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ABSTRACT

Determination of Ground-VVater Tracer 2,6-Difluorobenzoic Acid by GC/jVIS

by

Cong Han

Dr. Klaus J. Stetzenbach, Examination Committee Chair 
Director o f HRC 

University of Nevada, Las Vegas

In this study, a GC analytical method for the determination of the ground water 

tracer, 2,6-difluorobenzoic acid (2,6-DFBA) at the part per billion level was established. 

Three sample preparation methods, which include two méthylation methods and one 

silylation method, have been evaluated. Chromatographic instruments including GC/MS, 

GC/ECD, and GC/FID have been used. Silylation o f 2,6-DFBA combined with GC/MS 

analysis has proven to be the best method in this study, due to the low detection limits 

(part per trillion ) achieved, and the stability of the 2,6-DFBA silyl derivative. A GC/MS 

instrument calibration curve was established, a C-well water sample was analyzed with this 

method and results were compared with HPLC analysis which has been used to analyze

2,6-DFBA at the part per billion level in ongoing studies.

Since the GC/MS has the ability to separate the silyl derivatives o f the various

difluorobenzoate isomers, several difluorobenzoates can be analyzed simultaneously by

this method in cases where multiple tracers are needed. More work should be done

towards achieving better extraction efficiency and reducing the sample preparation time.
iii
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CHAPTER 1 

INTRODUCTION

1.1 Purpose of This Study

The purpose o f this study was to find a sensitive analytical gas chromatography 

(GC) method to improve 2,6-difluorobenzoic acid (2 ,6 -DFBA) detection limits to the 

part per billion (ppb) or part per trillion (ppt) level (high performance liquid 

chromatography - FIPLC detection limit about 3~5ppb) to enhance the use of 2,6-DFBA 

as ground water tracer. Therefore, gas chromatography/mass spectrometry (GC/MS), 

gas chromatography with flame ionization detector (GG/F'ID) and gas chromatography 

with electron capture detector (GC/ECD) were examined along with several sample 

preparation procedures. GC/MS was used not only for its better detection limits, but 

also for the mass spectrometer’s capability of positive compound identification. Several 

derivatization reactions were utilized for improved compound volatility, peak shape, and 

enhanced detectability (Poole and Schuette, 1984).

Since neither the methyl ester nor the silyl ester of 2,6-DFBA were available 

commercially, there was no standard to compare with in this study. Therefore, the 

results are based on a theoretical calculation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 History of Tracers

Especially in recent years, groundwater pollution due to chemical leaching from 

point and non-point sources has been of critical concern. Tracers have been widely used 

to follow the movement of water through soils and aquifers to determine the flow 

patterns o f groundwater and hydrogeologic parameters.

In many aquifer and vadose zone experiments, the availability and use of suitable 

tracers are essential. An ideal tracer for following the movement of water should be 

conservative (experiencing neither gain or loss, during transport), nonreactive with the 

mineral and organic fractions of the solid matrix, not present in the system or with a low 

background concentration, inexpensive to apply and analyze, and nontoxic (Davis et al, 

1980).

While no perfect nonreactive tracer exists, low molecular weight anions 

(particularly Br ) approach this ideal since they undergo little interaction with most 

natural porous media, are environmentally acceptable (most bromide compounds have 

relatively low toxicities), are readily available, and can be economically analyzed 

(Bowman, 1984a). However, it would be advantageous if additional tracers were 

available with similar transport properties, especially when two or more tracers are 

required for an experiment.

Fluorinated benzoic acid derivatives have many o f the properties required of 

nonreactive soil and ground water tracers (Stetzenbach et al., 1982; Bentley, 1983; 

McCray et al, 1983; Bowman, 1984a). It was found that several of these 

fluorobenzoates, such as o-(trifluoromethyl)benzoate (o-TFMBA), 2,6-DFBA, and
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pentafluorobenzoic acid (PFBA), behaved almost identically to Br' under the conditions 

tested and are acceptable substitutes (Young and Boggs, 1990). These acids, with 

negative-log dissociation constants (pK,s) less than 4.0, are anionic at typical ground 

water pHs, are resistant to chemical and microbial transformation, are not known to be 

toxic to plants and mammals at low concentrations (Stetzenbach and Famham, 1994). 

and are readily analyzed at ppb levels in sub-mL water samples using HPLC techniques. 

Use of the fluorobenzoates is warranted when common inorganic anions such as Br', Cl', 

or NO3' are not suitable, or when multiple tracers are required.

Fluorobenzoate tracers have been used in studies by several investigators 

(Bowman and Rice, 1986; Jaynes and Rice, 1993; Hatfield and Stauffer, 1992; Boggs et 

al., 1992). Detailed evaluation o f these chemicals as tracers has, however, been 

conducted mostly on neutral to alkaline, low organic content ground waters. Suitability 

of fluorobenzoates as tracers on the more neutral, high organic fraction soils, common in 

the N-Iidwest, has not been documented, except a single soil sample fi-om North Dakota 

(Bowman and Gibbens, 1992).

Indication that fluorobenzoates may not be universal surrogates for Br' was 

documented in Boggs and Adams (1992), who observed several benzoates retarded 

differentially to Br' in an acid sandy material. There is also concern that benzoates may 

not be suitable in all soils and ground water environments. While toxic to soil 

microorganisms at high concentration (Seuferer et al., 1979), it has been shown that 

many of the difluorobenzoates used by Bo wan and Gibbens (1992) can be degraded by 

bacteria in soils and hydrosoils (Cass et al, 1987; Rossiter et al., 1987) with half-lives as
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short as 9 to 28 days (Nimmo et al, 1984; Verloop and Ferrell, 1977). That degradation 

was not observed by Bowman (1984) and Bowman and Gibbens (1992). It may be due 

to the low organic content, relatively sterile soils used in Bowman and Gibbens’s studies.

Fluorinated organics have received less attention compared with chlorinated 

organics because fewer are regulated, measurement of nonvolatile perfluorinated 

organics is more difficult, and they are perceived as more inert biologically and therefore 

less likely to have an impact on human health or the environment (Key et al, 1997). The 

perception of inertness and its environmental significance are debatable. Inert molecules 

tend to be persistent and accumulate in the environment, and they are more difficult to 

remediate. In addition, although these compounds are generally viewed as recalcitrant 

because of their lack o f chemical reactivity, many fluorinated organics are biologically 

active.

Of the fluorobenzoates which to date have seen extensive field applications as 

tracers, only the two with aromatic-ring substitution by fluorine, pentafluorobenzoate 

[PFBA] and 2,6-difluorobenzoate [2,6-DFBA], have shown long-term resistance to 

chemical and biological breakdown in a variety of hydrologie environments 

(Bowman, 1992). These fluorobenzoic acids, with pK, less than 4.0, are anionic at 

ground water pH (calculation is shown below), and are typically analyzed in natural 

R-COOH o  RCOO'+ H* 

pH = pK. + log [ R C 0 0 7  R-COOH ]

Ground water pH = 7, when pK. < 4

log [ R C 0 0 7  R-COOH ] > 3; [ R C 0 0 7  R-COOH ] > 1000
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water samples via HPLC with ultraviolet-visible (UV/VIS) detection (Bowman, 1984b). 

The procedure requires minimal sample pretreatment and allows accurate measurements 

of tracer concentrations in the presence of high background levels of Cl ", NO, and 

naturally-occurring organic solutes. Detection limits of 2 ,6 -DFBA, PFBA, o-TFMBA 

and m-(trifluoromethyl)benzoate (m-TFMBA) were in the range of 1.2 to 2.5 ng, which 

was based on 5pL (25 ng) injections of a standard solution having a 5ppm concentration 

of each anion. Retention times were in the 7.3 minutes to 12.5 minutes range. For 

analysis o f  anions in soil extracts, practical limits for reliable quantification were about an 

order of magnitude higher than the previous values.

Recent studies done at the Harry Reid Center for Environmental Studies at 

University o f  Nevada, Las Vegas (UNLV) using HPLC with LTV detection, have shown 

detection limits for 2,6-DFBA of 3ppb, quantitation limits of lOppb, and a linear 

relationship was achieved in the range of lOppb to ppm levels.

Ion chromatography (IC) analysis o f  these fluorobenzoates using conductivity 

detection is also an accurate and expedient means of determining both single and 

multiple fluorobenzoate and Br' concentrations in soil solutions and natural waters 

(Pearson, et al, 1992). Retention and sample analysis times were found to be less than 

currently used FIPLC methodologies. Mixed and single standard solutions (lOOppb -  

25ppm) o f PFBA  2,6-DFBA o-TFMBA LiBr were prepared and analyzed. FFigh 

resolution among all four tracers was achieved. Retention times of o-TFMBA 2 ,6 - 

DFBA and PFBA by IC analysis ranged between 1.79 and 2.62 min with a linear 

detection response achieved across a 250ppb to 25ppm concentration range.
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1.3 Gas Chromatography of Organic Acids

Gas chromatography is the technique of choice for the separation of thermally 

stable volatile organic compounds. However, carboxyl groups, owing to their polarity 

and a tendency to form hydrogen bonds, are responsible both for the low volatility o f the 

compounds and for other phenomena that make direct GC analysis either difficult or 

impossible. Carboxyl groups may exhibit strong adsorption on the support of the 

stationary phase and asymmetry o f the peaks. Thermal and chemical instability of the 

compounds causes losses of the sample compounds in the chromatographic system; i.e., 

their non-quantitative elution or the elution of decomposition products. Because of these 

problems, derivatization is usually employed when analyzing carboxylic acids by GC 

(Drozd, 1981).

1.4 The Use of Chemical Derivatives in Gas Chromatography

Derivatization, e.g., estérification or silylation, in effect a microchemical organic 

synthesis, is used to convert the protonic functional carboxylic acids to thermally stable 

non-polar esters or silyl derivatives in order to reduce the polarity o f these compounds 

and thus enhance their chances for successful GC analysis (Poole, 1984). The 

derivatized compound, by improving the thermal stability and adjusting the volatility of 

the compound, exhibits shorter retention times, improved peak shape on the 

chromatogram. Derivatization minimizes undesirable column interactions which could 

lead to irreversible adsorption and skew peak formation. Therefore, carboxylic acids are 

analyzed by GC almost exclusively in the form of derivatives.
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1.4.1 Types of Carboxylic Acid Derivatives

1.4.1.1 Methyl Esters

Estérification is a typical means of derivatizing carboxyl groups and the esterified 

form of the carboxyl groups are analyzed by GC to eliminate the interferences encounted 

in analyzing the original acids. Methyl esters are the most often used as they have a 

sufficient volatility even for the chromatography o f higher fatty acids (Drozd, 1981). 

Reactions with methanol can be catalyzed with hydrochloric acid, sulfuric acid, boron 

trifluoride, boron trichloride, or ion-exchange resin. The methanol method is based on 

the reaction shown below.

FT
R-COOH ~ CHiOH  - ,  > R-COOCH; -  H2O

The methanol-BF] reagent is commonly available and sufficiently reactive even 

towards strongly hindered groups. A high reactivity, on the other hand, brings about the 

possibility of undesirable side-reactions if the substrate contains double bonds or other 

reactive centers. It is reported that methanol-BFs gives rise to losses of unsaturated 

esters and that oleic acid provides a high yield of isomers o f methoxymethyl stearate.

The méthylation methods have been compared and the results show that methods 

requiring more complicated procedures give lower values o f concentrations. The losses 

caused by the volatility o f methyl esters are most significant with lower molecular weight 

acids, with unacceptable standard deviations. (Vorbeck, 1961)
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1.4.1.2 Silyl Derivatives

The most versatile and universally applicable derivatizing reagents for polar 

molecules containing protonic functional groups are the alkylsilyl reagents (Poole, 1984). 

Nearly all functional groups which present a problem in GC can be converted to alkylsilyl 

ethers or esters. The most common derivatizing reagents are the trimethylsilyl (TMS) 

reagents. Their derivatives are volatile and generally thermally stable, with good 

separation characteristics.

The rate o f the silylation reaction is affected by the silylating reagents and organic 

compounds (Poole, 1984). The silylating reagents are ranked according to their “silyl 

donor ability” and the functional groups of organics are ranked according to their “silyl 

acceptor ability”. For the TMS reagents the approximate order o f “silyl donor ability” is; 

trimethylsilylimidazole (TMSIM) > N,0-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) 

> N,0-bis-(trimethylsilyl)acetamide (BSA) > N-methyl-N-( trimethylsilyl)

trifluoroacetamide (MSTFA) > N-trimethylsilyldiethylamine (TMSDEA) > N-Methyl-N- 

( trimethyl silyl) acetamide (MSTA) > trimethylchlorosilane (TMCS) with base > 

hexamethyldisilazane (HMDS). For organic functional groups the approximate order of 

“silyl acceptor ability” is: alcohols > phenols > carboxylic acids > amines > amides. The 

reaction between a good “silyl donor” and a good “ silyl acceptor” is likely to be facile 

and quantitative under mild conditions.

The rate o f the silylation reaction is also affected by steric factors, the use of 

catalysts, the choice of solvent, and the reaction temperature (Poole, 1984). The 

silylating reagents themselves have good solubilizing properties for many compounds
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and can be used without additional solvent. The primary criterion for selecting a solvent 

is that it must dissolve both substrate and reagents. Increasing the temperature o f the 

reaction will often improve substrate solubility and enhance the rate of reaction, but it is 

also possible that the increased temperature will cause the loss o f the volatile products. 

Besides the wide applicability and ease of use of the TMS reagents, the fact that most 

reactions occur cleanly without artifact or by-product formation adds to the attraction of 

these reagents.

The mass spectra of TMS derivatives are characterized by weak or absent 

molecular ions. For difluorobenzoic acid TMS derivatives, the mass spectra have the 

major peaks at [M-CHs]', [M-OSiCCHb] ', [M-COOSiCCHjjs] and [Si(CH3 )3 ] which 

correspond to the m/e ratios 215, 141, 113, and 73 respectively (Wu, 1996). Ions 

formed by cleavage o f a methyl to silicon bond, m/e 215 are generally more abundant. 

This ion can be used to determine the molecular weight provided that is not mistaken for 

the molecular ion itself. Dissociation of the molecular ion often results in prominent 

secondary fragment ions containing the ionized dimethylsiloxy group attached to a 

hydrocarbon portion o f the molecule. In common with alkyl ethers, cleavage of the bond 

adjacent to oxygen is favored, the m/e 73 ion is prominent in virtually all TMS spectra.
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Among the less desirable features o f the trimethylsilyl derivatives are their limited 

hydrolytic stability and poor intrinsic detection characteristics for trace analysis, and, in 

addition, the trimethylsilyl group shows no particular electron-capture properties (Poole, 

et al, 1980), the response o f the electron capture detector towards halgen-containing 

compounds follows the order I > Br > Cl > F. On occasion, higher alkyl homologs or 

halogen-containing alkyl or aryl substituted analogs of the TMS derivatives are used to 

impart greater derivative hydrolytic stability, improved separation characteristics, 

increased sensiti'/ity when used with selective detectors, or to provide mass spectra 

containing greater diagnostic information (Poole and Zlatkis, 1979).

A method has been described for the preparation o f silyl derivatives even in the 

presence o f water. Its principle is in the addition of such a large excess o f the silylating 

agent that all of the water is removed (Weiss and Tambawala, 1972). The extent to 

which the presence of water affects the reaction yield and whether or not a large excess 

of by-products has an adverse effect must be tested. Because of the possible sensitivity 

of the derivatives towards moisture, they should be prepared immediately prior to the 

analysis, even though they have been reported to be stable under anhydrous conditions 

for a few days (Homing and Boucher, 1968).

1.5 INSTRUMENTATION

1.5.1 Gas Chromatography

GC as a method o f instrumental analysis is capable o f producing information 

which may describe the qualitative and quantitative composition o f mixtures o f
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compounds. In GC, a gaseous transport medium (mobile phase) is applied for the 

separation of the sample components after they have been introduced into the 

chromatographic system. The two important elementary parts of the chromatographic 

system are the column, in which the separation takes place, and the detector.

Chromatographic separations are based on multiple partition of the compounds 

to be separated between two phases. The mobile phase (carrier gas) carries the gaseous 

sample aliquot through a column containing a stationary phase. The individual 

components (solutes) in the sample aliquot are temporarily dissolved in the liquid 

stationary phase (silicone polymers) or adsorbed on the surface of the solid stationary 

phase at different rates resulting in their separation. The separated sample components 

then enter the detector, and the signals produced in the detector are proportional to the 

concentration of the separated species. The chromatogram (a graph o f the detector 

signal) and a report which contains figures for the retention times and peak areas (also 

peak heights) o f all or o f selected peaks are produced for each mixture introduced into 

the column.

I.5.1.1 FID

Flame ionization detector is by far the most popular detector for gas 

chromatographic effluents. These detectors operate on the principle that the electrical 

conductivity of a gas is directly proportional to the concentration of charged panicles 

within the gas. In the FID a hydrogen flame serves as the ionizing source. Carrier gas 

moves the sample components firom the column into the flame, which ionizes some of the
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organic molecules in the gas stream. The presence of the charged particles (positive 

ions, negative ions, and electrons) within the electrode gap causes a current to flow 

through a measuring resistor. The resulting voltage drop is amplified by an electrometer 

and fed to a recorder. The mechanism for the production o f ion current can be simply 

explained by the fact that the free radicals CH3 , CHy, CH are the result of pyrolytic 

reactions of the organic compounds. When the free radicals encounter either oxygen 

atoms or high-energy oxygen molecules, a series of ion-molecule reactions take place, 

producing positive ions (Bruner, 1993).

CH~ 0*  CHO' -  e  

CHO  ̂ -  H2O -> HsO' - e - C O  

A schematic view of a typical FID is shown in Figure 1.1.

Insulated 
Connection 
to Collector 

Electrode

Insulation

Insulated 
Connection 

to Jet

Hydrogen

Exit Gases

1

Insulated
Collector
Electrodes

Flame

Insulated Jet

Insulation

C apill^  Column 
Carrying Mobile 
Phase (Helium)

Air or Oxygen 
for Combustion

Figure 1.1 The Flame Ionization Detector (Techniques and Practice of Chromatography, 
New York, 1995).
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The great success o f the FID is due to the following characteristics (Bruner, 1993):

* The ion current is extremely low when pure hydrogen is burned in a flame fed by 

pure air in the absence of any organic compounds, this implies a negligible baseline 

background.

* A very large number of ions is produced if an organic compound bums in the flame 

compared to the background produced by the hydrogen.

* The linear dynamic range of FID is about 1 x 10 .̂

* The sensitivity of FID toward hydrocarbons, either aliphatic or aromatic, is very 

large, signals can be obtained at picogram level.

1.5.1.2 ECD

The selective electron-capture detector is the second most widely used detector 

(Poole, 1984). The ECD measures the loss o f signal rather than an increase in electrical 

current. As the carrier gas flows through the detector, radioactive ionizes the gas 

and thermal electrons are formed. These electrons migrate to the anode, which normally 

has a potential o f ca. 90V. When collected, these electrons produce a standing current 

of ca. 10'* A, which is amplified by an electrometer. If an electron-capturing compound 

enters the detector it captures a thermal electron to produce either a negative ion or a 

fragment ion if dissociation accompanies capture, as shown below.

A B  ^  AB'

A B  ~ e A' ~ B  

A B  ~ e -^ A '  -  B
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The operating conditions are optimized such that the thermal electrons are collected but 

the negative ions are not. The diminution in detector background current due to the loss 

of thermal electrons constitutes the quantitative basis by which detector response is 

related to solute concentration. A diagram of an electron capture detector is shown in 

Figure 1.2.

Radioactive
SourceInsulator

Nitrogen or HydrogeiL 
For Pulsed Mode Operation 

10% Methane in Argon
Flow

Diffuser

Figure 1.2 The Electron Capture Detector(Techniques and Practice of Chromatography, 
New York, 1995)

ECD is extremely sensitive to molecules containing electronegative atoms or 

groups, which easily capture an electron, such as polyhaloalkanes, conjugated carbonyls, 

nitriles, nitrates, aromatic polynitro compounds, and organometallics. Responses 

towards the halogens decrease in the order I > Br > Cl > F. The ECD is virtually 

insensitive to hydrocarbons, alcohols, and ketones. ECD has a very limited linear
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dynamic range, and is very sensitive to changes in carrier gas flow rate and temperature 

(Bruner, 1993 ).

1.5.1.3 Mass Spectrometer

The mass spectrometer detector has the ability to separate gaseous positive ions 

according to their mass-to-charge ratio (m/e). The basic components o f a mass 

spectrometer are shown schematically in Figure 1.3. Under normal operating conditions, 

the vacuum systems associated with the

Recorder

Ionization
Chamber

Mass
Analyzer

Heated 
Inlet System

Ion Collector 
Amplifier

High Vacuum 
Pump

Figure 1.3 Basic components o f a mass spectrometer.

instrument maintain it at the low pressures required to avoid intermolecular and 

interionic reactions. Whether the compound is a gas or a volatilized liquid, the heated
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inlet system allows the material to enter the highly evacuated ionization chamber through 

a molecular leak whose conductance is preferably in the 0 . 1  to 0.4 cc/sec range. The 

gaseous molecule is bombarded in the ionization chamber and the positive ion fragments 

(which are more abundant than the negative ions by several orders of magnitude) are 

accelerated from the ion source electrostatically and then resolved or separated 

according to their mass-to-charge ratio by the mass analyzer. These mass separated ions 

of a particular m/e impinge sequentially on an ion collector electrode, causing an 

electrical current which is amplified 1 0 '’ to 1 0 * times with virtually no noise into an 

electrical signal that is proportional to ion abundance and compatible with fast recording 

devices (Gudzinowicz, 1976). The advantage o f a MS as a GC detector over the FID or 

ECD is that it has better qualitative capabilities allowing a more positive identification of 

sample components.

1.5.1.3.1 Electron Impact Ionization

Electron impact ionization is the most common ionization method used with 

organic compounds (Biemann, 1962). Ion formation from sample molecules in the gas 

phase is based on an exchange o f energy during collisions between energetic electrons 

and neutral gas molecules or atoms, which produces a molecular ion, an odd-electron non 

usually in a high state o f electronic and vibrational excitation. The relative amounts and 

type of ions formed depend on the sample’s chemical nature and the bombarding electron 

energy, which is nearly 70eV for most organic substances. Fragmentation as well as
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dissociative and multiple ionization occur, the resulting mass spectrum thus becoming a 

“fingerprint pattern" of the particular compound under study.

1.5.2 High Performance Liquid Chromatography

Only about 2 0 % o f  known compounds can be analyzed by GC without prior 

treatment (Meyer, 1988). The other 80% are insufficiently volatile or can’t pass through 

the column or because they are thermally unstable and decompose under the conditions 

of separation. HPLC is not limited by sample volatility or thermal stability. HPLC is 

able to separate macromolecules and ionic species, labile natural products, polymeric 

materials, and a wide variety o f other high-molecular weight polyfunctional groups 

(Willard and Merritt, 1988). A diagram of a suitable instrument for HPLC is shown in 

Figure 1.4.

Column

Detector

Injector

Recorder

Solvent
Reservoirs

Gradient
Former

Pumping
System

Data
Handling

Device

Flow Sensing 
Modulation 

Units

Figure 1.4 The diagram o f HPLC.
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For isocratic elution, a solvent is unchanged throughout the time and delivered on to the 

column. In gradient elution two or more solvents are mixed in proportion so that the 

concentration of the stronger solvent increases with time. Between pump and injector 

there may be a series o f devices which ensure a homogeneous, pulse-free liquid. Flow is 

delivered to the column at a known pressure and volume flow rate. An injection device 

is connected to the head o f the column for loading the sample. A detector is connected 

to the end of the column which produces signals that are proportional to the 

concentration of the separated species. A chromatogram and report much like those 

produced from a GC can be produced by the data system on the HPLC.

1.5.2.1 Reversed-Phase System

In reversed-phase systems, the mobile phase is more polar than the stationary 

phase. Reversed-phase systems with a chemically-bonded stationary phase are very 

widely used in chromatography. Compared with chromatography with a liquid stationary 

phase, this method has much higher reproducibility, stability, separation efficiency and 

the possibility of employing gradient elution. Thus, chromatography on non-polar 

chemically bonded phases has practically replaced liquid-liquid chromatography. 

Various types of substances can be chromatographed, ranging from non-polar 

hydrocarbons to completely ionized sulphonic acids and small inorganic ions, including 

biopolymers and other macromolecular substances.
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Chromatography in reversed-phase systems employs mobile phases containing 

water and one or more organic solvents that are miscible with water, usually methanol, 

acetonitrile, tetrahydrofuran, dioxane, propanol, etc.(Locke, 1974).

In the chromatography of strongly polar or ionized solutes it is necessary to add 

buffers, salts, or reagents that form ionic associates, to the mobile phase. Strongly polar 

and ionic substances are usually retained very slightly or not at all in the reversed-phase 

system and, as a result of ionic exclusion, some are eluted sooner than in a time 

corresponding to the dead volume of the column (volume of the mobile phase in the 

column). Addition of a suitable buffer to the mobile phase adjusts the pH to suppress 

dissociation o f weak acids at pH<7) and they are usually not difficult to separate in the 

undissociated form(Melander and Horvath, 1980). The content of organic solvent in the 

mobile phase also greatly affects the retention. A marked decrease in the solute retention 

with increasing concentration of organic solvent is usually observed in binary mobile 

phase.

Gradient elution is also widely used in HPLC, in this case, the composition of the 

mobile phase gradually changes with time according to a program so that the elution 

strength o f the mobile phase gradually increases. This enables weakly sorbed substances 

to be eluted by a mobile phase with a low elution strength with good separation, while 

the elution o f substances with strong affinity for the stationary phase is accelerated by 

increasing the elution strength of the mobile phase in the final stages o f gradient elution 

(Jandera and Churacek, 1985).
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1.5.2.2 Detector

The UV-visible spectrophotometer is the most widely used detector for HPLC as 

it can be rather sensitive, has a wide linear range, is relatively unaffected by temperature 

fluctuations, and is also suitable for gradient elution (Meyer, 1993). The basis of UV- 

VTS detection is the difference in the absorbance o f light by the analyte and the solvent. 

A number o f functional groups absorb strongly in the ultroviolet, including aromatic 

compounds, carbonyl compounds. Solvents that absorb only weakly in the LTV range 

include water, methanol, and acetonitrile making them good choices for the mobile 

phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2 

EXPERIMENTAL

2.1 Acidified Methanol Méthylation

2.1.1 Chemical Reaction and Méthylation Procedure

R-COOH  4-  CHiOH - - - - > R-COOCHs  -  H^O
A

In this method, the 2 ,6 -DFBA methyl ester was prepared by reacting 2,6-DFBA 

with acidified methanol (Steinberg, 1996). Methanol was first acidified by adding 3ml of 

acetyl chloride into 50ml erlenmeyer flask of methanol. Milligram quantities of 2,6- 

DFBA (I8~20mg) were added to 5ml of the reagent in a 20ml screw-capped test tube. 

The test tube was capped and placed into a VWR Scientific heat block for 1 hour at 

100°C. Then, 1 ml of deionized water was added to the mixture and the organic phase 

was evaporated under a vacuum until the derivative solution was completely dry. Then 

the dried sample was added with 10 mL methylene chloride. The prepared 2,6-DFBA 

methyl ester solution was ready for analysis.

2.1.2 Reagents

2,6-DFBA was obtained from Aldrich Chemical Company (Milwaukee, WI).

21
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Chemical purity was 98% according to the manufacturer. The compound was used 

without further purification. The water used for the sample preparation was obtained by 

passing deionized water through a Bamstead (Dubuque, lA) Nanopure water system and 

subsequently distilling the Nanopure water in an all-glass still. (Stetzenbach, 1994). 

High purity methanol and methylene chloride were both obtained from Burdick & 

Jackson ( Muskegon, MI ). Acetyl chloride (98.5%) was A C.S. reagent obtained from 

Aldrich ( Milwaukee, WI ).

2.1.3 GC Instrument Analysis

One microliter of the prepared 2,6-DFBA methyl ester was analyzed on GC/FID 

for the initial analysis. GC/FID was Hewlett Packard 5890A, the DB-5 GC capillary 

column was obtained from J&W Scientific ( Folsom, CA ), 30m x 0.25mm I D and 

0.25pm film thickness, stationary phase was bonded with (5%-phenyl) 

methylpolysiloxane. The typical instrument parameters are found in Table 2.1.

Table 2.1 GC Parameters

Column: DB-5 
Temperature 

Oven temp, program: Initial: 50°C for 4min
Rate: 50°C to 280°C at 1 0  C/min 
Final: 280°C for 15min

Injector B: 280°C 
Detector: 280°C 

Flow rate 
Column flow: Iml/min 
Make up gas He: 35ml/min 
Air: 400ml/min
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The chromatogram showed two peaks yield on GC column at 8.5 minutes and 

11 1 minutes (Figure 2.1).

Figure 2.1 Chromatogram o f GC/FID analysis of ppm 2,6-DFBA and 2,6-DFBA 
methyl ester by using the acidified methanol.

To positively confirm these two peaks, one microliter of the methyl ester solution 

was injected onto the GC/MS column. The GC/MS was a Hewlett Packard (Avondale, 

PA) 5890 equipped with Electron Impact Ionization ion mode. Typical instrument 

parameters are found in Table 2.2.

The GC/MS chromatogram yielded two major peaks at retention time 12.3 

minutes and 14.6 minutes (Figure 2.2). The peak at 12.3 minute is 2,6-DFBA methyl 

ester, which can be determined by its characteristic m/e ratios 113, 141, 172. The peak 

at retention time 14.6 minutes is the free 2,6-DFBA with the characteristic m/e ratio 113,
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141, and 158. The small amount o f 2,6-DFBA methyl ester produced compared with the 

large amount of free 2,6-DFBA retained indicated that the reaction eflBciency was low.

Table 2.2. GC/MS Parameters

Column: SPB-5
Oven temp: Initial: 50°C for Omin

Rate: 0°C to 280°C at 10°C/min 
Final: 280°C for Omin

Injector: 22G°C 
Transfer line: 280°C

Carrier gas (Helium): 25-30ml/min 
Mass spectrometer 

Ionization: El 
Scan range: 50-360 
Scan rate: 1.5 sec

After the GC/MS confirmation of these two peaks, it can be assumed that the 

peaks in previous GC/FID analysis (Figure 2.1) were 2,6-DFBA methyl ester with 

retention at 8.5 minutes, and free acid with retention at 11.1 minutes. However, the 

large amount of 2,6-DFBA means the méthylation reaction did not go to completion. 

This conclusion is based on the assumption that the free acid and methyl ester have 

nearly the same instrument response. Therefore, the méthylation reaction times were 

prolonged to 3 hours, 4 hours, 5 hours, 7 hours, and 9 hours. The chromatograms are 

shown in Appendix Figures 1-3. These experiments showed that the méthylation 

reaction did go further when longer times were used. In addition, the loss o f  the methyl
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Figure 2.2 Chromatogram of GC/MS analysis of ppm 2,6-DFBA and 2,6-DFBA methyl 
ester.
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ester peak on the chromatogram after 3, 5, and 7 hours reaction indicates this 

method is not reproducible, this might be due to the loss of the volatile 2,6-DFBA 

methyl ester during the evaporation step.

Numerous experiments were repeated. The high ppm sample injection only gave 

about 40,000-60,000 area count on the GC column. The poor sensitivity of the analyte 

on the GC/FID might be because either the reaction is poor, or due to the large amount 

lost of the analyte during the méthylation reaction and evaporation step.

In conclusion, this méthylation method is not efiicient and useful due to the long 

reaction time, poor instrument sensitivity, and non-reproducible result.

Therefore, the BFg-methanol méthylation method was then studied.

2.2 BF3-Methanol Méthylation

2.2.1 Chemical Reaction and Méthylation Procedure

R-COOH  -  CHiOH R-COOCH, -  H^O
A

This method uses BFs-methanol as the méthylation reagent instead of the 

acidified methanol. 2,6-DFBA (up to 25mg in 2ml high purity hexane) was added to 2ml 

of the 14% BF] -methanol reagent in a 10ml test tube. The uncapped test tube was 

placed in a small beaker o f water, and boiled on a steam bath for 3 minutes. 1ml of 

distilled water was added to stop the reaction. The mixture was cloudy, but after 

standing for 15 minutes it separated into two phases. The upper layer contained the 

methyl ester in hexane and the bottom layer was methanol, water, and the acid catalyst
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BF]. A 30 ml separatory funnel was used to separate the two layers. The bottom layer 

was discarded and the top layer, containing the methyl esters, was dried under high pure 

nitrogen and diluted with hexane for analysis.

This method was chosen because of its fast méthylation reaction compared with 

the acidified methanol method, only 3 minutes.

2.2.2 Reagents

2,6-DFBA and ionized water were obtained in the same way as in section 2.1.2. 

Boron trifluoride/methanol (14%) was obtained from Supelco (Bellefonte, PA). Hexane 

was GC/GC-MS grade from Burdick & Jackson (Muskegon, MI).

2.2.3 Instrument Analysis

One microliter volume of the diluted ppm methyl ester solution was analyzed on 

HP 5890A GC/ECD equipped with a Supelco SPB^‘-5 fused silica GC capillary column. 

The column stationary phase was bonded with poly (5%-diphenyl-95%- 

dimethylsiloxane). The column was 30m long with 0.32mm internal diameter and 1.0pm 

film thickness, the column temperature limit range was fi"om -60°C to 320°C. Table 2.3 

shows the general parameter o f  the instrument. No peaks were detected on the 

chromatogram. The reason might be because of the loss of the methyl ester with the 

evaporated reagent. Therefore, the heating temperature was reduced from 100°C to 

60~65°C, and a 100 mm coil length reflux condensor was equipped to the evaporator 

appratus to allow additional fluid to be fed to bath during long evaporations to minimize 

the loss.
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Table 2.3 GC Parameters

Column; SPB-5 
Temperature 

Oven temp, program: Initial: 70°C for 2min.
Rate: 70°C to 160°C at 6 °C/min 
Final: 160°C for lOmin.

Injector B: 250°C 
ECD: 280°C 

Flow rate
Carrier gas (high purity helium): Iml/min 
Make up gas (nitrogen) + He: 30ml/min

Another reason might be that the loss o f the peak was due to 2,6-DFBA’s poor 

solubility in hexane. In this situation, HPLC analyses were performed to analyze the 

aqueous phase of the solution after the two layers were separated. Table 2.4 shows the 

general parameters o f the HPLC. The HPLC consisted o f a Model SP 8800 pump. 

Model SP 8880 auto sampler and Model UV/Vis 1000 detector, all by Spectra-Physics 

(San Jose, CA). The mobile phase was 0.0IM potassium biphosphate (KH2PO4) buffer, 

pH adjusted to 2.5 with phosphoric acid, with 25% methanol as an organic modifier. 

The HPLC was calibrated before running the samples. The calibration standards were 

200 ppb, 400 ppb, and 1000 ppb 2,6-DFBA in DI water. The HPLC result showed that 

96% of the original amount of the 2,6-DFBA was left over, only 4% of it reacted with 

BFs-methanol. This result indicated that hexane is not the suitable solvent for 2 ,6 - 

DFBA.
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Table 2.4 HPLC Parameters

Column; LC-18
Pump; SP 8800 ternary HPLC
Pressure: 14lOPsi
Flow rate: 1.5ml/min
Run time: lOmin
Injection volume: 50pl
UV/Vis detector: 230nm
Auto sampler: SP 8880
Vial size: 2.0ml
Solvent: 75% KH2 PO4 (0.0IM) @pH2.5 

25% Methanol

The méthylation procedure was modified to use ethyl acetate as solvent instead 

of hexane. The GC column was changed to DB-5 column. Table 2.5 shows the GC 

conditions.

Table 2.5 GC Parameters

Column: DB-5 
Temperature:

Oven temp, program: Initial: 35°C for 5min.
Rate: 35°C to 120°C at 3°C/min 
Rate: 120°C to 260°C at 10°C/min 
Final: 260°C for Omin

Inlet B; 200°C 
ECD: 250°C 

Flow rate:
Carrier gas (high purity helium): I. Iml/min 
Make up gas (nitrogen) + He: 30ml/min
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Methyl esters o f  2,6-DFBA were prepared by using the same procedure and analyzed by 

GC. Only ppm level (the ppm is based on the original amount of 2,6-DFBA in the final 

diluted solution) peaks were obtained. FIPLC was used again to find the reason which 

caused this low sensitivity.

In HPLC analysis, a calibration curve was generated fi*om 0 to lOOOppb of 2,6- 

DFBA standards in DI water (Figure 2.3). Méthylation reactions were stopped after I 

minute, 2 minutes, 3 minutes, 4 minutes, and 5 minutes separately. The aqueous 

solutions were diluted with DI water into a I ppm solution (assuming the whole amount 

of 2,6-DFBA was in this solution and the concentration was I ppm) and were then

Calibration Curve of 2,6-DFBA
HPLC 3iul\'sis for BF3 methvlation

5 0 0 0 0

4 0 0 0 0

% 3 0 0 0 0

^  20000

10000

10006 0 04 0 0 8 0 02000
2.6-DFBA Cone, ppb

Figure 2.3 Calibration curve of 2 ,6 -DFBA analysis on HPLC for BFj methylating 
method.
Response = X Coef.*Conc 
X Coef. = 47.38±0.25, Corr. Coefif = 0.9998
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analyzed on HPLC. Chromatograms o f the HPLC analyses are shown in Appendix 

Figure 4-11.

Table 2.6 Methylating reaction efficiency test o f 2,6-DFBA by using BFs-methanol
reagent as a function o f reaction time.

REACTION TIME 
MIN

RESPONSE OF 2 ,6 -DFBA CONC. OF NON-REACTED 
2,6-DFBA, PPB

1 1,909 40.3
2 2,033 42.9
3 2,663 56.2
4 2,971 62.7
5 3,334 70.4

The result (Table 2.6) showed that only 4 to 7 percent (40~70ppb/1000ppb) of 

the original amount o f 2,6-DFBA were left over after the reaction, over 93% of the 2,6- 

DFBA was in the organic phase and reacted with the BFs-methanoI. This indicates 3 

minutes is enough for the reaction, and ethyl acetate is a good solvent for 2,6-DFBA

The large amount of 2,6-DFBA used in the méthylation reaction should have 

yielded a huge peak on the GC/ECD, however, the response was still very low. This low 

sensitivity of the GC/ECD might be due to a big loss of the analyte during the reaction, 

or the méthylation reaction efiaciency is still poor.

In conclusion, BF;-methanol méthylation is still an unacceptable method.
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2.3 Silylation Method

2.3.1 Chemical Reaction and Silylation Procedure

Silylation is the most commonly used derivatization technique in the GC of non­

volatile substances. The trimethylsilyl derivative of 2,6-DFBA can be prepared by the 

reaction of the trimethylsilylating agent BSTFA with 2,6-DFBA.

To prepare the silyl derivative, 20ppb to 200ppb of 2,6-DFBA standard solutions 

were prepared in deionized water. 20ml of each standard solution was pipetted into a 

40ml vial. The solution was acidified with phosphoric acid to a pH of 1.9-2.3. Then 5ml 

of ethyl acetate (dried by molecular sieve before use) was added to extract the 2,6- 

DEBA out of the water (The reason for the organic extraction is the evaporation of the 

water is much slower than the evaporation o f the organic solvent). A teflon-lined cap 

was screwed on the vial. The solution was shaken for 60 minutes on a shaker and then 

allowed to settle for 5 minutes. The organic layer was transferred into a 10ml vial with a 

glass pipet. The solvent was removed with a gentle stream of nitrogen. lOOpl of 

BSTF.A. was added and the cap was placed on tightly. The solution was kept at room 

temperature for I hour. 2p.l of lOOppm ethyl benzoate was added as the internal 

standard. The solution was ready for GC/MS analysis.

2.3.2 Reagents

BSTFA was derivatization grade obtained fi'om Aldrich (Milwaukee,WI) with 

99-!-% purity. Ethyl acetate was A C S. spectrophotometric grade with 99.54-% purity.
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obtained from Aldrich (Milwaukee,WI). Phosphoric acid (I2M) was obtained from J.T. 

Baker (Phillipsburg.NJ).

2.3.3 Instrum ent Analysis

Two microliters of the reaction solution potentially containing 2,6-DFBA 

trimethylsily (TMS) derivative was first analyzed on GC/MS for positive identification of 

the derivative. The typical instrument parameters are found in Table 2.7. The GC/MS

Table 2.7 GC/MS Parameters

GC Method: DFBATMSl 
Column: DB™-5 ms 
Oven temp programming:

Initial: 75°C for 1 min 
Ratel: 75°C to I40°C at IO°C/min 
Rate2: I40°C to 240°C at 50°C/min 
Final: 240°C for 0.5 min 

Injector: 220°C 
Transfer line: 290°C

Aquisition Method: DFBATMSl 
Mass range: 100 to 250 m/z 
Scan time: 1.500 sec 
Segment length: 9.00 min 
Fil/Mul delay: 3.00 min 
Peak threhold: I count 
Mass default: 0 mu/lOOmu 
Background mass: 69 m/z

Ion mode: El
Ion preparation: None
Ion control: Auto
Carrier gas: High Purity Helium
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used was a Varian 3400 GC with a Saturn 2000 mass spectrometer. The data were 

recorded with Varian Saturn computing software. The analytical column was a J&W 

Scientific 30m x 0.25p.m i d. DB™-5 ms GC capillary column, bonded with (5%- 

phenyl)-methylpolysiloxane.

After the identification o f the 2,6-DFBA TMS by GC/MS, more experiments 

were performed to determine the GC/MS instrument detection limits, the silyl derivative 

stability, and the GC/MS instrument calibration curves were generated, the C-Well field 

sample was analyzed as well.

2.3.3.1 The Test of the Silylation Reaction

In this study, the silylation reaction mixture was not heated as it had been 

done by Wu (1996), the purpose was to avoid any possible loss of the product during the 

heating process. Since Wu was using the ppm level o f the 2,6-DFBA to prepare the 2,6- 

DFBA TMS, and then qualitatively determining the analyte on GC/MS, the loss o f the 

volatile analyte did not hurt the positive determination of the compound. However, in 

this study, the 2,6-DFBA TMS solutions were made firom the ppb levels of 2,6-DFBA 

standards. Any small amount o f loss during the heating might adversely affect the 

quantitative determination that was desired.

The necessary time for the complete silylation reaction was tested to determine if 

one hour was long enough. Two microliter volumes o f the 2,6-DFBA TMS derivative 

solutions, made from the 20ppb to 200ppb of 2,6-DFBA standards, were injected on to 

the GC/MS column after I hour and 24 hours reaction times.
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2.3.3.2 The Detection Limits Tests

Two microliter volumes of a 2,6-DFBA TMS derivative solution, which made 

from a 5ppb 2,6-DFBA standard, was used to perform this test. Seven portions of this 

solution were analyzed right after the silylation reaction and the addition o f the internal 

standard. Two detection limits, method detection limit and quantitation detection limit 

were calculated.

2.3.3.3 The 2,6-DFBA TMS Stability Test

Since the 2,6-DFBA TMS derivative is very sensitive to moisture, it was assumed 

that the derivative should be analyzed immediately after the preparation (Poole, et al, 

1980). A one to 24 hours stability test was performed. The 2,6-DFBA TMS solutions 

prepared from 40ppb, lOOppb, and 200ppb of 2,6-DFBA standards were analyzed after 

1, 2, 3, 4, 6, 9, 24 hours on the GC/MS. The responses were calculated and compared.

2.3.3.4 GC/MS Instrument Calibration Analysis

In order to analyze the C-Well sample, the GCMS calibration curve was 

analyzed first, 10 to lOOOppb of the 2,6-DFBA were used to prepare the 2,6-DFBA 

TMS solutions, 2|j.l o f lOOppm ethyl benzoate in ethyl acetate was added as internal 

standard. A wo microliter volume of the derivative solution was then injected onto the 

GCM S column.
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2.3.3.S C-Well Sample Analysis

After the generation of the GC/MS calibration curve, the same method was used 

to prepare the 2,6-DFBA TMS solution from the C-Well sample. After the addition of 

the 2p.! of lOOppm ethyl benzoate, two microliters of the derivative solution was 

analyzed, and the result was compared with the UPLC analysis.

2-3.3.6 HPLC Analysis of the Solvent Extraction Efficiency

2,6-DFBA is usually being put into the wells as tracer to follow the movement of 

the ground water, then the water sample is pumped out of the C-Well and analyzed by 

HPLC. In this study, water sample can’t be directly injected onto the GC. In addition, 

the silylation of the 2,6-DFBA can not allow the presence of the water. So the first step 

of the pretreatment procedure is to extract the 2,6-DFBA from a water solution into an 

organic solvent for the silylation reaction to take place. During the liquid-liquid 

extraction, there may be some loss o f the 2,6-DFBA, which can be calculated by 

evaluating the amount of the 2,6-DFBA left over in the aqueous phase after the 

extraction. HPLC was utilized for this purpose.

A Spectra-Physics HPLC with a UV detector was used to analyze the aqueous 

phase after the extraction. Two milliliter o f  the aqueous phase solutions, after extraction 

from the 2,6-DFBA standards, were injected onto the HPLC column. Table 2.8 and 2.9 

contain the HPLC parameters.
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Table 2.8 HPLC Parameters ( I )

Column; LC-ABZ 
Pump: SP8800 
Pressure: 760 Psi 
Flow rate: 1.0 ml/min 
Run time: lOmin 
Injection volume: 50pl 
UV/Vis detector: 230nm 
Solvent: 72% KH2PO4 (0.0 IM) @pH 2.5 

28% Methanol

Table 2.9 HPLC Parameters ( II )

Column: LC-ABZ 
Pump: P2000 quat gradient 
Pressure: min.O to max.6000psi 
Delay volume: 0.00 
Flow rate: 1.0 ml/min 
Run time: 7 min 
Injector: AS 1000 fixed loop 
Injection mode: Full loop 
Injection volume: lOOpl 
UV 100 UV/Vis detector: 230nm 
Solvent profile: Linear 
Solvent: 45% KH2PO4 (O.OIM) @pH 2.5 

55% Methanol
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CHAPTERS

RESULTS AND DISCUSSION

3.1 The Identification of 2,6-DFBA Silyl Derivative by GC/MS

The fragmentation pattern o f 2,6-DFBA is shown below in Figure 3.1. In the El 

mode of operation, the 2,6-DFBA vapor was bombarded with a beam of energetic 

electrons generated by the filament. By exchange of energy during the collision, an 

electron was removed from the molecule to form the molecular ion, then the further 

decomposition of the molecular ion occurred and fragment ions were formed.

n / (  230

-6sUCHq), - C O *

n / t  215 n / t  141 m/e 113

Figure 3.1 The fragmentation pattern o f  2,6-DFBA TMS derivative.

Under the GC/MS conditions listed in Table 2.6, two microliter volumes o f the

2,6-DFBA TMS solution, made from the lOOppb 2,6-DFBA standard, was analyzed. 

The 2,6-DFBA TMS peak yielded at 5.72 minutes, which is scan 226. The mass spectra

38
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of 2,6-DFBA TMS is shown in Figure 3.2, the peak o f 2,6-DEB A TMS derivative has 

the major peaks at m/e 141 and m/e 215, which are the [M-OSifCHs)]]', and [M-CH3 ]* 

respectively.

i m x
Saapla

185 
180

113

Peak 141 
141

Intans i-ty 33498 Scan nusbar 223

136

188
215

147
167 

160 I. 173
. 281 . ,  
tT ttfT t^ h tiT n tT W

238

100 110 120 130 140 158 160 178 180 190 280 210 220 230 248 258

Figure 3.2 Mass spectra o f 2,6-DFBA TMS derivative.

The ethyl benzoate was also identified since it was used as the internal standard. 

Five ppm o f the internal standard ethyl benzoate prepared in ethyl acetate was injected 

onto the GC/MS column under the same condition. The peak yields at scan 192. The 

mass spectra o f ethyl benzoate is shown in Figure 3.3. Ethyl benzoate has the major 

peak at m/e 105 and m/e 150.
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j. 135  ,1
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Figure 3.3 Mass spectra of ethyl benzoate.

3.2 Yield of 2,6-DFBA as a Function of Silylation Reaction Time

The experiment was repeated twice under the same conditions (Table 3.1). In the 

first experiment. 2,6-DFB.A TMS derivative solutions were analyzed after I hour and 24 

hours. The TMS solutions were made from 20ppb, 40ppb, 60ppb, SOppb, lOOppb, and

Table 3.1 2,6-DFBA TMS reaction time test I, 1 hour reaction response compared
with 24 hours reaction response.

CONC. OF 
2,6-DFBA, PPB

2,6-DFBA TMS 
RESPONSE! R1 ), 

IHR.

2,6-DFBA TMS 
RESPONSE ( R2 ), 

24HR.
[R2/R1-IJ*I00%

20 16,122 17,387 8
40 29,904 31,137 4
60 49,901 52,022 4
80 60,728 63,396 4
100 71,929 74,884 4
150 116,920 121,575 4
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I50ppb. The responses o f 2,6-DFBA TMS after the 1 hour silylation reaction are 

compared with the responses after 24 hours in Figure 3.4. The results show that the 

differences between the two reaction times were between 4% to 8%.

1 4 0 0 0 0

120000  - -  

.2 100000  - -  

8 0 0 0 0  -

§. 6 0 0 0 0
o

Test for 2,6-DFBA TMS Reaction Time I

4 0 0 0 0  --

20000  - -

4 0  6 0  8 0  1 0 0
2,6-DFBA Concentration, ppb

1 5 0

Response of 2,6-DFBA TMS, Ohr. Response of 2,6-DFBA TMS, 24hrs.

Figure 3.4 Silylation reaction test I of 2,6-DFBA TMS derivatives on GC/MS at 1 hr. 
and 24 hrs. reaction time.

The test was repeated and the 2,6-DFBA TMS solutions were from the 20ppb, 

40ppb, 80ppb, and 200ppb o f 2,6-DFBA standards. The result shows that the difference 

of 1 hour and 24 hours reaction are between 2% to 4 %  (  Table 3.2 and Figure 3.5).
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Table 3.2 2,6-DFBA TMS reaction time test II, 24 hours response compared with I
hour response.

CONC OF 
2,6-DFBA, PPB

2,6-DFBA TMS 
RESPONSE ( R1 ), 

IHR.

2,6-DFBA TMS 
RESPONSE ( R2 ), 

24HR.
[R1/R2-I1»100%

20 13,264 12,990 2
40 25,731 24,670 4
80 51,883 50,854 2

200 165,308 164,647 0

T est for 2 ,6 -D F B A  T M S  R eaction  Tim e II

200000 

0 1 5 0 0 0 0
a

1 100000 

5 0 0 0 0

0

I

4 0  80
2,6-DFBA TMS Concentration, ppb

Response of 2,6-DFBA TMS, Ohr.

200

Response of 2,6-DFBA TMS, 24hrs.

Figure 3.5 Silylation reaction test II of 2,6-DFBA TMS derivatives on GC/MS at 1 hr. 
and 24 hrs. reaction time.

Those tests proved that the changes o f  2,6-DFBA TMS responses in 24 hours 

was within ±8% of the 1 hour responses, therefore 1 hour was used as the acceptable 

time to do the silylation reaction.
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3.3 GC/MS Detection Limits and Precision

Detection limits are defined as the smallest amount that can be detected within a 

stated confidence limit. Two detection limits, method detection limit (MDL) and limit of 

quantitation (LOQ) were determined in this study.

Method detection limit (MDL) is calculated using the formula (Method 200.8- 

Determination of Trace Elements in Waters and Wastes by ICP/MS, 1994);

MDZ, = S*T,„-i, I - a  = 0.981

MDLs are calculated using the one-sided t test for which t = 3.14 at n-1 where 

n = 7 at 98% confidence interval. Two microliter volumes o f the 2,6-DFBA TMS, made 

from 5ppb 2,6-DFBA standard (5ppb was used because it was close to the estimated 

quantitation limit), was used to perform this test. Seven portions o f this solution were 

analyzed on GC/MS. The experiment was repeated with a new prepared solution (from 

5ppb of 2,6-DFBA standard) on a different day (Table 3.3). The t value for (7-1) 

degrees of freedom at 98% confidence is 3.14.

For test I, the detection limits are calculated as follows.

M D L  = 0 . 0 7 * 3 . 1 4  =  0 . 2  p p b  

L O O  =  I 0 / 3 * M D L  =  0 . 7  p p b  

The same calculations were performed for test II 

M D L  =  0 . 0 9 * 3 . 1 4  =  0 . 3  p p b  

L O O  =  1 0 / 3 * M D L  =  1  p p b
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Table 3.3 The detection limits test of 2,6-DFBA TMS on GC/MS, based on 5ppb of 
2,6-DFBA standard. 5|iL of lOOppm ethyl benzoate was added to the lOOpL TMS 

derivative solution as internal standard. Seven replicates of 2,6-DFBA TMS
solution were analyzed.

INJECTION 2,6-DFBA TMS CONC. 2,6-DFBA TMS CONC.
PPB, I PPB, II

I 4.89 5.02
2 5.04 4.84
3 4.99 5.12
4 5.06 5.01
5 4.94 4.99
6 5.01 5.07
7 5.08 4.96

Mean 5.00 5.00
STD 0.07 0.09
RSD 1% 2%

MDL, ppb 0.2 0.3
LOQ, ppb 0.7 1

By taking the average of these two tests, the method detection limit of GC/MS is

0.3 ppb, and the limit o f quantitation is 0.9 ppb.

Precision for 2,6-DFBA TMS at low concentration (5ppb) is 2% (Table 3.3) 

relative standard deviation (n=7).

3.4 2,6-DFBA TM S Stability Test

The 2,6-DFBA TMS solutions, prepared fresh from 40ppb, 200ppb (both 

analyzed after 30 minutes extraction), and lOOppb (after 60 minutes extraction) o f 2,6- 

DFBA standards, were stored in refrigerator at 4°C and analyzed in 24 hours. The 

response of 2,6-DFBA TMS after 1 hour reaction is assumed as initial concentration Co,
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the response at later times are compared with the Co, and the C/Co ratios are listed in 

Table 3.4. Figure 3.6 shows the concentration variations over 24 hours.

The stability test shows that the 2,6-DFBA TMS is relatively stable during the 24 

hours. It is proved that 2,6-DFBA TMS solutions can be analyzed within the 24 hours 

period. However, to avoid the absorption o f the water moisture and the dryness of the 

sample, the vials should be kept in a refrigerator during the whole analysis period, with 

the cap tightly screwed up and wrapped with parafilm.

Table 3.4 Stability test for 2,6-DFBA TMS. 5pL of lOOppm ethyl benzoate was added 
to lOOpL TMS solution. 40ppb and 200ppb standards were analyzed after 30 minutes 

extraction, and lOOppb was analyzed after 60 minutes extraction.

TIME
HR.

2,6-DFBA TMS
C/Co 

From 40ppb 
2,6-DFBA

2,6-DFBA TMS
C/Co 

From lOOppb 
2,6-DFBA

2,6-DFBA TMS 
C/Co 

From 200ppb 
2.6-DFBA

1 1 1 1
2 0.97 1.03 1.05
3 1.04 1.02 1.05
4 0.88 1.03 1.06
6 0.96 1.00 1.04
9 1.00 0.99 1.08

24 1.09 0.99 1.06
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Stability Test for 2,6-DFBA TMS

& 2 5 0  j -

I  2 0 0  --

3  1 5 0  -O
d  100 -

£  5 0  -

0  2  4  6  8  1 0  1 2  1 4  1 6  1 8  2 0  2 2  2 4

Time, hrs.

40ppb 2,6-DFBA, 30mins shaking —®— lOOppb 2.6-DFBA, 60nuns shaking 

200ppb 2,6-DFBA, 30mins shaking

Figure 3.6 Stability test for the 2,6-DFBA TMS from 40ppb, lOOppb, and lOOppb of
2,6-DFBA standards.

3.5 Recoveries of 2,6-DFBA from Extraction

Since the sample pretreatment involves the liquid-liquid extraction, HPLC 

was used to analyze the aqueous phase to find the recovery o f the 2,6-DFBA after this 

extraction.

First, the calibration curve of 2,6-DFBA is generated on the HPLC in the 

concentration ranged from 0 to lOOppb, calibration curve is shown in Figure 3.7. A 

linear relationship is achieved with the regression coefficient 0.9999.

Second, the aqueous phase o f 2,6-DFBA standards after extraction was analyzed 

on HPLC. Twenty milliliters o f each 2,6-DFBA standard solution (ranges from 0 to 

lOOppb) was acidified to pH 1.9 to 2.3, then dried ethyl acetate was added for
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extraction. The left over aqueous layer solution was then injected onto the HPLC 

column. Chromatograms are shown in the Appendix Figure 12 through Figure 21.

H PL C  C a lib ra tio n  C urve o f  2 ,6-D F B A

20000

1 5 0 0 0  -

a  10000 -
oa:

5 0 0 0  --

0
5 0  1 0 0  1 5 0

2,6-DFBA Concentration, ppb
200

Figure 3.7 Calibration curve o f 2,6-DFBA analysis on HPLC/UV. 
Response = X Coef.*Conc + Const.
X Coef. = 87.90±0.50, Const. = -470, Corr. CoefF= 0.9999

The results show that over 65% of the 2,6-DFBA is being transferred into 

organic layer when using ethyl acetate and a contact time of 30 minutes (Table 3.5). 

Higher transfer efficiencies are observed for the high concentration o f 2,6-DFBA 

solutions, and lower transfer efiBciencies are observed for the less concentrated 2,6- 

DFBA solutions. Results are not available for lOOppt and lOppb o f  2,6-DFBA standards 

because they were below the instrument quantitation limit, which is about lOppb.
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T ab le  3 .5  HPLC test for extraction efficiency of 2,6-DFBA from 20mL standard 
solution to ethyl acetate after 30 minutes extraction.

2,6-DFBA STD 
PPB

INJ. RT
\n N

EXTRACTS
RESPONSE

EXTRACTS
CONC.

PPB

EXTRACTION
EFFICIENCY

%
10 1 5.000 0 0 NA
10 2 5.000 0 0 NA
50 1 5.057 434 16.8 66
50 2 5.027 297 15.3 69
100 1 4.981 975 22.7 77
100 2 5.021 1,049 23.6 76

1,000 1 5.002 14,405 170.5 83
1,000 2 4.998 14,853 175.5 83

The transfer efBciency can be improved by using a longer shaking time of 60 

minutes to extract the 2,6-DFBA into the ethyl acetate layer. Table 3.6 shows that over 

80% extraction efficiency can be achieved between the concentration range of 60ppb and 

200ppb, with more concentrated solutions yielding higher efiBciencies. Figure 3.8 shows 

the extraction efiBciency increases with the increase in analyte concentration.

The 20ppb and 40ppb of the 2,6-DFBA standards only gave 58% and 70% 

extraction efficiency, the reason may be because o f the uncertainty associated with the 

number o f  those area counts. Since in calibration curve, the area count of 20ppb 2,6- 

DFBA peak was 1,230, so the area count o f  5ppb 2,6-DFBA is supposed to be about 

300, however, the actual response of 5ppb was zero. Therefore, the area counts data 

from 179 to 602, which were the responses o f 20ppb and 40ppb o f 2,6-DFBA extracts, 

are probably unreliable, and the extraction efiBciency calculations are suspect. The 

calculated extraction efficiencies for lOOppb, 150ppb and 200ppb are more realistic.
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T ab le  3.6 HPLC test for extraction efficiency of 2,6-DFBA from 20mL 
2,6-DFBA standard solution to ethyl acetate after 60minutes extraction.

2,6-DFBA STD 
PPB

INJ. RT
MIN

EXTRACTS
RESPONSE

EXTRACTS
CONC.

PPB

EXTRACTION
EFFICIENCY

%
20 1 4.362 179 7.4 63
20 2 4.385 315 8.9 55
60 1 4.398 486 10.9 82
60 2 4.390 602 12.2 80
100 1 4.399 757 14.0 86
100 2 4.387 598 12.1 88
ISO 1 4.397 1,107 17.9 88
150 2 4.376 1,133 18.2 88
200 1 4.398 1,547 22.9 89
200 2 4.395 1,558 23.1 89

Extraction Efficiency %
HPLC analysis after 60min shaking

9 0  

5? 8 5  

0 8 0  
S 7 5LU
5 7 0  

0 6 5  

“  6 0  

5 5
0  2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0

2.6-DFBA Concentration, ppb
1 6 0  1 8 0  2 0 0

Figure 3 .8  Extraction efficiency o f  2,6-DFBA into ethyl acetate after 60 minutes liquid- 
liquid extraction.
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When ethyl acetate is used for extraction, it will absorb some water, and after 

evaporation, a small amount o f water might be present in the dried sample. The presence 

of water will kill the TMS reaction and reverse the direction o f the reaction. However, 

Weiss (Weiss and Tambawala, 1972 ) showed that this problem can be solved by adding 

large excess o f BSTFA into the reaction.

3.6  GC/IVIS Instru m en t C alibration

Standardization of instruments is essential in obtaining accurate analyses. Two of 

the most commonly used calibration techniques are external calibration and the internal 

standard method.

In the external calibration curve technique, a series o f standard solutions 

containing known concentrations o f the analytes are prepared. These solutions should 

cover the concentration range of interest and have a matrix composition as similar to that 

of the sample solutions as possible. A blank solution containing only the solvent matrix 

is also analyzed, and the net readings-standard solutions minus blank-versus the 

concentrations of the standard solutions are plotted to obtain the calibration curve.

The internal standard is used to minimize differences in the physical properties of 

a serious o f sample solution that contain the same analyte. In this method, a fixed 

quantity o f a pure substance is added to the samples and standard solutions alike. The 

responses o f the analyte and internal standard, each corrected for background, are 

determined, and the ratio of the two responses is calculated. A plot o f the response ratio
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as a function of the analyte concentration yields the calibration curve. The calibration 

curve is prepared every week due to changes in instrument response.

The internal standard is added at the beginning o f an analysis to allow for 

dissolution, mixing, and any other reactions to occur before a measurement is made. 

lOOppm o f ethyl benzoate was used as the internal standard in this study, because it is a 

substance similar to the analyte 2,6-DFBA TMS, with an easily measurable signal that 

did not interfere with the response of the 2,6-DFBA TMS. An internal standard 

hopefully responds in a manner similar to the analyte and corrects for any variables that 

may affect the detector response. Ethyl benzoate was added to give a concentration 

which is the same order o f magnitude as that o f the 2,6-DFBA TMS in order to minimize 

error in calculating the response ratios.

The calibration analysis were performed using the 2,6-DFBA TMS with different 

extraction periods, 30 minutes, and 60 minutes the silylation procedure and the GC/MS 

conditions are listed in section 2.3.1 and 2.3.3. A linear relationship is achieved between 

the response ratio and concentration o f the 2,6-DFBA TMS.

The calibration curve for the 2,6-DFBA TMS derivative after 30 minutes of 

shaking is shown in Figure 3.9 (the concentration is based on the 0-200ppb of 2,6-DFBA 

standards). A linear relationship is achieved with the correlation coefficient of 0.9984.

The calibration curve for 2,6-DFBA TMS derivative after 60 minutes of shaking 

is shown in Figure 3.10, the concentration is based on the 0-150ppb of 2.6-DFBA 

standards. A linear relationship is achieved with the correlation coefficient of 0.9995.
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C a lib ra tion  C u rve o f  2 ,6D F B A  T M S
GC/MS analysis after 30 mins shaking

1 4 0 0 0 0

1 2 0 0 0 0
g 1 0 0 0 0 0
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§. 6 0 0 0 0
o
oC 4 0 0 0 0

2 0 0 0 0

2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  1 8 0  2 0 0
2,6-DFBA Concentration, ppb

Figure 3.9 Calibration curve of 2,6-DFBA TMS analysis on GC/MS, after 30 mins 
extraction.
Response = X Coef *Conc. + Const.
X Coef. = 614.22±I4.16, Const. = -2149, Corr. CoeflF= 0.9984

The chromatogram o f the calibration standards are shown in Appendix Figure 22 

through Figure 27.

GC/MS calibrations are based on the assumption that the yields and recoveries of

2,6-DFBA TMS were 100% quantitative. However, there are two major steps that need 

to be considered. First, some of the 2,6-DFBA may have been lost during the extraction 

process. Second, the silylation reaction probably was not 100 percent complete. 

Therefore, a more realistic estimation o f the 2,6-DFBA TMS was calculated by the 

following equation.

CONC 2.6-d fb a  nts = CONC 2.6- d fb a  x  Extraction efficiency x  Silylation reaction
efficiency
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The extraction efficiency was explained in the previous section, but, the silylation 

reaction efficiency is difficult to quantify because there is no 2,6-DFBA TMS derivative 

available commercially.

Calibration Curve of 2,6-DFBA TMS
GC/MS analysis after 60 mins shaking

120000

100000  -

1  8 0 0 0 0  -- ai
s  6 0 0 0 0  -- 
&
S 4 0 0 0 0  --

20000  - -

1 0 0  1 2 0  1 4 0  1606 0 8 00 20 4 0
2.6-DFBA Concentration, ppb

Figure 3.10 Calibration curve o f 2,6-DFBA TMS analysis on GC/MS, after 60 mins. 
extraction.
Response = X Coef* Cone + Const.
X Coef. = 774.72±9.58, Const. = -102, Corr. Coeflf = 0.9995

3.7 C-Well Sample Analysis

The C-Well sample dated on Mar. 3, 1997 was analyzed on both GC/MS and 

HPLC for comparison.

20 mL of C-Well water sample was prepared using the same procedure stated in 

section 2.3.1. and 2tiL of the 2,6-DFBA TMS derivative solution was analyzed on 

GC/MS under the conditions in Table 2.6. GC/MS analysis of the C-Well sample 

concentration showed that there was 93 ppb of 2,6-DFBA present (Calibration Curve see
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Figure 3.8). Table 3.7 shows the result of replicate GC/MS analyses. HPLC analysis of 

the same sample yielded 70±3 ppb. There is 33% difference between the two results.

The reason to cause this difference might be because of the variation of the two 

instruments. The 2,6-DFBA was analyzed by HPLC in March, 1997 and analyzed on 

GC/MS in October, 1997, the solution might became more concentrated after six months 

storage in glass bottle in refrigerator. In addition, HPLC and GC/MS analysis were 

using different standard solutions, which were fr'om different sources and made by 

different people.

T ab le  3 .7  GC/MS Analysis o f C-Well sample.

RUN IS RESPONSE 2,6-DFBA TMS 
RESPONSE

NORMALIZED
RESPONSE

CONC. OF 
2,6-DFBA, PPB

I 58,096 71,289 71,432 92
2 57,439 71,120 72,078 93
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK

The silylation method combined with GC/MS can be used for determination of

2,6-DFBA in groundwater. The method offers two major advantages over the HPLC 

method as follow.

1. Lower method detection limits, 0.2pg/L and lower limit of quantitation, 

Ifig/L were achieved ( these detection limits are based on the about 50% 

extraction efficiency o f  5 ppb 2,6-DFBA standard), which was compared 

with HPLC detection limit 3pg/L. This can reduce by one order of 

magnitude the concentration of 2,6-DFBA put into the ground water when 

conducting the ground-water tracer analysis.

2. GC/MS provides a positive identification o f the 2,6-DFBA and could provide 

qualitative and quantitative information in the presence o f chromatographic 

interferences in heavily contaminated ground waters.

However, this method has several drawbacks compared with the HPLC method.

55
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1. At least two and half hours are needed for preparing each sample before the 

GC/MS analysis. In the HPLC method, the water sample is injected directly 

after filtration.

2. Even though the retention time for 2,6-DFBA is about 5~6 minutes, the 

sample analysis time needs 9 minutes for everything going through the 

column to prevent the carry over to the next injection, and the instrument 

needs 2~3 minutes to cool down to the initial temperature before next 

injection can be performed. HPLC sample analysis time is 6~7 minutes with 

the 2,6-DFBA peak coming out at 5-6 minutes. No extra time is needed in 

between each run.

By comparing the GC/MS method with HPLC, in case o f large quantity or 

routine sample analysis, HPLC is the better choice for speed and ease of analysis. 

GC/MS offers the accurate fingerprinting analysis with a small quantity of sample 

analysis.

Future work should address 1) improving the extraction efficiency and 2) 

decreasing the sample preparation time by the same time assets the silylation reaction 

efficiency. The silylation reaction condition was performed at room temperature for 1 

hour in this study, which could be modified by using higher temperature to increase the 

speed o f sample reaction, but care needs to be taken to prevent the loss of analyte during 

the heating process. A internal standard added at the very beginning of the sample 

pretreatment could be used to evaluate the silylation reaction efficiency, and this 

compound should have the correspondent TMS derivative in the market.
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Flash chromatography could be tested for improvement o f the extraction 

efficiency. However, a suitable column packing material with proper affinity for the 

compound needs to be chosen for 2,6-DFBA to be easily absorbed on the column and to 

be able to be desorbed by the organic solvent ethyl acetate.

Solid phase extraction (SPE) using C-18 bonded phases as packing material 

might be another choice. The advantages o f SPE over conventional liquid-liquid 

extraction include quicker sample processing, generally high specificity of sorbent- 

analyte interactions resulting a good prepurification o f complex samples, economic use 

of solvent, and procedural simplicity, potentially reducing the risk o f manipulation errors 

in routine assays (Gessner and Schmitt, 1995). However, the efficient recovery of 

extracted analytes from the SPE is significantly affected by factors such as carbon 

loading, silanophilic interactions, and quantity and type o f SPE phase (Martin et al, 

1997).
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APPENDIX

Figure 1. Chromatogram of GC/FID analysis of 2,6-DFBA and 2,6-DFBA methyl ester 
after 1 hr. methylating reaction.

58
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Figure 2. Chromatogram of GC/FID analysis o f 2,6-DFBA and 2,6-DFBA methyl ester 
after 4 hr. methylating reaction.

9 . 4 4 *

Figure 3. Chromatogram of GC/FID analysis o f 2,6-DFBA and 2 ,6 -DFBA methyl ester 
after 9hr. methylating reaction.
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m v or mAU

T

2.872

4054

i

Figure 4. Chromatogram of HPLC analysis of 200ppb 2,6-DFBA standards for BF3 

méthylation.

mV or mAU

CO

3.996

= "

>
5

Figure 5. Chromatogram o f HPLC analysis of400ppb 2,6-DFBA standards for BF3 

méthylation.
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mV ormAU

— 3.393
Z
3

S
^S .3 0 9

Figure 6 . Chromatogram of HPLC analysis of lOOOppb 2,6-DFBA standards for BFj 
méthylation.

mV O f mAU

Z903

§

Figure 7. Chromatogram of HPLC analysis o f non-reacted lOOOppb 2 ,6 -DFBA in BF3 

metylation reaction after 1 minute.
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mV or mAU

« .113

3

Figure 8 . Chromatogram of HPLC analysis of non-reacted LOOOppb 2,6-DFBA in BF3 

metylation reaction after 2  minutes.

mV or mAU

2.601

4.1 «2

=

!

Figure 9 Chromatogram of HPLC analysis of non-reacted lOOOppb 2,6-DFBA in B F 3 

metylation reaction after 3 minutes.
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2.S32
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Figure 10. Chromatogram of HPLC analysis o f non-reacted lOOOppb 2,6-DFBA in BF3 

metylation reaction after 4 minutes.

mV o r mAU

4.197

c

Figure II Chromatogram of HPLC analysis o f non-reacted lOOOppb 2,6-DFBA in BF3 

metylation reaction after 5 minutes.
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mV or mAU

2 ^

Figure 12 Chromatogram o f HPLC calibration analysis o f 5ppb 2,6-DFBA standard for 
silylation method.

mV or mAU

I

A 445 2.5 OFBA

Figure 13 Chromatogram o f HPLC calibration analysis of 20ppb 2,6-DFBA standard 
for silylation method.
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mV O f mAU 

1 o

- 4  464 2 ,5  OFBA s

Figure 14 Chromatogram o f HPLC calibration analysis o f 80ppb 2,6-DFBA standard 
for silylation method.

mV O f mAU

J .

Figure 15 Chromatogram of HPLC calibration analysis of I60ppb 2,6-DFBA standard 
for silylation method.
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mV or mAU

1 6 3 6

3

4 4 4 7  2 .5 CFBA

Figure 16 Chromatogram of HPLC calibration analysis o f  200ppb 2,6-DFBA standard 
for silylation method.

mV Of mAU

[4 1 1 2 .6  OFBA

Figure 17 Chromatogram of HPLC analysis o f  20ppb 2,6-DFBA extract after 60 
minutes extraction in silylation method.
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m V O f mAU

Figure 18 Chromatogram o f HPLC analysis of 60ppb 2,6-DFBA extract after 60 
minutes extraction in silylation method.

m v o f  mAU

4.399  2.B OFBA

Figure 19 Chromatogram of HPLC analysis of lOOppb 2,6-DFBA extract after 60 
minutes extraction in silylation method.
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Figure 20 Chromatogram of HPLC analysis o f ISOppb 2,6-DFBA extract after 60 
minutes extraction in silylation method.

m V  o r  m A U

o
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'o
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Figure 21 Chromatogram of HPLC analysis o f 200ppb 2,6-DFBA extract after 60 
minutes extraction in silylation method.
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' I ' ' 
228 
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238
5 .7 5

248
5 .9 9

Figure 22  Chromatogram o f  GC/MS calibration analysis of reagent blank in silylation 
method.

CWomot og r na P lo t
C o io n t :  2uL OP 28 ppb 2 .6 -D P M  TRS 
Scan: 258  S a ,:  1 
P lo t t a * :  288 to  258

188

215141

141

248
5 .99

218
5 .2 4

228
5 .4 9

238
5 .7 44 .9 9

Figure 23 Chromatogram o f GC/MS calibration analysis of 2,6-DFBA TMS, made 
from 20ppb 2,6-DFBA.
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P lo t
t:  2uL OP «  FTh 2.6-DFBA TIS  

Scaa: 2SB S##: 1 
P lo t tW :  Z n  to  2SB

215141

in

167
141-

2ia
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238
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Figure 24. Chromatogram of GC/MS calibration analysis of 2,6-DFBA TMS, made 
from 40ppb 2,6-DFBA.
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Figure 25 Chromatogram of GC/MS calibration analysis of 2,6-DFBA TMS, made 
from 80ppb 2,6-DFBA
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P lo t
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Sc m : 25B S # ,:  1
P lo ttW : 2M  to  25B

141

ZIS
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167141-

228
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218
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Figure 26 Chromatogram o f GC/MS calibration analysis o f  2,6-DFBA TMS, made 
from ISOppb 2,6-DFBA.
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Figure 27 Chromatogram of GC/MS calibration analysis o f  2,6-DFBA TMS, made 
from C-Well sample.
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OOH

F

00  CH

F

l) 2,6-DFBA 2) 2,6-DFBA methyl ester

F

CF3-C=M-SKCH3)3

3) 2,6-DFBA TMS derivative 4) BSTFA

Figure 28. The structure o f 2,6-DFBA, 2,6-DFBA methyl ester, 2,6-DFBA silyl 
derivative, and BSTFA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

Biemann, K. M a s s  S p e c t r o m e t r y :  O r g a n i c  C h e m i s t r y  A p p l i c a t i o n s .  McGraw-Hill Book 
Company, New York. 1962.

Bowman, R. S. E v a l u a t i o n  o f  S o m e  N e w  T r a c e r s  f o r  S o i l  W a t e r  S t u d i e s .  Soil Sci. Soc. 
Am. J. Vol. 48. 1984a. pp. 987-993

Bowman, R. S. A r u x l y s i s  o f  S o i l  E x t r a c t s  f o r  I n o r g a n i c  a n d  O r g a n i c  T r a c e r  a n i o n  v i a  

H i g h  P e r f o r m a n c e  L i q u i d  C h r o m a t o g r a p h y .  J. Chromatography. 285. 1984b. pp. 
467-477

Bowman, R. S. and J. F. Gibbens. D i f l u o r o b e n z o a t e s  a s  N o n r e a c t i v e  T r a c e r s  i n  S o i l  

a n d  G r o u n d  W a t e r .  Ground Water. V.30. 1992. pp. 8-14.

Bowman, R. S. and R. C. Rice. A c c e l e r a t e d  H e r b i c i d e  L e a c h i n g  R e s u l t i n g  f r o m  

P r e f e r e n t i a l  F l o w  P h e n o m e n a  a n d  I t s  I m p l i c a t i o n s  f o r  G r o u n d  W a t e r  

C o n t a m i n a t i o n .  Natl. Water Well Assoc., Dublin, OH. 1986. pp. 413-425.

Bremner, J. M. M e t h o d s  o f  S o i l  A n a l y s i s .  Part 2. Amer. Soc. o f Agronomy, Madison, 
1965. pp.l 192-1197.

Cass, A.E.G., D. W. Ribbons, J. T. Rossiter, and S. R. William. B i o t r a n s f o r m a t i o n  o f  

A r o m a t i c  c o m p o u n d s .  M o n i t o r i n g  F l u o r i n a t e d  A n a l o g s  b y  N M R .  F E B S  L e t t e r s .  

Vol. 220. 1987. pp.353-357.

Cortes, H. J. H i g h  P e r f o r m a n c e  L i q u i d  C h r o m a t o g r a p h y  o f  i n o r g a n i c  a n d  o r g a n i c  

a n i o n s  u s i n g  u l t r a v i o l e t  d e t e c t i o n  a n d  a n  a m i n o  c o l u m n .  J. Chromatogrphy 234. 
1982. pp. 517.

Davis, Stanley N., Thompson, Glenn M., Bentley, Harold W., and Stiles, Gary. G r o u n d -  

W a t e r  T r a c e r s  — A  S h o r t  R e v i e w .  Ground Water. Vol. 18. 1980. pp. 14-23.

Fumiss, Brian S. VOGEL’s Textbook Practical Organic Chemistry. 1989

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

Gessner, Mark O. and Anja L. Schmitt. U s e  o f  S o l i d - P h a s e  E x t r a c t i o n  T o  D e t e r m i n e  

E r g o s t e r o l  C o n c e n t r a t i o n s  i n  P l a n t  T i s s u e  C o l o n i z e d  b y  F u n g i .  Applied and 
Environmental microbiology. Vol. 62. No. 2. Feb, 1996. pp. 415-420.

Ghauri, F. Y., C. A. Blackledge, R. C. Glen, I. D. Wilson, and K. Nicholson. 
Q u a n t i t a t i v e  S t r u c t u r e - M e t a b o l i s m  R e l a t i o n s h i p  f o r  S u b s t i t u t e d  b e n z o i c  A c i d s  i n  

r a t .  C o m p u t a t i o n  C h e m i s t r y ,  N M R  S p e c t r o s c o p y  a n d  P a t t e r n  R e c o g n i t i o n  S t u d i e s .  

Biochem. Pharmacol. Vol. 44. 1992. pp. 1935-1946.

Jandera, P. and J. Churacek. Gradient Elution in Column Liquid Chromatography 
Elsevier, Amsterdam. 1985.

Kenner, C. T. Instrumental Separation Analysis. 1973.

Key, Blake D., Robert D. Howell, and Graig S. Criddle. F l u o r i n a t e d  O r g a n i c s  i n  t h e  

B i o s p h e r e .  Environmental Science & Technology. Vol. 31. No.9. 1997.

Lindsay, W. L. C h e m i c a l  E q u i l i b r a  i n  S o i l s .  Wüey Interscience, New York. 1979. pp. 
374.

Locke, D C J. Chromatog. Sci. Vol. 12. 1974.

Martin, Paul, E. David Morgan, and Ian D. Wilson. E f f e c t  o f  C a r b o n  L o a d i n g  o n  t h e  

E x t r a c t i o n  P r o p e r t i e s  o f  C - 1 8  B o n d e d  S i l i c a  U s e d  f o r  S o l i d - P h a s e  E x t r a c t i o n  o f  

A c i d i c  a n d  B a s i c  A n a l y t e s .  Analytical Chemistry. Vol. 69. No. 15. Aug. 1, 1997. 
pp. 2972-2975.

Majors, R.R.. H i g h  P e r f o r m a n c e  L i q u i d  C h r o m a t o g r a p h y  o n  S i l i c a  G e l .  Anal. Chem. 
1972.

Mecray, J. G , E.A. Nowatzki, G. M. Thomson, D. J. Bestill, and R. Mitwasi. L o w  

L e v e l  N u c l e a r  W a s t e  S h a l l o w  L a n d  B u r i a l  T r e n c h  I s o l a t i o n .  National Technical 
Information Service, Springfield, VA. NUREG/CR-3084. 1983.

Melander, W.R. and Cs. Horvath. High-Performance Liquid Chromatography, 
Advances and Perspectives. Vol. 2. Academic Press. New York. 1980.

Meyer,Veronika R. Practical High-Performance Liquid Chromatography. 1993.

Parker, J. C. and M. Th. Van Genuchten. D e t e r m i n i n g  T r a n s p o r t  P a r a m e t e r s  f r o m  

l a o r a t o r y  a n f  F i e l d  T r a c e r  E x p e r i m e n t s .  Va. Agric. Exp. Sta. Bull. Blacksburg, VA. 
1984. pp. 1794-1796.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

Pearson, R.J., S.D. Comfort, and W.P. Inskeep. A n a l y s i s  o f  F l u o r o b e n z o a t e  T r a c e r s  b y  

I o n  C h r o m o t o g r a p g y .  Soil Sci. Soc. Am. J. 56. 1992. pp. 1794-1796.

Poole, C F., S. Singhawangcha, L. E. Chen Hu, W. F. Sye. R. Brazell and A. Zlatkis. 
T e r t . - B u t y l p e n t a f l u o r o p h e n y l m e t h y l c h l o r o s i l a n e  a s  a  R e a g e n t  f o r  t h e  F o r m a t i o n  o f  

H y d r o l y t i c a l l y  S t a b l e  A l k y l s i l y l  D e r i v a t i v e s  w i t h  E l e c t r o n - c a p t u r i n g  p r o p e r t i e s .  J. 
Chromatogr. Vol. 187. 1980. pp. 331-340.

Poole, C. F., W. F. Sye, S. Singhawangcha, F. Hsu and A. Zlatkis. N e w  E l e c t r o n -  

c a p t u r i n g  P e n t a f l u o r o p h e n y l d i a l k y l c h l o r o s i l a n e s  a s  V e r s a t i l e  D e r i v a t i z i n g  R e a g e n t s  

f o r  G a s  C h r o m a t o g r a p h y .  J. Chromatogr. Vol. 199. 1980. pp. 123-142.

Reeve. R. N. J. Chromatography. Vol. 177. 1979. pp.393.

Sotomatatsu, T., M. Shigemura, and T. Fujita. C o r r e l a t i o n  A n a l y s i s  o f  t h e  p K a  v a l u e s  o f  

M o n o  a n d  D i - o r t h o - s u b s t i t u t e d  b e n z o i c  A c i d s .  Bull. Chem. Soc. Jpn. Vol. 65. 1992. 
pp. 3157-3162.

Stetzenbach, K. J., S. L. Jensen, and G. M. Thompson. T r a c e r  E n r i c h m e n t  o f  

F l u o r i n a t e d  o r g a n i c  A c i d s  U s e d  a s  G r o u n d - W a t e r  T r a c e r s  b y  L i q u i d  

C h r o m a t o g r a p h y .  Environ. Sci. Technol. Vol. 16. 1982. pp.250-254

Stetzenbach, K. J., and G. M. Thompson. A  N e w  M e t h o d  f o r  S i m u l t a n e o u s  

M e a s u r e m e n t  o f  C l  B r  N O 3 S C N ' ,  a n d  I  ' a t  s u b - p p m  L e v e l s  i n  G r o u n d  W a t e r .  

Ground Water. Vol. 21 1983.

Stetzenbach, K. J., Irene Famham. O r g a n i c  A n i o n i c  T r a c e r s :  C h e m i s t r y  a n d  T o x i c i t y .  

2““* Tracer Workshop, Univ. o f Taxas at Austin. 1994.

Stetzenbach, K. J., Megumi Amano, David K. Kreamer, and Vernon F. Hordge. T e s t i n g  

t h e  L i m i t s  o f  I C P - M S :  D e t e r m i n a t i o n  o f  T r a c e  E l e m e n t s  i n  G r o u n d  W a t e r  a t  t h e  

P a r t - P e r - T r i l l i o n  L e v e l .  Ground Water. November-December 1994.

Strong, L. E., C. Van Waes, and K. H. Doolittle H. I o n i z a t i o n  o f  F i v e  A q u e o u s  

F l u o r o b e n z o i c  A c i d s :  C o n d u c t a n c e  a n d  T h e r m o d y n a m i c s .  J. Solution Chem. V. H. 
1982. pp. 237-258.

Thauer, J. R. and R. C. Hufifacker. Analytical Biochemistry. Vol. 102. 1980. pp. 110- 
116.

Verloop, A. and C. D. Ferrell. B e n z o y l p h e n e l  U r e a s  -  a  N e w  G r o u p  o f  L a r v i c i d e s  

I n t e r f e r i n g  w i t h  C h i t i n  D e p o s i t i o n .  Pesticide Chemistry in the 20'*' Century. ACS 
Symp. Series #37. 1977. p. 237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

Wu, zhen. S e p a r a t i o n  a n d  i d e n t i f i c a t i o n  o f  D i f l u o r o b e n z o i c  A c i d s  b y  H P L C M S .  

University of Nevada, Las Vegas. 1996.

Young, S. C. and J. M. Boggs. O b s e r v e d  M i g r a t i o n  o f  a  T r a c e r  P l u m e  a t  t h e  M A D E  

S i t e .  Proc. Environmental Research Conf. on Groundwater Quality and Waste 
Disposal. Washington, DC. May 2-4, 1989. Electric Power Research Inst. Palo 
Alto, CA. EPRI EN-6749. 1990. pp. 11-1 to 11-8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA

Graduate College 
University o f Nevada. Las Vegas

Cong Han

Home Address:
2744 Los Claveles Apt. #1002 
Providencia, Santiago 
Chile

Degrees;
Bachelor o f Science, Safety Engineering, 1990 
Beijing Institute of Technology, Beijing, P.R. China

Master of Business Administration, Business Administration, 1995 
City University, Seattle, WA

Special Honors and Awards:
Graduate College Association Award, University of Nevada, Las Vegas

Thesis Title: Determination o f  Ground-Water Tracer 2,6-Difluorobenzoic Acid by 
GC/MS

Thesis Examination Committee:
Chairperson, Dr. Klaus J. Stetzenbach, Ph.D.
Committee Member, Dr. Vernon F. Hodge, Ph.D.
Committee Member, Dr. Brian J. Johnson, Ph.D.
Graduate Faculty Representative, Dr. David E. James, Ph.D.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IMAGE EVALUATION 
TEST TARGET (Q A -3 )

1.0

l.l

1.25

Ifia
.  .  13 .2

\ M
2.2

2.0

1.8

1.6

150mm

V

V

o
/ /

/

/q P P L IE D  A  IIVWGE . I n c
.s s s  1653 E ast Main Street

Rochester, NY 14609 USA 
Phone: 716/482-0300 
Fax: 716/288-5989

O 1993. Applied Image. Inc.. Ail Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Determination of ground-water tracer 2,6-difluorobenzoic acid by Gc/Ms
	Repository Citation

	tmp.1534364649.pdf.JVoWW

