as lane-changing and passing. However, typical
traffic video resolution is low and vehicles are small in
size, making it extremely difficult to extract complex
descriptors such as pose with real accuracy. Instead, only
simple features, such as position and velocity, can be used
to characterize behavior. In either case, a general vocabulary
is needed to describe behavior based on context.

Since traffic video is intended to be viewed by personnel
at TMCs, traffic behaviors need to be consistent with
human operator expectations. Behavior must be considered
from the far-field surveillance perspective since this is the
typical trafficcameraconfiguration.Motion(or lackofmotion)
is the major behavioral cue. In particular, behaviors of interest
will be concerned with the origin and destination of vehicles
and pedestrians as well as the maneuvers, like turns, that are
made. It will be particularly important to make accurate
predictions on the future behavior of a traffic participant.
That is, it should be possible to predict when, where, and
how the participant will move. Finally, abnormal or atypical
events need to be recognized and detected in a timely manner
since they likely indicate an event for more attention. An
example would be an illegal U-turn at an intersection. This
would need to be detected since it could be the precursor to
an accident or indicate some other disturbance in the system.

Video provides rich information content that cannot be
obtained with the traditional spot sensors used by transpor-
tation engineers. Images allow behavior analysis in the same
modality that humans use to sense the world. This leads to a
more natural definition of traffic behavior in terms of the way
vehicles move in a scene—either how they move in a local
(individual) sense, such as making a right turn, or in a more

global (collective) view, such as a traffic jam or the phase
cycling at an intersection.

3 Learning Behavior with Trajectories
A popular framework for scene understanding and behavior
analysis is trajectory-based learning. This framework is
attractive because it can be used to augment the typical sur-
veillance pipeline since the basic task of most surveillance
systems is the detection and tracking of objects of interest.
In addition, the trajectory abstraction makes the framework
applicable given any tracking algorithm that is able to pro-
vide coherent trajectories.

The general, simplified trajectory learning block diagram
is provided in Fig. 1. During the training phase, moving
objects, such as vehicles, are observed over a long time period.
Trajectories are extracted from thevideo during observation to
build a training database. The training trajectories are then
clustered into groups of similar trajectories. These clusters re-
present the prototypical patterns of motion encountered in a
scene. Often the patterns are parametrically modeled for effi-
cient representation. The resulting models provide a descrip-
tion of both the scene and the typical behaviors and can be
utilized to characterize new trajectories during online analy-
sis. In particular, the activity models can be used to predict the
future state and detect anomalies in real time.

There are two key questions that arise in trajectory
learning:

• How can trajectories of varying length be compared
(clustered) in a manner that ensures all semantically
meaningful patterns are extracted in a completely unsu-
pervised fashion?

• Given a grouping of similar trajectories, how should
they be modeled and parameterized to capture the
differences between clusters while providing a compu-
tationally efficient inferencing scheme?

The following sections highlight prominent techniques
for trajectory clustering and modeling with representative
works collected in Table 1. While the general framework
has presented these two concepts as separate modules,
it is often the case that the clustering and modeling are

Online Evaluation

Observation

Tracking

Activity
Models

Activity
Analysis

TrajectoriesInput
Video

Annotated
Video

Trajectory
Database

Clustering
Probabilistic

Modeling

PredictionClassification
Abnormality

Detection

Fig. 1 The general framework for trajectory analysis.3 During the
observation (training) phase, trajectories are clustered and modeled.
The learned set of typical patterns are used for live activity analysis in
the online evaluation phase.
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performed jointly in a single processing step since they are
intimately related. The interested reader can see the 2008
review4 for a more complete treatment of trajectory learning
techniques.

3.1 Clustering Trajectories
When considering behavior through trajectories, it would be
beneficial to utilize traditional clustering algorithms.
However, the difficulty is that most traditional clustering
algorithms operate on data that are assumed to lie in a
fixed-dimensional space (fixed-size data). In general, trajec-
tories will not be of fixed size due to variations in the exhib-
ited behaviors of individuals as well as differences in the
speed in which they are performed. In order to enable com-
patibility, various trajectory-specific similarity measures
(distances) have been proposed. These trajectory-specific
measures are designed to explicitly handle unequal data
length in a semantically meaningful way.

Perhaps the most straightforward method for comparing
trajectories is to interpolate and resample to a fixed size for
L2 norm computation. However, this resample process typ-
ically considers only position data and destroys the temporal
sequence information. Therefore, both a vehicle traveling
slowly and another quickly will be considered as the
same behavior, which may not be desirable. Other simple
size normalization schemes are zero padding or replication
of values to augment the trajectory to a fixed size. As an
example, Hu et al.10 designed their trajectory distance mea-
sure as the average Euclidean distance between consecutive
trajectory points after length normalization. This retains
some of the temporal characteristics but still may not accu-
rately reflect behavioral semantics.

The most popular trajectory comparison methods, align-
ment techniques, directly account for the length variation
between tracks. These alignment techniques try to capture
the similarity between trajectories by finding correspond-
ences between the individual observations in a trajectory.
Dynamic time warping (DTW)11 finds a match between
all samples in a pair of trajectories using a dynamic program.
The longest common subsequence (LCSS) is an extension of
DTW that comes from string matching literature. LCSS
relaxes the match criteria such that not every single sample
must have a corresponding sample in the other trajectory.
The relaxed matching provides more robustness to noise
and outliers that may come from errors in the tracking
process. Piciarelli and Foresti6 defined a distance measure
that accounted for temporal drift. They noted that as a tra-
jectory got longer (observed for more time), there was more
opportunity for corresponding samples between trajectories
to be misaligned. Their distance measure accounted for
this drift by having a growing search window for matching
related to the trajectory length. The common Hausdorff dis-
tance between sets was modified to account for sequence
ordering by Atev et al.12 Their measure considers matching
of trajectory samples based upon equal ratios of the total
track length.

Although alignment techniques better account for
unequal lengths between trajectories, they usually require
appropriate setting of alignment/warping parameters, which
affects the performance. The alignment techniques also
require appropriate normalization of features to weight con-
tributions between different behavior attributes, e.g., position
versus velocity. Unfortunately, the appropriate similarity
metric is often strongly tied to the application requirements
rather than being universally obvious.

3.2 Modeling Trajectory Clusters
After grouping trajectories into clusters, the resulting clusters
are modeled for efficient inferencing. The modeling step
must compactly represent the underlying behavior while
still incorporating all significant details. For example, other
than just the location pedestrians travel on the sidewalk,
it may be desirable to augment the location information
with velocity and curvature information to enable distinction
between direction of travel and how smoothly the pedestrian
moves.13

Trajectory-based behaviors have been modeled in two
main ways as shown in Fig. 2. The first considers a behavior
in its entire end-to-end existence (from entry to exit from the
scene). The second method decomposes the trajectory into
smaller connected subparts for shared description between
overlapping behaviors.

Given all trajectories in a cluster, the end-to-end behavior
can be simply characterized by an average trajectory. The
average could be the centroid of the cluster, when using a
fixed-length representation, or a cluster prototype (e.g., a
random trajectory within the set). The average trajectory
can be considered as the expected observation given a par-
ticular behavior. The average can be further augmented by
developing an envelope to specify the extent or variance
within a cluster. The envelope developed by Makris and
Ellis [Fig. 2(a)] was formed by finding the farthest point
in the normal direction from each node (sample) in a cluster.5

However, this definition was susceptible to noise and could

Table 1 Representative trajectory clustering studies.

Research
study

Classification/
inference Description

Makris and
Ellis5

Route envelope Online adaptive route envelope
model between important
scene zones.

Piciarelli
and Foresti6

Probability tree A tree of clusters is built to
share common areas for
prediction and anomalous
track identification.

Vasquez,
Fraichard,
and Laugier7

Growing HMM Online adaptive modeling of the
different ways to move from
scene goals.

Hu et al.8 Gaussian chain Two-level hierarchy to first
spatially cluster resampled data
and then cluster with
zero-padded temporal
trajectory with fuzzy c-means.

Morris
and Trivedi3

HMM Three-level learning hierarchy
accounting for goals, spatial
paths, and dynamic behaviors.

Noceti
and Odone9

Common
strings

Image space quantized with
Voronoi tessellation to build an
alphabet for representing a
trajectory as a string.
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be made more robust by probabilistically defining the
envelope. Gaussian distributions have been widely used
for this purpose.3,8

In contrast, the subtrajectory methods divide a behavior
into smaller shared units. The full end-to-end behavior
can then be explained by the smaller subunit traversal string
[Fig. 2(b)]. The smaller units are meant to represent similar
regions that should have semantically similar description.
The decomposition into subunits has been accomplished
based on curvature or due to splits.6 The decomposition
forms a graphical tree structure in which the probability
of traversal can be estimated from the data, providing a natu-
ral prediction framework.

3.3 Discussion of Trajectory Learning
Trajectory learning has become quite popular in the surveil-
lance community because it nicely fits into its traditional
areas of expertise—detection and tracking. Therefore,
behavior analysis can be easily added on top of existing
architectures. It provides a natural method to describe the
behavior of individuals in the scene, which enables exact
localization of anomalous events. However, it does not
inherently provide a probabilistic interpretation of a behavior
and does not handle behaviors defined through groups of
individuals.

3.3.1 Dependence on tracking

While trajectory clustering is conceptually simple and fits
nicely into the typical surveillance pipeline, issues in trajec-
tory-based learning methods for activity and behavior under-
standing revolve around the tracking process itself. The
clustering and modeling framework must be robust to imper-
fect tracking—incomplete and broken trajectories due to
occlusion or missing detections—because this will certainly
occur in a real monitoring or surveillance setting.

In an effort to limit the effect of imperfect tracking, tra-
jectory samples can be treated independently. In the work

by Noceti and Odone,9 the image space is vector quantized
based on the density of track points, resulting in a Voronoi
tessellation. Each Voronoi cell represented an alphabet entry,
and instead of clustering raw trajectories, they are remapped
into alphabet strings. The P-spectrum kernel is used to count
common substrings for graph cuts spectral clustering to pro-
vide a behavior hierarchy.

3.3.2 Application-dependent behaviors

Comparisons have shown that the clustering algorithm itself
is not as important as selection of the type of similarity
measure since the similarity metric implicitly defines a
behavior.14 However, it is still unclear how to best extract
meaningful patterns from a large trajectory dataset. There
is inherent ambiguity in how to describe a behavior.
For example, at an intersection, should a trajectory of a
vehicle that proceeds through on a green phase be thought
of differently than one that is forced to stop first due to a
red light?

Due to the complex nature of behaviors and difficulty
developing a one-size-fits-all approach, hierarchical multi-
level learning and analysis frameworks are often proposed.
Morris and Trivedi3 proposed the three-staged hierarchical
learning process in Fig. 3. The different levels provide vary-
ing resolution when specifying behaviors. The first level
considers only the origin-destination information (nodes),
while the second level provides spatial distinctions between
the nodes. Finally, the spatiotemporal dynamics are encoded
with a hidden Markov model (HMM) to probabilistically
characterize a behavior.

3.3.3 Incremental learning and update

Recent trends in trajectory clustering have focused on incre-
mental learning techniques that enable time-dependent
patterns that are able to adapt to new data and changing
conditions. These are important for real-world implementa-
tion since surveillance systems are required to be operational
over very long time periods and old training data may not
accurately reflect the current monitoring situation (e.g., con-
struction shutting down a lane and rerouting traffic). The
challenge for operation over very long time periods is to
ensure that adaption techniques only consider meaningful

Fig. 2 (a) The trajectory route envelope defines an average trajectory
in a cluster and gives bounds on the variance within the cluster.5

(b) Representation of a trajectory as a tree of clusters6 allows sharing
of trajectory data in subclusters. In addition, a graphical tree model
can be used to describe the activity at a high level based on state
transitions. (This also provides a dynamic update—merge and split—
ability.)

Activity
Paths

Routes

Points of
Interest

Route Merge

Spectral 
Clustering

LCSS

GMM

Path
Update

HMM
Training

A B
Node Level

A B

Dynamics Level

A B
Spatial Level

A B

Temporal Level

Fig. 3 A three-stage hierarchical learning procedure to model activ-
ities at various resolutions.3 The first level learns points of interests
(nodes), second locates spatial routes between nodes through clus-
tering, and the final level probabilistically encodes spatiotemporal
dynamics.
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changes. Therefore, a balance needs to be maintained
between historical prior models and learning from new
observables.

The growing HMM is utilized in Ref. 7 in order to have an
online adaptive model that changes with conditions rather than
being based on a fixed observation time. Voronoi tessellation
is used to build up a topological map of spatial states, which
are then connected through the growing HMM. Rather than
explicitly model trajectory patterns, this work looks at the
probability of goals (the eventual endpoint of a trajectory)
and gives a distribution of look-ahead states. Interestingly,
the patterns can be learned incrementally and in parallel
with prediction. Maximum likelihood linear regression
(MLLR) for HMMs has been used in parallel with a batch
update process to provide adaptability.3 However, MLLR
only adapted existing behavior patterns and did not provide
a true incremental learning framework to handle truly time-
varying patterns (such as the deletion of a behavior).

3.3.4 Expensive computational requirements

Another issue with trajectory clustering methods is the need
to compute all pairwise similarities between trajectories. This
can be quite computationally expensive depending on the
selected similarity metric. When the trajectory database is
large, there is significant overhead in terms of storage
since a full similarity matrix requires N2 entries for N train-
ing trajectories. This may become too large to have the
entirety in memory or be very difficult to work with.
Approximation methods like the Nyström method15 may en-
able spectral decomposition but may not effectively utilize
all available data. However, it should be noted that although
clustering and learning may have high computational
requirements, online analysis and usage of the learned pat-
terns is not typically complex due to compact modeling.

4 Learning Behavior with Topic Models
The previous section highlighted a number of methods that
were able to learn scene context from observation of trajec-
tory data; however, the quality of those methods are highly

dependent on robust tracking of vehicles, which is inherently
difficult in general due to noise, changing lighting condi-
tions, shadows, and occlusion. In addition, trajectory cluster-
ing requires the pairwise computation of similarity between
all tracks, which may be expensive computationally and with
memory. Given these shortcomings, researchers have been
interested in developing methods to learn activities without
explicitly tracking objects (or at least without the need for
highly accurate trajectories).

Recently, there has been significant research into the use
of topic models for behavior analysis. These methods have
become quite popular due to their success with natural lan-
guage processing—e.g., probabilistic latent semantic analy-
sis (pLSA)21 and latent Dirichlet allocation (LDA).22 The
topic models are able to recognize relationships through
the co-occurrence of simple features at different hierarchical
levels. Table 2 presents a short listing of representative works
that utilize topic models for traffic behavior understanding.

Topic models, as traditionally applied in language
processing, view a document as a mixture of various topics
and each word in the document is generated from a single
topic. The learning goal is to discover the topics of a docu-
ment given the words. This discovery is achieved by mining
a corpus of documents to examine the co-occurrence of
words to cluster into the topics. For example, words such
as “baggage,” “terminal,” and “flight” often co-occur in
documents and could be clustered into the topic “airport.”
In the video analogy, a bag of visual words is constructed
from motion and a topic refers to the “path.”

4.1 Basic LDA Formulation
The most commonly used topic model is LDA.22 The
Bayesian model can be efficiently described by its plate nota-
tion as given in Fig. 4. The observed variable, shown in gray,
is the word given by wji. The plate K represents the word
distribution over topic k given the Nj topics and M docu-
ments. zji is the topic, governed by the topic distribution
πj. LDA has become a popular model because it enforces

Table 2 Representative topic model studies.

Research study Input data Classification/inference Description

Wang et al.16 Trajectory Dynamic dual-HDP Dynamic dual-HDP nonparametric Bayesian model to
automatically model activity categories and semantic
regions without specifying the number of topics and
with online update of model.

Song et al.17 Optical flow LDA Two-level LDA topic model learned first for single-agent
motion, which is input to second level LDA for multiagent
interactions.

Fowlkes et al.18 Foreground pixels DPMM Fast rank-1 robust PCA used for foreground detection
with counts of pixels in blocks used as input for DPMM
learning, which enables incremental learning and inference.

Fu et al.19 Optical flow LDA Sparse topical coding used for efficient learning and
representation of the topic model.

Hu et al.20 Trajectory tDPMM Dirichlet process mixture model is used for unsupervised
clustering and modified to handle temporal structure and
ordering inherent in a trajectory sequence.
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a Dirichlet prior over the topic distribution and word distri-
bution for improved performance over pLSA.

The basic methodology to learn given the LDA model
is as follows: A database of video is collected and segmented
into clips that represent documents. A small vocabulary
(set of motion vectors) is created based on vector quantiza-
tion to build a codebook of visual words. Typically, the
visual words are constructed by uniformly dividing the
two-dimensional image plane into small regular cells and
quantizing the motion in each cell into one of four directions
(north, south, east, west). A word then is a dimension 3 vec-
tor w ¼ ½x; y; dir�. Using an inference method, such as
collapsed Gibbs sampling (Markov chain Monte Carlo
algorithm) or variational Bayesian methods,22,24 collections
of words can be combined into topics (a co-occurrence of
motion). The learned topics indicate the dominant behavior
in a scene. The LDA process is highlighted in Fig. 5(a).
Notice that since data are shared between different topics,
a behavior does not necessarily have to be from an entry
to exit point. A turn and straight through an intersection
may have a shared topic (the approach to the intersection)
before separating to complete different topics on the way
out of the scene. This topic sharing is analogous to the
track sharing depicted in Fig. 2(b) and provides efficient
utilization of limited training data.

The standard LDA formulation can be used to determine
the dominant scene flow as well as the detection of abnormal
events.23 It is popular for application papers because the
implementation has been well studied and software packages
are freely available online.25–28

4.2 Adaptability and Automatically Generating
the Number of Topics

One of the very nice properties of topic models is their
graphical representation, which makes it very easy to aug-
ment and extend the basic model for various levels of inter-
pretation and understanding. The basic LDA structure can be
augmented with new nodes that account for extra observa-
tions and hidden nodes that represent the model hierarchy.
The simple topics can be extended by adding distributions
over the topics to describe interactions or global behav-
iors (Fig. 5).

The hierarchical Dirichlet process (HDP)31 is an extension
of LDA to model the Dirichlet admixture nonparametrically,
Fig 6(a). The nonparametric prior, parameterized by the
concentration parameter and base measure, enables the
HDP to automatically select the number of topics based on
the training data. The ability to automatically determine the
number of topics is incredibly important in practice because
this would not be known in a new application scenario.

The HDP model was further extended by Wang et al.32 as
the dual-HDP in order to cluster motion into semantic
regions (topics in the basic LDA or HDP formulation) as
well as to further cluster the semantic regions into inter-
actions without manual specification. The model, as depicted
in Fig. 6(b), contains two hierarchical Dirichlet processes—
one modeling the semantic regions and the other modeling
the interactions.

Haines and Xiang33 further extended the dual-HDP with
the delta dual-HDP structure shown in Fig. 7. This model
was designed for jointly learning both normal and abnormal
behavior using weakly supervised training examples. By
modeling both normal and abnormal, subtle behaviors can
be learned with little training data yet still detect abnormal-
ities as unusual behaviors. Notice the two topics, regular HR

t
and abnormal HA

t , are defined at the top of the structure and
control the distribution over the topics with prior Sd.

The basic LDA formulation has been upgraded in a
more straightforward staged fashion. A two-level LDA topic
model17 has been used to learn scene behaviors. The first
level learned single-agent motion, while the second LDA

Fig. 4 The basic latent Dirichlet allocation (LDA) topic model com-
monly used for activity learning.22

Fig. 5 (a) The basic framework for LDA topic modeling with visual features. The top shows the extraction of visual features indicating position and
direction of travel, the middle gives the topics, and the bottom gives higher-level behavior interpretation as distributions over topics.29 (b) The
hierarchical LDA framework for interactions showing connections between indicator variables and behaviors.30
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level used the first-level output to learn interactions over
multiagents. This hierarchy enabled anomaly detection at
both levels for every video frame rather than for clips. In
a similar fashion, a two-staged cascaded LDA (Cas-LDA)
model, shown in Fig. 8, was formulated in Ref. 24. The
first stage learns regional behavior and context by applying
LDA to all nonoverlapping windows in a video clip. The sec-
ond stage learns global context over the regional models.

4.3 Explicitly Modeling Temporal Variations
Temporal topic models explicitly model the dynamic evolu-
tion of behaviors. That is to say, they are able to recognize
the relationships and ordering between the scene behaviors.
Rather than using a static model for a single clip, the evo-
lution from clip to clip is considered by reasoning over tem-
poral data. This enables learning the “rules of the road,” e.g.,
the signal phase at an intersection controlling the sequence of
vehicle movements.

The Markov clustering topic model (MCTM)34 structure
presented in Fig. 9(a) utilized a three-layer latent structure
composed of events, actions, and behaviors. The visual
events are simple pixel motion, actions are single object
activities, and multiobject behaviors are composed of co-
occurring activities that are correlated in time. The temporal
correlation between behaviors is assumed to vary over time
according to an unknown discrete distribution with param-
eter Ψ (defining a Markov chain). The parameter Ψ is treated
as Dirichlet distributed to automatically discover the tempo-
ral evolution of behaviors between clips. Therefore, the
MCTM is able to recognize the likelihood of transitioning

from a behavior in one clip to another behavior in the
next, which is encoded in a transition matrix.

Kuettal et al.35 developed the dependent Dirichlet proc-
ess-hidden Markov model (DDP-HMM) to extend the
MCTM. Rather than a single Markov chain governing the
entire scene, a number of HMMs are allowed to exist ena-
bling analysis of more complex scenes. Therefore, various
time-ordered dependencies can be discovered from video
clips, resulting in a much more complicated state transition
matrix than for MCTM. A comparison between the DDP-
HMM and MCTM found that the DDP-HMM was able to
find extra alternative traffic light cycles.

A mixed event relationship model (MERM) has relaxed the
first-order Markov property to explicitly model the time-lag
between dependent activities.36 The MERM models both
global rules, motion during intersection light phases, as well
as local rules, the transitions from an activity to another with
an associated time lag. The MERM relied on a sparse activity
representation known as probabilistic latent sequential motifs
(PLSM)37 rather than visual motion words. PLSM provides
dominant activities of the scene as well as the starting times
to build the binary occurrence matrix input to MERM.

4.4 Incremental Learning and Update
The previous sections highlighted the ability of topic models
to conveniently learn vehicular behavior patterns; however,
the aforementioned techniques all learn and fix their outputs.

Fig. 6 LDA upgrades to automatically determine the number of
topics with (a) hierarchical Dirichlet process (HDP) and the number
of interactions with the (b) dual-HDP.32

Fig. 7 Delta dual-HDP33 used to automatically model both the normal
and abnormal behaviors.
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The learned patterns can then be used to classify behaviors
and detect abnormalities in an online fashion but have no
mechanism for updating models with passing time. Active
surveillance requires observations over long periods of
time where the patterns of activity may change. For example,
a new activity may be observed, an old one disappear, or the
sense of what constitutes an abnormality may evolve (e.g.,
the first appearance may be abnormal but after more exam-
ples it should become typical). These changing conditions
necessitate incremental learning and update methods.

Wang et al. extended their dual-HDP model for incremen-
tal learning into the dynamic dual-HDP. As shown in Fig. 10,
the dynamic dual-HDP successively learns the topic models
in time slices (a fixed amount of time). All the information
(topics, etc.) learned in a particular time slice t − 1 can be
used as a prior for prediction of the topics in the next
time slice t. Therefore, the model is able to naturally evolve
over time in a smooth fashion.

4.5 Discussion of Topic Models
Application of topic models is appealing for computer vision
researchers because they provide a nice computational

framework for machine learning. Specifically, they success-
fully utilize the simple bag-of-word representations to learn
models in an unsupervised fashion without manual labeling
of training data. They enable efficient utilization of data and
avoid overfitting by sharing features and training data
between actions. Most topic models for behavior understand-
ing are hierarchical Bayesian models that allow joint mod-
eling at different levels of complexity and enable easy
extension and introduction of contextual knowledge as pri-
ors. Finally, they can use Dirichlet processes (DP) as priors
to automatically learn classes from data and avoid manual
specification.

These topic models are extremely useful in learning in
scenarios that are difficult to process with conventional
detection and tracking. Readers interested in topic models
for action recognition are directed to the recent review by
Wang30 for a more detailed treatment of the subject.

While decoupling modeling from explicit tracking helps
improve learning in difficult scenarios with crowds and large
amounts of occlusion, the resulting generative models are
based on co-occurring motion words. Due to the bag-of-
words formulation, generally, temporal ordering is discarded,

Fig. 8 Cascade LDA topic modeling of regions followed by a second LDA stage for global context from Ref. 24.

Fig. 9 Temporal topic model structures enable learning of the temporal ordering and transitions between behaviors (the “rules of the road”).
(a) Markov clustering topic model (MCTM),34 where behaviors are allowed to change between time slices based on a discrete distribution Ψ.
(b) The dependent Dirichlet process-hidden Markov model (DDP-HMM)35 extension of the MCTM to have multiple hidden Markov models for
more complex scene analysis.
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which breaks the typical notion of a trajectory sequence. In
addition, without explicit tracking, there may be ambiguity
when making predictions about future events. For example,
when an abnormality is detected, it may not be clear to which
entity it is attributed. This is most easily recognized when
considering frameworks that provide a clip level description
(e.g., normal/abnormal clip). It is important from the mon-
itoring and surveillance standpoint to be able to accurately
gauge exactly when, where, and with whom an event occurs.

One of the appeals of topic models is their ability to auto-
matically determine the number of behavior topics present in
a scene. However, this does not mean that nonparametric
topic modeling techniques are without parameters. They
require the setting of hyperparameters, e.g., the Gamma pri-
ors, which may affect the modeling performance. In addition,
there are hidden implicit parameters inherent in the learning
process such as the burning time of the Gibbs sampling,
which must also be set manually.

4.5.1 Trajectory-topic modeling

The topic modeling approaches can also be applied to trajec-
tories. Rather than considering a video clip as the document,
the trajectory itself is a document. The words are still the
observed motion, only this time they come from the tracking

process. The interpretation of topics (as well as other hier-
archical distributions built upon the topics) remains the
same.30 The advantage of the fusion of trajectories and
topic modeling is the ability to target individual behavior
patterns rather than a full scene description of behavior.

Due to the loose constraints on pedestrian movements,
Kooij et al.39 developed a mixture of switching linear
dynamic systems to discover typical actions and their tem-
poral relations at the object level. Trajectory data were
obtained from a person tracker and clustered into behaviors.
These behaviors were defined by transition probabilities
between actions, which represent spatial location and low-
level motion dynamics. Therefore, tracks are segmented
into sequences of actions and they are jointly clustered
into behavior classes. The low-level actions and temporal
order within high-level behaviors are inferred directly
from trajectories. In addition, continuous motion distribu-
tions are utilized for better identification of dynamic varia-
tions that can be lost through quantization.

Very recent work by Hu et al.20 used the Dirichlet process
mixture model (DPMM) to cluster, model, and retrieve tra-
jectories in an incremental fashion. Further, the time-varying
information contained in a trajectory is modeled using the
time-sensitive DPMM (tDPMM) over subtrajectories. The
dynamic dual-HDP has also been applied to trajectories16

to learn behaviors as distributions over shared semantic
regions (subpatterns) with incremental updating. This work
showed results from both vision-based trajectories as well
as radar tracks, demonstrating the general applicability of
trajectory learning.

4.5.2 Computational efficiency

The push toward incremental learning and updates is
extremely important for widespread adaption of behavior
understanding systems. In order for these systems to be
useful in monitoring situations and TMCs, these systems
must operate over extremely long periods with little super-
vision. It will be important in the future to develop computa-
tional efficient algorithms to leverage massive historical
datasets and elegantly update new observations. A joint
multinomialþ Gaussian DPM framework has recently been
proposed to trade-off computational complexity of the
Bayesian topic model processes with scalability for large

Fig. 10 The dynamic dual-HDP16 uses semantic regions in time t − 1
as a prior for prediction of semantic regions in time slice t enabling
online incremental updating of behavior models.

Fig. 11 Process diagram for approach of Saleemi et al.:38 Grouping of frames into video clips, optical flow computation, Gaussian mixture model
learning by k-means, filtering of noisy Gaussian components, intercomponent spatiotemporal transition computation for instance learning, pattern
inference using Kullback-Leibler (KL)-divergence, pattern representation as spatial marginal density, and computation of conditional expected
value of optical flow given pixel location.
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datasets.18 Fu et al.,19 in contrast, use sparse topical coding to
represent clips with a sparse set of motion patterns in an LDA
framework for efficiency.

4.5.3 Topic model alternatives

Despite their recent popularity and success, topic models are
not the only way to decouple tracking from the learning proc-
ess. The same visual-bag-of-motion-words concept can be
applied to video clips with other learning frameworks. In
Ref. 38, dense optical flow vectors are computed as motion
descriptors to avoid tracking. Video is divided into 1-s clips,
and all optical flow vectors are clustered using k-means into
a mixture of Gaussian distributions (Fig. 11). Mixture com-
ponents were treated as nodes in a graph connected through
time based on a reachability criterion that relied on a constant
motion model between proximal clips. The resulting
Gaussian chains defined the distribution of a motion pattern
and were used for inference based on Kullback-Leibler (KL)
divergence.

Tracking and learning were also decoupled without the
use of topic models by Zen et al.40,41 In this work, activity
patterns are extracted through matrix factorization based on
the Earth mover’s distance. The authors utilize short trajec-
tory snippets (to avoid full tracking) and background sub-
traction identification of static pixels to explicitly address
noise and uncertainty in visual information.

5 Evaluation and Benchmarking
The increased emphasis in trajectory pattern analysis for
driving behavior understanding has been fueled by the emer-
gence of readily available datasets to provide benchmarking.
This sharing of benchmark data is incredibly important for
improving research results because it provides fair compari-
son and lowers the barrier of entry into the area. Further
details on available datasets are presented in the following
section along with common evaluation criteria for behavior
analysis.

5.1 Datasets
Table 3 provides a brief description and sample image of
the monitoring scene for the most popular public datasets.
Detailed descriptions for each dataset are provided below.

5.1.1 MIT traffic dataset

The Massachusetts Institute of Technology (MIT) traffic
dataset32 is for research on activity analysis and crowded
scenes and has become the most widely used dataset. It con-
tains 90 min of traffic video recorded by a stationary camera
divided into 20 clips. The clips contain both vehicle traffic at
a four-way signalized intersection and pedestrians on three
zebra crossings. Only raw video is provided, so motion/tra-
jectories must be extracted from the video. However, ground
truth does exist for a subset of frames for pedestrian detec-
tion,45 and there are true abnormalities present in the data.

5.1.2 MIT trajectory dataset

This MIT trajectory dataset42 contains 40,453 tracks
extracted from a single camera overlooking a parking lot
over a week. There are a few vehicle enter/exit behaviors
with the majority being pedestrian activities. The dataset

Table 3 Popular activity learning and behavior understanding traffic
datasets.

MIT traffic dataset32 http://www
.ee.cuhk.edu.hk/~xgwang/
MITtraffic.html 90 min of video
for activity analysis in crowded
scenes that contain both vehicle
and pedestrian traffic.

MIT trajectory dataset42

http://www.ee.cuhk.edu.hk/
~xgwang/MITtrajsingle.html
Over 40,000 tracks from a
camera overlooking a parking
lot over a week. Designed to
examine computational
efficiency.

Next-generation simulation43

http://ngsim-community.org
30 min of multicamera
overhead arterial video of
capturing intersections.
Dataset contains raw video,
detailed vehicle trajectories,
and supporting behavioral
data.

CSBR intersection traffic
dataset8 May be available
by special request. Complex
view of an intersection with a
number of possible entry and
exit combinations.

CVRR trajectory analysis
datasets3 http://http://cvrr.ucsd
.edu/datasets Includes
two highway datasets—one
simulated and the other
real—and a simulated
intersection. The ground truth
includes frame-level
predictions and unusual
actions.

i-Lids–advanced video and
signal-based surveillance
2007 vehicle detection
challenge44 http://www.eecs.qmul
.ac.uk/~andrea/avss2007_d.html
Three videos on a roadway in
the United Kingdom with varying
degrees of tracking difficulty
with associated ground truth
data.

QMUL junction dataset34

http://www.eecs.qmul.ac.uk/~
jianli/Dataset_List.html
1 h (90,000 frames) of busy
traffic video collected at a junction
and with ground truth available.
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was collected to examine computational efficiency in
terms of space requirements, complexity of algorithms, and
adaptability.

5.1.3 NGSIM

The next-generation simulation (NGSIM) program43 was
developed by Federal Highway Administration (FHWA)
to develop a core of open behavioral models in support of
microscopic modeling and traffic simulation. It included
supporting validation data that have been used more recently
for learning traffic patterns. The overhead intersection
cameras from the Lankershim and Peachtree sets are the
most commonly used. They each provide 30 min of arterial
video data, detailed vehicle trajectories, as well as supporting
behavioral data.

5.1.4 CBSR intersection traffic dataset

The Center for Biometrics and Security Research (CBSR)
intersection traffic dataset8 has been used extensively for
vehicle detection and tracking. It was collected by research-
ers at the CBSR at the Institute of Automation, Chinese
Academy of Sciences. The dataset provides a single view
of a complex intersection that contains a number of possible
entry and exit combinations. Although the dataset has been
cited many times, it was not readily available online but
seems to require special access rights; therefore, the type
of data (video, trajectories, abnormalities) provided could
not be confirmed.

5.1.5 CVRR trajectory analysis dataset

The Computer Vision and Robotics Research (CVRR) tra-
jectory analysis datasets3 were designed specifically for
evaluation of trajectory clustering and analysis techniques.
The datasets consist of a simulated intersection, an 8 lane
highway, as well as video from a laboratory obtained with
an omni-directional camera. The included annotations
provide classification and abnormality detection as well as
online prediction and localized unusual action detection
for every frame.

5.1.6 i-Lids–AVSS 2007 vehicle detection challenge

A subset of the i-Lids dataset was used for the IEEE
advanced video and signal-based surveillance (AVSS)
detection and tracking algorithm challenge in 2007.44 The
Task 2—Parked vehicle challenge—video consists of
three videos of a roadway in the United Kingdom of various
tracking difficulty (based on density of vehicles) with ground
truth data.

5.1.7 QMUL junction dataset

The Queen Mary University of London (QMUL) junction
dataset34 is a new dataset specifically for activity analysis
and behavior understanding. This challenging dataset con-
tains 1 h (90,000 frames) of busy traffic video collected
at and 25 fps. This is quickly becoming a favorite dataset
for topic modeling.

5.1.8 Idiap traffic junction dataset:

The Idiap traffic junction dataset46 provides a view of a junc-
tion controlled by traffic lights and contains activities for

both cars and pedestrians. The video contains multiple
instances of rare or unusual events, which are provided as
an abnormality annotation file. The dataset was used for
topic model scene analysis and provides 44 min of video
at resolution and 25 fps.

The most popular datasets for trajectory learning (specifi-
cally topic modeling) is the MIT traffic dataset and QMUL
junction dataset. The NGSIM set has also been used often,
thanks to the availability of trajectory, as well as ground truth
behavior data. Note that only a few of the datasets are
specifically for activity analysis and behavior understand-
ing.3,32,34,42 Most of the datasets have been used for this
purpose after the fact since they are available for comparison
purposes. However, even for the behavior-specific datasets,
there is a shortcoming in terms of ground truth annotations
of the “true” activity and abnormalities for performance
evaluation. Most of these sets are just used to provide quali-
tative learning effectiveness rather than quantitative perfor-
mance on clustering accuracy, prediction, and abnormality
detection.

5.2 Evaluation Criteria
One of the major issues for activity analysis and behavior
understanding research is consistent definitions and notions
of performance. There has yet to be a consensus on the most
appropriate ways to characterize performance. In fact, few
works actually perform quantitative evaluation. This lack
of quantitative comparison is likely due to the ambiguous
nature of behavior. However, a number of methods have
been used to concretely characterize performance for specific
tasks in behavior understanding.

5.2.1 Correct clustering rate

The correct clustering rate (CCR) provides a measure of
how well labels match between clustering and ground
truth and has been used to verify trajectory clustering
algorithms.14,20,47 In order to evaluate a clustering result, a
one-to-one mapping between ground truth labels and those
returned by the clustering algorithm is found. The mapping
is typically recast as the minimization of the number of mis-
matched labels and solved greedily using the Hungarian
algorithm.48 Given the mapping between ground truth and
cluster labels, the CCR is computed as

CCR ¼ 1

N

XK

c¼1

pc; (1)

whereN is the total number of trajectories and pc denotes the
number of trajectories correctly matched to the c 0th ground
truth cluster label.

5.2.2 Completeness and correctness

In spirit similar to CCR, completeness and correctness has
been used to evaluate clustering performance.16,49 Rather
than using a single metric, the pair is used to provide
more detailed characterization. Correctness is a measure
of how well different ground truth trajectories are separated,
while completeness is a measure of how many similar trajec-
tories are combined in a cluster. In practice, there is a trade-
off between these two aspects.
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The completeness and correctness metrics are appealing
because ground truth labeling can be obtained by pairwise
comparisons of trajectories rather than needing to estimate
(or know) the total number of clusters in the dataset. This
becomes particularly important when datasets are very
large and activities/behaviors are complicated since it would
require expert or very-well trained annotators rather than
mechanical turk.

5.2.3 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve has been
used extensively in the detection and classification commun-
ities to provide a parameterized performance curve. The
ROC curve has been adopted for abnormality detection per-
formance reporting by casting the problem in a normal/
abnormal detection framework.3,24,33,34,50 The ROC curve
is plotted by varying a sensitivity threshold and calculating
the number of correctly classified versus incorrectly classi-
fied results. Example abnormality ROC curves are presented
in Fig. 12. Notice that these correspond to different inputs. In
(a), the abnormal classification is for every frame for each
trajectory (online evaluation), while in (b), a short video
clip is considered.

6 Applications
The following section provides a brief look at useful trans-
portation applications highlighting the generality of the mod-
els learning from trajectory clustering and topic models.
These are only the first applications that may come to mind
and with maturation of the learning technology, exciting new
application areas will emerge.

6.1 Traffic Scene Characterization
The learned traffic patterns, both from trajectory learning and
topic modeling, provide an expression of the scene based on
observables rather than manual specification. This character-
izes how the particular roadway is typically used (which is
often how it was designed to be used). In an unsupervised
fashion, these techniques provide a method to learn the
rules of the road and the geometric configuration. This gives
the allowable maneuvers at an intersection, the number of
lanes, etc.

This characterization is useful in the traditional traffic
engineering sense when utilizing trajectory techniques.
Rather than using intrusive technology, such as pneumatic
tubes or inductive loops, or hiring a person to sit at a street
corner, the counts can be obtained with available traffic cam-
eras.51 These counts could indicate the flow of vehicles on
the highway, the turn counts at an intersection, etc. Also,
with camera calibration it is possible to extract measures
of occupancy, density, and speed profiles. Also, since cam-
eras are wide area sensors, they can also provide statistics
that transportation engineers in operations and planning
would like but do not have readily available such as queue
length and wait time.

More recently, more complex utilization of trajectory
and imagery data has provided real-time estimations of
vehicular emissions in the CalSentry system.52 Dynamic
information obtained through calibrated tracking was tied
with vehicle-specific emission models to characterize the
energy/emissions of all roadway vehicles. The cameras
were used not only for tracking but also to classify vehicles

based on their appearance and were tied together with behav-
ioral monitoring to automatically annotate the lanes and
direction of travel for each vehicle.

6.2 Conflict Analysis
Perhaps the most natural extension to traditional traffic
analysis one can envision with the use of video technology
is advanced conflict analysis. Rather than waiting for rare
collision events (and annual reports that may lack critical
information), with traffic cameras, critical locations can be
monitored in real time. Safety can then be analyzed in a pro-
active manner based on the interactions between vehicles.
A hierarchy can be constructed, as shown in Fig. 13, and
utilized to classify interactions.53 At the top of the pyramid
are collisions, which are rare, and the bottom has safe inter-
actions, which make up the majority of the time. In the
middle are conflicts, the situation when two vehicles could
collide without intervention, which can be used as a surro-
gate safety measure.54

Surrogate safety analysis is only possible with accurate
prediction of future events. However, this prediction is

Fig. 12 Abnormality/unusual action receiver operating characteristic
(ROC) curves. (a) ROC generated in online fashion for every sample
of every trajectory.3 (b) ROC generated based on abnormality classi-
fication for short video clips.24
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difficult because of the complex dynamics and control with
vehicular traffic; a driver will change the kinematic state
based on an internal plan or intentions. Numerical tech-
niques, such as Markov chain Monte Carlo or multiple
hypothesis tracking, can be used to enumerate many possible
future outcomes as well as to attempt to guess the driver
intention; however, these are computationally expensive.55

Instead of complex motion models, patterns learned from
motion or trajectory clustering can be used as priors to gen-
erate the likely future trajectories. The priors would then re-
present the possible intentions of a driver during tracking.
This removes the need for high-resolution (sensitive) meas-
urement of vehicle dynamic parameters such as acceleration,
yaw angle, yaw angle rate, etc., and instead use historical
observations to cue future trajectory of a vehicle. Conflict
analysis requires methods to accurately assess future states
for each individual vehicle, making it better suited for
trajectory-based algorithms.

Given scene context as exemplified by the learned
behavioral patterns, the next challenge for accurate behavior
prediction would be to understand driver intentions as
influenced by other road users.56 This study of interactions
between vehicles will be essential for real safety analysis
since travel is not performed in a vacuum; the actions of
other road users affect a driver’s response (Fig. 14). The chal-
lenge is to understand what are the most important mental
models in play during driving and how those change due
to external influences from the environment (e.g., highway
or intersection), driver perception and comprehension of the
driving context, and the myriad of distractors faced while
driving.

6.3 Motion Database Query
Another interesting application of trajectory characterization
comes from database retrieval. Given the large amounts of
visual data that are collected from traffic cameras, it will
become important to succinctly index activities and events
for further analysis. In particular, the models learned from
trajectory learning or topic modeling can be used for pattern
matching and database query.10,20 This functionality enables
a traffic engineer to find occurrences of a particular behavior,
e.g., illegal U-turn or jaywalking, from a large trajectory
database for closer inspection.

6.4 Abnormality Detection
Incident detection is one of the most challenging and useful
applications in transportation. It provides a higher level of
scene understanding than more basic vehicle counting.
Incident detection is often treated as a recognition problem
to find crashes, illegally stopped vehicles, illegal lane chang-
ing, etc.1 These incidents can be detected as vehicles behav-
ing abnormally since by its very definition, an incident is an
unusual event. By using either trajectory learning or topic
models, the scene description that is built provides not
only a way to characterize traffic but also a model of typical
behaviors. Motion that does not fit into these learned norma-
tive models are then classified as abnormalities.

While both trajectory learning and topic models provide
means to detect abnormalities, they differ in the type of
abnormalities and the localization ability. Since trajectory
learning inherently analyzes individuals, it is able to localize
unusual events precisely. In contrast, basic topic models pro-
vide clip classification. A clip is denoted as unusual or not
without explicit localization. However, they naturally handle
multivehicle situations, such as the flow in different direc-
tions of a controlled intersection.

A number of methods have been proposed to improve
abnormality detection because it is one of the powerful
analysis tools provided by unsupervised learning techniques.
Trajectories can be analyzed in concert as highlighted above
for conflict analysis.54,55 And many augmented LDA topic
structures allow for localization of anomalous motion words.

Recent work has looked to improve anomaly detection
by explicitly modeling these rare events.33 Loy et al.57 use
a cascade of dynamic Bayesian networks (CasDBNs) to
provide different DBNs with sensitivity toward different
types of anomalies. Active learning techniques have also
been utilized to analyze live video streams and provide
human direction in order to accurately identify the rare
abnormality events.58

Fig. 13 Hierarchical order of safety measures.53 While crashes are
the most objective indicator of dangerous behaviors, they are rare,
so surrogate safety measures can be collected based on conflicts
and avoidance maneuvers, which relate to interactions between
vehicles.

Fig. 14 Scene context is enabled with trajectory/motion clustering and provides the necessary priors for assessing critical situations without relying
solely on the dynamics and kinematics of the vehicle.56
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7 Discussion and Future Directions
Behavior analysis has become a popular field within com-
puter vision. Much of the recent work has focused on the
generative topic models due to their probabilistic description
of data and interesting properties from the machine learning
perspectives. But, it is important to recognize the differences
between trajectory learning and topic models to understand
what applications are each best suited.

Trajectory clustering fits seamlessly into a traditional sur-
veillance setting where each object is detected and tracked.
Since each vehicle is treated separately, it is possible to make
direct inference of future behavior of every scene participant
and to locate abnormalities precisely. Most importantly for
surveillance, after learning, all analysis can occur in real
time. However, these algorithms are sensitive to tracking
errors, such as occlusion, which cause broken tracks, as
would be found in complex and crowded scenes. In addition,
these methods do not intrinsically represent multivehicle
behaviors.

Topic models are more robust to occlusion since they
examine the co-occurrence of motion in a short video
clip. Therefore, they naturally represent multiobject behav-
iors and can detect anomalies defined by unusual co-occur-
rence of actions. However, the basic variants do not localize
anomalies spatially and most do not detect anomalies if most
of the simultaneous activities are typical. It is also important
to select the appropriate clip size, otherwise abnormalities
will not be localized temporally.

The challenges for traffic behavior understanding are how
to provide the nuanced behavior specification with multiple
participants at different spatial and temporal resolutions
while still enabling individual counts since traffic engineers
require them.

Also, new insight is required in how to handle massive
data—both in terms of the number of cameras as well as
the continuous stream. For reliable usage, it will be essential
for these systems to accurately describe the traffic situation
as the network itself changes. It is important to be able to
update models effectively over time (incremental learning);
however there is the problem of imbalanced data. There is
significantly more typical data than unusual, which results
in the difficult task of modeling the tails of a distribution.
Recent stream-based learning approaches have attempted
to model the tails of distributions (abnormalities) using an
active learning framework.58,59 In complex scenes with
many typical activities occurring, an abnormality may be dif-
ficult to discover (unusual events overlapping with normal).
The active learning framework queries a human to provide
labels for these difficult situations but it is unclear if this is
scalable.

In addition, the scope and view of a road behavior will
change with access to larger scale data from global position-
ing system (GPS). Exciting new work is already underway
using floating car data to learn about behaviors. The preva-
lence of GPS-enabled devices, both in phones and navigation
systems, and public willingness to share this information
offers massive data to be mined. As is common now, this
data can be used to gain insight into the traffic network in
terms of speed and congestion. Furthermore, it also provides
rich behavioral information. This data could be used for per-
sonalized reports of traffic on your favorite routes or directed
advertisements (information). But, it can also be used in

aggregate to learn trends—the most popular routes between
destinations, for crime prevention,60,61 etc.

8 Concluding Remarks
This manuscript has reviewed recent progress in understand-
ing traffic behavior with infrastructure-based video sensing.
The focus of the report was on unsupervised techniques for
behavior analysis, which are generally applicable to many
traffic surveillance situations. Trajectory clustering and topic
models have emerged as the two most popular methods for
unsupervised learning and provide the context required for
behavior understanding. In addition, a detailed summary
of publicly available video and trajectory datasets for behav-
ior analysis are presented. These benchmark datasets will be
extremely important for progressing the field. Despite the
great success in recent years, there are many open research
questions that require attention before these techniques can
be widely adopted and provide useful analysis.
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