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ABSTRACT

A Study of the Influence of Physical Parameters on the Drying of Porous Media
by
Jason C. Viggato
Dr. Robert Boehm, Examination Committee Chair
Professor of Mechanical Engineering
University of Nevada, Las Vegas

An experimental setup is developed to observe the mass transfer that occurs in the
drying of saturated porous media due to bulk flow of gas. The analysis and equations are
developed in a one-dimensional perspective, and focus on the convecticn and evaporation
that results. Humidity readings are monitored at various locations and used in the
analysis of the results. These procedures are used in test cases for Steel spheres and
Ceramic beads both 4.5 mm in diameter at .25 L/min, .5 L/min, .75 L/min and 1 L/min
flow rates.

Drying times and humidity plots versus time for both steel and ceramic are
witnessed to be similar in nature. A correlation for the drying time is developed through
use of Sherwood number, Reynolds number, and Schmidt number. This is achieved by
using the non-dimensional quantities and acquiring a linear regression and equation. The
coefficients and exponent values of the general equation for the Sherwood number are

then solved.

ii
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SYMBOLS

A total surface area per unit volume
c specific heat

Cp specific heat at constant pressure
d, diameter of particle

D3 coefficient of diffusion

g gravitational constant

h enthalpy

hp mass transfer coefficient

hvap latent heat of evaporation

K permeability

K wetting phase relative permeability
Keg non-wetting phase permeability

k thermal conductivity

L length

m, mass flow rate due to evaporation
N, evaporation rate

P pressure

P, capillary pressure

Py saturated vapor pressure
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saturated vapor pressure

R universal gas constant

Re Reynolds number = puD/pn

RH relative humidity

S liquid phase saturation

Sg gas phase saturation

S reduced saturation (S-S;)/(1-Sy-Sg)
Sted surface area of bed per unit volume
Sc Schmidt number = v/Dy,

Sh Sherwood number = hndy/D)

T temperature

t time

u critical bed velocity

\Y volume

v specific volume

Greek Symbols

B volumetric thermal expansion coefficient
£ phase volume fraction

T} dynamic viscosity

p density

¢ porosity

Subscripts

g gas phase
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1 liquid phase
s solid phase
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CHAPTER 1
INTRODUCTION

The study of drying in porous media is becoming increasingly more important as
society faces more intricate needs and problems related to energy consumption. Many
areas of engineering such as catalytic converters, pharmaceutical products, waste
disposal, water migration, geothermal energy management, insulation and oil and gas
flows to list a few, all utilize the principles of combined heat and mass transfer, fluid flow
or both through porous media. Keey (1992) states that the majority of industrialized
countries consume between seven and fifteen percent of their total energy in drying
processes.

Numerous studies involving heat and mass transfer with phase change have been
conducted in various applications. Francis et al. (1996) have investigated jet
impingement drying processes for semi-porous textile composites. Plumb et al. (1992)
performed studies in heat and mass transfer in drying of packed beds. Keey et al. (1994)
model the temperature profiles within boards during high temperature drying processes.
It is postulated for heartwood that an evaporative plane moves through the board.

Recent development of the Yucca Mountain Nuclear Waste Repository has been
the sourée/for great debate and some concern over the accuracy and safety of performed
studies and calculations. Boehm et al. (1995a, 1995b) studies indicate that the humidity

values in vacant spaces near porous formations may be underestimated in sub-residual
1
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conditions when arbitrarily fixed capillary pressures are used in numerical codes. The
outlet humidities are considerably higher than those predicted using most repository
codes.

Gong and Mujumdar (1994) study the influence of an impermeable surface on
pore steam pressure during drying of refractory concrete slabs. In this study, a finite
element model for the drying process is described. Tests indicate that an impermeable
surface can produce very high pore pressure in the drying process, and the potential for
explosive spalling is greatly increased.

Sun and Woods (1997) simulate the heat and moisture transfer processes during
deep grain bed drying. Here a deep barley bed is used as an example of grain drying. It
is witnessed that when the bed temperature approaches the drying temperature, the
moisture removed by the drying air may cause a temperature drop in the bed due to
evaporative cooling. Walker et al. (1997) studies the effect of humidity on NPK fertilizer
drying. It is shown that the correlation between product temperature and moisture
content can’t be explained by the diffusion drying theory, but indicates evidence for the
humidity drying theory.

Chou and Chua (1997) investigate the receding evaporation front in convective
food drying. Observations are made that show the front moves faster at the early stage of
drying. A longer time is required for the drying front to move the same distance as
drying progresses. There comes a time when the front is stationary and the specimen
may be regarded as having reached a quasi-thermal equilibrium with the air. As airflow

increases, so does the moisture removal rate.
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When the surface area of drying increases and other physical dimensions remain
constant, the volume up to each depth sustains a higher amount of moisture. Moisture up
to each depth has to be completely dried before the front may start to recede from the
surface. The receding speed is found to be highly dependent on the exposed drying
surface of the product and the drying conditions of the air. It is shown that the square
root of the drying time varies linearly with the transient position of the front. The
receding front is shown to be related to the drying rate of the product as the front
decelerates inward to the center of the material.

La Comber et al. (1997) study the effects of particle size on the drying of milled
peat. Studies from various sources indicate that the drying rate of peat in powder form on
the surface of a bog is highly dependent on its particle size distribution. A drying
chamber was constructed and small (2-5.6 mm), medium (5.6-9.5 mm) and large (9.5 -16
mm) diameter particles are tested. Results show that large diameter particles dry 10-25
% percent faster than the smaller particles depending on the peat type.

Bastian (1997) creates a synthesis of scientific activity in the area of heat and
moisture transfers in capillary-porous medium. The transfers are characterized by two
independent variables- temperature and water content. Parameters are set for various
scenarios of porous drying through heat transfer and mass transfer. Bertmieu et al.
(1997) develop a simulation through use of a mathematical model to design an industrial
drier for natural rubber in granule form.

As good as the numerical codes such as FEHM are, there is still need for further
experimental study of the heat and mass transfer phenomena that occur in porous media.

This experimental study is performed to witness the effects of drying of residually
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saturated granular porous media by bulk flow of nitrogen gas on humidity and
temperature through use of different porous material types. Of the data collected, the
most emphasis is put on the humidity readings of the gas flow exiting the porous
continuum.

Humidity readings of the exit flow from the media are plotted versus time. These
tests are performed from the time of residual saturation and ended at the time that the
porous media is completely dried (when the humidity value reaches the humidity value of
the incoming nitrogen gas). Tests are run for the materials using four different flow rates
of nitrogen gas- 0.25 L/min, 0.5 L/min, 0.75 L/min and 1 L/min.

The results are then compared and a correlation for bed mass transfer rates is
made from experimental values for both steel spheres and ceramic beads of 4.5 mm
diameters. Empirical correlations are made for both the steel and the ceramic beads
through use of Sherwood numbers, Reynolds numbers, and Schmidt numbers which are

acquired through non-dimensionalization of the experimental data collected.
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CHAPTER 2
EXPERIMENTAL STUDY

2.1 Experimental Setup

The experimental setup is shown in the schematic depicted in Figure 1. It consists
of a nitrogen bottle that is the source of the flow for the gas that is used in the drying
process. The flow runs through a servo valve into a Controller/Meter (error of £ 1%)
connected to a computer data acquisition device that monitors the flow rate. Flow then
proceeds into a cylindrical container that contains a capacitance humidity sensor with a
maximum error of 1% and a thermocouple connected to the data acquisition to monitor
inlet relative humidity readings and temperature at various time intervals.

After passing through the initial humidity sensor, the gas flows into the test
section containing the porous media. The test section consists of a 0.406 m (16”) long
aluminum cylinder, with an inside diameter 0£0.0381 m (1.5”) and two windows for
visual observations. The inside of the container walls contain thirteen 30 gauge K-type
thermocouples that have a maximum error of 0.75%. The thermocouples are at various
locations along the length of the cylinder. Gas and water vapor then flow out a tube,
where another humidity sensor records the outlet readings. Figure 2 shows a cross
sectional \//iew of the test bed.

A thermocouple outside of the system is present and measures the ambient

temperature. The data acquisition software LabView collects all the temperature and
5
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voltage readings (relative humidity) from the digital signal conditioning and data
acquisition devices, and a digital scale is used to weigh the container dry and wet. .
2.2 Experimental Procedure

The humidity sensors at the inlet and outlet of the test section are first calibrated
using the ASTM E104-85 method. Since the sensors are so sensitive, the calibrations are
performed before each run of the experiment. This is especially pertinent to the outlet
sensor, because this sensor is exposed to the most change in ambient conditions; such as
temperature and humidity changes. This calibration consists of using lithium chloride,
sodium chloride, and potassium sulfate in saturated solutions at various temperatures.

Humidity sensors are placed just above the saturated solution, and readings are
taken in the test tube for each material. The values for the corresponding relative
humidity percentages for differing temperatures and substances may be viewed in Table 1
(ASTM Standard 1991).

The highest temperature available for calibration on the ASTM standard is 50°C,
so a calibration at the boiling point is unavailable. This limitation doesn’t pose a problem
in this experiment because the flows and medium are at room temperature, about 77°F.

After the calibration, the test section is weighed at both dry and wetted conditions.
This will give an idea of how much water vapor has been displaced at the end of the
experiment (porous bed is completely dry). To achieve wetted conditions, the test section
is saturated by filling the porous medium with distilled water and then drained. All tubes
are now connected and the power to the voltage regulator, data acquisition, and
computers is turned on. The LabView data acquisition software is started for both the

temperature readings and the voltage data, and then the nitrogen gas is allowed to enter
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the system by opening the valve and regulator on the bottle. Flow of gas is continued
until the porous medium is completely dried, or in other words, the relative humidity in
the exiting flow is equal to the humidity of the inlet gas; approximately 5 to 9.5 percént.

Readings are taken every 20 minutes or every hour for the weight of the system
depending on the flow rate. Smaller time intervals are used for high flow rates and larger
intervals for the slower rates. This will indicate the amount of water evaporated over
each time interval. The time for this condition to occur will vary according to the flow
rate of the incoming gas. High flow rates such as | L/min may take around 2 hours and
lower flow rates even longer.

Procedures listed above are done for two different materials. The first consists of
steel spheres, the same used in BB guns, with a diameter of 4.5 mm. The BB’s h;ave a
thermal conductivity (k) of approximately 58.7 W/m-K at about 20°C. The ceramic
beads are also spherical and holiow of 4.5 mm diameter, and have a thermal conductivity

of approximately 0.1 W/m-K.
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CHAPTER 3
DATA REDUCTION

Since there are numerous data points gathered over the course of one experiment,
it is necessary to reduce them in a way that is easy to analyze the trends that occur. The
best way to compare the results from the different materials used is to plot the data on
similar scale graphs. This is done for the relative humidity readings from humidity
Sensors.

Before the humidity results can be plotted, a correlation between the voltage data
and that of relative humidity must be established. This correlation goes back to ihe
calibration of the humidity sensors prior to running the experiment. The voltages that
were obtained during the calibration process correspond to relative humidities of the
different substances at varying temperatures. A graph is then produced by plotting
voltage versus the humidity listed in the ASTM standard for various temperatures that
were calibrated. A linear regression is then used to smooth out any irregularity that may
occur with the data points. This plot will then serve as a chart to convert voltage readings
to relative humidity. Calibrations for both inlet and outlet sensors are shown in the
appendices.

VaJlues for humidities of the various test cases may now be plotted versus time
using the equation acquired for the line of the voltage versus humidity calibration. All

tests are then compared to one another and conclusions are made through analysis of the
11
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plots for the varying flow rates. These plots are discussed in the following discussion and
results section.

An empirical correlation is then made from the humidity plots to determine a
general equation. This is accomplished by solving for values of Reynolds number and
Sherwood number through known data. An evaporation rate is acquired from data and
then a mass transfer coefficient may be obtained. This is done by creating a calibration
plot of the mass of water lost versus time. The area of particular interest is the section of
constant mass loss rate; in other words, the “flat” areas in the beginning and end of tests
are neglected.

The calibration plot for the evaporation rate is established using the area of the
curve described above, and a linear regression is performed to acquire an equation that is
representative of the mass transfer per unit time (evaporation rate). The slope of the line
will represent the mass divided by time, thus giving the evaporation rate. From these
values, the mass transfer coefficient is determined and then a Sherwood number (Sh)
value is known, and is plotted versus the Reynolds number on a log-log scale.

This procedure will non-dimensionalize the experimental parameters, and then
produce a non-dimensional correlation, from which coefficients may be determined.
After acquiring a plot and the corresponding equation to the curve, and coefficients, a
correlation for the Sherwood number is then made from the data for both steel and
ceramic packed beds. The equation for the Sherwood (Sh) number will give design
parameters for mass transfer through use of the Reynolds number (Re) and the Schmidt

number (Sc). A typical form of the Sherwood equation would look like:

Sh =cRe® Sc’
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where a, b and c are all values acquired through the equation given in the correlation of
the data. Since all tests are performed at room temperature, the Schmidt number remains

constant. The Sherwood number equation is then formulated in the following manner:

Sh = (cSc®)Re*

where ¢Sc” is a constant. This is done by comparing the equation of the curve of the log-

log plot to that of a line with the equation:
logy =mlogx+logk

where log y would correspond to the Sherwood number, m the exponent a, of the
Reynolds number (x) and k the Schmidt number to an exponent value multiplied by the

constant c.
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CHAPTER 4

DISCUSSION AND RESULTS

Many different phenomena are witnessed over the course of the experimental and
correlation study. The nitrogen gas flowing from the inlet shows approximate values of 5
to 9.5 percent humidity at room temperature or about 24 °C. The Reynolds number for 1
L/min flow rate is 0.421, 0.75 L/min is 0.316, 0.5 L/min is 0.211 and 0.25 L/min is 0.105.
The Reynolds number is calculated based on the diameter of the particle. The inlet and
outlet humidity calibrations may be seen in Appendix II and III. As an example, a
voltage of 2.142 V could be approximately 5 percent and 2.1395 V about 9.5 percent
humidity depending on the individual calibrations. These values vary slightly from test
to test, but in general it is known from various calibrations performed and Boehm et al.
(1995a, 1995b) experiments, that humidity values of commercial grade bottled nitrogen
gas at room temperature are in this range. All tests are run until values of about 5 to 9.5
percent are reached. When this value is reached, it is the humidity of the nitrogen gas
that is being read by the humidity sensor, the lowest possible exit humidity attainable
while gas flow exists. Evaporation rate plots are shown for both steel and ceramic in

Figures 13 and 14.

4

14
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4.1 Steel Sphere Tests

For the first test, steel at 0.25 L/min, .0197 kg of water was weighed initially.
The test ended after 32,425 seconds (9.01 hours). The second test, steel at 0.5 L/min, the
weight of the test section dry is 3.509 kg and wet is 3.529 kg. Therefore approximately
.02 kg of water is evaporated during the drying process of the test section. The drying
time for this test was 11,530 seconds (3.2 hours). Test run number three, 0.75 L/min, has
a dry weight of 3.509 kg and wet is 3.5297 kg, thus having .0207 kg of water. The drying
time for this test is 9,555 seconds (2.65 hours). For the fourth test, steel at 1 L/min, the
dry weight is 3.509 kg and the wet is 3.5305, and about .0215 kg of water is evaporated.
Drying occurred in 8,950 seconds (2.49 hours).

Figure 3 shows the outlet humidity versus time for the 0.25 L/min test. There are
approximately one thousand seconds of constant humidity and then a fairly exponential
decline occurs to ten thousand seconds. From this point to fifteen thousand seconds,
there is a gradual increase in humidity and then constant decline to the end of the test.
The inlet humidity is steady at approximately 6.5 percent throughout (Figure 3). The
mass rate of the water lost through evaporation has a flat section in the first two hours
and in the last two, with steady loss rate in the middle of the test (Figure 11).

In the second test, the steel at 0.5 L/min outlet humidity versus time may be
viewed in Figure 4. The outlet humidity is 100% for about fifteen hundred seconds.
After this the decline is fairly exponential over the entire test. Figure 4, the inlet
humidity of nitrogen starts at 8 percent and indicates a decrease in humidity and then
shows values of 6 percent throughout. The mass of water lost shows low rates of transfer

up to the first forty minutes, and the last forty minutes of the experiment.
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Experiment three, 0.75 L/min, shows once again a decay resembling an
exponential curve (Figure 5). The first fifteen hundred seconds show values of high
humidity and then a constant decline through about eight thousand seconds. The last
sections of the test show very slow decline. The inlet humidity was 6 percent through
most of the test. Figure 11 shows the mass of water lost and has flat sections in the first
twenty minutes and last thirty.

Test four, steel 1L/min, shows more of an exponential decay of humidity values
over time (Figure 6). The inlet humidity of nitrogen is mostly constant, with the
exception of about five spikes throughout the approximately 9000 seconds. The cause of
these fluctuations is not known. One explanation could be the conditions the tank was
filled at. A second is that as the test progresses, lower pressure of the contents results due
to consumption. This may also have an effect on inlet humidity values. The mass
transfer rate is low for the first twenty minutes and is flat in the region from one hundred

to one hundred forty minutes.

4.2 Ceramic Bead Tests

Test number one has a dry weight of 2.631 kg and wet 2.669, having a weight of
water .0386 kg. The drying time for this test is 33,725 seconds (9.37 hours). For the
ceramic beads in test number two, the dry weight is 2.6308 and wet is 2.6694 kg. This
test finished drying in 11,140 seconds (3.09 hours). The third test, 0.75 L/min, the
weight of the water present is .039 kg. It is finished in 9980 seconds (2.77 hours). Test
number fo’ur produces .0393 kg of water evaporated over the entire process. The drying

time of test four is 9,325 seconds (2.59 hours) for the 1 L/min flowrate.
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Test one, 0.25 L/min, shows similar characteristics of previous curves. Flat

sections are evident in the beginning and consistent decay follows (Figure 7). Inlet
humidity readings are six percent through the majority of the test. The mass lost is slow
for the first and last two hours (Figure 12).

Figure 8 shows the outlet humidity of the ceramic bead test at 0.5 L/min. A very
smooth decay is witnessed over most of the test. A look at Figure 8, the inlet humidity of
nitrogen, shows a higher humidity for about 500 seconds (8 to 9 percent) and then is
constant through out (6 percent). In Figure 12, similar mass lost trends are present.

In test number three, the first one thousand seconds are at 100 percent humidity
and then a decline starts (Figure 9). There is a spike around three thousand seconds, and
then the rest of the test is similar to previous runs. The inlet humidity is very consistent
at about six percent. The mass loss chart (Figure 12) shows flat sections in the first
twenty minutes and in the last twenty minutes.

The fourth and final test is that of ceramic beads at a flow rate of 1 L/min
(Figure10). The outlet humidity curve also shows a somewhat exponential decay, with
one major spike around 7000 seconds. The inlet humidity is a bit unstable according to
Figure 10. However, the plot looks worse than it is in actuality, because humidity
readings only vary by 2 or 3 percent. As stated before, it is not known why this inlet
humidity varies as much as it does. The transfer of water also is similar to previous tests

conducted (Figure 12).
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4.3 Comparison of Steel and Ceramic Experiments

An analysis of all the humidity plots simuitaneously for the most part shows
similar plots throughout for both materials and all flow rates with few exceptions. Table 2
and Table 3 show the Reynolds number and Sherwood number values for each test.

All tests at the same flow rate, regardless of material, show extremely close
drying times. In example, the 1 L/min steel and 1 L/min ceramic beads dried at nearly the
same time and the same is true for the 0.5 L/min drying flow rates. Drying times for
different flow rates for steel are listed Table 4 and values for ceramic in Table 5.

Some sources of problems encountered that are worth noting follow. The ceramic
beads aren’t perfectly round like the spheres. This could form a slightly less than perfect
bed and also cause some deviation in results. There is also some variation in the inlet
humidity, mostly in approximately the first SO0 seconds. It is not clear as to why only a
few of the tests show jumps in the inlet humidity. This is most evident in the ceramic |
L/min test, but as noted before, the variations aren’t as bad as they look. Even with the
fluctuations, there shouldn’t be a great impact on drying times because the jumps are only
a few percent change in humidity.

Compared to Boehm et al. (1995a, 1995b) experiments with glass beads of 1 mm
diameter, outlet humidity curves vary. Previous experiments for the glass beads at room
temperature with a Reynolds number of 0.868 show a constant outlet humidity of nearly
100 % for a little more than half of the drying time, and then a sharp decrease followed
by constant decrease until completion. All tests observed regardless of material (steel or

ceramic) showed short periods of 100% values and then constant decay. This is most
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Table 2-Steel- Reynolds Numbers and Sherwood Numbers

Flow Rate Reynolds Number Sherwood Number
0.25 L/min 0.267 114.076
0.5 L/min 0.533 305.39
0.75 L/min 0.8 341.629
1 L/min 1.066 465.61

Table 3- Ceramic: Reynolds Numbers and Sherwood Numbe:

Flow Rate Reynolds Number Sherwood Number
0.25 L/min 0.267 205.358
0.5 L/min 0.533 506.676
0.75 L/min 0.8 653.806
1 L/min 1.066 684.974

Table 4- Steel: Total Mass of Water and Drying Times

Flow Rate Total Mass of Water Time
0.25 L/min 0.0197 kg 9.01 hours
0.5 L/min 0.02kg 3.2 hours
0.75 L/min 0.0207 kg 2.65 hours
1 L/min 0.0215 kg 2.49 hours

Table 5- Ceramic: Total Mass of Water and Drying Times

Flow Rate Total Mass of Water Time
0.25 L/min 0.0386 kg 9.37 hours
0.5 L/min 0.0386 kg 3.09 hours
0.75 L/min 0.039 kg 2.77 hours
1 L/min 0.0393 kg 2.59 hours
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likely due to the use of 4.5 times larger spheres. Material may also play a role, because

different materials have different values of surface tension.

4.4 Non-Dimensional Curvefit

The Reynolds numbers and Sherwood numbers acquired through the calculations
from the data are used to obtain a correlation for both steel and ceramic materials. The
Sherwood number is plotted versus the Reynolds number on a log-log scale for the 0.25
L/min, 0.5 L/min, 0.75 L/min and 1 L/min for steel and ceramic. A linear regression of
the points is then taken and an equation in the form y = mx + k is achieved along with an
R? value. These values may be seen in Figure 15 for steel and Figure 16 for ceramic
tests. The steel test produced a R? value of .9445. The ceramic test had a slightly lower
value of .9281. Both test values give fairly good fit values. Some possible reasons for
less than perfect correlations may be the packing of the bed, irregularity of ceramic beads
and variations in inlet humidity levels in a few tests. The ceramic also may have been
able to hold more water, thus giving a state slightly beyond residually saturated.

After solving for the values of the coefficients, empirical equations are obtained
for steel and ceramic spheres. For steel the following equation for the Sherwood number

is obtained:
Sh =2.6613Re**?
The ceramic data yields a Sherwood number that looks like the following:

7

Sh=2.8729Re™*
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Both equations are valid in the ranges 0f 0.267 < Re < 1.066. The above equations are

derived through use of flow rates at room temperature conditions. Further study could

improve on the accuracy and verify results found in this study.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

Evaporative drying experiments are conducted for both steel and ceramic porous
media fills. The inlet and outlet humidities have been monitored and plotted versus time.
Most of the curves are similar in nature for drying rates of each material and flow rate.
The drying times were extremely close at similar flow rates regardless of the material. A
comparison of the mass of water and the drying times for each material and flow rate may
be seen in Table S. Thermocouple readings showed temperature changes in the media
due to evaporative cooling only varying by a couple of degrees in the experiments
performed. Empirical correlations for Sherwood number have been acquired for steel

and ceramic spheres in the range 0f 0.267 < Re < 1.066. The correlation for steel with a

constant Schmidt number at room temperature is:

Sh =2.6613Re***

The equation for ceramic was found to be:

 Sh=.2872Re®®

36
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APPENDIX I
DEVELOPMENT OF THEORY

Although the test is experimental in nature, most of the theory presented is for
background knowledge. However, several of the equations listed are used in the analysis,
and may be seen in the calculations in Appendix VI, VII, and VIII. The model has been
developed in a one-dimensional, two phase, transient flow with evaporative processes
through a residually saturated porous medium.

Fluid flow through a porous media presents difficulties in solutions to governing
equations due to the complex and changing geometry between the particles in which the
fluid flows. To simplify the geometry, approximating equations were obtained by
averaging quantities over a control volume that is large in comparison with the particles
and interstices of the porous medium.

By applying the conservation of mass to the control volume, the continuity

equation results.

Ogp  Opu  Opv Opw _,
a & &y oz

Fort the one-dimensional model the continuity equation takes the following

form:

37
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where ¢ is the porosity, S is the liquid phase saturation, S, is the gas phase saturation, p;

is the liquid phase density, pq is the gas phase density, ps is the saturation density, u, is

the liquid phase velocity, ug is the gas phase velocity and m, is the mass flow rate.

According to Whitaker (1977) and Boehm et al. (1995a, 1995b), the

above equation is used inconjunction with the following assumptions:

1.

2.

6.

7.

Viscous dissipation and work due to compression is negligible.

The medium through which flow occurs is homogeneous.

The streamwise component of mass diffusion is negligible compared to
convection.

Thermophysical properties except nitrogen gas and water vapor are
considered to be constant.

The solid matrix of the porous media is incompressible and no chemical
reactions occur.

The system is free of bound moisture in the solid phase.

Water vapor and gas components can be treated as ideal gases.

For a one phase one-dimensional flow, the mass flow rate is defined as:

m.=p Uo

7/

where D is the diameter of the particle and the filter velocity up may be obtained from:

3
H
STLS
3
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The above equation represents the change in pressure (P) with respect to x, i the dynamic

viscosity and K the permeability. The Reynolds number of the incoming gas is obtained

through the following equation:

Re= pu_D
U
After taking into consideration the more complex two-phase flow, the equations and

analyses develop in the following. The gas velocity through the medium is:

Ug = —%(Vpg— %)
M

where kg is the relative permeability of the gas, yg is the dynamic viscosity of the gas, P
and pyg are the pressure and density of the gas respectively, and g is the gravitational
constant. The velocity of the liquid is represented by the same equation with the
exception of properties values indicated by a subscript | where applicable. However,
since the bed is assumed to be residually saturated, u; is assumed to be nearly zero. Bejan
(1992) after taking averages over an elemental volume of the porous medium, acquires

for the solid phase:

T«

3 =(1-@)Ve(kVT:)+(1—-@)gqs

(1-@)(pe)s
and for the liquid phase:

¢(pcp)1%'7—"— + (pce) ;0 VTi=¢Ve(bVT)+dq
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where ¢ is the porosity, T is the temperature, t is the time and q  is the heat flux per unit

volume. Setting T.=T\=T and combining the previous two equations, the energy equation

becomes:

(pc)m%-&- (pc) ;o VT =Ve(knVT)+qm

Taking into consideration pressure changes, then the term BT(0P/6t+ueVP) is added to

the left side of the above equation where:

i)

B is the volumetric thermal expansion coefficient and is a function of the change in
density with respect to temperature at a constant pressure.
Boehm et al. derive the volume-average thermal energy equation for both phases and

acquire the total thermal energy equations as:

§[¢S'1phz + Sepohs + (1 - §) e |+ V @ ok + petishi)

—VO(kVT)—[%t}:+(w+ug)oVP]+n.xehvap

The volume constraint equations are:
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For multicomponent and mulitiphase flows the total mass is equal to the sum of all the

individual masses combined (m=Ym;). Thus concentration is defined as:

and the aggregate density of the mixture is the sum of all the concentrations:
p . Z Ct

As stated earlier, the water vapor and gas can be treated as ideal gases, therefore the gas

law yields the equations:

PV = mRaT
or
PV =nRT

where the gas constant of the mixture (Rp) and the universal gas constant (R) are:

The term n represents the number of moles in the mixture and m is the mass. The partial

pressure P; can be observed in the following two equations:

PV = m:RmT
or
PlV = mRT

Summing these equations over i, Dalton’s law results:

P=>P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Summing these equations over i, Dalton’s law results:

P=Y) P

In this experiment, there are two i components, the nitrogen gas and the water vapor.
From Kaviany’s (1991) empirical correlations, the following relationships are used for

the relative permeabilities for the gas and the liquid:

ki =S?
by =1.2984 ~1.9832S +.7432S?

Capillary pressure is defined as:

Pc=-'Pg—Pl

Temperature relation can be derived from the combination of Kelvin’s relation and the

Clapeyron equation resuiting in the equilibrium between liquid and gas phases:

_ Toll+P:/ prhwp))
" 1=To(Rs/ hvap) In( P / Po)

where T and P, are reference temperature and pressure respectively and P is the

saturated vapor pressure. Relative humidity values can be obtained from:

Pg=P:gRH

where P is the partial pressure of the gas and RH is the relative humidity. For mass
transfer, the Sherwood number is defined as:

Sh=hm-dp
D2
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where hp, is the mass transfer coefficient, d, is the diameter of the particle and D, is the

binary diffusitivity. The total surface area per unit volume of a porous bed is:

The equation for the Schmidt number is:

v
Sc=—
where v is the kinematic viscosity.

A mass transfer coefficient may be obtained through use of the equation:

na = hmA(pa.s ~ pa.<)

where n, is the evaporation rate, A is the total area of the porous bed, p,; is the density of
the water on the porous surface, and p, » is the density of the bulk flow of gas. If the free

stream water vapor is assumed to be an ideal gas

the relative humidity (¢« ) of the bulk gas is represented in terms of the density of the
gas (Pa») and the saturation density (p, ) at the ambient temperature (T). When p,s is
equal to p, dTs) (the density of the liquid at the surface temperature), the following

equation results:

Na = hmA[pa, sa(Ts) = o, sar(T=) |
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APPENDIX II

HUMIDITY SENSOR CALIBRATIONS- STEEL
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Reynolds Number Calculations

Calculations for .25 L/min Nitrogen Flow Rates

¢ =.395 Porosity (Kaviany 1995)
p = l.l42|-lig_- Density of Nitrogen gas at 24 degrees C
mJ
b - 17.8410-106. X8 Dynamic viscosity of Nitrogen gas at 24 degrees C
m-sec
D peq =-0381'm . . A
Diameter of tube for incoming Nitrogen gas
Dpeg
A =m| bed /
A=11410"° 'm? Area of tube for incoming Nitrogen gas
min
Q=4167"10"° ‘m’-sec’! Flow rate of incoming Nitrogen gas
U :&
A
U=9252"10 ° "m'sec ' Velocity of incoming Nitrogen gas
D sphexe =4.5-mm
PUD ghere
Rﬁ = __—Sp_
D B
Rep =0.267 Reynolds number
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Calculations for .S L/min Nitrogen flow Rates

Q = 5.ut_er

~ min Flow rate of incoming Nitrogen gas
U - _Q_

A¢
U =0.019'm'sec ! Velocity of incoming Nitrogen gas
Re D = p'_U.D Sphcl'e_

B

Rey =0.533 Reynolds Number

Calculations for .75 L/min Nitrogen flow Rates

Q - 75 liter

" min Flow rate of incoming Nitrogen gas
U = _(2_

A
U =0.028'm'sec ' Velocity of incoming Nitrogen gas

pU-D
Re D = ———Sth
B

Rep =038 Reynolds Number

Calculations for 1 L/min Nitrogen flow Rates

Q = l.ﬁir
min Flow rate of incoming Nitrogen gas

U = _Q_

A
U =0.037'm'sec ' Velocity of incoming Nitrogen gas

U-D
Rep = #U"D sphere
K

Re ) =1.066 Reynolds Number
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76
Steel Calculations

Test #1 Steel- .25 L/min

dy 45mm Diameter of individual particle in bed
6

dei T
dp

Shed =1333'16° ‘m * ‘m®> Surface area of bed per unit volume

D eyt =0381'm Diameter of test section
L jest = -4064-m Length of test section
D 2
. Cltest.
Viest "' =5 ‘Lieg
Viest =463310 * -m’ Volume of test section

Avtest “Shed V test

A tost =0.618"m’ Total area of test bed
n, =83610 "ke-sec'! Evaporation rate from Mass of Water Lost Calibration
Ve :45.54-% Specific volume at 24 degrees C
.1

PsatTemp ~ v

g
P satTemp =0.022'kg'm ° Density at saturation temperature
N2 =065 Humidity of incoming Nitrogen gas
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n
h - —_

m - .
Atesl'psalTemp' L-0n2

2659110 ° -mesec !
b, =6.591°10 ° *m-sec

2
- s m
D 12 ~-26-10 % —

SeC
h, -d
Shp -2 P
D2
Sh =114.076

Mass transfer coefTicient

Binary diffusion coefficient

Sherwood number
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Test #2 Steel- .5 L/min

dp “4.5-mm Diameter of individual particle in bed
. _ 6
Sbed "5

p

Sped =1:333°10° ‘m ° 'm®* Surface area of bed per unit volume

Do =-0381'm Diameter of test section
L jogt = 4064-m Length of test section

D (st 2
Viest ° T > L st

K]

Viest =4633°10 1 -m’ Volume of test section

Atest “Sped V test

A og =0.618'm’ Total area of test bed
n, 22510 %kgsec' Evaporation rate from Mass of Water Lost Calibration
Vg =45.s4-‘:i Specific volume at 24 degrees C
g

1
PsatTemp ~

g
P satTemp =0.022"kg'm ° Density at saturation Temperature
oN2 =06 Humidity of incoming Nitrogen gas
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L

hy, -

Atcst"psatTcmp' L-4n2

h,=1764'10 * ‘m'sec '  Mass transfer coefficient

2
D, = 261052

sec Binary diffusion coefficient
h_-d
D2
Sh =305.39 Sherwood number
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Test #3 Steel- .75 L/min

dy =45mm Diameter of individual particle in bed
6
S T —
bed
d p

-3 2

Sped =1333°10° ‘m ° ‘m’ Surface area of bed per unit volume

D ot =-0381'm Diameter of test section

L st ~-4064-m Length of test section
D test

Viest “T 5 ‘L test

3

Vet =4633°10 1 -m’ Volume of test section

Atest “Sbed V test

Aty =0.618'm’ Total area of test bed
0, =2.517-10 % kg-sec’! Evaporation rate from Mass of Water Lost Calibration
3
vy : 45.54-{_—’-8- Specific volume at 24 degrees C
b -1
satTemp ~ .
P satTemp =0.022°ke m> Density at saturation temperature

N 06 Humidity of incoming Nitrogen gas

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n
h - —
m
Aest P satTemp’ L-0\2

by, =1974-10 ' ‘m'sec’'  Mass transfer coefficient

= . ! 8. &2
Dy 2610 sec Binary diffusion coefficient
h_.-d
Sh = =P
D2
Sh =341.629 Sherwood number
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Test #4 Steel- 1 L/min

dp =4.5mm Diameter of individual particle in bed
6

Sbed ~
d P

2

Sped =1.333°10° *‘m~ ‘m’ Surface area of bed per unit volume

D (ost *0381'm Diameter of test section
L o =-4064-m Length of test section
D 2
_ test -
Viest * % Y L test
Vet =4633°10* m’ Volume of test section
Atest “Sbed V test
A og =0.618°m’ Total area of test bed
n, =3.383-10 %kg-sec’! Evaporation rate from Mass of water Lost Calibration
Vg © 45.54-% Specific volume at 24 degrees C
) L
satTemp ~ e
PsatTemp =0-022'kg'm °  Density at saturation temperature
dnp =073 Humidity of incoming Nitrogen gas
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0,

h

m =
Atest P satTemp |~ O N2

b, =2.69°10 1 mesec ' Mass transfer coefficient

2
B g m
D 12 =.26-10 ° —

sec Binary diffusion coefficient
sn - mdp
D2
Sh = 465.61 Sherwood number
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Ceramic Calculations

Test #1 Ceramic- .25 L/min

dy “4.5-mm Diameter of individual particle in bed
6

S bed I —
dp

Sped =1:333°10° ‘m° 'm*> Surface area of bed per unit volume

D (st ~0381'm Diameter of test section
L jet = -4064-m Length of test section
D 2
} test :
v(est sl 2 ‘ 'Lta't

3

Vet =4633°10 ¢ °m Volume of test section

Atest “Stbed V test

A (et =0.618'm’ Total area of test bed
0, =1.513-10%kgsec'' Evaporation rate
3
vg © 45.54.':; Specific volume at 24 degrees C
g
1
P satTemp ~ v
g
P satTemp = 0-022°ks m° Density at saturation temperature
N =06 Humidity of incoming Nitrogen gas
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0,

by
AtestPsatTemp !~ N2

h,=1.18710 * ‘m'sec ' Mass transfer coefficient

2
_ .g M
Dy =2610 %=

sec Binary diffusion coefTicient
h_-d
Sh : 2P
D2
Sh =205.358 Sherwood number
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Test #2 Ceramic- .5 L/min

d, #45mm Diameter of individual particle in bed
. _ 6
Sbed T3

P

Sped =1333°16° ‘m ° 'm? Surface area of bed per unit volume

D ot =0381'm Diameter of test section

L gt - -4064-m Length of test section
Dtest

Viest 7 5 L fest

V,. . =463310" -m’ Volume of test section

test

Atest “Stbed V test

A gt =0618°m’ Total area of test bed
n, =3.733-10 %kg-sec! Evaporation rate
3
v =45.54-:l Specific volume at 24 degrees C
g
1
PsatTemp ~ \«-
g
P satTemp =0.022'kg'm > Density at saturation temperature
Np =06 Humidity of incoming Nitrogen gas
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L

h

m z
At«st'psatTcmp' L-0n2
|

hp,=292710 " ‘mesec Mass transfer coefficient

2
_ -g m
Dlz =.26-10 °-—

sec Binary diffusion coefficient
h_d
Sh = =P
D2
Sh =506.676 Sherwood number
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Test #3 Ceramic- .75 L/min

d, =45-mm Diameter of individual particle in bed
6

S bed I —_—
dp

Shed = 1-333°10° *m ° 'm?* Surface area of bed per unit volume

D et =-0381'm Diameter of test section

L o5t = -4064-m Length of test section
D test 2

Viest & 5 L rest

3

V iest =4633°10 * °m Volume of test section

Atest ~Sbed V test

A jogy =0.618'm’ Total area of test bed
n, =4.817-10 % kg-sec’! Evaporation rate
vy 45.54-::r Specific volume at 24 degrees C
2
p = ——l—-
satTemp Ve
P satTemp =0022'kg'm °  Density at saturation temperature

N =06 Humidity of incoming Nitrogen gas
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b, - %a

I
Atest P satTemp !~ N2

hp=377810" ‘m'sec ' Mass transfer coefficient

2
D)y =26:10°% 2

sec Binary diffusion coefficient
s - mdp
D2
Sh =653.806 Sherwood number
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Test #4 Ceramic- 1 L/min

d, =45-mm Diameter of individual particle in bed
6

S bed T —
dp

Speq =1.333°10° ‘m * ‘m?® Surface area of bed per unit volume

D et =-0381'm Diameter of test section

L e =-4064-m Length of test section
D yest

Viest ! - 'L test

3

Vet =4633°10 ¢ -m’ Volume of test section

Atest “Sted Vtest

A ot =0.618 m’ Total area of test bed
n, =4.9510%kgsec’! Evaporation rate
3
Vg * 45.54-;'; Specific volume at 24 degrees C
g
. L
satTemp ~ e
P satTemp = 0.022°kg'm ° Density at saturation temperature
N2 =078 Humidity of incoming Nitrogen gas
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D,

h =

AtestPsatTemp ! ~ ¥ N2

hp, =3958'10 * ‘msec ' Mass transfer coefficient

2
= . '8.3
Dy =26-107 Binary diffusion coefficient

h,.-d
Sh :L_R
D2

Sh =684.974 Sherwood number
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