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QUANTIZATION WITH KNOWLEDGE BASE APPLIED TO
GEOMETRICAL NESTING PROBLEM

Grzegorz ChmajandLeszek Koszalka

Chair of Systems and Computer Networks, Wroclawéssity of Technology,
Wroclaw, Poland

Keywords: nesting, quantization, 2D allocation, knowledge e.g. geometry theory, ant algorithms [1], heuristiethods

base, geometry shapes, algorithm, simulation [5], genetic algorithms [4] — but even for smaltssef input
data — nesting problem is hard to be solved inasaeable
Abstract time.

This paper describes a concept of applying quaidizat

Nesting algorithms deal with placing two-dimensiosiaapes ith knowledge base to slide the nesting algorititnis
on the given canvas. In this paper a binary wasobfing the assumed, that there are no constraints on regiodsoa
nesting problem is proposed. Geometric shapeswua®tiged ghapes. Each shape is converted into binary fornichwis
into binary form, which is used to operate on thékfter ¢, her used to pair shapes. As a pairing algorithenMin-
finishing nesting they are converted back into i08Y pectangle (MRJ3] algorithm is used which is able to find a
geometrical form. Investigations showed, that thisra big co-placement of two shapes giving smallest bounding
influence of quantization accuracy for the nestigifect. rectangle. The  propose@KBMR (Quantization with
However,_ greater accuracy resulis with longer t_ilmfe Knowledg;e Base in Minimum Rectanglsystem gives
g?rgqrf gul;a:g)dnu C‘I;hteh g Loopmozi?alt(igﬁglicf: .base systetles@ opportunities for simulations. Research done byallt@ors is

focused on the influence of quantization and kndgtebase
implementation on the nesting process.

Section 2 states the problem of nesting. Sectioorains
definitions of basic terms and Section 4 presdrggtoposed
QKBMRsystem. In Section 5 the results of investigatiares
discussed. Section 6 contains conclusions and g@&rgps of
further research.

1 Introduction

Nesting is a geometrical problem of placing two-élirsional
shapes on a surface without overlap and with miiirgi the
surface area used. The goals of nesting algoritansdiffer
among minimizing wasted surface area and maximitirgg
amount of shapes placed on or in a specified coetailhis

kind of problems are everyday-questions in the cencral 2 Problem statement
companies, especially factories and cutting marnufacs.
Also, nesting problems appear in environmental itgcture
planning, transport, and many other places. Negtioblems
f:&oﬁeagévfee}dofm;ﬁagf (tar?:asIglgo?iiﬂﬂegzi(tgiv\gﬁegg;ens vary with diffgrent const'raints. Constraints can dieided
will fit in the region), knapsack problenfgiven shapes haveNto the following categories:

to be p|aced on a given region in a way m|n|m|zm’g};d = ShapeS constraints — Ovel’laping Conditions, knowam (
surface), bin packing (there are set of shapes and set of Nhot) shapes queue, shapes queue sorting, etc.

regions, the algorithm minimizes a number of usegians = region constraints — shape of region, its infinity
needed to place set of shapes) atip packing problem specified dimensions, etc.

Nesting is a term that is used to describe sewadlatation
problems of two- or three-dimensional cutting omagihg
defined set of shapes. Implementations of the probtan

(with given set of shapes and a width of rectangtégion, = nesting process constraints — minimizing time,
the algorithm has to minimize length of region edning all minimizing usage area, etc.
shapes placed). In general, the nesting problem statement doesatot

Some nesting problem implementations allow oveil#pp shape overlapping, but there are some nesting miiepns
shapes in Specific situations [2] Different coastts can be where Shapes over|apping can occur.

considered. Usually, there is no constraint on shajit can
be rec_tangle, also can contain roundness_. Moren ofte n shapes to place—>
constraints are applied to the nested region — tue
technological issues, the region is often a fixedthv
rectangle with unlimited length (e.g. roll of ma#brin
clothing industry). According to the problem cornatits,
appropriate nesting algorithm should be used. Thesee
attempts to solve this problem by using many déffénwvays:

nesting syste [— placement

Figure 1. General nesting scheme

No matter what implementation, the scheme of ngstin
always as in Fig. 1.



An example of the nesting problem — with regiongghas Quantization process QP- process of changing geometry
a finite rectangle and known shape queue is shioWig. 2.  shape into its binary representati@P is performed using
guantization function:
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Figure 2. Example of nesting

The considered nesting problem may be stated asvsill

= given the set of shapes with known geometry and
the region in which shapes can be placed,

Figure 3. Region divided intel, mesh

] s ) Quantization process QP- process of changing geometry
= tofind shape placement within the region, shape into its binary representati®P is performed using
* such that to minimize wasted surface and the timguantization function:

of completing nesting process.
QP(G) = (UQ(a)(anyn) ﬂBG: Q(a)(xnrYn):lNT(Q(a)(anyn)vG))

3 Nomenclature Binary shape— denoted a$(w,h)is quantized representation
of geometric shap&. S(w,h)having widthw and heighth

To widely describe the nesting problem issues thleviing (measured M, width/height which means multiplyings

nomenclature is introduced: andh by a), consist ofQg)(X.Y») 7 Bs and is the result of

Shape — a geometric closed form defined by geometrfeP(G)function.

characteristic. Any shape can be described by fspbints SW,h) = {Qu*uY) 7B : Qayn¥n) = INT(Qa(Xn¥e).G) T
and arcs. S_hape _combined _wilthamounf[_ofe elements, X0 [KOW>, VnlKO,h>; Ba(XoWh): Xo=a*W, yp=a*h}

where eacle is a pointP (described by position x,\gr an arc

A (described by tw® and radius) is denoted as Binary Shape Set BSS- a finite set ofS containingBSSC

_ _ (BSS Capacily elements.BSSC can be variable during
G = {&n TP:(%uYn) TA: (X1, Y1, %12, Y2, o)} nesting process, which allows interactive addirfignew

Region — an area of potential placement of shapes. Fer f{1aPes {BSSwhere BSS={3,5,.....3ssd-
considered nesting problem the region is rectamgwith AND(S1,S;) —binary AND operation for bit sequencss, S.

infinite length and width. Region containing poim&,y,) AND(S;, S, ..., S) — binary AND operation for bit sequences
wherex,,y, [/Ris denoted as S, S ... S

OR(S,,S,) —binary OR operation for bit sequen&sandsS,.
XOR(S;,S,) —hinary XOR operation for bit sequencas S..
NEG(S) - binary negation operation for bit sequeBce

R = {P()thn) -00>X >+ 00 U-oo>yn>+ 00}

Quantum — a discrete part of geometric area, is charaeteri
by size and logical binary state assigned. Quarttawinga ) ) i ,
size of square side length in geometric interpigtaand(x,y) RORl(S)—_pmary rotating right of binary sequence. Rotates
discrete position in mes¥ is denoted aQ(x,y)={0,1}. by one position:

Quantum size— denoted ag, describes the size of quantum, ROR1(9=S,: S[i]=S[i+1], S[n]=S[1]; i [&K2,n>,
what determines mesh structure and quantizationracy. h < S beforeROR < S afterRORL i "
Intersection function — denoted abNT(A,B)— returns logical wheres, is S before 1S is Safter 11ls a position

true/false result: if are& and ared intersect, logical is In a binary se_quence,|s_ amgunt of b_|ts N sequence.
returned, otherwistNT(A,B)returns logicaD. ROR(S,t) — binary rotating right of binary sequen&shape)
by t bits. Perform&ROR 1operation times.

ROLL(S) — binary rotating left of binary sequence. Rotdtgs
one position:

Bounding rectangle Bs(x,y) — minimum size rectangle of
width=x and heighty thatG can fit inside without
intersectingBg boundariesBg assigned t& will satisfy
following formula: ROL1(9)=S;: S[i]=S[i-1], S[1]=S[n]; i [&k2,n>
Be={P(Xu:Yb): XorYb L7 R [T Yo/ KXXo> [T Yo L KY Y where§, is SbeforeROLL S is SafterROLY i is a position
in a binary sequenca,is amount of bits in sequence.
LPYp) TG, %0 <X [ %02X0 T Y < Yo [ Ya 2 Y )}- _ i .
(E7PGpYe) % L %02 L Yn <Y L %02 Yo )} ROL(S,t) — binary rotating left of binary sequencgshape)
Mesh — R is divided (Fig. 3) intaQy parts, that composesbY t bits. Perform&tOL1operatiort times.
two dimensional mesh on nesting area. According, tmesh Knowledge Base Element KBE— a data set containing

having quantum size afis denoted ab, and has infinite information about twoS and their best combinatioKBE
length and width: containing knowledge abo®, S, and the best combination

M(a)z{Q (a)(Xniyn) OR: -00>X >+ oo D-oo>yn>+ 00} Cis denoted a&BE (S-’ 5): C.



Knowledge Base KB - finite set containingkBC (KB 71
Capacity)number ofKBE-s KB expandes self during nesting. V= o k[7{0,1,2,3}.

KB = {KBE;, KBE, ...., KBRad}

In the paper, the following assumptions are taksto i 4 NeStmg SyStem
consideration:

= Rhas no specified shape,

= resulting area with nested shapes can be of arpesha
= the system tries to afford the best speed of rggséind

The core of the proposed nesting syste@KBMRalgorithm
which reads a list o6, quantizes them and then tries to nest
them inR. QKBMR transformsR in such a way, thaf0,0)
point can be defined, but it is not related to &1 no matter

next allocating efficiency, N what shape of & (or G combination) is — the algorithm
= the shape queue is known to the system and itléstab places it starting fron(0,0) point of R.

preprocess it before starti@f and nesting process, During quantizatiora parameter is used, which has a large
= all shapes are quantized using the sarnmeQ), influence on precision of quantizing —afis smaller, more
= the shapes can be rotated to obtain better effigierQ, elements are used for quantiziGg which also changes

(UseRotatingparameter), the final nesting effecKB is a very important part of nesting
= rotating ofSis performed by angle system.

________ 1
n_*_:\: Optional !
KBC—> KB ’\,_,_V/: external
' 1 KBEL sets !

""""" |
alorﬂithms a BSS( ﬁ

[&— Use Rotatin

|GQPP|':>| QP |':>| BSS |<:> sP < Use KE

Si(wy,hy),
e ﬁ
SWnh) e
G ]
659, NM (= DeoP

Figure 4. The b lock-diagram of the proposedingsystem

It may save a lot of time when nesting a shgpethmlsyste_m NM (Nesting Module)- main part of system that manages
already processed. ThQKBMR system with cooperating glements and finally places themRaMg, parameter is used

elements is presented in Fig.4. to describe mesh iR,
The components of the system are: DeQP — DeQuantization Process convertingS elements
GQ -G Queue- input queue of geometrical shajigs into G elemens. DeQPis an optional module, can be omitted.

GQPP — GQ Preprocessor a module that is able to operate

on input GQ befor®QP,GQPP use&QPP algorithm seto 4.1 Quantization process

choose method of processiG®. '

QP — Quantization Process- convertingGQ containingG =~ Quantization process (QP) outputs with S havingbfeat as
elements toBSS Parametera determines precision ofan input.QP is performed for eac separately. The size &f

conversion process. and accuracy d)P depends o parameter. The time needed
BSS- Binary Shape Set set 0fBSSCnumber ofSelements. t0 perform QP on G can be expressed with a following
BSSis the result oQP. relation:

SP - Shape pairing— module trying to find the best co- Top=kWHIa (1)

plra]\cehment ofS, _and"S). UdseRotatingpqran;?t?r dGtermmeswhere:w— geometric width o5, H —geometric height o6,
whetherQKBMRIs allowed to use rotating Sfelementsise k,| —coefficients related to the machine used.

KB paremeters enables to UQB The QP algorithm for a givers works as follows:
KB —Knowledge BaseontainingkBC number of KBEL . 1. Find Bo(myr)

Optional external KBEL sets — KB can use knowledge that  , piide Ba(XmYm) iNto Qa(XaYb) €lements. The result is

was generated by another instance of KBE. Exteratd s a mesh of Q, elements with
R a
could also be implemented as global network dagbased w amount of Q, in each row of mesh and h amount of
by many QKBMR systems to share knowledge about shape Q. elements in each column
1 .

pairing.



3. Assign state to all Qu(Xa,Yb) €lements: 7 Quy(Xe.Ys) JBs, Example. S normalized witiNP is shown in Tab. 1.

Q(a)(Xvad) = lNT(Q(a)(XC!yd)!G)v CU<O,W), dﬂ<01h)
Table 1. An example dfiomalization

N Before NP After NP
S S S S
G h 1111 11 00000000 11000000
N 0111 01 00000000 01000000
I 1
Be S 0011 00111100 00000000
00011100 00000000
Figure 5. Shap& and its quantized representat®n 00001100 00000000

Example. The quantized form of the shafe(Fig. 5) can be 00000000 00000000
denoted as 00000000 00000000

S(3,2)=111101110011.
4.3 Shape pairing
4.2 Normalization an normalization pr iy . : . ,
ormalization and denormalization process Shape PairingSP)is an algorithm, that tries to find the best
The Normalization Proces@\P) is a process of extendingCOEXStiStents; for a givens,. S, is always the firssS from
two S-esaccording to their properties. Each shapeapds,) Do SP comparesS, with every unpaireds from BSSand
is normalized.S; is always a base — after normalization #&cords the actual best pair. The efficiency of\ewipair is
centered in its own mesB; is placed in left-top corner of itsdetermined by th&FF (2) coefficient:
own meshNP adds columns and/or rows containing zeroes to _
bothS to equalize them by sizBIP allows finding suitable EFF =1/( (Su+1)*(Sunt1)) @

coexistence by usin§P process. Thé&\P uses the following The EFF usesw andh from S, because afteXP both S and

algorithm: S, have the same andh. The S that is the best pair fds;
1. For two received Sobjects: Si(X1,y1) and Sy(X,Y») according to theeFF coefficient is marked as “pairedSP
compute: mx=x+2*X,, my=y;+2*y,, works using the following procedure:

2. Normalize S;:

] 1. S, is a base for pairing and “stationary” object (will
2.1. Add c=mx-x columns to S, (contain only zeroes).

remain unmoved in normalized mesh).

2.2. x;=mx S is a moving object.
2.3. Add r=mx-x; rows to S; (containonly zeroes). 2 GLEFF=0
2.4. y:=my 3. For every unpaired Sfrom BSSdo:
2.5. t=c/2+r/2*y ;; Perform ROR with t positions. 3.1.Normalize S;(xq,y1) With S(X2,Y2)
3. Normalize S;: 3.2.5=ROR1(9
3.1. Add c=mx-% columns to S, (contain only zeroes). 3.3.1f S[1]=0 7 S{1]=1, go to 4.
3.2. x=mXx 3.4. If AND(S, C)=0 7 AND(%,C)}*0, where C=Cyp.1,
3.3. Add r=mx-x, rows to S, (contain only zeroes). CECr 2 4Cy, C=2", perform ROR($%+1),
3.4. y,=my else perform ROR($,1).
The QKBMR algorithm also needBenormalization Process 3.5.M=XOR(XOR(OR(5%).%).%)
(DP), which performs removing bordering rows and colamn 3.6.1f M0, go t0 3.2
containing only zeroes. The rule statddP(NP(S))=S 3.7.Compute EFF (OR(S,S))
DP(S(x,y)). It is performed using the following algorithm: 3.8.If GLEFF<EFF, GLEFF=EFFandBF=0OR(S,S)

4. BF contains best found co-placement of S, and S,

1. Cr=(2%-1)*2%Y If AND(S,Cr)=0 - perform remove _ cop
GLEFF contains EFF for this pair.

first x+1 bits from binary representation.
2. Cg=NEG(*™MV™1.2hy  |f AND(S,Cg)=0 — perform After performing theSP algorithm, the QKBMR receives
remove last x+1 bits from binary representation. information from theSPmodule about the best fit found for a
3. Ci=Cys1, Ck=Cia*2%+Co, Co=2% If AND(S,C)=0, 9iven$; the number of5 that made the best fit with, and
perform remove bits from positions p, for whose (p the value oEFF coefficient for this fit.
modulo (x+1)=1) formula is satisfied..
4. Cr=NEG(AND(C;, Cz Cs ..., Cy)), where 4.4 Knowledge base
Ck:(2k(x+1)_2)*2(y+1-k)(x+1)+2(y+l»k)(x+1)_1' If AND(S,CR):O,

perform remove bits from positions p, for whose Every Sis described by some bits amdandy coefficients.

Depending on tha factor, theQP process differs in accuracy.

dulo (x+1)=0) f lai tisfied. . . .
(p modulo (x+1)=0) formula is satisfie This means, that many shapes can be quantizedhiatsaine



bit representation, and coefficient has large influence on 1.5 is base of pairing and “stationary” object (will remain
how manu shapes from a given set will go into edpiradry unmoved in normalized mesh). S, is moving object.
appearanceSP can useKB to optimize the process of 2 GLEFF=0: k=-1

searching for the best fit. Before using the indrpairing
algorithm,SPcan requeskB for a specified paif, andS,. If
KB has such a record, it will reply &P with the best fit. This
best fit can be placed IiKB by the sameSP module, or can
originate from another module. Many differeidesting
systemgan share onkB. If KB does not have such a record,

3. For every unpaired Sfrom BSSdo:

3.1. Ask KB for S; and S,. If KB replied with best fit
answer, place answer to BF, count EFF and put
in into GLEFF, go to 5.

3.2.k=k+1. Rotate $using )=k 772 angle

according toS, and S,, it replies toSP with “no result” 3.3.Normalize Sy(xy,y1) with S(Xz,Y»)
message. In that cas&P performs an internal pairing 3.4.5=ROR1(9
algorithm forS; andS, and results with the best fit for these 3.5.1f S[1]=0 /7 S{1]=1, go to 3.11.
two considered shapes. Th&Rsends thé&,, S and resuls; 3.6.f AND(S,C)=0 /7 AND(S,C)#0, where C=Cypiy,
to KB, which saves it for the future usage. When us{isy CeCh24C,, C=2" perform ROR(S+1),
the SP works in the following way: else perform ROR($,1).
1. S is a base for pairing and “stationary” object (will 3.7.M=XOR(XOR(OR(§%),5).S)
remain unmoved in normalized mesh). S, is moving 3.8.1f M0, go to 3.4.
object. 3.9.Compute EFF (OR(S,S))
2.GLEFF=0 3.10.If GLEFF<EFF, GLEFF=EFFandBF=0R(S,S)
3. For every unpaired Sfrom BSSdo: 3.11.1f k<3 go to 3.2.
3.1. Ask KB for S, and S,. If KB replied with best fit 4.Send S, S,, and BF to KB.
answer, place answer to BF, count EFF and put in 5. BF contains best found co-placement of S and S,
into GLEFF, go t0 5. GLEFF contains EFF for this pair.
3.2.Normalize S;(Xy,y1) With Sy(X2,Y2)
3.3.5=ROR1(9) 4.6 Nesting module

3.4.1f S[1]=0 /7 K[1]=1, go to 4.
3.5.1f AND(S,C)=0 /7 AND(%C)0, where C=C,,,;, NM is the main module ofQKBMR system.NM sends

C=Cra* 2 +Co, C=2", requests t&P. After performingSP,resulting pair § ands;)

perform ROR($%+1), else perform ROR(S,1). is_lrl’nergt]eéi atncli< recprtded ﬁls% is :parkded as “tp;]airzd” —so it

_ will not be taken into consideration during the hpairing
3.6.M=XOR(XOR(OR 'S1), . .
( (OR(E).%).%) processesNM has a block, that is able to decide whether to

3.7.1fM#0, go t0 3.3. finalize nesting o, andS, (place them oM,) or to send a

3.8.Compute EFF (OR(8.S)) request t&SPoncemore, but with special conditions. This can
3.9.If GLEFF<EFF, GLEFF=EFFandBF=0R(S,S) be useful, when the algorithm used3R does not work well
4.Send S, S, and BF to KB. enough — thetNM can detect that kind of pair and request to
5. BF contains best found co-placement of S, and S, find the pair forsl again, without using, prewously rated as
GLEFF contains EFF for this pair. the best fitNM is thg only mgdule oQKBMR that_ is able to
operate onBSSduring nesting process — so it is easy to
4.5 Rotating mechanism implement some exclusions for pairing algorithmdsoi

according to some ruled\\M can pre-nest some shapes,

The nesting problem, stated in this paper, all@sbjects to before starting to requeSIP. These additional functions had
be rotated. This means, that alSmbjects can be rotated.not been researched and are categorized as futuke w
QKBMR algorithm usedRM (Rotating Mechanisntp rotate

binary representations &, to afford better fit of two shapes.4.7 GQPP and DeQP

Rotating is performed when searching for the béstttie N ) ]
rotated figure is also used while nesting. TB®Salways WO additional mechanisms of operating on shapeiedca

contains non-rotated objects — also objects thamnasted in GQPPandDeQP,are included intQKBMRalgorithm.
rotated form, remain in original non-rotated figuRotating GQPPis aGQ preprocessor. For sonisets and pairing
binary shapes is not easy when rotating anglefisrahan @lgorithms, some operations Gset can speed up the nesting
y=k 712, k [7{0,1,2,3} soQKBMR algorithm uses only theseprocegs.GQPP performs some sorting or other methods of
four values while rotating objects. Rotating can increase thenangingG order inGQ. In the presented researcBQPP

time needed for finding the best fit, but in margses it is Was not activated. o

able to find much better fit. When usi@, performingRM DeQPis a modl_JIe thgt performs Qe—qu.antlzanon: converts
is suggestedRM gives better results of pairing, these resulfinary representatio(s) into geometrical figurgG). Due to

will be added toKB, so it is good to add better fits becausd@®QP. QKBMRis able to restore original form of shapes after
pairs recorded iiB will not be paired anymor&Pwith RM the nesting process, so binary conversion is taesp for the

(and alsakB) works using the following procedure: user ofQKBMRalgorithm. Becaus®KBMR records original
geometric form of shape, so there is no loss afrinftion.

DeQP also uses recorded relations of quantized form and



original form — so regardless of parameter, afteQP and given system but also by other systems that slragiven
DeQP, shape will be placed in the same place on theasan KB. There is some time needed Ki8, but it is very small
compared to the pairing process. Investigationsvedo that
5 Investigations in the standard averaged case taking informati@utapairs
from KB is approx 2% of the time-consumed for computing
QKBMR algorithm had been implemented in théheir best fit (which strongly depends on ¢éheoefficient).
experimentation system to research the efficientythe oKe
proposed mechanismQKBMR algorithm is a complex & Compute
system, containing many modules presented in Sedtiand
requiring the usage of several algorithms.

QP is a process that is required to be performedrbefe
other nesting moduleQP effect depends oa coefficient in
an exponential wayThe relationship betweea and QP,
found on the basis of results of simulatismshown in Fig. 6.

A small a coefficient gives (more accurate) mappingzof
to S but requires more time. When performing the nesti
process using algorithms that use quantized shapss, Figure. 8. Time of pairing and time time of acqugriinfo from KB

poss@le _to quantlgebthem gngedand store in t”?""fe‘) N0 The implementation oRM may result with a betteEFF
quantization would be needed during next NesUREEBSES. qefficient, but requires more computations, beeanfsthe

For every nesting case, an approprhatc-:oefficient should be t50t that evenS is processed 4 times (0, 90, 180 and 270
taken. It also affects the nesting accuracy. Maaydom- (otating angle). Investigations showed, that demendn type
generated sets of shapes were taken, processe@Ritand of s (its geometrical shapeRM can highly increase tHeFF

98%

2%

then results averaged. coefficient. Table 2 shows the results - the avatagdues of
EFF computed with (2) foRM (turned on) andRM (turned
10000 off) for the same data sets.

8000

Table 2. Efficiency and usingM.

6000

Time

4000 RM OFF RM ON
2000 [ Average EFF 0.021 0.038

0+
0 10 20 30 40 50 60

. 6 Conclusions
Figure 6. Influence cé coefficient to time oRQP

The proposed)QKBMR algorithm seems to be promising
The quantization coefficiena also affects to the time offor sets of shapes with many objects of the saregoses,
nesting process. Whe@ is transformed into a larger set ohs in the most industrial nesting processes. Thesproposed
bits, SP module has more data to process. This is @Bproach can strongly decrease the time of nesting.
exponential relation, shown in Fig. 7. in logariibracale. As The further work in the area of nesting systems il
is visible on the graph, there is anvalue, for which time concentrated on finding more effective shape pairin

decreases much, and for largevalues, its influence to time aigorithms as it is the most time consuming module.
is smaller. If results of nesting for this edge uealare

satisfactory, this value should be used for prangsshape References
sets. The time and@ impact can differ according to the

algorithm used bPmodule. [1] Burke E., Kendall G., Applying Ant Algorithms drthe No Fit

Polygon to the Nesting Problengci. Report, The University of

1000000 NOtthInghan’(ZOOl)
.- i [2] Nielsen B., Odgaard A., Fast Neighborhood Seaimh the
1000 Nesting ProblemSci. Report, University of Copenhag@®03)

ljz [3] Gomes A., Oliveira J.A GRASP Approach to the Nesting
14 ‘ ‘ ‘ ‘ ‘ ‘ Algorithm, Sci. Report, PortoPortugal (2001)
° 0 * * “ * « [4] Rintala T.,A Genetic Approach to Nesting Problemd Nordic
! Workshop on Genetic Algorithms and their Applicasi(1996)

[5] Albano A., Sappupo G., Optimal Allocation of BviDimensional
During the nesting process, in mod&Ethe same can form Shapes Using Heuristic Search Metha#£E Trans.on Syst. Man
a pair with other shapes many times. Because ofaittethat and Cyberneticsl0,. 242-248 (2002)
the nesting process is very time-consuming it isthverying [6] Oliveira J., Ferreira.JAlgorithms for Nesting Problems, Applied
to save the time by recording already computed-fitsstor ~Simulated Annealingl@93)
shapes. A knowledge base system usegKBMRalgorithm [7] Adamowicz M., Albano A.Nesting Two-Dimensional Shapes in
saves all the computed cases for future use, ngthlynthe Rectangular Module€Gomputer Aided Desigi8,(1976)

Nesting time

Figure 7. Influence od coefficient to time of nesting process



	Quantization with Knowledge Base Applied to Geometrical Nesting Problem
	Repository Citation

	Quantization With Knowledge Base Applied To Geometrical Nesting Problem

