
Electrical and Computer Engineering Faculty
Publications Electrical & Computer Engineering

2004

Quantization with Knowledge Base Applied to Geometrical Quantization with Knowledge Base Applied to Geometrical

Nesting Problem Nesting Problem

Grzegorz Chmaj
University of Nevada, Las Vegas, chmajg@unlv.nevada.edu

Leszek Koszalka
Wroclaw University of Technology, leszek.koszalka@pwr.wroc.pl

Follow this and additional works at: https://digitalscholarship.unlv.edu/ece_fac_articles

 Part of the Algebraic Geometry Commons, Electrical and Computer Engineering Commons, and the

Geometry and Topology Commons

Repository Citation Repository Citation
Chmaj, G., Koszalka, L. (2004). Quantization with Knowledge Base Applied to Geometrical Nesting
Problem. 1-6.
https://digitalscholarship.unlv.edu/ece_fac_articles/853

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Article has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an
authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece
https://digitalscholarship.unlv.edu/ece_fac_articles?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/176?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/ece_fac_articles/853
mailto:digitalscholarship@unlv.edu

QUANTIZATION WITH KNOWLEDGE BASE APPLIED TO
GEOMETRICAL NESTING PROBLEM

Grzegorz Chmaj and Leszek Koszalka

Chair of Systems and Computer Networks, Wroclaw University of Technology,

 Wroclaw, Poland

Keywords: nesting, quantization, 2D allocation, knowledge
base, geometry shapes, algorithm, simulation

Abstract

Nesting algorithms deal with placing two-dimensional shapes
on the given canvas. In this paper a binary way of solving the
nesting problem is proposed. Geometric shapes are quantized
into binary form, which is used to operate on them. After
finishing nesting they are converted back into original
geometrical form. Investigations showed, that there is a big
influence of quantization accuracy for the nesting effect.
However, greater accuracy results with longer time of
computation. The proposed knowledge base system is able to
strongly reduce the computational time..

1 Introduction

Nesting is a geometrical problem of placing two-dimensional
shapes on a surface without overlap and with minimizing the
surface area used. The goals of nesting algorithms can differ
among minimizing wasted surface area and maximizing the
amount of shapes placed on or in a specified container. This
kind of problems are everyday-questions in the commercial
companies, especially factories and cutting manufacturers.
Also, nesting problems appear in environmental architecture
planning, transport, and many other places. Nesting problems
can be divided into [2]: decision problems (having given
region and set of shapes the algorithm states whether shapes
will fit in the region), knapsack problem (given shapes have
to be placed on a given region in a way minimizing used
surface), bin packing (there are set of shapes and set of
regions, the algorithm minimizes a number of used regions
needed to place set of shapes) and strip packing problem
(with given set of shapes and a width of rectangular region,
the algorithm has to minimize length of region containing all
shapes placed).

Some nesting problem implementations allow overlapping
shapes in specific situations [2]. Different constraints can be
considered. Usually, there is no constraint on shape – it can
be rectangle, also can contain roundness. More often
constraints are applied to the nested region – due to
technological issues, the region is often a fixed width
rectangle with unlimited length (e.g. roll of material in
clothing industry). According to the problem conditions,
appropriate nesting algorithm should be used. There were
attempts to solve this problem by using many different ways:

e.g. geometry theory, ant algorithms [1], heuristic methods
[5], genetic algorithms [4] – but even for small sets of input
data – nesting problem is hard to be solved in a reasonable
time.

This paper describes a concept of applying quantization
with knowledge base to slide the nesting algorithm. It is
assumed, that there are no constraints on regions and on
shapes. Each shape is converted into binary form, which is
further used to pair shapes. As a pairing algorithm the Min-
Rectangle (MR) [3] algorithm is used which is able to find a
co-placement of two shapes giving smallest bounding
rectangle. The proposed QKBMR (Quantization with
Knowledge Base in Minimum Rectangle) system gives
opportunities for simulations. Research done by the authors is
focused on the influence of quantization and knowledge base
implementation on the nesting process.

Section 2 states the problem of nesting. Section 3 contains
definitions of basic terms and Section 4 presents the proposed
QKBMR system. In Section 5 the results of investigations are
discussed. Section 6 contains conclusions and perspectives of
further research.

2 Problem statement

Nesting is a term that is used to describe several allocation
problems of two- or three-dimensional cutting or placing
defined set of shapes. Implementations of the problem can
vary with different constraints. Constraints can be divided
into the following categories:
� shapes constraints – overlaping conditions, known (or

not) shapes queue, shapes queue sorting, etc.
� region constraints – shape of region, its infinity in

specified dimensions, etc.
� nesting process constraints – minimizing time,

minimizing usage area, etc.
In general, the nesting problem statement does not allow
shape overlapping, but there are some nesting sub-problems
where shapes overlapping can occur.

Figure 1. General nesting scheme

No matter what implementation, the scheme of nesting is
always as in Fig. 1.

n shapes to place nesting system placement

An example of the nesting problem – with region shape as
 a finite rectangle and known shape queue is shown in Fig. 2.

Figure 2. Example of nesting

The considered nesting problem may be stated as follows;

� given: the set of shapes with known geometry and
the region in which shapes can be placed,

� to find: shape placement within the region,

� such that: to minimize wasted surface and the time
of completing nesting process.

3 Nomenclature

To widely describe the nesting problem issues the following
nomenclature is introduced:

Shape – a geometric closed form defined by geometric
characteristic. Any shape can be described by set of points
and arcs. Shape combined with n amount of e elements,
where each e is a point P (described by position x,y) or an arc
A (described by two P and radius) is denoted as

G = {en ∈ P:(xn,yn)∨ A:(xn1,yn1, xn2,yn2, rn)}.

Region – an area of potential placement of shapes. For the
considered nesting problem the region is rectangular with
infinite length and width. Region containing points P(xn,yn)
where xn,yn ∈ R is denoted as

R = {P(xn,yn): -∞>xn>+ ∞ ∧ -∞>yn>+ ∞}.

Quantum – a discrete part of geometric area, is characterized
by size and logical binary state assigned. Quantum having a
size of square side length in geometric interpretation and (x,y)
discrete position in mesh M is denoted as Q(a)(x,y)={0,1} .

Quantum size – denoted as a, describes the size of quantum,
what determines mesh structure and quantization accuracy.

Intersection function – denoted as INT(A,B) – returns logical
true/false result: if area A and area B intersect, logical 1 is
returned, otherwise INT(A,B) returns logical 0.

Bounding rectangle BG(x,y) – minimum size rectangle of
width=x and height=y that G can fit inside without
intersecting BG boundaries. BG assigned to G will satisfy
following formula:

 BG={P(xb,yb): xb,yb ∈ R ∧∧∧∧ xb∈<xm,xn> ∧∧∧∧ yb∈<ym,,yn>:

 (∀ P(xp,yp) ∈ G, xm ≤ xp ∧∧∧∧ xn≥xp ∧∧∧∧ ym ≤ yp ∧∧∧∧ yn ≥ yp)}.

Mesh – R is divided (Fig. 3) into Q(a) parts, that composes
two dimensional mesh on nesting area. According to R, mesh
having quantum size of a is denoted as M(a) and has infinite
length and width:

 M(a)={Q (a)(xn,yn) ∈ R: -∞>xn>+ ∞ ∧ -∞>yn>+ ∞}

Quantization process QP – process of changing geometry
shape into its binary representation. QP is performed using
quantization function:

Figure 3. Region divided into M(a) mesh

Quantization process QP – process of changing geometry
shape into its binary representation. QP is performed using
quantization function:

QP(G) = (∀ Q(a)(xn,yn) ∈ BG, Q(a)(xn,yn)=INT(Q(a)(xn,yn),G))

Binary shape – denoted as S(w,h) is quantized representation
of geometric shape G. S(w,h) having width=w and height=h
(measured in Q(a) width/height which means multiplying w
and h by a), consist of Q(a)(xn,yn) ∈ BG and is the result of
QP(G) function.

S(w,h) = {Q(a)(xn,yn) ∈ BG : Q(a)(xn,yn) = INT(Q(a)(xn,yn),G) ∧∧∧∧
xn∈<0,w>, yn∈<0,h>; BG(xb,yb): xb=a*w, yb=a*h}

Binary Shape Set BSS – a finite set of S containing BSSC
(BSS Capacity) elements. BSSC can be variable during
nesting process, which allows interactive adding of new
shapes to BSS, where BSS={S1,S2,...,SBSSC}.

AND(S1,S2) – binary AND operation for bit sequences S1 , S2.

AND(S1, S2, ..., Sn) – binary AND operation for bit sequences
S1, S2, ... Sn

OR(S1,S2) – binary OR operation for bit sequences S1 and S2.

XOR(S1,S2) – binary XOR operation for bit sequences S1 , S2.

NEG(S) – binary negation operation for bit sequence S.

ROR1(S) – binary rotating right of binary sequence. Rotates
by one position:

ROR1(S1)=S2: S[i]=S[i+1], S[n]=S[1]; i ∈<2,n>,

where S1 is S before ROR1, S2 is S after ROR1, i is a position
in a binary sequence, n is amount of bits in sequence.

ROR(S,t) – binary rotating right of binary sequence (S shape)
by t bits. Performs ROR1 operation t times.

ROL1(S) – binary rotating left of binary sequence. Rotates by
one position:

ROL1(S1)=S2: S[i]=S[i-1], S[1]=S[n]; i ∈<2,n>

where S1 is S before ROL1, S2 is S after ROL1, i is a position
in a binary sequence, n is amount of bits in sequence.

ROL(S,t) – binary rotating left of binary sequence (S shape)
by t bits. Performs ROL1 operation t times.

Knowledge Base Element KBE – a data set containing
information about two S and their best combination. KBE
containing knowledge about S1, S2, and the best combination
C is denoted as KBE (S1, S2)= C.

Region to fit shapes Nesting algorithm
effect

Shapes to be placed

R

a

... 2 3 4 5 6 7 8 ...
...

3

4

5

...

Q(a)(2,3)
=1

Q(a)(3,4)
=0

Knowledge Base KB – finite set containing KBC (KB
Capacity) number of KBE-s. KB expandes self during nesting.

KB = {KBE1, KBE2,, KBEKBC}.

In the paper, the following assumptions are taken into
consideration:
� R has no specified shape,
� resulting area with nested shapes can be of any shape,
� the system tries to afford the best speed of nesting, and

next allocating efficiency,
� the shape queue is known to the system and it is able to

preprocess it before starting QP and nesting process,
� all shapes are quantized using the same a in Q(a),.
� the shapes can be rotated to obtain better efficiency

(UseRotating parameter),
� rotating of S is performed by angle

2
πγ k= , k ∈ {0,1,2,3}.

4 Nesting system

The core of the proposed nesting system is QKBMR algorithm
which reads a list of G, quantizes them and then tries to nest
them in R. QKBMR transforms R in such a way, that (0,0)
point can be defined, but it is not related to any G – no matter
what shape of a G (or G combination) is – the algorithm
places it starting from (0,0) point of R.

During quantization a parameter is used, which has a large
influence on precision of quantizing – if a is smaller, more
Q(a) elements are used for quantizing G, which also changes
the final nesting effect. KB is a very important part of nesting
system.

Figure 4. The b lock-diagram of the proposed nesting system

It may save a lot of time when nesting a shape that the system
already processed. The QKBMR system with cooperating
elements is presented in Fig.4.

The components of the system are:

GQ – G Queue – input queue of geometrical shapes G.

GQPP – GQ Preprocessor – a module that is able to operate
on input GQ before QP,GQPP uses GQPP algorithm set to
choose method of processing GQ.

QP – Quantization Process – converting GQ containing G
elements to BSS. Parameter a determines precision of
conversion process.

BSS – Binary Shape Set – set of BSSC number of S elements.
BSS is the result of QP.

SP - Shape pairing – module trying to find the best co-
placement of Sa and Sb. UseRotating parameter determines
whether QKBMR is allowed to use rotating of S elements, Use
KB paremeters enables to use KB.

KB – Knowledge Base, containing KBC number of KBEL .

Optional external KBEL sets – KB can use knowledge that
was generated by another instance of KBE. External sets
could also be implemented as global network database, used
by many QKBMR systems to share knowledge about shape
pairing.

NM (Nesting Module) – main part of system that manages S
elements and finally places them in R. M(a) parameter is used
to describe mesh in R.

DeQP – DeQuantization Process – converting S elements
into G elements. DeQP is an optional module, can be omitted.

4.1 Quantization process

Quantization process (QP) outputs with S having G object as
an input. QP is performed for each G separately. The size of S
and accuracy of QP depends on a parameter. The time needed
to perform QP on G can be expressed with a following
relation:

TQP = kWHla (1)

where: W – geometric width of G, H – geometric height of G,
k,l – coefficients related to the machine used.
The QP algorithm for a given G works as follows:

1. Find BG(xm,ym).

2. Divide BG(xm,ym) into Qa(xa,yb) elements. The result is
a mesh of Qa elements with
w amount of Qa in each row of mesh and h amount of
Qa elements in each column.

GQ

GQPP

QP

a

SP

NM

KB

Final nesting
effect

S1(w1,h1),
 S2(w2,h2)

,...,
Sn(wn,hn)

G1, G2, ..., Gn

Optional
external

KBEL sets
GQPP

algorithms

M(a

BSS

BSSC

KBC

DeQP
(optional)

Use Rotating

Use KB

3. Assign state to all Qa(xa,yb) elements:∀ Q(a)(xc,yd) ∈ BG,
Q(a)(xc,yd) = INT(Q(a)(xc,yd),G), c ∈ <0,w), d ∈ <0,h).

Figure 5. Shape G and its quantized representation S

Example. The quantized form of the shape G (Fig. 5) can be
denoted as

S(3,2)=111101110011.

4.2 Normalization and denormalization process

The Normalization Process (NP) is a process of extending
two S-es according to their properties. Each shape (S1 and S2)
is normalized. S1 is always a base – after normalization is
centered in its own mesh. S2 is placed in left-top corner of its
own mesh. NP adds columns and/or rows containing zeroes to
both S, to equalize them by size. NP allows finding suitable
coexistence by using SP process. The NP uses the following
algorithm:

1. For two received S objects: S1(x1,y1) and S2(x2,y2)
compute: mx=x1+2*x2, my=y1+2*y2,

2. Normalize S1:

2.1. Add c=mx-x1 columns to S1 (contain only zeroes).

2.2. x1=mx

2.3. Add r=mx-x1 rows to S1 (contain only zeroes).

2.4. y1=my

2.5. t=c/2+r/2*y 1; Perform ROR with t positions.

3. Normalize S2:

3.1. Add c=mx-x2 columns to S2 (contain only zeroes).

3.2. x2=mx

3.3. Add r=mx-x2 rows to S2 (contain only zeroes).

3.4. y2=my

The QKBMR algorithm also needs Denormalization Process
(DP), which performs removing bordering rows and columns
containing only zeroes. The rule states: DP(NP(S))=S.
DP(S(x,y)). It is performed using the following algorithm:

1. CT=(2x+1-1)*2(x+1)*y, If AND(S,CT)=0 - perform remove
first x+1 bits from binary representation.

2. CB=NEG(2(x+1)(y+1)-2x+1), If AND(S,CB)=0 – perform
remove last x+1 bits from binary representation.

3. CL=Cx+1, Ck=Ck-1*2
x+1+C0, C0=2x; If AND(S,CL)=0,

perform remove bits from positions p, for whose (p
modulo (x+1)=1) formula is satisfied..

4. CR=NEG(AND(C1, C2, C3 ,..., C(y+1))), where
Ck=(2k(x+1)-2)*2(y+1-k)(x+1)+2(y+1-k)(x+1)-1. If AND(S,CR)=0,
perform remove bits from positions p, for whose

(p modulo (x+1)=0) formula is satisfied.

Example. S normalized with NP is shown in Tab. 1.

Table 1. An example of Nomalization

Before NP After NP

S1 S2 S1 S2

1111

0111

0011

11

01

00000000

00000000

00111100

00011100

00001100

00000000

00000000

11000000

01000000

00000000

00000000

00000000

00000000

00000000

4.3 Shape pairing

Shape Pairing (SP) is an algorithm, that tries to find the best
coexstistent S2 for a given S1. S1 is always the first S from
BSS. SP compares S1 with every unpaired S from BSS and
records the actual best pair. The efficiency of a given pair is
determined by the EFF (2) coefficient:

EFF =1/((S1w+1)*(S1h+1)) (2)

The EFF uses w and h from S1 because after NP both S1 and
S2 have the same w and h. The S that is the best pair for S1
according to the EFF coefficient is marked as “paired”. SP
works using the following procedure:

1. S1 is a base for pairing and “stationary” object (will
remain unmoved in normalized mesh).

 S2 is a moving object.

2. GLEFF=0

3. For every unpaired S from BSS do:

3.1. Normalize S1(x1,y1) with S2(x2,y2)

3.2. SR=ROR1(S2)

3.3. If S2[1]=0 ∨ SR[1]=1 , go to 4.

3.4. If AND(S2, C)=0 ∨ AND(SR,C)≠0, where C=Cx2+1,
Ck=Ck-1*2

x1+1+C0, C0=2x1, perform ROR(S2,x2+1),
else perform ROR(S2,1).

3.5. M=XOR(XOR(OR(S1,S2),S1),S2)

3.6. If M≠0, go to 3.2

3.7. Compute EFF (OR(S1,S2))

3.8. If GLEFF<EFF, GLEFF=EFF and BF=OR(S1,S2)

4. BF contains best found co-placement of S1 and S2,
GLEFF contains EFF for this pair.

After performing the SP algorithm, the QKBMR receives
information from the SP module about the best fit found for a
given S1, the number of S2 that made the best fit with S1, and
the value of EFF coefficient for this fit.

4.4 Knowledge base

Every S is described by some bits and x and y coefficients.
Depending on the a factor, the QP process differs in accuracy.
This means, that many shapes can be quantized into the same

G

BG

w

h

S

bit representation, and a coefficient has large influence on
how manu shapes from a given set will go into equal binary
appearance. SP can use KB to optimize the process of
searching for the best fit. Before using the internal pairing
algorithm, SP can request KB for a specified pair S1 and S2. If
KB has such a record, it will reply to SP with the best fit. This
best fit can be placed in KB by the same SP module, or can
originate from another module. Many different Nesting
systems can share one KB. If KB does not have such a record,
according to S1 and S2, it replies to SP with “no result”
message. In that case, SP performs an internal pairing
algorithm for S1 and S2 and results with the best fit for these
two considered shapes. Then, SP sends the S1, S2 and result S3
to KB, which saves it for the future usage. When using KB,
the SP works in the following way:

1. S1 is a base for pairing and “stationary” object (will
remain unmoved in normalized mesh). S2 is moving
object.

2. GLEFF=0

3. For every unpaired S from BSS do:

3.1. Ask KB for S1 and S2. If KB replied with best fit
answer, place answer to BF, count EFF and put in
into GLEFF, go to 5.

3.2. Normalize S1(x1,y1) with S2(x2,y2)

3.3. SR=ROR1(S2)

3.4. If S2[1]=0 ∨ SR[1]=1 , go to 4.

3.5. If AND(S2,C)=0 ∨ AND(SR,C)≠0, where C=Cx2+1,
Ck=Ck-1*2

x1+1+C0, C0=2x1,

perform ROR(S2,x2+1), else perform ROR(S2,1).

3.6. M=XOR(XOR(OR(S1,S2),S1),S2)

3.7. If M≠0, go to 3.3.

3.8. Compute EFF (OR(S1,S2))

3.9. If GLEFF<EFF, GLEFF=EFF and BF=OR(S1,S2)

4. Send S1, S2, and BF to KB.

 5. BF contains best found co-placement of S1 and S2,
GLEFF contains EFF for this pair.

4.5 Rotating mechanism

The nesting problem, stated in this paper, allows G objects to
be rotated. This means, that also S objects can be rotated.
QKBMR algorithm uses RM (Rotating Mechanism) to rotate
binary representations of G, to afford better fit of two shapes.
Rotating is performed when searching for the best fit, the
rotated figure is also used while nesting. The BSS always
contains non-rotated objects – also objects that are nested in
rotated form, remain in original non-rotated figure. Rotating
binary shapes is not easy when rotating angle is other than
γ=kπ/2, k ∈ {0,1,2,3}, so QKBMR algorithm uses only these
four values while rotating S objects. Rotating can increase the
time needed for finding the best fit, but in many cases it is
able to find much better fit. When using KB, performing RM
is suggested. RM gives better results of pairing, these results
will be added to KB, so it is good to add better fits because
pairs recorded in KB will not be paired anymore. SP with RM
(and also KB) works using the following procedure:

 1. S1 is base of pairing and “stationary” object (will remain
unmoved in normalized mesh). S2 is moving object.

2. GLEFF=0; k=-1

3. For every unpaired S from BSS do:

3.1. Ask KB for S1 and S2. If KB replied with best fit
answer, place answer to BF, count EFF and put
in into GLEFF, go to 5.

3.2. k=k+1. Rotate S2 using γ=kπ/2 angle

3.3. Normalize S1(x1,y1) with S2(x2,y2)

3.4. SR=ROR1(S2)

3.5. If S2[1]=0 ∨ SR[1]=1 , go to 3.11.

3.6.If AND(S2,C)=0 ∨ AND(SR,C)≠0, where C=Cx2+1,
Ck=Ck-1*2

x1+1+C0, C0=2x1, perform ROR(S2,x2+1),
else perform ROR(S2,1).

3.7. M=XOR(XOR(OR(S1,S2),S1),S2)

3.8. If M≠0, go to 3.4.

3.9. Compute EFF (OR(S1,S2))

3.10. If GLEFF<EFF, GLEFF=EFF and BF=OR(S1,S2)

3.11. If k<3 go to 3.2.

4. Send S1, S2, and BF to KB.

5. BF contains best found co-placement of S1 and S2,
GLEFF contains EFF for this pair.

4.6 Nesting module

NM is the main module of QKBMR system. NM sends
requests to SP. After performing SP, resulting pair (S1 and S2)
is merged and recorded as S1. S2 is marked as “paired” – so it
will not be taken into consideration during the next pairing
processes. NM has a block, that is able to decide whether to
finalize nesting of S1 and S2 (place them on M(a)) or to send a
request to SP once more, but with special conditions. This can
be useful, when the algorithm used in SP does not work well
enough – then NM can detect that kind of pair and request to
find the pair for S1 again, without using S2, previously rated as
the best fit. NM is the only module of QKBMR, that is able to
operate on BSS during nesting process – so it is easy to
implement some exclusions for pairing algorithms. Also,
according to some rules, NM can pre-nest some shapes,
before starting to request SP. These additional functions had
not been researched and are categorized as future work.

4.7 GQPP and DeQP

Two additional mechanisms of operating on shapes, called
GQPP and DeQP, are included into QKBMR algorithm.

GQPP is a GQ preprocessor. For some G sets and pairing
algorithms, some operations on G set can speed up the nesting
process. GQPP performs some sorting or other methods of
changing G order in GQ. In the presented research, GQPP
was not activated.

DeQP is a module that performs de-quantization: converts
binary representation (S) into geometrical figure (G). Due to
DeQP, QKBMR is able to restore original form of shapes after
the nesting process, so binary conversion is transparent for the
user of QKBMR algorithm. Because QKBMR records original
geometric form of shape, so there is no loss of information.
DeQP also uses recorded relations of quantized form and

98%

2%

KB

Compute

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60

a

T
im

e

1

10

100

1000

10000

100000

1000000

10000000

0 10 20 30 40 50 60

a

N
es

ti
n

g
 t

im
e

original form – so regardless of a parameter, after QP and
DeQP, shape will be placed in the same place on the canvas.

5 Investigations

QKBMR algorithm had been implemented in the
experimentation system to research the efficiency of the
proposed mechanisms. QKBMR algorithm is a complex
system, containing many modules presented in Section 4 and
requiring the usage of several algorithms.

QP is a process that is required to be performed before the
other nesting modules. QP effect depends on a coefficient in
an exponential way. The relationship between a and QP,
found on the basis of results of simulations is shown in Fig. 6.

A small a coefficient gives (more accurate) mapping of G
to S, but requires more time. When performing the nesting
process using algorithms that use quantized shapes, it is
possible to quantize them once and store in that form, so no
quantization would be needed during next nesting processes.
For every nesting case, an appropriate a coefficient should be
taken. It also affects the nesting accuracy. Many random-
generated sets of shapes were taken, processed with QP, and
then results averaged.

Figure 6. Influence of a coefficient to time of QP

The quantization coefficient a also affects to the time of
nesting process. When G is transformed into a larger set of
bits, SP module has more data to process. This is an
exponential relation, shown in Fig. 7. in logarithmic scale. As
is visible on the graph, there is an a value, for which time
decreases much, and for larger a values, its influence to time
is smaller. If results of nesting for this edge value are
satisfactory, this value should be used for processing shape
sets. The time and a impact can differ according to the
algorithm used by SP module.

Figure 7. Influence of a coefficient to time of nesting process

During the nesting process, in module SP the same S can form
a pair with other shapes many times. Because of the fact that
the nesting process is very time-consuming it is worth trying
to save the time by recording already computed best-fits for
shapes. A knowledge base system used in QKBMR algorithm
saves all the computed cases for future use, not only by the

given system but also by other systems that share the given
KB. There is some time needed by KB, but it is very small
compared to the pairing process. Investigations showed, that
in the standard averaged case taking information about pairs
from KB is approx 2% of the time-consumed for computing
their best fit (which strongly depends on the a coefficient).

Figure. 8. Time of pairing and time time of acquiring info from KB

The implementation of RM may result with a better EFF
coefficient, but requires more computations, because of the
fact that every S is processed 4 times (0, 90, 180 and 270
rotating angle). Investigations showed, that depending on type
of S (its geometrical shape), RM can highly increase the EFF
coefficient. Table 2 shows the results - the averaged values of
EFF computed with (2) for RM (turned on) and RM (turned
off) for the same data sets.

Table 2. Efficiency and using RM.

 RM OFF RM ON
Average EFF 0.021 0.038

6 Conclusions

The proposed QKBMR algorithm seems to be promising
for sets of shapes with many objects of the same categories,
as in the most industrial nesting processes. Thus, the proposed
approach can strongly decrease the time of nesting.

The further work in the area of nesting systems will be
concentrated on finding more effective shape pairing
algorithms as it is the most time consuming module.

References

[1] Burke E., Kendall G., Applying Ant Algorithms and the No Fit
Polygon to the Nesting Problem, Sci. Report, The University of
Notthingham (2001)

[2] Nielsen B., Odgaard A., Fast Neighborhood Search for the
Nesting Problem, Sci. Report, University of Copenhagen (2003)

[3] Gomes A., Oliveira J., A GRASP Approach to the Nesting
Algorithm, Sci. Report, Porto, Portugal (2001)

[4] Rintala T., A Genetic Approach to Nesting Problem, 2nd Nordic
Workshop on Genetic Algorithms and their Applications (1996)

[5] Albano A., Sappupo G., Optimal Allocation of Two Dimensional
Shapes Using Heuristic Search Methods, IEEE Trans.on Syst. Man
and Cybernetics, 10,. 242-248 (2002)

[6] Oliveira J., Ferreira J., Algorithms for Nesting Problems, Applied
Simulated Annealing (1993)

[7] Adamowicz M., Albano A., Nesting Two-Dimensional Shapes in
Rectangular Modules, Computer Aided Design, 8 (1976)

	Quantization with Knowledge Base Applied to Geometrical Nesting Problem
	Repository Citation

	Quantization With Knowledge Base Applied To Geometrical Nesting Problem

