
Electrical and Computer Engineering Faculty 
Publications Electrical & Computer Engineering 

1-2013 

Framework for Simulation of Heterogeneous MpSoC for Design Framework for Simulation of Heterogeneous MpSoC for Design 

Space Exploration Space Exploration 

Bisrat Tafesse 
University of Nevada, Las Vegas 

Venkatesan Muthukumar 
University of Nevada, Las Vegas, vm@unlv.nevada.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/ece_fac_articles 

 Part of the Biomedical Commons, Electrical and Electronics Commons, Power and Energy Commons, 

and the Signal Processing Commons 

Repository Citation Repository Citation 
Tafesse, B., Muthukumar, V. (2013). Framework for Simulation of Heterogeneous MpSoC for Design 
Space Exploration. VLSI Design, 2013 1-16. 
https://digitalscholarship.unlv.edu/ece_fac_articles/746 

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Article has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an 
authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece
https://digitalscholarship.unlv.edu/ece_fac_articles?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/267?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/ece_fac_articles/746
mailto:digitalscholarship@unlv.edu


Hindawi Publishing Corporation
VLSI Design
Volume 2013, Article ID 936181, 16 pages
http://dx.doi.org/10.1155/2013/936181

Research Article
Framework for Simulation of Heterogeneous MpSoC for
Design Space Exploration

Bisrat Tafesse and Venkatesan Muthukumar

Department of Electrical and Computer Engineering, University of Nevada Las Vegas, 4505 Maryland Pkwy, Las Vegas,
NV 89154, USA

Correspondence should be addressed to Venkatesan Muthukumar; venkatesan.muthukumar@unlv.edu

Received 8 October 2012; Revised 29 January 2013; Accepted 14 April 2013

Academic Editor: Paul Bogdan

Copyright © 2013 B. Tafesse and V. Muthukumar. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Due to the ever-growing requirements in high performance data computation, multiprocessor systems have been proposed
to solve the bottlenecks in uniprocessor systems. Developing efficient multiprocessor systems requires effective exploration of
design choices like application scheduling, mapping, and architecture design. Also, fault tolerance in multiprocessors needs to
be addressed. With the advent of nanometer-process technology for chip manufacturing, realization of multiprocessors on SoC
(MpSoC) is an active field of research. Developing efficient low power, fault-tolerant task scheduling, and mapping techniques
for MpSoCs require optimized algorithms that consider the various scenarios inherent in multiprocessor environments. Therefore
there exists a need to develop a simulation framework to explore and evaluate new algorithms on multiprocessor systems. This
work proposes a modular framework for the exploration and evaluation of various design algorithms forMpSoC system.This work
also proposes new multiprocessor task scheduling and mapping algorithms for MpSoCs. These algorithms are evaluated using
the developed simulation framework. The paper also proposes a dynamic fault-tolerant (FT) scheduling and mapping algorithm
for robust application processing. The proposed algorithms consider optimizing the power as one of the design constraints. The
framework for a heterogeneous multiprocessor simulation was developed using SystemC/C++ language. Various design variations
were implemented and evaluated using standard task graphs. Performance evaluation metrics are evaluated and discussed for
various design scenarios.

1. Introduction

Current uniprocessor systems guarantee high processor uti-
lization; however, they fall short in meeting critical real
time demands that require (1) high data throughput, (2) fast
processing time, (3) low energy and power consumptions,
and (4) fault tolerance. Present-day applications that run
on embedded or uniprocessor systems, such as multimedia,
digital signal processing, image processing, andwireless com-
munication, require an ever-growing amount of resources
and speed for data processing and storage, which can no
longer be satisfied by uniprocessor systems [1]. The increas-
ing performance demand dictates the need for concurrent
task processing on multiprocessor systems. Multiprocessor
SoC (MpSoC) systems have emerged as a viable alternate

to address the bottlenecks of uniprocessor systems. In an
effort to improve the processing performance,multiprocessor
systems incorporate a number of processors or processing
elements (PEs). A typical MpSoC system is composed of the
following major components:

(1) multiple processing elements (PEs) that perform the
task execution,

(2) multiple memory elements (MEs) that are used for
data storage, and

(3) a communication network that interconnects the
processors and memories in a manner defined by the
topology.

Heterogeneity in MpSoCs [2] is described as the variation
of the functionality and flexibility of the processor or the



2 VLSI Design

memory element. Heterogeneous processors in MpSoCs can
be programmable or dedicated (nonprogrammable) proces-
sors. Also, memory elements can be heterogeneous with
respect to their memory type, size, access mode, and clock
cycles. To transfer the data to and from the processing
and memory elements, the network component may include
busses, switches, crossbars, and routers.

Present-day MpSoC architectures employ most of the
above discussed components [3]. In fact, to effectively meet
today’s complex design requirements, modern multiproces-
sor systems are real time, preemptive, and heterogeneous [4].
For data exchange, memory elements inMpSoCs often follow
either distributed memory architecture (message passing) or
a global shared memory architecture [5–7].

An efficient MpSoC is based upon several key design
choices, also known as design space exploration: network
topology selection, good routing policy, efficient application
scheduling, mapping, and the overall framework implemen-
tation. A formal categorization of MpSoC design issues
presented in [8] is summarized below. Design methodolo-
gies in multiprocessor systems (MpSoC and NoC) have
been classified as follows: (1) application characterization,
scheduling, andmapping; (2) processing, memory, switching
and communication architecture modeling, development,
and analysis; and (3) simulation, synthesis, and emulation
framework.

Major design features that need to be addressed for
multiprocessors are task scheduling, mapping, and fault
tolerance.This work concentrates on developing a simulation
framework formultiprocessors on a single chip (MpSoC) that
simplifies design space exploration by offering comprehen-
sive simulation support.The simulation framework allows the
user to optimize the system design by evaluating multiple
design choices in scheduling, mapping, and fault tolerance
for the given design constraints. TILE andTORUS topologies,
which are common layouts inmultiprocessing environments,
are supported in this framework.

Using the developed MpSoC simulation framework,
we propose and evaluate (1) an efficient strategy for task
scheduling, called the performance driven scheduling (PDS)
algorithmbased on SimulatedAnnealing heuristic that deter-
mines an optimal schedule for a given application; (2) a new
mapping policy called Homogenous Workload Distribution
(HWD), which maps tasks to processors by considering
processors runtime status; and (3) finally, in an effort to
implement a robust system, a simple fault-tolerant (FT) algo-
rithm that reconfigures task execution sequence of the system
in the event of processor failure. Heterogeneity in processor
architecture is a key design feature in multiprocessor systems
and therefore is modeled in this framework. Even though
many earlier multiprocessor designs solve the scheduling and
mapping problem together, our framework considers them
individually for fault-tolerance.

In summary, the research presented in this paper
addresses the following issues and solutions.

(1) Develop a comprehensive MpSoC framework imple-
mented using C++ and SystemC programming
languages for effective exploration of design choices

like application scheduling, mapping, and architec-
ture design.

(2) The developed system can also evaluate MpSoC
system architecture design choices differing in the
number and type of processing elements (PEs) and
topology.

(3) The paper proposes a heuristic scheduling algorithm
based on Simulated Annealing.

(4) Also, a mapping algorithm that distributes the work-
load among the available PE is proposed.

(5) Finally, a centralized fault-tolerant scheme to handle
faults in PEs is proposed.

This paper is organized as follows. Section 2 briefly sum-
marizes previousworks in the field ofmultiprocessor systems.
Section 3 provides definitions and terminologies used in this
work. Section 4 presents the framework description as well
as the proposed algorithms and their implementation in
task scheduling, mapping, and fault tolerance techniques.
Section 5 discusses the experimental setup for simulation
and evaluations. Section 6 discusses the detailed simulation
results and the analysis of the algorithms on benchmarks.
Finally, Section 7 summarizes the conclusions.

2. MpSoC Design Literature Review

Extensive work has been done in the field of MpSoC- and
NoC-based systems. Earlier research targeted a variety of
solutions including processor architecture, router design,
routing and switching algorithms, scheduling, mapping, fault
tolerance, and application execution in multiprocessors. to
address the performance and area demands. The readers
can refer to [8–10] for an extensive enumeration of NoC
research problems and proposed solutions. In this section,
we concentrate on the earlier proposed scheduling, mapping,
and fault-tolerant algorithms. It has been shown that earlier
scheduling algorithms like FCFS and Least Laxity [7] fail to
qualify as acceptable choices of scheduling because they are
unable to meet deadline (hard deadlines) requirements for
real-time applications. Thai [7] proposed Earliest Effective
Deadline First (EEDF) scheduling algorithm. This work
demonstrated that increasing the number of processors to
improve the scheduling success increased the size of the
architecture, which makes task scheduling more difficult.
Stuijk et al. [11] proposed dynamic scheduling and routing
strategies to increase resource utilization by exploiting all
the scheduling freedom on the multiprocessors. This work
considered application dynamism to schedule applications on
multiprocessors both for regular and irregular tiled topology.
Hu and Marculescu [12] propose an algorithm based on list
scheduling where mapping is performed to optimize energy
consumption and performance. Varatkar and Marculescu
[13] propose an ILP-based scheduling algorithm that min-
imizes interprocess communication in NoCs. Zhang et al.
[14] propose approximate algorithms for powerminimization
of EDF and RM schedules using voltage and frequency
scaling. Also other researchers [15–17] have used dynamic



VLSI Design 3

voltage scaling in conjunction with scheduling for low power
requirements.

Finding an optimal solution in scheduling and mapping
problem domain for set of real-time tasks has been shown
to be NP-hard problem [11]. Carvalho et al. [18], proposed
a “congestion-aware” mapping heuristic to dynamically map
tasks on heterogeneous MpSoCs. This heuristic approach
initially assigns master-tasks to selected processors and the
slave-tasks are allocated on congestion minimizing manner
to reduce the communication traffic. Sesame project [4],
proposed a multiprocessor model that maps applications
together with the communication channels on the architec-
ture. This model tries to minimize an objective function,
which considers power consumption, application execu-
tion time and total cost of the architectural design. Many
researchers have discussed static and dynamic task allocation
for deterministic and non-deterministic tasks extensively [5].
Static mapping has also been shown non-efficient strategy
because it does not take application dynamism into account
that is a core design issues in multiprocessor systems. Ahn
et al. [19], suggests that real-time applications should behave
deterministically even in unpredictable environments so
that the tasks can be processed in real-time. Ostler and
Chatha [20] propose an ILP formulation for application
mapping on network processors. Harmanani and Farah
[21], propose an efficient mapping and routing algorithm
that minimizes blocking and increases bandwidth based on
simulated annealing. Also mapping algorithms to minimize
communication cost, energy, bandwidth and latency either
individually [22–24] or as a multi-objective criteria [25, 26]
have been proposed.

Task migration as opposed to dynamic mapping has been
proposed in [4] to overcome performance bottlenecks. Task
migration may result in performance improvement in shared
memory systems butmay not be feasible when considered for
distributed memory architectures due to the high volume of
inter-processor data communication [5].

Previous research in [5, 6, 27] has demonstrated reliability
issues regarding application processing, data routing and
communication link failure. Zhu andQin [28], demonstrated
a system level design framework for a tiled architecture to
construct a reliable computing platform from potentially
unreliable chip resources. This work proposed a fault model,
where faults may have transient and permanent behaviour.
Transient errors are monitored by a dedicated built-in
checker processor that effectively corrects the fault at run-
time. Nurmi et al. [6] demonstrated error tolerance methods
through time, space and data redundancy. This is however a
classic and costly approach with respect to system resources
and bandwidth though thework demonstrated redundancy is
one potential approach to address faulty scenarios. Holsmark
et al. [29], proposed a fault tolerant deadlock free algorithm
(APSRA) for heterogeneous multiprocessors. APSRA stores
routing information in memory to monitor faulty routs
and allow re-configurability dynamically. Pirretti et al. [30]
and Bertozzi et al. [31] propose NoC routing algorithms
that can route tasks around the fault and sustain network
functionality. Also research on router design to improve
reliability [32], buffer flow control [33] and error correction

techniques [34, 35] for NoC have been proposed. Koibuchi
et al. [36] proposed a lightweight fault-tolerant mechanism
called default backup path (DBP). The approach proposed a
solution for non-faulty routers and healthy PEs. They design
NoC routers with special buffers and switch matrix elements
to re-route packets through special paths. Also, Bogdan
et al. [37] propose an on-chip stochastic communication
paradigm based on probabilistic broadcasting scheme that
takes advantage of the large bandwidth available on the chip.
In their method, messages/packets are diffused across the
network using spreaders and are guaranteed to be received
by destination tiles/processors.

A number of EDA research groups are studying different
aspects of MpSoC design, some of which include the fol-
lowing. (1) Polis [18] is a framework based on both micro-
controllers and ASICs for software and hardware imple-
mentation. (2) Metropolis [18] is an extension of Polis that
proposed a unified modeling and structure for simulating
computationmodels. (3) Ptolemy [18] is a flexible framework
for simulating and prototyping heterogeneous systems. (4)
Thiele et al. [1] proposed a simulation based on distributed
operation layer (DOL) which considers concurrency, scal-
ability, mapping optimization, and performance analysis
in an effort to yield faster simulation time. (5) NetChip:
xpipes, xpipes compiler, and SUNMAP. NetChip is a NoC
synthesis environment primarily composed of two tools,
namely, SUNMAP [38] and the xpipes compiler [39]. (6)
NNSE:NostrumNoCSimulationEnvironment.NNSE [40] is
a SystemC-based NoC simulation environment initially used
for theNostrumNoC. (7) ARTSModeling Framework: ARTS
[41] is a system-level framework to model networked multi-
processor systems on chip (MpSoC) and evaluate the cross-
layer causality between the application, the operating system
(OS), and the platform architecture. (8) StepNP: a System-
Level Exploration Platform for Network Processors. StepNP
[42] is a System-Level Exploration Platform for Network
Processing built in SystemC. It enables the creation of multi-
processor architectures with models of interconnects (func-
tional channels, NoCs), processors (simple RISC), memories,
and coprocessors. (9) Genko et al. [43] present a flexible emu-
lation environment implemented on an FPGA that is suitable
to explore, evaluate, and compare a wide range of NoC
solutions with a very limited effort. (10) Coppola et al. [44]
proposes an efficient, open-source research and development
framework (On-Chip Communication Network (OCCN))
for the specification, modeling, and simulation of on-chip
communication architectures. (11) Zeferino and Susin [45]
present SoCIN, a scalable network based on a parametric
router architecture to be used in the synthesis of customized
low cost NoCs. The architecture of SoCIN and its router are
described, and some synthesis results are presented.

The following papers presented are the closest works
related to the proposed algorithms discussed in this paper.
Orsila et al. [46] investigated the use of Simulated Annealing-
based mapping algorithm to optimize energy and perfor-
mance on heterogeneous multiprocessor architecture. In
specific the cost function considered for SA optimization



4 VLSI Design

includes processor area, frequency of operation, and switch-
ing activity factor. The work compares the performance of
their SA-mapping algorithms for different heterogeneous
architectures. In another similar work [47], proposed by
the same author, the SA-mapping algorithm is adopted
to optimize usage of on-chip memory buffers. Their work
employs a B-level scheduler after the mapping process to
schedule tasks on each processor.

The proposed framework discussed in this paper employs
SA-based scheduling and workload balanced mapping algo-
rithms. Our algorithms also optimize scheduling and
mapping cost functions that include processor utilization,
throughput, buffer utilization, and port traffic along with
processor power. In addition, our algorithms also consider
task deadline constraints. Both scheduling and mapping
algorithms adopted in ourwork perform global optimization.

Paterna et al. [48] propose two workload allocation/
mapping algorithms for energy minimization. The algo-
rithms are based on integer linear programming and a two-
stage-heuristic mapping algorithm based on linear program-
ming and bin packing policies. Teodorescu and Torrellas
[49] and Lide et al. [50, 51] explore workload-based map-
ping algorithms for independent tasks, and dependent tasks
respectively. The work by Zhang et al. is based on ILP
optimization for execution time and energy minimization.
Our proposed mapping algorithm varies from the above-
specified workload constrained algorithms by considering
the buffer size usage and execution time of the tasks in the
buffer.

Works by Ababei and Katti [52] and Derin et al. [53]
have used remapping strategies forNoC fault tolerance. In the
solution proposed by Ababei and Katti [52], fault tolerance
in NoCs is achieved by adaptive remapping. They consider
single and multiple processor (PE) failures. The remapping
algorithm optimizes the remap energy and communication
costs. They perform comparisons with a SA-based remapper.
Orsila et al. [46] propose an online remapping strategy
called local nonidentical multiprocessor scheduling heuristic
(LNMS) based on integer linear programming (ILP). The
ILP minimizing cost functions include communication and
execution time. The proposed NoC fault-tolerant algorithm
employs rescheduling and remapping strategies to optimize
processor performance and communication cost. Also task
deadline constraints are considered during the rescheduling
and remapping.

With the current design trends moving towards mul-
tiprocessor systems for high performance and embedded
system applications, the need to develop comprehensive
design space exploration techniques has gained importance.
Many research contributions in development of hardware
modules and memory synchronization to optimize power,
performance, and area for multiprocessor systems are being
developed. However, algorithmic development for multipro-
cessor systems like multiprocessor scheduling and mapping
has yielded significant results. Therefore, a comprehensive
and generic framework for a multi-processor system is
required to evaluate the algorithmic contributions.This work
addresses the above requirement in developing a compre-
hensive MpSoC evaluation framework for evaluating many

scheduling, mapping, and fault-tolerant algorithms. Also, the
framework is developed on generic modeling or represen-
tation of applications (task graphs), architecture, processors,
topologies, communication costs, and so forth resulting in a
comprehensive design exploration environment.

The main contributions of this work can be summarized
as follows.

(1) We propose a unique scheduling algorithm for
MpSoC system called performance driven scheduling
algorithm that is based on Simulated Annealing and
optimizes an array of performance metrics such as
task execution time, processor utilization, processor
throughput, buffer utilization, and port traffic and
power. The proposed algorithm performance is com-
pared to that of the classical earliest deadline first
scheduling algorithm.

(2) This paper proposes a mapping algorithm that suc-
ceeded the scheduling algorithm called the homo-
geneous workload distribution algorithm that dis-
tributes tasks evenly to the available processors in an
effort to balance the dynamic workload throughout
the processors. The proposed algorithm performance
is compared with other classical mapping algorithm.

(3) Also, a fault-tolerant scheme that is effective during
PE failure is proposed in this paper. The proposed
fault-tolerant (FT) scheme performs an updated
scheduling and mapping of the tasks assigning to the
failed PE when the PE fault is detected. The unique
contribution of this work is the fact that it addresses
the pending and executing tasks in the faulty PEs.
The latency overhead of the proposed FT algorithm
is evaluated by experimentation.

3. Definitions and Theory

Simulation Model. The simulation model consists of three
submodels (Figure 1): (1) application, (2) architecture, and (3)
topology.The applicationmodel represents the application to
be executed on the given MpSoC architecture and connected
by the topology specified.

Application Model (Task Graphs). A task graph is a directed
acyclic graph (DAG) that represents an application. A task
graph is denoted as TG, such that TG = (𝑉, 𝐸), where 𝑉 is a
set of nodes and 𝐸 is a set of edges. A node in 𝑉 represents
a task such that 𝑉 = {𝑇

1
, 𝑇
2
, 𝑇
3
, . . . , 𝑇

𝑁
}, and an edge in

𝐸 represents the communication dependency between the
tasks such that 𝐸 = {𝐶

1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝐾
}. A weighted edge,

if specified, denotes the communication cost incurred to
transfer data from a source task to destination task. Each
task can exist in a processor in one of the following states:
ideal, pending, ready, active, running, or complete. The task
graph is derived by parsing the high-level description of an
application.

Architecture Model. The architecture of the MpSoC sys-
tem consists of the processors, hardware components,



VLSI Design 5

pending, ready,
active, running,

TG = 

Processor/memory
architecture, type,

power, clock-rate,
interrupt memory

NG = 

PE

PE

PE

PE

PE

PE

PE

PEM

M

M

PE PEPE

PE

PE

PE PE

PE

PE

PE PE

PE

PE

PE

⟩

complete⟩

NG ⟨

⟨

processor, type, topology⟩

Task ⟨𝑇𝐼𝐷,

Task status ⟨ideal,

{

{

{

{

{ {

{

{{

{
Ttype
Trelease time,
Texec time,
Tdeadline ,
Tadress , TDlist

(V, E) V = T1, T2, T3, · · · , T9
E = C1, C2, C3, · · · , CK

T1

T2
T3

T4

T5
T6 T7

T8

T9

ARCH = P1, P2, P3, · · · , PN
M1, M2, M3, · · · , MK

(V, E)
V = Pi, Mi , E = C1, · · · , CL

Figure 1: Simulation model containing application, architecture, and topology.

memory, and interconnects as defined by the topology
model. The MpSoC architecture is represented as a set,
{𝑃
1
, 𝑃
2
, 𝑃
3
, . . . , 𝑃

𝑁
,𝑀
1
,𝑀
2
,𝑀
3
, . . . ,𝑀

𝐾
}, where𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛

are a set of 𝑁 processors and 𝑀
1
,𝑀
2
, . . . ,𝑀

𝐾
are a set

of 𝐾 memory units. Each processor 𝑃
𝑖
or memory 𝑀

𝑖
is

defined by the following characteristics: type, power/task,
execution/task, clock rate, preempt overhead, and also by a set
of tasks {𝑇

𝑎
, 𝑇
𝑏
, 𝑇
𝑐
, . . . , 𝑇

𝑧
} each processor can execute, along

with their respective execution times and power costs. The
implemented heterogeneousMpSoC consists of processors of
the same architecture but can execute various set of tasks.

Topology Model (Topology Graph). Topology describes the
physical layout of hardware components in a system. The
topology model is represented as a topology graph (NG) that
consists of the set of processors, topology type ⟨tile, torus⟩,
and communication cost. This communication cost is the
same communication cost (𝐸) as defined in the application
model.

Scheduling. Scheduling is the process of assigning an execu-
tion start time instance to all tasks in an application such that
tasks are executed within their respective deadline. For an
application 𝐴 = {𝑇

1
, 𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁
}, where 𝑇

𝑖
is a task instance in

the application, task scheduling, denoted as 𝛼(𝑇
𝑖
), is defined

as an assignment of execution start time (𝑡
𝑖
) for the task 𝑇

𝑖
in

the time domain such that

𝛼 (𝑇
𝑖
) = 𝑡
𝑖
, 𝑡

𝑖
+ 𝑒
𝑖
≤ 𝑑
𝑖
, (1)

where 𝑒
𝑖
is the worst-case execution time of the task on a

specific processor, 𝑑
𝑖
is the deadline of the task𝑇

𝑖
, and 𝑡

𝑖
is the

execution start time of task 𝑇
𝑖
. Scheduling of an application

𝐴 is denoted as

𝛼 (𝐴) = {𝛼 (𝑇
1
) , 𝛼 (𝑇

2
) , 𝛼 (𝑇

3
) ⋅ ⋅ ⋅ 𝛼 (𝑇

𝑁
)} . (2)

If there exists a precedence operation between any two tasks
such that the execution of a task 𝑇

𝑖
should occur before the

execution of task 𝑇
𝑗
, represented as 𝑇

𝑖
< 𝑇
𝑗
, then:

𝑡
𝑖
+ 𝑒
𝑖
≤ 𝑡
𝑗
≤ 𝑑
𝑖
, 𝑡

𝑗
+ 𝑒
𝑗
≤ 𝑑
𝑗
, (3)

where 𝑡
𝑖
is the start time of task 𝑇

𝑗
, and 𝑒

𝑗
and 𝑑

𝑗
are the

execution time and deadline of task 𝑇
𝑗
, respectively.

Performance Index (PI). PI is the cumulative cost function
used to determine the optimal schedule by using the Sim-
ulated Annealing technique. PI quantifies the performance
of the system, taking into consideration the averaged values
of processor execution time (ETIME), utilization (UTL),
throughput (THR), buffer utilization/usage (BFR), port traf-
fic (PRT), and power (PWR). PI is evaluated by a cost
function that is expressed as

COST = 𝛼
1
(

1

ETIME
) + 𝛼
2
(

1

UTL
) + 𝛼
3
(

1

THR
)

+ 𝛼
4
(

1

BFR
) + 𝛼
5
(PRT) + 𝛼

6
(PWR) ,

(4)

where 𝛼
1
∼ 𝛼
6
are normalizing constants.



6 VLSI Design

The Simulated Annealing procedure compares the per-
formance of successive design choices based on the PI.
Execution time, processor utilization, processor throughput,
and buffer utilization are maximized so that their cost
is computed reciprocally; however, power and port traffic
are minimized so that the nonreciprocal values are taken.
The coefficient values in the cost equation are set according
to the desired performance goals of the system.

Optimization of Scheduling Algorithm. The problem of deter-
mining optimal scheduling is to determine the optimal start
time and execution time of all tasks in the application.

minimize(
𝑁

∑

𝑖=1

(𝑡
𝑖
+ 𝑒
𝑖
)) ,

minimize(
𝑁

∑

𝑖=1

COST (𝛼 (𝑇
𝑖
))) , 𝑡

𝑛
+ 𝑒
𝑛
≤ DL,

(5)

where 𝑒
𝑖
is the worst-case execution time of each task 𝑇

𝑖
,

DL is the deadline of the application, and 𝑡
𝑛
and 𝑒
𝑛
are the

start time and worst-case execution time of the last task,
respectively, in the application. COST (𝛼(𝑇

𝑖
)) is the cost

function of scheduling the tasks.

Mapping. Mapping is the process of assigning each task in an
application to a processor such that the processor executes the
task and satisfies the task deadline as well as other constraints
(power, throughput, completion time), if any.

For an application 𝐴 = {𝑇
1
, 𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁
}, where 𝑇

𝑖
is a

task instance in the application, mapping a task, denoted as
𝑀(𝑇
𝑖
), is defined as an assignment of the processor {𝑃

𝑗
} =

{𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑀
} = 𝑃 for the task 𝑇

𝑖
:

𝑀(𝑇
𝑖
) = {𝑃

𝑗
} . (6)

Application mapping is defined as mapping of all tasks, 𝑇
𝑖
, in

the application 𝐴 to processors and is denoted as

𝑀(𝐴) = {𝑀 (𝑇
1
) ,𝑀 (𝑇

2
) ⋅ ⋅ ⋅𝑀 (𝑇

𝑁
)} . (7)

Optimization of the Mapping Algorithm. The problem in
determining optimummapping is to determine the optimum
allocation of all tasks in the application on the processors
such that the total execution time of all tasks is minimized.
Other factors for optimum mapping include maximizing
processor execution time, throughput, minimizing inter-
processor communication delay, and balancing workload
homogenously on the processors in order to improve utiliza-
tion

minimize(
𝑁

∑

𝑖=1

(𝑐
𝑖
)) , 𝑐

𝑖
= COST (𝑀 (𝑇

𝑖
)) , (8)

where 𝑐
𝑖
is the cost function for optimal mapping of the tasks

on the processor.

Power Modeling. In this research, scheduling and mapping
algorithms model heterogeneous processor execution and
power requirements as follows.

(1) Switch power is consumed whenever a task is routed
from input port to output port.

(2) Processor power is modeled with respect to idle-
mode (also includes pending, ready, active, and com-
plete) and execution-mode (running) power, both of
which are functions of the task execution time, 𝑒

𝑖
. We

also assume that for the idle model, Δ𝜂 = 0

𝜂
𝑖
(𝑇
𝑖
) = Δ𝜂 ∗ 𝑒

𝑖
, (9)

whereΔ𝜂 is the unit power consumed per unit time of
task processing.The total power rating for a processor
𝑃
𝑗
would be expressed as

𝜂
𝑗
= Δ𝜂 ∗

𝑛

∑

𝑖=1

(𝑒
𝑖
) , (10)

where 𝑛 is the number of tasks executed by the
processor.

(3) Whenever a task 𝑇
𝑘
is executed on processor 𝑃

𝑙
,

the execution time 𝑒
𝑘
and the power consumed by

processor 𝜂
𝑘
are updated as

𝜂
𝑙
(𝑇
𝑘
) = Δ𝜂 ∗ 𝑒

𝑘
,

𝜂
𝑙
= Δ𝜂 ∗

𝑛

∑

𝑖=1

(𝑒
𝑘
) .

(11)

(4) Whenever a task is transferred between switches,
the communication delay is updated on the Total
Task Communication Delay parameter (T) and is
expressed as

T = 𝑛 ∗ v ∗ Δ𝐶, (12)

where 𝑛 is number of switch hopes, task-size (v) is the
size of the task defined as a function of its execution
time in time-units, and Δ𝐶 is a time constant that is
required to transfer single time-unit task for one hop.

(5) For each task 𝑇
𝑖
, the Task Slack Time 𝑆

𝑖
and Average

Slack Time 𝑆 are calculated as

𝑆
𝑖
= 𝑑
𝑖
− [𝑡
𝑖
+ 𝑒
𝑖
] ,

𝑆 =

∑

𝑁

𝑖=1
(𝑆
𝑖
)

𝑁

,

(13)

where 𝑑
𝑖
is the deadline, 𝑡

𝑖
is the release time, and𝑁

is the total number of tasks processed.

Fault-Tolerant System. A fault-tolerant system describes a
robust system that is capable of sustaining application pro-
cessing in the event of component failure. A fault-tolerant
algorithm is a process that performs scheduling andmapping
on a set of unprocessed tasks for the available processors.

Let an application𝐴with a set of tasks𝐴 = {𝑇
1
, 𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁
}

be scheduled, denoted by 𝛼(𝐴), and mapped on the set



VLSI Design 7

of processors 𝑃 = {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑀
}, denoted as 𝑀(𝐴). A

fault is defined as a nonrecurring, permanent failure of a
processor at time instance 𝑡

𝑓
during the execution of a

task 𝑇
𝑓
. The application after the occurrence of the fault is

expressed as 𝐴
𝑓
such that 𝐴

𝑓
⊂ 𝐴, which has a list of tasks

𝐴
𝑓
= {𝑇
𝑔
, 𝑇
ℎ
⋅ ⋅ ⋅ 𝑇
𝑛
} that are not dispatched to processors

by the mapper when the processor failure occurs. The set of
processors after the failure𝐹 is denoted by 𝑃

𝑓
= {𝑃
1
, 𝑃
2
⋅ ⋅ ⋅ 𝑃
𝐿
}

and 𝑃 ∉ 𝑃
𝑓
, where 𝑃

𝑓
is the failed processor. The proposed

fault-tolerant MpSoC framework determines the updated
scheduling 𝛼(𝐴

𝑓
) and updated mapping𝑀(𝐴

𝑓
) for a set of

unprocessed tasks in the application subset 𝐴
𝑓
, such that

𝑡
𝑛
+ 𝑒
𝑛
≤ DL, (14)

where 𝑡
𝑛
and 𝑒

𝑛
are the start time and execution time,

respectively, of the last scheduled task in 𝐴
𝑓
.

Optimization of Fault-Tolerant Strategy. Due to the dynamic
mapping methodology adopted in the framework, only the
tasks dispatched to the failed processor—which includes the
task that was executing on the failed processor and the
tasks dispatched by the mapper to the failed processor—will
need to be rescheduled along with the tasks that were not
dispatched by the mapper.

Let us consider an application 𝐴
𝑓
with a list of 𝑛 tasks

𝐴
𝑓

= {𝑇
𝑔
, 𝑇
ℎ
⋅ ⋅ ⋅ 𝑇
𝑛
} that have not been dispatched to

processors at the occurrence of the fault. Also, let the tasks
𝑇
𝑏
= {𝑇
𝑟
⋅ ⋅ ⋅ 𝑇
𝑡
} be the list of tasks in the buffer of the failed

processor 𝑃
𝑓
and let 𝑇

𝑝
be the task that was being executed

during failure by the failed processor. The task list 𝑇FT of the
fault: tolerant algorithm at time 𝑡

𝑓
is represented as

𝑇FT = 𝐴
𝑓
+ 𝑇
𝑏
+ 𝑇
𝑓
. (15)

It is also assumed that all the tasks that are being executed
by the nonfailed processor complete the execution of the
tasks even after the time of failure 𝑡

𝑓
. Thus, the FT algorithm

performs the updated scheduling �̆�(𝑇FT) and updated map-
ping ̇

𝑀(𝑇FT) on the task set 𝑇FT, which satisfies the deadline
constraint, DL, of the application 𝐴.

4. Framework Modeling and Implementation

The proposed framework adopts a “bottom-up” modular
design methodology that gives the benefit of component
reusability. Behavioral componentmodels were designed and
stored in hardware and software libraries.The frameworkwas
implemented in SystemC 2.2/C++ and compiled with g++-
4.3 under Linux. The framework is divided into three major
components: input or user interface module, core MpSoC
simulation module, and the output or performance evalua-
tion module. The hardware modules, such as the processor,
switch, dispatcher unit, and multiplexer, were implemented
in SystemC; the software modules, such as input parser,
scheduler, and task interface classes, were implemented in
C++.

Input Module. Such user’s data as the number of processors,
topology, task graph, processor types, buffer size, switching

Software libraries

Settings

Task interface

Other IPs

Main GUI

TG parser

Scheduler

Mapper

Dispatcher

Switch

Processor

Multiplexer

ARCH setup

Performance evaluation

PE

PE

PE

PE

PE PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Hardware libraries

Figure 2: Framework modeling.

technology, fault-tolerant mode, and scheduling/mapping
specifications are read either by using a command line
interface or else from a GUI interface.

Core Simulation Module. The core simulation module is
depicted in Figure 2, which shows the software/hardware
libraries and control flow between the modules. The sim-
ulation module consists of two components: the software
and hardware libraries. Software libraries include software
components of the framework, for instance, the input parser,
scheduler, data store, and task interface. Hardware libraries
include hardware components implemented in SystemC,
such as the processor, the mapper, the dispatcher, and
multiplexers.The processors are implemented as behavioural
processors capable of computing the various tasks in the
task graphs. The communication cost for a task is depen-
dent on the size, and thus the execution duration, of the
task (Section 3). Thus, communication latency is modelled
as a function of task size. Heterogeneity is modelled by
varying the task processing cost (processing time/task and
power/task). All processors are capable of executing all
possible operations but with different costs. Processor failure
is permanent once it occurs, and only single processor
failure is considered. Due to the modular implementation
of the simulation module, architecture, topology, routing,
scheduling, and mapping methods can be easily changed
in MpSoCs to conduct extensive evaluation of design space
exploration.

Output Module. The simulation terminates by evaluating the
system performance module, which retrieves the various



8 VLSI Design

for each task in ATG do{

//set the longest-path-maximum-delay deadline

setDeadline();

//initial solution

task.random mapToPE(); }

while simulation temp > cooling threshold

do{

for temperature length{

for task sub iteration length{

while each task is assigned a release time{

//generates the RTW w/ Comm. cost

genRTL();

//rand task from RTL

t sch = sel rand(RTL);

//generate release time window

t sch.genRTW();

//set rel time

t sch.rel time = sel rand(RTW); }

//init and run systemC simulation

sc start(time);

//calculating objective function value

calcObjFunc();

//accepts or rejects a solution

probFunc();}

for each task in ATG do{

//calculate workload of processors

task.calc HWDcost();

//new mapping solution

task.HWD mapToPE(); }

}

//calculate new simulation temperature

calc simulation temp();

}

Algorithm 1: Pseudocode for the performance driven (PD) scheduling and HWDmapping algorithms.

performance variables from the individual processors, such
as the total execution time, power, throughput, port traffic,
number of tasks processed, and buffer usage.These values are
displayed on the output GUI and stored in the result log file.

4.1. Performance Driven Scheduling Algorithm. This work
also proposes an efficient, offline, and performance driven
scheduling algorithm based on the Simulate Annealing tech-
nique. The performance index (PI), determined by a cost
function, is used to determine the optimal schedule. The
performance index is a cumulative factor of (1) processor exe-
cution time, (2) processor utilization, (3) processor through-
put, (4) processor power, (5) processor port traffic, and (6)
processor buffer utilization. The problem of determining the
optimal schedule is defined as determining the schedule
with maximal performance index. The Simulated Annealing
algorithm performs (1) random scheduling and mapping
of tasks, (2) simulation, and (3) capturing, averaging, and
normalizing performance variables; finally, it calculates the
performance index. These steps are repeated several times in
an effort to increase the PI. During the iterations, if a better

PI is found, the state is saved, and the simulation repeats until
the temperature reaches the threshold value.

For the problem being considered, the normalizing coef-
ficients used to calculate the PI were set to 𝛼

1
= 300, 𝛼

2
=

500, 𝛼
3
= 250, 𝛼

4
= 125, 𝛼

5
= 120, and 𝛼

6
= 50000.

These coefficients were determined after conducting sev-
eral runs on all benchmarks. Execution time, utilization,
throughput, and power factors are key performance indices.
Therefore, they are given significant weights (a higher value
of coefficient) during normalization. Port traffic and power
indices are minimized; consequently, their respective cost
function is computed reciprocally. The pseudocode for the
performance driven scheduling (PDS) and HWD mapping
algorithms is given in Algorithm 1.

4.2. Multiprocessor Task Mapping Strategy. Multiprocessor
environments grant the freedom for dynamic task mapping.
Thus, themultiprocessormapping algorithm needs to specify
the locationwhere a particular task should be processed. Task
mapping in heterogeneous systems is accomplished in two
steps: (1) binding and (2) placement. First, the task binding



VLSI Design 9

procedure attempts to find which particular assignment of
tasks would lead to effective lower power and faster execution
time.During task placement, themapper considers allocating
any two tasks that exchange data more frequently as close
to each other as possible. Placement of communicating tasks
to adjacent or nearby processors reduces the communication
latency, switch traffic, and power dissipation.

Static mapping assigns a particular task to a predeter-
mined processing element offline regardless of the dynamic
state of the system components. This, however, does not sat-
isfy the MpSoCs requirement because processing tasks on a
heterogeneous architecture introduces workload irregularity
on system resources (PEs). Irregular workload distribution
is a design issue that degrades the utilization of system. To
overcome this problem, tasks should bemapped dynamically,
based on the dynamic workload on the processors. The
number of tasks in the processors’ local memory measures
the processor workload.

The dynamic mapper in the proposed framework per-
forms the task allocation as per the configured policy. In
order to take heterogeneity of processors into consideration,
additional power cost and execution latency cost have been
introduced. This emphasizes the fact that processing a par-
ticular task on different types of processors incurs different
cost (power consumption and execution time). Efficient and
optimized heterogeneous mapping algorithms are tailored to
minimize this additional cost.

In the framework, various task allocation heuristics were
implemented. Given a scheduled task, the task mapping
follows one of the below policies.

(1) Next Available Mapping (NXT AVLB). In the Next
Available Mapping policy, a scheduled task 𝑇

𝑖
is

mapped on processor 𝑃
𝑖
, followed by the mapping of

the next scheduled task𝑇
𝑖+1

on processor𝑃
𝑗
, provided

𝑃
𝑖
and 𝑃

𝑗
are neighbors to each other, as defined by

the topology. This policy assigns tasks on successive
processor sequentially but does not consider the
heterogeneity of the tasks nor the processorworkload.

(2) Homogenous Workload Distribution Mapping
(HWD). HWD considers the workload on each
processor and maps a scheduled task on a processor
that has the minimum workload.

(3) Random mapping (RANDOM): rRandom task allo-
cation is used by the PD algorithm to distribute the
workload randomly throughout the available proces-
sors.

HWD Mapping Approach. Minimizing the idle time of
each processor, or maximizing processing time, improves
processor utilization. To reduce idle time, tasks should
be distributed evenly throughout the available processors.
The proposed Homogenous Workload Distribution (HWD)
algorithm is tailored to distribute tasks evenly to the available
processors in an effort to balance the dynamic workload
throughout the processors. The algorithm is a two-step
process: (1) probing individual processor buffers through
dedicated snooping channels that connects each processor

to the mapper and (2) mapping each scheduled task on
a processor that has the lowest workload. Workload is a
measure of the number of tasks and its respective execution
time in the processor buffer.Thus, a processor having the least
number of tasks and respective execution time in its buffer
has the lowest workload; therefore, themapper will assign the
next scheduled task to this processor.

HWD Mapping Algorithm. Let {𝑃
1
, 𝑃
2
⋅ ⋅ ⋅ 𝑃
𝑀
} be a set of

processors, let {𝐿
1
, 𝐿
2
⋅ ⋅ ⋅ 𝐿
𝑀
} be the dynamic task workloads

defined by number of tasks on respective processor buffers,
and let𝑁 be the number of processors. Let {𝑇

1
, 𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁
} be a

set of𝑀 tasks and the symbol “→ ” denotes “mapping.”Then,

A task 𝑇
𝑘
⟨𝑇release-time , 𝑇exec-time , 𝑇deadline⟩ → 𝑃

𝑖

iff 𝐿
𝑖
< 𝐿
𝑗

∀ [𝐿
𝑖
, 𝐿
𝑗
] ∈ {𝐿

1
, 𝐿
2
⋅ ⋅ ⋅ 𝐿
𝑁
} ,

(16)

where 𝑃
𝑖
∈ {𝑃
1
, 𝑃
2
⋅ ⋅ ⋅ 𝑃
𝑀
} and 𝑇

𝑘
∈ {𝑇
1
, 𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁
} such that

(𝑒
𝑘
+ 𝑡
𝑘
≤ 𝑑
𝑘
).

This approach has three advantages: (1) it minimizes
the chance for buffer overflow, (2) the task waiting time in
processor buffer is reduced, and (3) utilization is increased
because idle processors will be assigned scheduled tasks.

4.3. Fault-Tolerant Methodology. System designs often have
flaws that cannot be identified at design time. It is almost
impossible to anticipate all faulty scenarios beforehand
because processor failure may occur due to unexpected
runtime errors. Real-time systems are critically affected if no
means of fault tolerance scheme is implemented. Failure to
employ fault detection and recovery strategies is often unaf-
fordable in critical mission systems because the error may
lead to possible data discrepancies and deadline violation.

Processor failure introduces inevitable overall perfor-
mance degradation due to (1) the reduced computing power
of the system and (2) the overhead involved in applying the
fault recovery schemes. Recovery procedures involve tracking
the task execution history and reconfiguring the system
by using the available processors. This enables application
processing to resume when the execution was terminated.
During processor failure, application processing is temporar-
ily suspended, and error recovery procedures are applied
before application processing is resumed.

Fault-TolerantModel.Faultmodeling can have several dimen-
sions that define the fault occurring time, the fault duration,
location of failure, and so forth. The proposed framework
adopts the following fault modeling parameters.

(1) It is assumed that the processor failure is permanent.
Thus, fault duration time 𝑡FD is infinite (𝑡FD = ∞).
During failure, the address of the failed processor is
completely removed from the mapper address table.

(2) The location specifies where the failure occurred. For
tile and torus topology, location is represented in two-
dimensional coordinate addresses.

(3) During task processing, any processors may fail at
any time instance. Consequently, time of failure is
modeled as a random time instance.



10 VLSI Design

In the event of failure, the following procedures are
executed.

(1) Themapper removes the failed processor ID from the
address table.

(2) Tasks that are scheduled or mapped but not dis-
patched have to be rescheduled and remapped. The
respective new task release time and task address both
have to be done again. This is because the execution
instance of a task depends on the finish time of
its predecessor task, which may possibly have been
suspended in the failed processor.

(3) Tasks that are already dispatched to the failed proces-
sor can be either (1) in the processor’s buffer or (2)
in the middle of execution when the failure occurred.
These tasks have to be migrated back to the mapper,
and their respective rescheduling and remapping have
to be done. The scheduler can perform task schedul-
ing concurrently when the nonfaulty processors are
executing their respective tasks.

(4) Tasks that are dispatched to other nonfailed proces-
sors are not affected.

Due to the dynamic property of the mapper and the fault-
tolerant implementation, the cost incurred during the event
of processor failure is minimal; overhead incurred is only
2.5% of the total execution time of the task. The only penalty
incurred during processor failure is the cost due to task
migration and the respective rerescheduling and remapping
procedures.

5. Experimental Setup

The heterogeneous MpSoC framework developed in this
work was developed using C++ and SystemC programming
language. The architectural components such as processing
elements (PEs), memory elements, routers and network
interfaces are developed using SystemC language and provide
cycle accurate simulations. The processing elements are
implemented as a simple 32-bit processor that performs
simple logic and arithmetic operations. The heterogeneous
PE structure in our MpSoC is implemented by altering the
type of operation and the execution times of the tasks each
PE can execute. The routers implementations consist of a
switching matrix with input port buffers. The tasks and data
within PEs are transmitted using a data-serializing module
of the PE. A typical data transmitted within PEs consists of
task commands, task data (if any), and the destination PE
IDs (addresses). The data is propagated through the MpSoC
system using the𝑋𝑌 routing algorithm.

The scheduling and mapping algorithm are implemented
using C++ language and are interfaced with the SystemC
architecture implementations. The application in this work
is considered as a task graph. Each task graph consists of
processor operations, their execution time, communication
cost, and deadline. The application as a whole also has a
deadline. The scheduling algorithm parses the application
(task graph) and assigns start times for the tasks on the

processors based on the set of optimization goals described
in the proposed performance driven scheduling algorithm.
The scheduled tasks aremapped to their respective processors
in the MpSoC system based on the proposed homogenous
workload-mapping algorithm. The tasks’ information com-
prising of the task operations, task data, destination PEs
(path/address of successor PEs) are assembled and forwarded
to the initial PE by the dispatcher module. The performance
evaluation module or the monitor module records cycle
accurate timing signals in the architecture during tasks
execution and communication.

During the simulation of fault-tolerant scenario, the
monitor module triggers a PE failure event at a predefined
time instance. The dispatcher is informed of the PE failure
and based on the mapper table, and the current processing
task and the tasks in the buffer of the failed PE are determined.
An updated task graph is constructed, and scheduling and
mapping on the remaining unexecuted tasks are performed.
Tasks currently executing on the PEs are undisturbed. The
reassigned tasks are inserted in the PE buffers to satisfy the
deadlines.

The implemented MpSoC system has been evaluated
extensively by modifying the architecture and topology. The
systemwas evaluated using a set of synthetic task graphs with
50–3000 tasks.The architectural modifications for evaluating
the MpSoC include change in type of PEs in the system,
mesh and torus topology variations, and the number of PEs
in the system (9, 16, 32). The MpSoC system has been used
to evaluate the proposed scheduling, mapping, and fault-
tolerant algorithms and compared with respective classical
algorithms. The performance of the proposed algorithms
along with variation in architecture and topology have been
evaluated and presented. The performance metrics consid-
ered in this work include processor throughput, processor
utilization, processor execution time/task and power/task,
buffers utilization, and port utilization. Detailed summary of
the results and its significance are shown in Section 6.

6. Simulation Results and Analysis

For evaluation of the proposed framework to explore design
features variations in scheduling, mapping and fault tolerant
algorithms have been considered. The application model
adapted is similar to the standard task graph (STG) [50, 51]
and E3S benchmark suite [54], which contains random set of
benchmarks and application-specific benchmarks. The sim-
ulation was conducted with many STG benchmarks having
task sizes 50 through 3000. The task graph is characterized
by the number of tasks, dependencies of tasks, task size
(code size), communication cost (latency for interprocessor
transfer), and application deadline. The processor architec-
ture model is derived from the E3S benchmark, where each
processor is characterized by the type, tasks it can execute,
task execution time, task size (code size), and task power.The
processor also has general characteristics like type, overhead
cost (preemptive cost), task power/time, and clock rate.

The simulation results presented in this paper follow the
following legend: 𝑋𝑌 ± 𝑍, where 𝑋 denotes 𝑅 or 𝑇 for



VLSI Design 11

Table 1: PE comparison.

No. of PEs AVG. ETIME/
PE/TASK (𝜇sec)

AVG.
UTL/PE

AVG.
PWR/PE
(𝜇watts)

AVG.
PDP/PE

PE no. 9 4.98 0.48 181.25 907.48
PE no. 16 2.81 0.40 98.34 276.98
PE no. 25 1.89 0.35 63.59 120.06

Table 2: Comparison of task execution times, processor utilization,
and throughput of EDF-SA and PDS scheduling algorithms.

ETIME (𝜇s) UTL THR (B/ns) Std. SA Cost
RAND-50

EDF-SA 204.26 0.46 0.03 0.16
PDS 220.03 0.55 0.03 0.19

SPARSE-96
EDF-SA 616.51 0.44 0.02 0.15
PDS 637.89 0.49 0.02 0.17

RAND-100
EDF-SA 418.67 0.47 0.03 0.17
PDS 432.17 0.60 0.03 0.21

RAND-300
EDF-SA 1299.45 0.49 0.03 0.17
PDS 1296.95 0.56 0.03 0.19

FPPP-334
EDF-SA 2238.36 0.42 0.02 0.15
PDS 2337.36 0.47 0.02 0.16

RAND-500
EDF-SA 1432.79 0.48 0.02 0.16
PDS 2125.33 0.66 0.03 0.23

RAND-1000
EDF-SA 4163.73 0.52 0.03 0.18
PDS 4324.58 0.58 0.03 0.20

torus or tile topology, 𝑌 denotes 𝐸 or 𝑆 for EDF-SA or PD
scheduling algorithm, + or − for presence or absence of fault
tolerance algorithm, and 𝑍 denotes the number of PEs in the
MpSoC system. Performance evaluations on architecture and
topological variations were performed but are not included in
this paper. Only performance results related to the proposed
algorithms are presented.

6.1. Simulation Scenarios. To demonstrate the capabilities of
the proposed framework and the algorithms, we performed
several simulations on task graph sets and evaluated their
effectiveness over the following design abstractions.

(i) Architectural: architecture-based evaluation empha-
sizes the effect of different PEs in the MpSoC frame-
work. Current implementation of our framework
consists of processors of the same architecture that
can execute various tasks; that is, each processor has
a different set of tasks they can execute. The MpSoC

Table 3: Comparison of HWD and next available and random
mapping algorithms (simulation: TS-9).

Mapping Random HWD NXT AVLBL
AVG. ETIME 1417.46 1394.67 1382.5
AVG. UTL 0.48 0.59 0.59
AVG. THR 0.02 0.02 0.02
AVG. PRT 108 107 108
AVG. PWR 59950.3 57996.9 57005
AVG. BFR 5 4 6

architecture was modified by changing the number of
PEs, the types of PEs, and topology. It is important
to consider the effect of topology in architecture
evaluation because the topology of the MpSoC also
dictates the performance of the individual PEs. The
effect of such architecture changes is measured in
terms of average execution time/PE/task (ETIME) in
𝜇sec, average PE utilization (UTL), power/task of PEs
(PWR) in 𝜇-Watts, and power delay product (PDP)
which are shown in Table 1.

(ii) Scheduling: evaluation of scheduling algorithms over
various MpSoC architectures was conducted. Per-
formance of earliest deadline first based simulated
annealing (EDF-SA) and the new performance driven
(PD) algorithms are compared (Table 2). Perfor-
mance metrics for evaluating scheduling algorithms
are the same as that of architecture evaluations. Also
the standardized SA costs are shown.

(iii) Mapping: evaluation of mapping algorithms over
various MpSoC architectures was conducted using
performance driven scheduling policy. Performance
of the proposed HWD, Next Available (NA), and
random mapping algorithms is compared as shown
in Table 3.

(iv) Fault Tolerant-evaluation and comparison of fault-
tolerant (FT) and nonfault-tolerant (NFT) imple-
mentation over various MpSoC architectures were
conducted, and results for two test cases are shown
in Tables 4 and 5.

6.2. Simulation Results and Explanation. Table 1 shows the
average performance metrics obtained for various architec-
tural variations possible in the developedMpSoC framework.
The architectural variations include the type of topology
(tile or torus), scheduling algorithm (EDF-SA or PDS),
mapping algorithm (HWD), fault-tolerant scheme (NFT or
FT), and the number of PEs. Table 2 specifically compares the
performance of the EDF-SA and PDS scheduling algorithm.
Comparison results on total execution time (ECT) in 𝜇sec,
average processor utilization, and average throughput in
bytes/𝜇sec are presented. Other metrics that have less signif-
icance have been omitted. Also, comparisons between EDF-
SA and PDS algorithms for processor utilization, throughput,
and buffer usage evaluations across various architectural



12 VLSI Design

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Throu-EDFSA
Throu-PDS

R 
−

 9

R 
+ 

9

T 
−

 1
6

T 
+ 

16

R 
−

 1
6

R 
+ 

16

T 
−

 2
5

T 
+ 

25
Figure 3: Comparison of processor throughput for EDF-SA and
PDS algorithms.

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

R 
−

 9

R 
+ 

9

T 
−

 1
6

T 
+ 

16

R 
−

 1
6

R 
+ 

16

T 
−

 2
5

T 
+ 

25

Buffer-EDFSA
Buffer-PDS

Figure 4: Comparison of buffer usage for EDF-SA and PDS
algorithms.

and topological scenarios are shown in Figures 3, 4, and 5.
Based on the above table and figures, it can be seen that
the utilization, throughput, and buffer usage have increased
for a marginal increase in execution time, thereby increasing
the overall performance goal or cost of the MpSoC system
with PDS algorithm. Table 3 shows the evaluation of the
various mapping algorithms. From the table it is clear that
the HWD minimizes the use of buffer used during the task
execution. The units specified in the tables are as follows:
execution time (ETIME) in 𝜇sec, processor utilization (UTL)
as ratio, throughput (THR) in bytes/nsec, port traffic (PTR) in
bytes/nsec, power (PWR) in 𝜇Watts, and buffer usage (BFR)
in number of 32-bit registers.

The proposed fault-tolerant scheme has been evaluated
for a few benchmarks, and two test cases have been presented
in Tables 4(a), 4(b), 5(a), and 5(b). For test case 1 (Table 4), a
PE fault on PE ID 9 at 100 ns is simulated. Table 4(a) presents

0.000

0.100

0.200

0.300

0.400

0.500

0.600

Util-EDFSA
Util-PDS

R 
−

 9

R 
+ 

9

T 
−

 1
6

T 
+ 

16

R 
−

 1
6

R 
+ 

16

T 
−

 2
5

T 
+ 

25

Figure 5: Comparison of processor utilization of EDF-SA and PDS
algorithms.

the general performance characteristics comparing simula-
tion scenarios without and with PE fault. Table 4(b), presents
the detailed performance comparison of significantly affected
PEs for without and with fault-tolerant scheme. Also the
difference and percentage change (Δ/%) between the sim-
ulation scenarios are shown in Table 4(b). Similarly, Tables
5(a) and 5(b) present the second test case for a task graph
with 500 tasks operating on tile topology with 81 PEs. The
PE fault is introduced on PE ID 80 at 146 ns. Only variations
of performance metrics on significantly affected PEs for
nonfault and fault simulation are shown. The difference
in performance metrics (executions time, port traffic, and
power) incurred with the fault-tolerant algorithm/scheme is
less significant compared to the original nonfault simulation
performance metrics. For example, in Table 5(b), we can
see that execution time and processor utilization due to the
occurrence of the fault reduce from 397𝜇s to 91 𝜇s and 0.36
to 0.08, respectively.The tasks assigned to the faulty processor
(PE ID = 9) are reassigned to an other processor of the
same type using the fault-tolerant algorithm discussed. The
increase in execution times and utilization are shown in the
table. Amarginal increase in cost on other processors has also
been observed.

7. Conclusions

The problem designing efficient MpSoC systems require the
close scrutiny of the various design choices in order to
optimize the performance characteristics. Towards optimiz-
ing the scheduling, mapping, and fault-tolerant strategies,
a fault-tolerant heterogeneous MpSoCs simulation frame-
work was developed in SystemC/C++ in order to provide a
comprehensive simulation tool for designing and verifying
proposed methodologies. Three algorithms were proposed:
a performance driven (PD) scheduling algorithm, based on
Simulated Annealing technique; a strategic Homogenous
Workload Distribution (HWD) Mapping algorithm, which



VLSI Design 13

Table 4: Test case no. 1 for fault-tolerant simulation.

(a)

Benchmark No. of tasks No. of PEs PE types

RAND 0000 500 81 8

Schedule Mapping Topology Fault mode

EDF-SA HWD TILE ON

Fault PE ID 80 @ 146 𝜇sec

W/O fault W/fault DIFF

AVG. ETIME 635.59 638.26 −2.67

AVG. UTL 0.25 0.25 0.00

AVG. THR 0.02 0.02 0.00

AVG. PRT 154.00 154.00 0.00

AVG. PWR 26067.00 26129.00 −62.00

AVG. BFR 4.79 4.90 −0.11

MAX EXCT 865.40 875.68 −10.28

TOTAL EXCT 51483.00 51698.96 −215.96

TOTAL PWR 2111417.90 2116413.10 −4995.20

TOTAL BFR 388.00 397.00 −9.00

(b)

PE ID ETIME UTL THR PRT PWR BFR

1 597.8/646.64
(Δ48.84/8%)

0.24/0.26
(Δ0.02/8%)

0.02/0.02
(Δ0/0%)

1246/1300
(Δ54/4%)

28784.9/30743.7
(Δ1958.8/7%)

9/5
(Δ−4/−44%)

2 693.2/747.74
(Δ54.54/8%)

0.28/0.3
(Δ0.02/8%)

0.02/0.02
(Δ0/0%)

1256/1290
(Δ34/3%)

33939.1/36104.1
(Δ2165/6%)

5/6
(Δ1/20%)

13 538.6/603.29
(Δ64.69/12%)

0.21/0.24
(Δ0.03/12%)

0.02/0.02
(Δ0/−4%)

1208/1282
(Δ74/6%)

22701.9/25943.9
(Δ3242/14%)

8/4
(Δ−4/−50%)

30 434.6/478.51
(Δ43.91/10%)

0.17/0.19
(Δ0.02/10%)

0.03/0.03
(Δ0/−2%)

1201/1275
(Δ74/6%)

15563.3/16941.6
(Δ1378.3/9%)

8/4
(Δ−4/−50%)

36 536/603.82
(Δ67.82/13%)

0.21/0.24
(Δ0.03/12%)

0.02/0.02
(Δ0/−4%)

1112/1211
(Δ99/9%)

20043.8/23566.7
(Δ3522.9/18%)

4/4
(Δ0/0%)

50 689.8/801.7
(Δ111.9/16%)

0.27/0.32
(Δ0.04/16%)

0.02/0.02
(Δ0/0%)

1048/1101
(Δ53/5%)

33068.5/36747.9
(Δ3679.4/11%)

7/6
(Δ−1/−14%)

56 634.2/705.19
(Δ70.99/11%)

0.25/0.28
(Δ0.03/11%)

0.02/0.02
(Δ0/−3%)

1031/1050
(Δ19/2%)

22330.9/25882.6
(Δ3551.7/16%)

7/4
(Δ−3/−43%)

64 735.8/804.51
(Δ68.71/9%)

0.29/0.32
(Δ0.03/9%)

0.02/0.02
(Δ0/−1%)

999/1116
(Δ117/12%)

31208.9/33490.9
(Δ2282/7%)

3/8
(Δ5/167%)

72 807.2/875.68
(Δ68.48/8%)

0.32/0.35
(Δ0.03/8%)

0.01/0.01
(Δ0/0%)

881/965
(Δ84/10%)

34891.6/37150.1
(Δ2258.5/6%)

7/4
(Δ−3/−43%)

80∗ 772/149.2
(Δ−622.8/−81%)

0.31/0.06
(Δ−0.25/−81%)

0.02/0.01
(Δ0/−14%)

883/290
(Δ−593/−67%)

30763.9/6858
(Δ−23905.9/−78%)

3/2
(Δ−1/−33%)

considers dynamic processor workload; and a fault-tolerant
(FT) methodology to deliver a robust application processing
system.

Extensive simulation and evaluation of the framework
as well as of the proposed and classical algorithms were

conducted using task graph benchmarks. Simulation results
on all performance indices for different scenarios were
evaluated and discussed. For the scheduling space, the PD
heuristic has shown better overall performance than EDF,
specifically for small number of processors. Fault-tolerant



14 VLSI Design

Table 5: Test case no. 2 for fault-tolerant simulation.

(a)

Benchmark No. of tasks No. of PEs PE types
RAND 0000 100 36 6
Scheduding Mapping Topology Fault mode
EDF-SA HWD TILE ON
Fault PE ID 9 @ 100𝜇sec

W/O fault W/fault DIFF
AVG. ETIME 423.16 427.37 −4.21

AVG. UTL 0.38 0.39 0.00
AVG. THR 0.02 0.02 0.00
AVG. PRT 41.00 41.00 0.00
AVG. PWR 18553.70 18736.40 −182.70

AVG. BFR 5.31 4.94 0.36

MAX EXCT 520.60 533.70 −13.10

TOTAL EXCT 15233.60 15385.16 −151.56

TOTAL PWR 667932.79 674509.41 −6576.62

TOTAL BFR 191.00 178.00 13.00

(b)

PE ID ETIME UTL THR PRT PWR BFR

3 379.8/425.4
(Δ45.6/12%)

0.34/0.38
(Δ0.04/12%)

0.02/0.02
(Δ0/−1%)

353/367
(Δ14/4%)

17365.2/19309.1
(Δ1943.9/11%)

3/6
(Δ3/100%)

5 441.2/509.74
(Δ68.54/16%)

0.4/0.46
(Δ0.06/15%)

0.02/0.02
(Δ0/−4%)

317/324
(Δ7/2%)

20514.3/24301.6
(Δ3787.3/18%)

6/4
(Δ−2/−33%)

∗9 397.4/91
(Δ−306.4/−77%)

0.36/0.08
(Δ−0.28/−77%)

0.02/0.02
(Δ0/−3%)

323/180
(Δ−143/−44%)

15788.7/2993.26
(Δ−12795.44/−81%)

6/8
(Δ2/33%)

19 356.8/407.77
(Δ50.97/14%)

0.32/0.37
(Δ0.04/14%)

0.02/0.02
(Δ0/−2%)

278/320
(Δ42/15%)

15606.8/17142.9
(Δ1536.1/10%)

4/3
(Δ−1/−25%)

22 266.2/329.47
(Δ63.27/24%)

0.24/0.3
(Δ0.06/23%)

0.03/0.03
(Δ0/−9%)

269/283
(Δ14/5%)

8951.62/11269.9
(Δ2318.28/26%)

9/3
(Δ−6/−67%)

23 354.6/455.78
(Δ101.18/29%)

0.32/0.41
(Δ0.09/28%)

0.02/0.02
(Δ0/−3%)

270/300
(Δ30/11%)

12774/17433.6
(Δ4659.6/36%)

6/4
(Δ−2/−33%)

29 462/533.7
(Δ71.7/16%)

0.42/0.48
(Δ0.06/15%)

0.02/0.02
(Δ0/−3%)

224/256
(Δ32/14%)

20069.4/23731.2
(Δ3661.8/18%)

2/7
(Δ5/250%)

evaluations showed that throughput, buffers utilization, exe-
cution time/task, and power/task factors are not significantly
affected even after processor failure occurs. A fault-tolerant
scheme showed a small decrease in processor utilization. Tile
topology showed better utilization and throughput; however,
torus topology showed significantly better performance with
respect to execution time/task and power/task. A number of
processor comparisons showed a proportional decrease in
utilization, execution time, and power when the number of
processors was increased. However, throughput and buffer
utilization remained almost identical. Executing highly het-
erogeneous tasks resulted in higher power and latency costs.

Finally, the proposed HWD algorithm evenly distributed the
execution workload among the processors, which improves
the processor overall performance, specifically processor and
buffer utilization.

The proposed algorithms on the MpSoC framework
are currently evaluated only with synthetic task graphs.
We would like to evaluate the algorithms for application
benchmarks.The PE implemented is a basic 32-bit behavioral
processor. We would like to implement industry standard
processor like ARM or OpenRISC processors as our PEs.
Also, during scheduling communication, cost values are
derived from the execution time of the tasks. Futurework that



VLSI Design 15

considers actual communication cost needs to be explored.
Work related to router and buffer failures will also be
considered.

References

[1] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping
applications to tiled multiprocessor embedded systems,” in
Proceedings of the 7th International Conference on Application of
Concurrency to System Design (ACSD ’07), pp. 29–40, July 2007.

[2] C. Neeb and N. Wehn, “Designing efficient irregular networks
for heterogeneous systems-on-chip,” Journal of Systems Archi-
tecture, vol. 54, no. 3-4, pp. 384–396, 2008.

[3] S. Manolache, P. Eles, and Z. Peng, Real-Time Applications with
Stochastic Task Execution Times, Analysis and Optimization,
Springer, 1st edition, 2007.

[4] W. Wolf, High-Performance Embedded Computing, Elsevier,
20072007.

[5] A. A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips,
Morgan Kaufmann Series in Systems on Silicon, 2005.

[6] J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Interconnect-
Centric Design for Advanced SoC and NoC, Kluwer Academic,
2004.

[7] N. D. Thai, “Real-time scheduling in distributed systems,” in
Proceedings of the IEEE International Conference on Parallel
Computing in Electrical Engineering (PARELEC ’02), pp. 165–
170, 2002.

[8] R. Marculescu, U. Y. Ogras, L. S. Peh, N. E. Jerger, and Y.
Hoskote, “Outstanding research problems in NoC design: sys-
tem, microarchitecture, and circuit perspectives,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 1, pp. 3–21, 2009.

[9] G. DeMicheli and L. Benini,Networks on Chips: Technology and
Tools Systems on Silicon, Academic Press, 2006.

[10] R. Marculescu and P. Bogdan, “The Chip is the network: toward
a science of network-on-chip design,” Foundations and Trends
in Electronic Design Automation, vol. 2, no. 4, pp. 371–461, 2007.

[11] S. Stuijk, T. Basten,M.Geilen, A.H.Ghamarian, andB.Theelen,
“Resource-efficient routing and scheduling of time-constrained
network-on-chip communication,” in Proceedings of the 9th
EUROMICRO Conference on Digital System Design: Architec-
tures, Methods and Tools (DSD ’06), pp. 45–52, September 2006.

[12] J. Hu and R. Marculescu, “Communication and task scheduling
of application-specific networks-on-chip,” Proceedings of the
IEEE, vol. 152, no. 5, pp. 643–651, 2005.

[13] G. Varatkar and R. Marculescu, “Communication-aware task
scheduling and voltage selection for total systems energy
minimization,” in International Conference on Computer Aided
Design (ICCAD ’03), pp. 510–517, San Jose, Calif, USA, Novem-
ber 2003.

[14] S. Zhang, K. S. Chatha, and G. Konjevod, “Approximation
algorithms for powerminimization of earliest deadline first and
rate monotonic schedules,” in Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED ’07),
pp. 225–230, August 2007.

[15] F. Gruian, “Hard real-time scheduling for low-energy using
stochastic data and DVS processors,” in Proceedings of the Inter-
national Symposium on Low Electronics and Design (ISLPED
’01), pp. 46–51, August 2001.

[16] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “Iterative sched-
ule optimization for voltage scalable distributed embedded

systems,” Journal ACM Transactions on Embedded Computing
Systems, vol. 3, no. 1, pp. 182–217, 2004.

[17] D. Shin and J. Kim, “Power-aware communication optimization
for networks-on-chips with voltage scalable links,” in Interna-
tional Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’04), pp. 170–175, September 2004.

[18] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for
dynamic task mapping in NoC-based heterogeneous MPSoCs,”
in Proceedings of the 18th IEEE/IFIP International Workshop on
Rapid System Prototyping (RSP ’07), pp. 34–40, May 2007.

[19] H. J. Ahn,M.H. Cho,M. J. Jung, Y. H. Kim, J.M. Kim, and C. H.
Lee, “UbiFOS; a small real-time operating system for embedded
systems,” ETRI Journal, vol. 29, no. 3, pp. 259–269, 2007.

[20] C. Ostler and K. S. Chatha, “An ILP formulation for system-
level application mapping on network processor architectures,”
in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’07), pp. 99–104, April 2007.

[21] H. M. Harmanani and R. Farah, “A method for efficient map-
ping and reliable routing for NoC architectures with minimum
bandwidth and area,” in Proceedings of the Joint IEEE North-
East Workshop on Circuits and Systems and TAISA Conference
(NEWCAS-TAISA ’08), pp. 29–32, June 2008.

[22] J. Hu and R. Marculescu, “Energy- and performance-aware
mapping for regular NoC architectures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
24, no. 4, pp. 551–562, 2005.

[23] S. Murali and G. DeMicheli, “Bandwidth-constrainedmapping
of cores onto NoC architectures,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’04), pp. 896–901, February 2004.

[24] P. Poplavko, T. Basten, M. Bekooij, J. Van Meerbergen, and
B. Mesman, “Task-level timing models for guaranteed per-
formance in multiprocessor networks-on-chip,” in Proceedings
of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES ’03), pp. 63–72,
November 2003.

[25] G. Ascia, V. Catania, and M. Palesi, “Multi-objective map-
ping for mesh-based NoC architectures,” in Proceedings of
the 2nd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS
’04), pp. 182–187, September 2004.

[26] K. Srinivasan and K. S. Chatha, “A technique for low energy
mapping and routing in network-on-chip architectures,” in
Proceedings of the International Symposium on Low Power
Electronics and Design, pp. 387–392, August 2005.

[27] P. Brucker, Scheduling Algorithms, 5th edition, 2006.
[28] X. Zhu andW.Qin, “Prototyping a fault-tolerantmultiprocessor

SoC with run-time fault recovery,” in Proceedings of the 43rd
Annual Design Automation Conference (DAC ’06), pp. 53–56,
2006.

[29] R. Holsmark, M. Palesi, and S. Kumar, “Deadlock free routing
algorithms for mesh topology NoC systems with regions,” in
Proceedings of the 9th EUROMICRO Conference on Digital
System Design: Architectures, Methods and Tools (DSD ’06), pp.
696–703, September 2006.

[30] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M.
Kandemir, and M. J. Irwin, “Fault tolerant algorithms for
network-on-chip interconnect,” in Proceedings of the IEEE
Computer Society Annual Symposium on VLSI: Emerging Trends
in VLSI Systems Design, pp. 46–51, February 2004.



16 VLSI Design

[31] D. Bertozzi, L. Benini, and G. De Micheli, “Error con-
trol schemes for on-chip communication links: the energy-
reliability tradeoff,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 6, pp. 818–
831, 2005.

[32] F. Angiolini, D. Atienza, S.Murali, L. Benins, andG.DeMicheli,
“Reliability support for on-chip memories using Networks-on-
Chip,” in Proceedings of the 24th International Conference on
Computer Design (ICCD ’06), pp. 389–396, October 2006.

[33] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet:
a cheap and robust fault-tolerant packet routing mechanism,”
in Proceedings of the 31st Annual International Symposium on
Computer Architecture, pp. 198–209, June 2004.

[34] A. Pullini, F. Angiolini, D. Bertozzi, and L. Benini, “Fault
tolerance overhead in network-on-chip flow control schemes,”
in proceedings of the 18th Symposium on Integrated Circuits and
Systems Design (SBCCI ’05), pp. 224–229, September 2005.

[35] P. Beerel and M. E. Roncken, “Low power and energy efficient
asynchronous design,” Journal of Low Power Electronics, vol. 3,
no. 3, pp. 234–253, 2007.

[36] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston,
“A lightweight fault-tolerant mechanism for network-on-chip,”
in Proceedings of the 2nd IEEE International Symposium on
Networks-on-Chip (NOCS ’08), pp. 13–22, April 2008.

[37] P. Bogdan, T. Dumitraş, and R. Marculescu, “Stochastic com-
munication: a new paradigm for fault-tolerant Networks-on-
chip,” VLSI Design, vol. 2007, Article ID 95348, 17 pages, 2007.

[38] S. Murali and G. De Micheli, “SUNMAP: a tool for automatic
topology selection and generation for NoCs,” in Proceedings of
the 41st Design Automation Conference (DAC ’04), pp. 914–919,
June 2004.

[39] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “Xpipes-
compiler: a tool for instantiating application specific networks
on chip,” in Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE ’04), pp. 884–889,
February 2004.

[40] Z. Lu, R. Thid, M. Millberg, E. Nilsson, and A. Jantsch,
“NNSE: nostrumnetwork-on-chip simulation environment,” in
Proceedings of the Swedish System-on-Chip Conference (SSoCC
’03), April 2005.

[41] S. Mahadevan, M. Storgaard, J. Madsen, and K. Virk, “ARTS:
a system-level framework for modeling MPSoC components
and analysis of their causality,” in Proceedings of the 13th IEEE
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems (MASCOTS ’05),
pp. 480–483, September 2005.

[42] P. G. Paulin, C. Pilkington, and E. Bensoudane, “StepNP:
a system-level exploration platform for network processors,”
IEEEDesign andTest of Computers, vol. 19, no. 6, pp. 17–26, 2002.

[43] N. Genko, D. Atienza, G. De Micheli, J. M. Mendias, R. Her-
mida, and F. Catthoor, “A complete network-on-chip emulation
framework,” in Proceedings of the Design, Automation and Test
in Europe (DATE ’05), pp. 246–251, March 2005.

[44] M.Coppola, S. Curaba,M.D.Grammatikakis, G.Maruccia, and
F. Papariello, “OCCN: a network-on-chip modeling and simu-
lation framework,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, DATE 04, vol. 3, pp.
174–179, February 2004.

[45] C. A. Zeferino and A. A. Susin, “SoCIN: a parametric and scal-
able Network-on-Chip,” in Proceedings of the 16th Symposium
on Integrated Circuits and Systems Design, pp. 169–174, 2003.

[46] H. Orsila, E. Salminen,M.Hännikäinen, and T. D.Hämäläinen,
“Evaluation of heterogeneous multiprocessor architectures by
energy and performance optimization,” in Proceedings of the
International Symposium on System-on-Chip (SOC ’08), pp. 1–
6, November 2008.

[47] H. Orsila, T. Kangas, E. Salminen, T. D. Hämäläinen, and M.
Hännikäinen, “Automatedmemory-aware application distribu-
tion for Multi-processor System-on-Chips,” Journal of Systems
Architecture, vol. 53, no. 11, pp. 795–815, 2007.

[48] F. Paterna, L. Benini, A. Acquaviva, F. Papariello, and G. Desoli,
“Variability-tolerant workload allocation for MPSoC energy
minimization under real-time constraints,” in Proceedings of the
IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-
Time Multimedia (ESTIMedia ’09), pp. 134–142, October 2009.

[49] R. Teodorescu and J. Torrellas, “Variation-aware application
scheduling and power management for chip multiprocessors,”
ACM SIGARCH Computer Architecture News, vol. 36, no. 3, pp.
363–374, 2008.

[50] Z. Lide, L. S. Bai, R. P. Dick, S. Li, and R. Joseph, “Process
variation characterization of chip-levelmultiprocessors,” inPro-
ceedings of the 46th ACM/IEEE Design Automation Conference
(DAC ’09), pp. 694–697, New York, NY, USA, July 2009.

[51] “Embedded System Synthesis Benchmarks Suite (E3S),” http://
ziyang.eecs.umich.edu/∼dickrp/e3s/.

[52] C. Ababei and R. Katti, “Achieving network on chip fault toler-
ance by adaptive remapping,” in Proceedings of the 23rd IEEE
International Parallel and Distributed Processing Symposium
(IPDPS ’09), pp. 23–29, May 2009.

[53] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping
strategies for fault-tolerant network-on-chip multiprocessors,”
in Proceedings of the 5th ACM/IEEE International Symposium
on Networks-on-Chip (NOCS ’11), pp. 129–136, May 2011.

[54] “Standard Task Graph (STG),” http://www.kasahara.elec.was
eda.ac.jp/schedule/.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Advances in
Acoustics &
Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Journal of 

Sensors

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Active and Passive  
Electronic Components

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Antennas and
Propagation

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
Observation

 International Journal of


	Framework for Simulation of Heterogeneous MpSoC for Design Space Exploration
	Repository Citation

	tmp.1391807414.pdf.ZTWCY

