# UNIVERSITY LIBRARIES

#### **UNLV Retrospective Theses & Dissertations**

1-1-1998

# Context dependencies for younger and older adults in learning a 4-key motor sequence

Andrew James Meyers University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

#### **Repository Citation**

Meyers, Andrew James, "Context dependencies for younger and older adults in learning a 4-key motor sequence" (1998). *UNLV Retrospective Theses & Dissertations*. 893. http://dx.doi.org/10.25669/axau-b6ke

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

#### **INFORMATION TO USERS**

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.



A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600

# **NOTE TO USERS**

The original manuscript received by UMI contains pages with slanted print and margins that exceed the guidlines. Pages were microfilmed as received.

This reproduction is the best copy available

# UMI

## CONTEXT DEPENDENCIES FOR YOUNGER AND OLDER ADULTS IN LEARNING A 4-KEY MOTOR SEQUENCE

by

Andrew J. Meyers

Bachelor of Science University of Nevada, Las Vegas 1995

A thesis submitted in partial fulfillment of the requirements for the degree of

**Master of Science** 

in

Kinesiology

Department of Kinesiology University of Nevada, Las Vegas August 1998

#### UMI Number: 1392297

UMI Microform 1392297 Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.





#### **Thesis Approval**

The Graduate College University of Nevada, Las Vegas

The Thesis prepared by

Andrew J. Meyers

Entitled

Context dependencies for younger and older adults in learning a 4-key

motor sequence

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Kinesiology

wh

Examination Committee Chair

Dean of the Graduate College

an

**Examination Committee Member** 

ation Committee Me

Graduate College Faculty Representative

#### ABSTRACT

#### Context Dependencies For Younger And Older Adults In Learning A 4-Key Motor Sequence

by

Andrew J. Meyers

Dr. Mark A. Guadagnoli, Examination Committee Chair Professor of Kinesiology University of Nevada, Las Vegas

The role environmental context has on performance level may change based on the skill being learned and the performer of that skill. The present study was designed to examine the role of environmental context in the learning of a 4-key motor sequence task. The present study had two primary purposes: first, replicating findings of a limited context effect in younger adults, and second, extending the findings to older adults to look at changes related to aging and environmental context. ANOVA results revealed no significant context effect in the present study for younger adults, and therefore comparisons between younger and older adults could not be made. Analysis of the data suggests the possibility of low performance levels in the current study being at least one factor related to context dependencies not developing in the learning of the 4-key motor sequence task.

### TABLE OF CONTENTS

| ABSTRACT                                            |                  |
|-----------------------------------------------------|------------------|
| LIST OF FIGURES                                     | vi               |
| ACKNOWLEDGMENT                                      | vii              |
| CHAPTER INTRODUCTION                                | 1                |
| Context Effects                                     | 3                |
| Present Study                                       | 6                |
| Hypotheses                                          | 7                |
| CHAPTER IL LITERATURE REVIEW                        |                  |
| Introduction                                        |                  |
| Measuring Information Processing                    | 10               |
| Context: Implicit & Explicit.                       | 11               |
| Context Dependent Memory.                           | 13               |
| Encoding-Specificity                                | 14               |
| Age-related Declines: Memory for Context            | 15               |
| Context Dependency in the 4-key motor sequence task |                  |
| CUADTED III METHODS                                 | 20               |
| Participants                                        | <u>2</u> 0<br>20 |
| Design                                              |                  |
| Apparatus                                           |                  |
| Procedures                                          |                  |
| CHAPTER IV ANALYSIS AND RESULTS                     |                  |
| Acquisition                                         |                  |
| Retention                                           | 27               |
| CHAPTER V DISCUSSION                                | 32               |

| CHAPTER VI FUTURE DIRECTIONS                          | 38 |
|-------------------------------------------------------|----|
| APPENDIX A Informed Consent & Health Sheet            |    |
| APPENDIX C Sign Up and Sign In Sheets/Counter Balance |    |
| APPENDIX D SAS Data For Data Analysis                 | 45 |
| Retention Data                                        | 45 |
| Acquisition Data                                      | 53 |
| REFERENCES                                            | 83 |
| VITA                                                  | 87 |
|                                                       |    |

### LIST OF FIGURES

| Figure 3.1 | Computer Display of 4-key Sequences |  |
|------------|-------------------------------------|--|
| Figure 4.1 | Percent Error Acquisition Graph     |  |
| Figure 4.2 | Reaction Time Acquisition Graph     |  |
| Figure 4.3 | Percent Error Retention Graph       |  |
| Figure 4.4 | Reaction Time Retention Graph       |  |

#### ACKNOWLEDGMENTS

My gratitude goes out to three outstanding individuals who have helped me to complete my thesis and graduate studies. First to my graduate coordinator Dr. Mark Guadagnoli, who has provided my with tremendous support in the development and completion of my thesis, as well as always believing that I was capable of completing difficult tasks during my studies, even when others had doubt. Secondly I would like to thank Phyllis Margolis, not only for her aid in various departmental workings, but for always making me feel like family and giving me those few extra words of care a person sometimes needs. Finally I would like to thank Joe Boetcher, for making it possible for individuals to read this thesis with his help in editorial corrections.

#### CHAPTER 1

#### INTRODUCTION

Skill acquisition is important in many every day activities. For example, learning to ride a bike as a child, studying for a school test during adolescence, or working the VCR as an adult are all important skills. As an older adult the relearning or retention of skills is also an important issue and safety concern, ranging from driving a car, turning off the stove, or even remembering how to exit the building in an emergency.

Environmental conditions during skill acquisition can play an important role in learning both verbal and motor skills. When environmental conditions remain relatively unchanged a distinct learning environment may develop. This learning environment, often referred to as an acquisition context, can be crucial to future performance. Changes occurring in the acquisition context from acquisition to testing situations can impact performance level. For example, Godden & Baddeley (1975) found that, when switching acquisition and testing environments between to natural environments (land and sea), participants' performance was higher when skill acquisition and testing environments remained unchanged. So that a participant who had practiced a skill underwater had a higher performance level when asked to recall that skill underwater, where as if asked to recall that information while being on land, performance for that skill decreased. These changes in environmental context (e.g., trained on land, tested under water) were quite extreme but even more subtle changes in environmental context such as practicing a task in a calm quiet environment, then performing the same task in a crowded noisy room may impact performance. The level of task performance in this new environment (noisy context) may be lower in comparison to performing the task in the original acquisition or practice conditions (quiet context). Obtaining a high performance level is clearly a desirable goal. With this goal in mind, the role of environmental context in changing performance levels has importance. Performance changes occurring from varied environmental contexts is referred to as "context dependent memory," a phenomenon in which cognitive processing is affected by the environmental context in which the event occurs (Smith, 1988). If context remains the same in both learning and testing conditions (same context), then performance levels may be enhanced. If context changes between learning and testing conditions (different context), then performance levels tend to decrease. This effect is referred to as the "context effect" in which changes in performance are due to context dependencies developed during learning (Wright & Shea, 1991).

#### **Context Effects**

Context effects can result from a wide range of changes in our environment. Changes in parameters both directly related and unrelated to the learning of a task may both produce context effects. In basketball, the size of the court on which the game is played would be directly related to the learning of the task, whereas the size of the building the game is being played in would be unrelated to the game itself, but changes in either parameter (related, unrelated) may produce context effects. These changes in our environment can be very subtle in nature. For example, changing the color, placement, size, or shape of an object may be sufficient to cause changes in performance.

Context effects have been found in several studies of verbal learning (Bjork, Rhichardson, &Klavehn, 1989; Godden & Baddeley, 1975; Riccio, Richardson, & Ebner, 1984; Smith, 1988; Spencer & Raz, 1995; Watkins, Ho & Tulving, 1976). However, relatively few studies have dealt with context effects associated with motor tasks and so the parameters of context in regard to motor learning are not well defined. Exceptions to this include Wright & Shea (1991) and Wright, Shea, Li, & Whitacre (1996) who found that contextual dependencies were developed during perceptual-motor skill acquisition of a 4-key motor sequence. In these studies, participants practiced a series of typing sequences displayed in varied computer screen contexts. Both visual and auditory aspects were changed in the learning environment. Location, color, and shape of the display as well as varied tones generated by the computer were all manipulated. Specific environmental contexts corresponded to specific key sequences. These environmental contexts that were presented during the learning of the sequences were then presented in same or different contexts for retention trials. The results showed context dependencies on immediate retention tests, but no context effects were found on 10/min delayed retention tests, unless initial context conditions were re-displayed prior to being tested. This redisplay was referred to as a reinstatement of context, where participants performed nine trials containing original contexts directing their attention back to the original context conditions immediately prior to retention. These 4-key motor sequence tasks were conducted using younger adults and displayed context effects on delayed retention tests only when strengthened by reinstatement. This need for reinstatement suggests that even with a sensitive measure, the context effect lacks in robustness. A similar 4key task would therefore be needed to test context sensitivity between age groups because of its limited context effect. If older adults are less sensitive to context effects than younger adults then using the 4-key motor task may display no context effects for older adults.

Several studies have compared the effects of context on younger and older adults. A meta-analysis conducted by Spencer and Raz (1995) found that there were greater age differences in memory for context (memory of the environment) than for content (memory of the task). Older adults display a reduced recall for unrelated environmental conditions (context) that are present when learning specific information (content). This decreased memory for context in situations where it is more remote in nature may indicate some decreased context dependency in older adults. If older adults recall remote contexts of a learning environment to a lesser degree than younger adults, dependencies may not develop to these remotely related contexts.

Several studies have shown context dependencies in older adults. Light, La Voie, Valencia-LAvor, Owens, and Mead (1992) showed that both younger and older adults display context dependencies. Additionally, the findings of Jennings & Jacoby (1993) have demonstrated that older adults have no deficit in encoding contextual information. The context effect in older adults has also been displayed in numerous non-motor tasks (Benjamin & Craik, 1995). However, the mixed findings of context effects in older adults fuel the controversy about whether older adults will display context dependencies in all learning or whether dependencies are limited to only certain types of learning. Some researchers have found impaired context memory effects in older adults (Park & Puglisi, 1985; Chiarello & Hover, 1988; Park, Smith, Morrell, Puglisi, & Dudley, 1990). Are context dependencies impaired in older adults? This question still remains and further research needs to explore the role of context, and how it relates to both younger and older adults in learning. By exploring the role of context in learning the enhancement of performance may be possible.

#### Present Study

The purpose of this study was to extend the knowledge of context effects with both younger and older adults in the learning of motor tasks. This study was conducted using the general format established by Wright & Shea (1991) and Wright *et al.* (1996) using a 4-key motor sequence. Younger adults were tested to replicate context dependencies observed in these previous studies. In addition testing was extended to older adults to determine if any age related changes impact context dependencies. With a possible decline in context dependencies in older adults, modifications from the original research include, increasing practice to further strengthen performance (Schmidt, 1988). Total practice was increased by the addition of a second day of practice, doubling the total number of trials. This additional day doubled the number of total acquisition trials that participants received. Extending practice should increase the speed of information processing (Mowbray & Rhoades, 1959) which may further strengthen any context dependencies formed in either the young or old participants.

In addition to measuring performance in terms of percent error, reaction time (RT) was also measured to provide information on changes in information processing. RT, referred to as the chronometric method, is a common measure for changes in information processing (Posner, 1978; Sternberg, 1969). Changes in information processing reflect central processing speed. The additional measure of RT offers another cognitive measure of context dependency which may prove to be more reliable or sensitive in nature than percent error. Findings were interpreted in regard to context dependencies for younger and older adults in the learning of a 4-key motor sequence and the impact of extended practice on context dependencies.

#### Hypotheses

Several hypotheses could be forged from the current experimental design and question. Context dependencies found in learning a 4-key motor sequence task could be of the same degree, across age groups. In this case, context (color, shape, location, or sound) in learning a 4-key motor sequence would equally affect both age groups. A second hypothesis would suggest that context dependencies found in learning a 4-key motor sequence task will be formed to a lesser degree in one of the age groups. Weakened dependencies may exist in older adults if the processing of the experimental contexts decreases with age. Dependencies may be lower in younger adults if older adults are more sensitive to changes in their learning environment. A third hypothesis would predict the possibility of no context effects being found in one or both of the age groups. The limited context effects (reinstatement dependent) previously found in younger adults may not be replicated. Older adults may not display context effects if environmental contexts do not play a significant role in the learning of this specific task (4-key motor). Possible reasons for no context effects occurring may include very high or low performance levels, high participant variability, context being too remote in nature, decreased encoding with age, or limited importance of context in learning the 4-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-----

key motor task. If the younger adults do not display a context effect then no direct comparison can be made to the data of older adults because no replication of previous findings.

#### CHAPTER II

#### LITERATURE REVIEW

#### Introduction

Studies conducted on context dependencies and the role they play in human memory have found context effects in both the younger and the older adults. Questions exist about whether context plays as distinct a role in learning for older adults as it does for younger adults. Older adults show a general decline in memory with age, and several studies have shown possible declines in memory for certain types of context and remote information (Spencer & Raz, 1995). These declines in memory may lead to differences in any context dependencies formed by older adults. Determining how environmental contexts influence learning in older adults may help to limit age related differences in learning. If the environment plays a different role in learning for older adults, then possible changes in methods of training and practice may be used to facilitate increased learning. This chapter will address current issues in the area of context and the role context plays in human memory and information processing. Current

9

literature is explored to provide a foundation for the context effect in younger and older adults. Reasons for a possible difference in context dependencies with age in learning is discussed, including possible declines in the memory of older adults for context and remote information. Literature demonstrating context dependencies in younger and older adults will also be explored, as well as the findings of Wright & Shea (1991,1996) in their previous studies of learning the 4key motor sequence.

#### Measuring Information Processing

Learning is a relatively permanent change in behavior resulting from practice or experience that cannot be directly observed and therefore must be inferred from performance. Because learning is not directly observable, we must determine the level of learning that occurs from behavior. Measuring information processing from behavior allows us to determine performance level. Reaction time (RT) is recognized as a valid behavioral measure of information processing (Schmidt, 1988). RT is the most widely used chronometric method to measure the time interval between the stimulus presentation and the initiation of a response. Based on RT measurements, inferences on human information processing can be made (Posner, 1978). Human information processing has been broken into at least three basic stages (Schmidt, 1988). The first stage is stimulus identification where the stimulus is detected, encoded and classified. The response selection stage is next where information is selected and encoded into appropriate response codes. These codes are then delivered to the last stage, response programming where one

10

appropriate response is selected. RT is used to measure the speed in which information processing occurs because it measures only the time interval before the response is initiated. One method to improve RT is to extend practice. The study of Mowbray & Rhoades (1959) showed decreases in RT with increasing practice on simple reaction tests. The Participant's RT decreased over a 42,000 trial practice period, showing an increase in information processing speed for simple choice reaction tasks as practice is increased.

#### Context: Implicit & Explicit

The overall context refers to the setting in which an event takes place, with setting being defined as all aspects of the surrounding environment (Smith, 1988). Context can further be divided into two areas: passive or non passive in nature (Davies & Thomson, 1989). That is to say, context may be independent in relation to the target task, or it may play an interactive role in our cognitive processing. Context can also be addressed in relation to the mental and physical state of the individual. Measures of state context are based on arousal level, mood, and altered states of perception caused by illness, disease, or drugs.

Environmental context is all external stimuli in our environment. Smith (1988) defines environmental context as "incidental external stimuli which are not explicitly or implicitly related to the learning material in any meaningful way." p.14 Environmental contexts are the various characteristics or features in a given learning environment that are not part of the information or skill being learned. Memory for an event can be looked at explicitly (directly related), as a conscious recollection, or implicitly (remotely related), having no conscious recollection but demonstrating changes in test performance (Schacter, 1987). To isolate the effect of implicit information on memory retrieval, a participant makes responses that demonstrate a memory trace or cuing of items presented earlier. even though the participant is unaware of these past items that now reflect changes in his response (Park & Shaw, 1992).

Explicit information is directly related to a stimulus or event. Explicit memories are an attempt at recalling information that should be learned in a given environment. Tests of explicit memory require the participant to actively recall or retrieve information in an attempt to complete the desired task (Park & Shaw, 1992). Stimuli may be directly related to target information and explicit in nature, or unrelated and implicit in nature. Explicit stimuli in our environment such as color, location of objects, sounds, and surrounding items (contexts being used in 4key test) together with any information which is not considered target information, can be considered context, regardless of whether the participant has any conscious recollection of these context features.

Context can further be grouped into three classifications: integrated, influential, and incidental (Bjork, Rhichardson, &Klavehn, 1989). Integrated context is explicitly associated with the target stimuli during encoding. Influential context means that the context in some way influences the participant's interpretation of the target information. Incidental aspects of context are "independent or isolated from the target information" and do "not influence the subject's interpretation of, or interaction with, the target material at encoding" *p.316* (Bjork et al., 1989). Context therefore can be looked at as all "perceptual and conceptual details associated with an event" *p. 285* (Benjamin & Craik, 1995).

#### **Context Dependent Memory**

Context dependent memory can be explained as the way in which our cognitive processing is affected by changes in coincidental background stimuli. Change in memory levels (performance) resulting from this change in background stimuli change is explained as the environmental reinstatement effect (Smith. 1988). Reinstatement of some previously experienced context cues the memory of information or events which took place in that context. An example of this effect is the inability to recall a classmate's name outside school, but upon returning to school his name can be recalled. In this case returning to the original environmental context of the school enabled the recall of the classmate's name. As previously defined, this ability to recall in the original setting is termed the context effect (Wright & Shea, 1991) where changes in context affect performance. Studies on context have measured recall and recognition performance based on changes in context. Watkins, Ho & Tulving, (1976) in a series of three experiments, showed context affects in the recognition memory of faces. In one experiment participants studied a face beside a second face. Post-tests showed that participants were more likely to recognize a face when paired with the same face (same context) than with a different face (different context). In the second experiment, faces were paired with a verbal description, and again when context

remained the same in test conditions recognition was enhanced. In the final experiment participants were aware that they would be tested on the faces being presented, thus forcing the participant to study the target face. The results displayed an increased recognition for faces in the same context and decreased recognition for faces matched with a different context. In another study Godden & Baddeley (1975) showed that a complete change of environment would cause changes in context-dependent memory. In this study divers learned lists of words in two natural environments, on dry land and under water. The results showed that recall for a list studied under water was higher when retested in that environment. Likewise when a list was studied on dry land recall was higher if retested on dry land and not under water.

#### Encoding-Specificity

Similarity between practice conditions and retrieval conditions can enhance memory and skill performance. This idea is known as the encoding-specificity principle developed by Tulving & Thomson (1973). This principle states that the ability to retrieve skill-related information depends on the degree to which the setting where the information is to be retrieved is similar to the setting where it was originally introduced to the learner. This principle explains context dependent memory. If context dependencies are formed in the initial learning environment then performance can be enhanced based on similarity between future settings and the original settings. Settings refers to the environmental conditions or context.

#### Age-related declines: Memory for context

Age-related slowing in information processing has been demonstrated on a wide variety of RT tasks both motor and non-motor in nature. Maintaining information processing speed during aging is important not only for the role it plays in everyday events such driving a car, but also because of its relationship with memory for skills such as where the fire-exit is, and when to use it. Information processing is important to learning and memory because of its role in encoding. organizing, and retrieving of information (Rose, 1997).

The question of whether older adults have a greater decline in memory for context compared to content is still being investigated. Several studies have shown mixed results for context memory. Denny, Miller, Dew, & Levav (1991) tested the hypothesis that there would be greater declines in memory for context features of target information in older adults than in younger adults. Participants studied slides which contained a word centered on varied landscapes. Participants were instructed to remember either the word, background, or word-background pair. Tests were then given on memory for the word and background pairs. Results showed declines in memory with age, but older adults showed no greater declines in the recall of context features as opposed to recall of target information. These findings were replicated by Denney & Larson (1994). Participants were tested on their memories of connections between word-background pairs. Older adults showed the same relative difficulty in remembering target information and contextual information. This memory decline with no difference between target and contextual information, provided no support for a specific encoding deficits.

Benjamin & Craik (1995) compared younger and older adults' memory of fonts (context) in which words are presented. Participants studied words presented in one of two fonts and presented in two different voices. Younger adults again showed better memory for words, fonts, and voices. Older adults however showed equal declines in memory for target and contextual information (e.g., font & voice). Therefore, no evidence was found for age-related impairment in encoding context.

In contrast to these studies, Hess (1984) conducted two experiments on encoding of contexts and older adults. In the first experiment participants studied word pairs where the target word was closely linked to the context word (e.g., copper & pot). In the second experiment participants studied word pairs that were not directly related (e.g., copper & cat). The results showed general declines in memory with age. Older adults also showed declines in memory for contexts that were unrelated to target information, but no relative declines in contexts related to the target words (experiment 1). Based on these findings it appears that older adults' memory for context may diminish if context has a weaker connection to the target information or is more implicit in nature. Supporting this finding, Chiarello & Hoyer (1988) found that in testing for word-stem recall in implicit and explicit tasks that older adults' performance was impaired more than younger adults' on implicit retrievals. The additional measure of time course was also used. The time interval was limited for completion of the task, so that if cognitive processing was slow, performance would be impaired. As an increased processing level was needed, older adults' performance was decreased to a greater degree than that of

the younger adults. This performance decrease was found in both implicit and explicit measures. Park & Puglisi (1985) examined the memory of older adults for pictures or words, and the color they were presented in. Older adults showed greater declines in memory for the color (context) a word was presented in (e.g., red word) as compared to remembering the color of a drawing such as a house (e.g., red house). From this it was concluded that memory for context is a function of the stimulus with which it is associated. Older adults' ability to recall context if it is not directly related to or easily related with the target task seems to be impaired. Based on Spencer & Raz's (1995) meta-analysis of 46 studies of context, tasks requiring greater information processing showed greater age-related differences for context information memory. If demands on information processing can be decreased then they may show increased contexts effects.

Older adults' processing of the environment may be limited to context cues that are easily linked to the target task or are not implicit in nature. As demands on processing are increased for older adults, their performance level will decline. The study of Park, Smith, Morrell, Puglisi, & Dudley (1990) further investigated the ability of older adults to use integration of context and target. Three different picture condition types were tested. Categorically related (e.g., a spider and an ant), visually interacting (e.g., a spider on top of a cherry) and non-interacting (e.g., a spider on the left, a cherry on the right). Results showed that the noninteracting condition produced the largest age difference, supporting the idea that older adults do not use contexts that are not integrated as well as contexts that are closely integrated. Older adults were also able to use the well-integrated targetcontext relationships better than the younger adults. These results suggest an important component to older adults' use of context. Older adults seem to be more sensitive to changes in type of context than younger adults. This can be looked at in two ways: (1) If context is not associated to the target then it will not improve the learning of a task, (2) If context can be directly related to a task then learning may be facilitated in older adults. This might suggest a greater relative benefits for older adults if practice can be designed to maintain high levels of integration with future applications. An older adult may receive more benefits if practice is in a more directly applied setting.

Context dependency in the 4-key motor sequence task

The encoding-specificity principle applies to the learning of motor skills, where processing activities engaged in by the learner during acquisition and retention are compatible (Lee & Magil, 1983). The 4-key motor sequence task used by Wright & Shea (1991) displays this compatibility. Participants practiced the 4-key task with specific computer contexts attached to the sequence display. These contexts were color, surrounding shapes, sound, and screen position. After practice trials were completed, an immediate retention test was given in either the same context or with a different context. In line with encoding-specificity, retention of the sequence was better in the same context condition than it was in the different context condition.

Further investigating context dependencies, Wright, Shea, Li, & Whitacre (1996) extended their findings on the same 4-key motor task to include a delayed

retention test. Findings from Wright & Shea (1991) were based on an immediate retention test, and did not show whether dependencies would diminish with an extended time interval. Using a delayed retention test condition, findings showed no context effect until a reinstatement condition was added prior to the delayed retention test. This reinstatement was used to redirect the participants' attention to the incidental stimuli that were presented during acquisition. Reinstatement consisted of one block of the original contexts, and was not considered to be significant to overall acquisition. Reinstatement allowed context dependencies to be refreshed in memory. Since dependencies were established on a delayed retention test it was concluded that context had a influence on the learning of the 4-key motor sequence.

With the Wright et al. (1996) protocol displaying context dependencies in younger adults, the same basic protocol were used to determine possible context dependencies in older adults and to replicate dependencies found in younger adults. Context dependencies have been found in older adults, but the presentation modality (Lehman & Mellinger, 1984), the degree to which contexts are related to source material (Light & Singh, 1980; Hess, 1984; Park & Shaw, 1992), or task type and complexity (Wright, 1991) could all mediate whether the 4-key protocol will elicit similar effects in older adults.

#### CHAPTER III

#### METHOD

#### Participants

Participants were classified into younger and older adult groups. Participants for the older adult group consisted of 20 (8 men, 12 women) volunteers from the Las Vegas area aged 55-71 with a mean age of 62.25. Participants for the younger adult group consisted of 20 (11 men, 9 women) volunteers from the student population at UNIV aged 20-26 with a mean age 21.05. All participants were naive as to the theoretical implications of the study. Prior to the study, all participants signed an informed consent/health sheet to ensure that they were in good health and had normal hearing and vision (Appendix A).

#### Design

A 2 (Age) x 2 (Context) x 2 (Day) mixed design was employed with age and context being between-subjects and day being a within-subjects. The dependent measures of interest were reaction time in milliseconds and percent error. Both measures were collected for all acquisition and retention trials.

#### Apparatus

The apparatus consisted of a 386 IBM-compatible microcomputer with 12 inch color monitor and standard keyboard to measure RT and percent error. The computer was used to run the experiments protocol including all visual displays.

#### Procedures

Based on the protocol used by Wright, Shea, Li, & Whitacre (1996), participants practiced a computer generated 4-key motor sequence. Participants were seated in front of the computer and informed that a display of the numbers 1-4 would appear on the monitor. These numbers would indicate a sequence of four key strokes to type on the keyboard and which keys to press. Participants placed their fingers in the home position on the keyboard (i.e., a, s, d, f, keys for the left hand, and j, k, l, ; keys for the right hand). Participants were informed that the display sequence showed the order in which to press the keys (1,2,3,4) and which keys to press. Participants were also informed that the only keys being used were from the home position keys. Thus, the only key choices for each sequence would be the keys their fingers rested on. No other key would need to be pressed. Three different sequences were used, each with its own separate context which varied in location, color, tone, and shape. The location varied by screen placement (top, middle, or bottom). The display was in one of three colors (blue, red, or yellow). A tone was produced along with the screen display in one of three frequencies (2500, 1000, or 300 Hz) and a shape (diamond, square, or circle) outlined the letters to be reproduced (Figure 3.1).

All contexts were constantly mapped throughout the entire acquisition phase. Different contexts were attached to each sequence, but the same four fingers (left-little, left-index, right-middle, and right-ring) in different orders, were used during all typing sequences, so that finger variability was eliminated. Participants were not informed of the contexts attached to the sequences or that the same four fingers were being used. Trial displays were presented for 400, 600, or 800 ms. Participants were informed to initiate the displayed sequence as soon as the display had disappeared and to do so as rapidly and accurately as possible but not to begin until the display had disappeared. Instructions were given verbally and in written form on a participant instruction sheet which also showed a sample display (Appendix B). The lab instructor checked on participants and would observe whether participants were following the before mentioned instructions. Reminders were given to begin the sequence only after the display had disappeared and as fast and accurately as possible. If participants were making methodological errors during testing such as placing their hands on the wrong keys, then the lab instructor would stop the participants and show them the correct home position key locations. After each trial, feedback was displayed by an on-screen message: "Good trial" for a successful completion, or "Bad trial" in the event the incorrect keys were pressed or if participants began typing the sequence prior to the display disappearing.



Computer Display of 4-Key Sequences

Figure 3.1

.
Participants were also limited to 2 seconds in which to enter the correct sequence. Participants preformed nine acquisition blocks of 12 trials with four trials of each of the three motor sequences randomly ordered in each block. Each block of trials was separated by a 20-second interval.

A ten minute delayed retention test consisted of nine exposures of the original context for all participants. Half (10) of the participants then received three trials with one of each of the sequences in the original contexts (same context condition). The other half of the participants received three trials with different contexts attached (switched context conditions). The combined retention test thus represented an entire block (12 trials). Participants were randomly assigned to the same or switched conditions. Participants returned 24 hours later and completed the same procedures as on the previous day with nine more acquisition blocks to increase their training. Then participants were again tested on the ten minute delayed, same or switched context retention test showing what effects the increased training may have had. Reaction time and percent error data were recorded for all acquisition and retention test block.

#### CHAPTER IV

#### ANALYSIS AND RESULTS

The dependent variables of mean reaction time and percent error were analyzed using separate analysis of variance (ANOVA) procedures. Separate ANOVA for each acquisition and retention data were also run. ANOVA procedures were written in SAS language. Tukey's follow up analysis was run on all main effects. Interactons did not receive a follow up analysis but were visualy anazized with trends being discussed in the next section.

Reaction time represents the time interval (msec) from removal of the display to the first key stroke made by the participant. A reaction time of zero was recorded if the participant's first key stroke was less than 100 msec or prior to removal of the display. A reaction time of zero was considered to represent anticipation and was not included in the calculation on mean reaction times.

Percent error was calculated based on the percentage of "Bad Trials" performed. A "Bad Trial" reading was obtained if a subject made an error in the key sequence or did not enter the sequence within the limited time interval. The time interval started at the end of the anticipation period (100 msec) and ended at two seconds.

#### Acquisition

Mean percent error for acquisition data were analyzed by using a 2 (Age) x 2 (Context) x 2 (Day) x 9 (Block) ANOVA with repeated measures on the last two factors. The analysis revealed significant main effects for day,  $\underline{F}(1,36) = 56.99$ ,  $\underline{p}$ < .001, with means being 82 and 60.9 percent for the first and second days respectively. Main effects for age,  $\underline{F}(1,36) = 45.32$ ,  $\underline{p} < .001$ , with means being 52 and 90.9 percent for the young and old age groups respectively and a main effect for block.  $\underline{F}(8,288) = 20.12$ ,  $\underline{p} < .001$ . No main effects were found for context. Significant interactions for Day x Age,  $\underline{F}(1,36) = 17.09$ ,  $\underline{p} < .001$ , Block x Age,  $\underline{F}(8,288) = 5.2$ ,  $\underline{p} < .001$ , and Day x Block x Age,  $\underline{F}(8,288) = 3.53$ ,  $\underline{p} < .001$  were also found. No interactions were found for Context or Block x Day (Figure 4.1).

Mean reaction time for acquisition data for the young adults were analyzed by using a 2 (Context) x 2 (Day) x 9 (Block) ANOVA with repeated measures on the last two factors. Data from the older adult group was omitted from the analysis because of a lack of readings. Data collected for reaction time revealed that older adults keyed in responses prior to removal of the display or had anticipated (<100 msec) the removal resulting in readings of zero in the vast majority of trials. Readings of zero could not be used in calculation of reaction times, results for older adults were not analyzed. The analysis on younger adults revealed significant main effects for day, <u>F</u> (1,18) = 34.02, <u>p</u> < .001, with means being 292.7 and 173.4 msec for the first and second days, respectively. Main effects for block, <u>F</u> (8,144) = 9.27, <u>p</u> < .001. No main effect for context was found. Significant interactions for Day x Block, <u>F</u> (8,144) = 4.42, <u>p</u> < .001, and Day x Block x Group, <u>F</u> (8,144) = 4.42, <u>p</u> < .049. No interactions for Group (Context) were found (Figure 4.2).

#### Retention

Mean percent error for retention data were analyzed by using a 2 (Age) x 2 (Context) x 2 (Day) ANOVA with repeated measures on the last factor. The analysis revealed significant main effects for day,  $\underline{F}(1,36) = 18.45$ ,  $\underline{p} < .013$ , with means being 71.5 and 58.1 percent for the first and second days respectively. and age,  $\underline{F}(1,36) = 18.45$ ,  $\underline{p} < .001$ , with means being 45.6 and 84.1 percent for the young and old age groups respectively. No main effects for Context were found. No significant interactions were found for Age, Context, or Day (Figure 4.3).

Mean reaction time retention data were analyzed by using a 2 (Context) x 2 (Day) ANOVA with repeated measures on the last factor. Data from the older adult group was not used due to a lack of readings. Analysis revealed significant main effects for day,  $\underline{F}(1,18) = 5.39$ ,  $\underline{p} < .0322$ , with means being 203.6 and 183.8 msec for the first and second days respectively. No main effect for context was found. No interactions were found (Figure 4.4).



Acquisition % Error (Day x Age x Block)

Figure 4.1

.

.



Retention Test % Error (Day x Age)

Figure 4.2



Acquisition Reaction Time Young (Context x Day x Block)

Figure 4.3



Retention Test Reaction Time (Young)

Figure 4.4

#### CHAPTER V

#### DISCUSSION

Changes occurring in the learning environment from acquisition to testing situations can impact performance level. If changes occur in environmental context between the acquisition of a skill and when the skill must be preformed then performance level may decrease. The role that context plays in acquisition and subsequent performance level can be affected by several factors including the specific skill, the level of the performer and what context changes occur. These factors influencing context's role in the acquisition and subsequent performance level are important considerations when tring to maximize performance.

The role context plays in acquisition may change based on each specific skill, whether motor or nonmotor in nature, due to the uniqueness of different skills. The level of the performer or the actual performance level achieved for the task, as well as the age of the performer may influence the role context plays. Poor performance levels place increased demands on information processing (Park

# NOTE TO USERS

Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was microfilmed as received.

Page 33

# This reproduction is the best copy available.

# UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With no replication of context effects in younger adults, no direct comparison can be made to the role of context and older adults. Although the current data conflict with those obtained in previous studies, many of the same overall trends (with one notable exception) exist. This notable exception is the fact that the overall performance level of participants in the current study was significantly lower (Figure 4.1, 4.3).

During acquisition, main effects for Block were observed (Figure 4.1) which reflect younger adults' performance level improving with practice, this is consistent with previous findings in the 4-key task and the practice performance relationship (Mowbray & Rhoades, 1959). No main effect was found for Context during acquisition, showing that prior to being tested in the retention phase that the two context groups were not statistically different and had received the same training. This again is consistent with previous research and displays that the two context groups were equal when tested for a context effect in the retention test. Other logical trends displayed by the data which remain consistent include significant main effects for Day and Age, with the younger adults performing better than the older adults and both age groups performing better on the second day of practice (Figure 4.1, 4.2).

In looking at the additional measure of RT which was not used in the previous studies of the 4-key task, the same basic results are displayed in RT data that are displayed in percent error data in younger adults. Main effects were again found for Day and Block, showing younger adults improving with practice. RT data for older adults was not analyzed due to the lack of usable data obtained. resulting from anticipation or entering the sequence prior to removal of the display. These findings may represent a defensive mechanism of older adults to their inability to enter in the correct response in the limited time interval (less than 2 sec). They may have initiated responses prior to removal of the display in an effort to overcome the lack of time available.

The exception to the consistency between the current study and the previous studies are large differences in the actual level of performance, with percent error levels for context groups in the previous study being substantially lower at 6.1 and 16.7% (same, switched) compared to 46.3 and 49.8% (same, switched) in the current study. Since the level of performance in the present study was very poor (high percent error) context had a limited amount of performance to impact. In younger adults who achieved a higher performance level ( <50% error), closer to levels achieved in the previous studies differences in context appear to be more pronounced and more consistent with past results. Younger adults retention test percent error means (<50% error) for day 1 of 16.7 and 22% for same and switched contexts respectively display a greater relative and absolute change in performance than the total younger adult means (46.3 % same, 49.8% switched). This greater influence of context on participants with higher performance level supports the inference that at least one factor attributed to no replication of context effects in the current study is performance level, and that

contexts effects may be limited to performers with higher performance in the 4-key motor task.

Why were performance levels of participants in the current study so low? Participants were randomly selected from a participant pool very similar to that of the two previous studies, with all studies using students enrolled in health science classes at major universities. The level of the performer for the task or the motivation of participants in the studies may still have varied. The same testing protocol was used with computer program, and the testing methods. One possible difference could be in the overall timing or presentation of the computer program itself. Although the same program was used, slight changes in the timing of the displays presented on the screen may have occurred because of the rate at which different computers process data. In the current study an older IBM-compatible 386 computer and 12 inch color monitor were used to replicate the same type of computers and monitors being used in the previous studies. The computer program was also fine tuned so as to limit any timing changes in displays. Never the less, possible changes in brightness, contrast, and shades of colors presented on the screen, as well as any other minor changes in testing location or context ranging from height of the chair to lighting in the room, may have adversely affected performance level.

Another possible reason for differences in performance and whether context dependencies may be related to methodology. Relatively few trials are recorded to calculate means for percent error and determine context effects. By using the

36

established protocol, only three retention trials were recorded in either same or switched contexts. Just one "Bad Trial" display would result in a 33.3% error mean being obtained for a participant, in contrast to a 0% error mean for no "Bad Trail" readings. Thus changes in performance level are assessed by a very limited number responses, making the retention test very sensitive. The limited time interval (>100msec & <2sec) used may have impacted a participants' performance level. Even if the correct sequence is entered a "Bad Trial" reading is obtained if the timing is not with in the narrow time limits. If the time limit were removed then percent error would be a direct reflection of accuracy of key strokes. RT time could still be used as a measure of change in the response speed aspect of performance.

#### CHAPTER VI

#### FUTURE DIRECTIONS AND RECOMMENDATIONS

Based on the results obtained in the present study. the role of context on both younger and older adults in learning the 4-key motor task is still an open question, because the present study was unable determine context effects for younger adults. Context effects related to aging and possible ways of improving safety and performance for older adults cannot be explored until the context effect for the 4-key task in younger adults is validated. To determine whether context effects do exist in younger adults several changes are recommended. To increase performance levels in participants, remove the time limit, increase computer display times, and use a pretest questionnaire to assess computer familiarity of participants. In addition increase the number of retention test trials to a full block (12 trials) of same or switched contexts this should increase the overall amount of data in which to determine context effects. Use of these changes in future testing may help to validate the context effect in younger adults so that comparisons can then be made to older adults. Eventual implications of this line of research include the possible development of specialized training for older adults based on the role environmental context plays in learning. The context effect can be a negative impact on performance when changes occur between training and testing. If context plays an increased role in learning for older adults then, by maintaining specific contexts that exhibit strong effects, older adults' performance might be enhanced to a greater relative degree than that of younger adults. If this can be accomplished then maybe the context effect can be a positive impact on skill acquisition and performance of older adults.

# NOTE TO USERS

Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was microfilmed as received.

Page 40-41

This reproduction is the best copy available.

# UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

## APPENDIX C

| 4-Key | Sign | in S | heet |
|-------|------|------|------|
|       |      |      |      |

.

# Group #1

| Name      | Age | Day | Subject's | Condition   | Experimenter | Comments |
|-----------|-----|-----|-----------|-------------|--------------|----------|
| (Subject) |     | 1,2 | Code Name | (Retention) | (Initials)   |          |
|           |     | 1   | aaxk,raxk | ret1        |              |          |
| {         |     | 2   | abxk.rbxk |             |              |          |
|           |     | 1   | aaxi,raxi | ret1        |              |          |
|           |     | 2   | abxi,rbxi |             |              |          |
|           |     | 1   | aaxm,raxm | ret2        |              |          |
|           |     | 2   | abxm.rbxm |             |              |          |
|           |     | 1   | aaxn.raxn | ret1        |              |          |
|           |     | 2   | abxn,rbxn |             |              |          |
|           |     | 1   | aaxo,raxo | ret2        |              |          |
|           |     | 2   | abxo,rbxo |             |              |          |
|           |     | 1   | aaxp,raxp | ret2        |              |          |
|           |     | 2   | abxp,rbxp |             |              |          |
|           |     | 1   | aaxq,raxq | ret2        |              |          |
|           |     | 2   | abxq,rbxq |             |              |          |
|           |     | 1   | aaxr,raxr | ret1        |              |          |
| {         |     | 2   | abxr,rbxr |             |              |          |
|           |     | 1   | aaxs,raxs | ret1        |              |          |
|           |     | 2   | abxs,rbxs |             |              |          |
|           |     | 1   | aaxt,raxt | ret2        |              |          |
| L         |     | 2   | abxt,rbxt |             |              |          |

#### 4-Key Sign In Sheet

### Group #2

| Name      | Age | Day | Subject's  | Condition   | Experimenter | Comments |
|-----------|-----|-----|------------|-------------|--------------|----------|
| (Subject) |     | 1.2 | Code Name  | (Retention) | (Initials)   |          |
|           |     | 1   | aazk,razk  | ret1        |              |          |
|           |     | 2   | abzk,rbzk  |             |              |          |
|           |     | 1   | aazi,razi  | ret1        |              |          |
|           |     | 2   | abzl,rbzl  |             |              |          |
|           |     | 1   | aazm,razm  | ret2        |              |          |
|           | 1   | 2   | abzm,rbzm  |             |              |          |
|           |     | 1   | aazn,razn  | ret1        |              |          |
|           |     | 2   | abzn,rbzn  |             |              |          |
|           |     | 1   | aazo,razo  | ret2        |              |          |
|           |     | 2   | abzo,rbzo_ |             |              |          |
|           |     | 1   | aazp,razp  | ret2        |              |          |
|           |     | 2   | abzp,rbzp  |             |              |          |
|           |     | 1   | aazq,razq  | ret2        |              |          |
|           |     | 2   | abzq,rbzq  |             |              |          |
|           |     | 1   | aazr,razr  | ret1        |              |          |
|           |     | 2   | abzr,rbzr  |             |              |          |
|           |     | 1   | aazs,razs  | ret1        |              |          |
| 1         |     | 2   | abzs,rbzs  |             |              |          |
|           |     | 1   | aazt,razt  | ret2        |              |          |
|           |     | 2   | abzt,rbzt  |             |              |          |

.

| Name              | Date Lime                        | Date Time                                                                                                                                                                                                                                                                                                                |
|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age               | Day I                            | Day 1 4-KEY TASK<br>Day 2                                                                                                                                                                                                                                                                                                |
| Phone             | Special arrangements             | Location UNLV, Motor Behav Lab<br>Building BHS RM215 Phone 895-1241<br>Tall five story building on nontimest corner of campus. From Flammero, Jurn, south                                                                                                                                                                |
| Comments          | necded                           | into campus at 1st light west of Maryland. Turn right at first stop sign (T in road).<br>Then left at next stop sign (T in road). BHS building is directly ahead, across parking                                                                                                                                         |
|                   | Experimenter Approval<br>of time | for it before "pm park in a metered spot (ngm next to building). Experimenter can<br>provide you with change for meter. If you are unclear as to location or would like to<br>be met in parking lot or lobby please call                                                                                                 |
| Name              | Date Time<br>Day I               | Date Time<br>Day I 4-KEY TASK                                                                                                                                                                                                                                                                                            |
| Age               | Day 2                            | Day 2<br>Location UNLV, Motor Behav Lab                                                                                                                                                                                                                                                                                  |
| Phone<br>Comments | Special arrangements needed      | Building BHS RM215 Phone 895-1241<br>Tall five story building on northwest corner of campus. From Flamingo, turn, south<br>into campus at 1st light west of Maryland. Turn right at first stop sign (T in road)<br>to campus at 1st light west of Maryland. Turn right at first stop sign (T in road)                    |
|                   | Experimenter Approval of time    | Incenters at meets stop sign (1 in road) (511) oundaring is directly anead, scross parking<br>lot if before 5pm park in a metered spot (nght next to building). Experimenter can<br>provide you with change for meter. If you are unclear as to location or would like to<br>be met in parking lot or lobby please call. |
| Name              | Date Time<br>Dav I               | Date Time                                                                                                                                                                                                                                                                                                                |
| Age               | Day 2                            | Day 2                                                                                                                                                                                                                                                                                                                    |
| Phone             | Special arrangements             | Building BHS RM215 Phone 895-1241<br>Tall five story building on northwest corner of campus From Flamingo, turn south                                                                                                                                                                                                    |
| Comments          | needed                           | into campus at 1st light west of Maryland. Turn right at first stop sign (T in road).<br>Then left at next stop sign (T in road). BHS building is directly shead, across parking                                                                                                                                         |
|                   | Experimenter Approval<br>of time | lot. If before >pm park in a metered spot (nght next to building). Experimenter can<br>provide you with change for meter. If you are unclear as to location or would like to<br>be met in parking lot or lubby please call.                                                                                              |

### APPENDIX D

The SAS System 11:02 Wednesday, April 22, 1998 1

## PERCENT ERROR RETENTION TEST

----- GROUP=1 CONTEXT=1------

| Variable | : N | Mean        | Std Error   |  |
|----------|-----|-------------|-------------|--|
| TI       | 10  | 89.9000000  | 7.1685269   |  |
| T2       | 10  | 59.9000000  | 13.8992006  |  |
|          |     |             |             |  |
| <br>GR(  | OUP | =I CONTEX   | <u>[]=2</u> |  |
| Varia    | ble | N Mean      | Std Error   |  |
|          |     |             |             |  |
| TI       | 10  | 0 100.00000 | 00 0        |  |
| T2       | 10  | 86.5000000  | 7.4375175   |  |
|          |     |             |             |  |

45

----- GROUP=2 CONTEXT=1 -----

| Variable N Mean Std Error      |
|--------------------------------|
| T1 10 46.3000000 11.2704629    |
| T2 10 39.7000000 10.8392804    |
| GROUP=2 CONTEXT=2              |
| Variable N Mean Std Error      |
|                                |
| T1 10 49.8000000 12.4327524    |
| T2 10 46.4000000 12.3452195    |
|                                |
| Analysis of Variance Procedure |
| Class Level Information        |
| Class Levels Values            |
| GROUP 2 1 2                    |

CONTEXT 2 1 2

Number of observations in data set = 40

\_\_\_\_

# Analysis of Variance Procedure

# Dependent Variable: T1

| Source  | DF            | Sum of Squares           | Mean Square F Value Pr   |
|---------|---------------|--------------------------|--------------------------|
| Model   | 3             | 22567.40000000<br>0.0001 | 7522.46666667 9.04       |
| Error   | 36            | 29968.60000              | 832.4611111              |
|         | Corrected     | Total 39 5               | 2536.00000000            |
|         | R-Square      | C.V.                     | Root MSE T1 Mean         |
|         | 0.429561      | 40.35301                 | 28.85240217              |
|         |               | 71.50000000              |                          |
| Source  | DF            | Anova SS<br>> F          | Mean Square F Value Pr   |
| GROUP   | 1             | 21996.10000000<br>0.0001 | 21996.100000 26.42       |
| CONTEX  | T 1           | 462.40000000<br>0.4609   | 462.4000000 0.56         |
| GROUP*  | CONTEXT I     | 108.9000000<br>0.7197    | 108.9000000 0.13         |
|         | The SAS Syste | m 11:02 Wednes           | day, April 22, 1998 4    |
|         | A             | nalysis of Variance      | Procedure                |
|         |               | Dependent Variable       | e: T2                    |
| Source  | DF            | Sum of Squares<br>> F    | Mean Square F Value Pr   |
| Model   | 3             | 12852.47500000<br>0.0310 | 4284.15833333 3.31       |
| Error   | 36            | 46655.90000              | 000 1295.99722222        |
|         | Corrected     | Total 39 59              | 9508.37500000            |
|         | R-Square      | C.V.                     | Root MSE T2 Mean         |
|         | 0.215978      | 61.93542                 | 35.99996142              |
|         |               | 58.12500000              |                          |
| Source  | DF            | Anova SS<br>F            | Mean Square F Value Pr > |
| GROUP   | 1             | 9090.22500000            | 9090.22500000 7.01       |
| CONTEXT | 1             | 2772.22500000            | 2772.22500000 2.14       |

|               |   | 0.1523       |              |      |
|---------------|---|--------------|--------------|------|
| GROUP*CONTEXT | 1 | 990.02500000 | 990.02500000 | 0.76 |
|               |   | 0.3879       |              |      |

|                                                 | Analysis o                                                     | f Variance                                 | e Procedu                 | ıre                  |                |
|-------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|---------------------------|----------------------|----------------|
| R                                               | epeated Measu                                                  | res Analy                                  | sis of Va                 | riance               |                |
|                                                 | Repeated Measure                                               | sures Leve                                 | el Informa                | ation                |                |
|                                                 | Dependent Va                                                   | ariable                                    | ΤI                        | T2                   |                |
|                                                 | Level of                                                       | DAY                                        | 1                         | 2                    |                |
| Manova Test Criteria and                        | Exact F Statis                                                 | tics for th                                | e Hypoth                  | esis of              | no DAY         |
|                                                 | Effect                                                         |                                            |                           |                      |                |
| H = Anova SS&                                   | CP Matrix for                                                  | DAY E                                      | = Error S                 | S&CP                 | Matrix         |
|                                                 | S=1                                                            | M=-0.5                                     | N=17                      |                      |                |
| Statistic                                       | Value                                                          | F S                                        | vum DF                    | Den                  | DF Pr>         |
|                                                 | F                                                              |                                            |                           |                      |                |
| Wilks' Lambda                                   | 0.83943370                                                     | 6.8861                                     | 1                         | 36                   | 0.0127         |
| Pillai's Trace                                  | 0.16056630                                                     | 6. <b>88</b> 61                            | l                         | 36                   | 0.0127         |
| Hotelling-Lawley Trace                          | 0.19127931                                                     | 6.8861                                     | 1                         | 36                   | 0.0127         |
| Roy's Greatest Root                             | 0.19127931                                                     | 6. <b>88</b> 61                            | 1                         | 36                   | 0.0127         |
| Manova Test Criteria a<br>D<br>H = Anova SS&C   | nd Exact F Sta<br>AY*GROUP F<br>P Matrix for D<br>Matrix       | tistics for<br>Effect<br>AY*GRO            | the Hypo<br>UP = E =      | thesis of<br>Error S | of no<br>SS&CP |
| C+-+'-+'-                                       | S=1                                                            | M≈-0.5                                     | N=1/                      | Dem                  |                |
| Statistic                                       | value<br>F                                                     | r N                                        | um Dr                     | Den                  | Dr Pr >        |
| Wilks' Lambda                                   | 0 93023424                                                     | 7 6999                                     | 1                         | 36                   | 0 1091         |
| Pillai's Trace                                  | 0.06976576                                                     | 5 2 699                                    | 9 1                       | 36                   | 0 1091         |
| Hotelling-Lawley Tra                            | ce 0.0749980                                                   | 6 2 699                                    | 9 1                       | 36                   | 0.1091         |
| Rov's Greatest Root                             | 0.07499806                                                     | 5 2.699                                    | 9 1                       | 36                   | 0.1091         |
| Manova Test Criteria a<br>DA<br>H = Anova SS&CP | nd Exact F Stat<br>Y*CONTEXT<br>Matrix for DA<br>Matrix<br>S=1 | istics for t<br>Effect<br>Y*CONT<br>M=-0.5 | the Hypo<br>EXT E<br>N=17 | thesis o<br>= Error  | f no<br>SS&CP  |
| Statistic                                       | Value F                                                        | Num                                        | DF Der                    | n DF P               | r > F          |
| Wilks' Lambda                                   | 0.97472024                                                     | 0.9337                                     | 1                         | 36 (                 | 0.3404         |
| Pillai's Trace                                  | 0.02527976                                                     | 0.9337                                     | 1                         | 36 0.                | 3404           |
| Hotelling-Lawley Trace                          | e 0.0259354                                                    | 0 0.933                                    | 7 1                       | 36                   | 0.3404         |
| Roy's Greatest Root                             | 0.02593540                                                     | 0.9337                                     | 1                         | 36                   | 0.3404         |

|        |                      |                                         | Analysis o           | of Variance    | Procedur   | e           |            |
|--------|----------------------|-----------------------------------------|----------------------|----------------|------------|-------------|------------|
|        |                      | Repea                                   | ted Measu            | ires Analysi   | is of Vari | ance        |            |
|        | Manova Test Crite    | eria and Ex                             | act F Stat           | istics for the | e Hypothe  | esis of no  |            |
|        | $H = \Delta nova SS$ | CP Marri                                | r = CON I            | *GROUP*        | CONTEN     | (T F = F)   | TOF        |
|        | 11 / 110 va 550      |                                         | &CP Mat              | rix            | CONTE      |             | 101        |
|        |                      | 55                                      |                      | M = -0.5       | N=17       |             |            |
|        | Statistic            | Value                                   | 51                   | F Num          | DF Der     | DF Pr       | > F        |
|        | Wilks' Lambda        | 0.9                                     | 8831685              | 0 4256         | 1          | 36 0.5      | 183        |
|        | Pillai's Trace       | 0.0                                     | 168315               | 0.4256         | 1          | 36 0.5      | 183        |
|        | Hotelling-Lawley     | Trace 0.0                               | 1182126              | 0.4256         | 1          | 36 0.5      | 183        |
|        | Roy's Greatest R     | oot 0.0                                 | 1182126              | 0.4256         | 1          | 36 0.5      | 183        |
|        |                      |                                         | Analysis o           | of Variance    | Procedur   | e           |            |
|        | _                    | Repea                                   | ted Measu            | ires Analysi   | s of Vari  | ance        |            |
| ~      | 1                    | ests of Hy                              | otheses f            | or Between     | Subjects   | Effects     | <b>n</b> . |
| Source | DF                   | An                                      | ova SS<br>F          | Mean           | Square     | F Value     | Pr >       |
| GROL   | JP I                 | 2968                                    | 3.5125000            | 0 2968         | 3.512500   | 000 18.4    | .5         |
|        |                      |                                         | 0.0001               |                |            |             |            |
| CONT   | TEXT I               | 2749                                    | .5125000(<br>0.1994  | 0 274          | 49.51250   | 000 1.7     | 1          |
| GROU   | UP*CONTEXT 1         | 877.                                    | 81250000             | 87             | 7.812500   | 00 0.55     |            |
|        | Error                | 36                                      | 57010.85             | 00000          | 1608.8     | 8477777     |            |
|        | LIIOI                | 50                                      | J/717.0J             | 000000         | 1000.0     | ئنئن/04     |            |
|        |                      |                                         | Analysis (           | of Variance    | Procedur   | e           |            |
|        |                      | Renea                                   | ted Measi            | ires Analysi   | s of Vari  | ance        |            |
|        | Univar               | iate Tests o                            | f Hypothe            | eses for Wit   | hin Subie  | ect Effects |            |
|        |                      | Sc                                      | urce <sup>.</sup> DA | Y              |            |             |            |
|        |                      |                                         |                      | •              | Adjuste    | d Pr > F    |            |
| DF     | Anova SS             | Mean                                    | Square               | F Value        | Pr > F     | G - G       | Η          |
|        |                      | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | - F                  |                |            | -           |            |
| I      | 35/7.8125000         | 0 3577                                  | .8125000             | 0 6.89         | 0.012      |             | •          |
| DE     | Source: DAY+G        | KOUP                                    | C                    |                |            | PT > F      | гт         |
| DF     | Anova 55             | Mean                                    | Square<br>- F        | r value        | Pr > r     | 9-9         | н          |
| 1      | 1402.8125000         | 0 1402                                  | .8125000             | 0 2.70         | 0.109      | 1.          |            |
|        | Source: DAY*C        | CONTEXT                                 |                      | А              | djusted I  | Pr > F      |            |
| DF     | Anova SS             | Mean                                    | Square<br>- F        | F Value        | Pr > F     | G - G       | Н          |
| 1      | 485,1125000          | 0 485                                   | 11250000             | 0.93           | 0.3404     | <b>4</b> .  |            |

49

| S  | ource: DAY*GRO | UP*CONTEXT                  |                  | Adjustec | <b>1</b> Pr > F |    |
|----|----------------|-----------------------------|------------------|----------|-----------------|----|
| DF | Anova SS       | Mean Square<br>F            | F Value          | Pr > F   | G - G           | Н- |
| 1  | 221.11250000   | 221.112500<br>Source: Error | 00 0.43<br>(DAY) | 0.518    |                 |    |
|    | DF             | Anova SS                    | Mean             | Square   |                 |    |
|    | 36             | 18704.65000000              | 519.57           | 7361111  |                 |    |

## **RETENTION REACTION TIMES YOUNG**

| GROUP=1                                                     |
|-------------------------------------------------------------|
| Variable N Mean Std Error                                   |
| T1 10 186.9000000 12.1430822<br>T2 10 170.5000000 9.1824107 |
| GROUP=2                                                     |
| Variable N Mean Std Error                                   |
| T1 10 220.3000000 14.8129448                                |
| T2 10 197.1000000 18.6711007                                |
|                                                             |

|          | Analysis of Variance Procedure |                                        |                                |  |  |  |  |
|----------|--------------------------------|----------------------------------------|--------------------------------|--|--|--|--|
|          |                                | Class Level Information                |                                |  |  |  |  |
|          |                                | Class Levels Values                    |                                |  |  |  |  |
|          |                                | GROUI                                  | P 2 1 2                        |  |  |  |  |
|          |                                | Number of observa                      | tions in data set = 20         |  |  |  |  |
|          |                                | Analysis of V                          | ariance Procedure              |  |  |  |  |
|          |                                | Dependent Variable                     | TI                             |  |  |  |  |
| Source   | DF                             | Sum of Squares                         | Mean Square F Value Pr         |  |  |  |  |
| Source   | Di                             | > F                                    |                                |  |  |  |  |
| Model    | 1                              | 5577.80000000                          | 5577.8000000 3.04              |  |  |  |  |
|          |                                | 0.0983                                 |                                |  |  |  |  |
| Error    | 18                             | 33019.000000                           | 00 1834.38888889               |  |  |  |  |
|          | Corrected T                    | otal 19 3                              | 8596.8000000                   |  |  |  |  |
|          | R-Square                       | C.V.                                   | Root MSE T1 Mean               |  |  |  |  |
|          | 0.144515                       | 21.03623                               | 42.82976639                    |  |  |  |  |
|          |                                | 203.6000000                            |                                |  |  |  |  |
| Source   | DF                             | Anova SS                               | Mean Square F Value Pr >       |  |  |  |  |
|          |                                | F                                      |                                |  |  |  |  |
| GROUP    | 1                              | 5577.80000000                          | <b>5577.8000000</b> 3.04       |  |  |  |  |
|          |                                | 0.0983                                 |                                |  |  |  |  |
|          |                                | A .1 ' CT                              |                                |  |  |  |  |
|          |                                | Analysis of V                          | Tanance Procedure              |  |  |  |  |
| <b>C</b> | DE                             | Dependent variable:                    | 12<br>Maan Sawara E Valua - Pr |  |  |  |  |
| Source   | DF                             | Sum of Squares                         | Mean Square r value Pr         |  |  |  |  |
| Model    | 1                              | 2537 8000000                           | 3537 8000000 1.63              |  |  |  |  |
| MOdel    | 1                              | 0 2173                                 | 5557.80000000 1.05             |  |  |  |  |
| Error    | 18                             | 38963 400000                           | 00 2164 63333333               |  |  |  |  |
| LIIOI    | Corrected T                    | 1000000 100000000000000000000000000000 | 2501 2000000                   |  |  |  |  |
|          | R-Square                       |                                        | Root MSF T2 Mean               |  |  |  |  |
|          | 0 083240                       | 25 31318                               | 46 52562018                    |  |  |  |  |
|          | 0.000240                       | 183.80000000                           | 10.525 020 10                  |  |  |  |  |
| Source   | DF                             | Anova SS                               | Mean Square F Value Pr >       |  |  |  |  |
|          |                                | F                                      | •                              |  |  |  |  |
| GROUP    | 1                              | 3537.80000000                          | 3537.8000000 1.63              |  |  |  |  |
|          |                                | 0.2173                                 |                                |  |  |  |  |

Analysis of Variance Procedure Repeated Measures Analysis of Variance Repeated Measures Level Information Dependent Variable T1 T2 Level of DAY 1 2

Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY Effect

| H = Anova SS&C         | P Matrix for D | AY E = EI | TOT S | S&CP M      | atrix  |
|------------------------|----------------|-----------|-------|-------------|--------|
|                        | S=1            | M=-0.5    | √=8   |             |        |
| Statistic              | Value          | F Num     | DF    | Den DF      | Pr > F |
| Wilks' Lambda          | 0.76962403     | 5.3880    | 1     | 18 0        | .0322  |
| Pillai's Trace         | 0.23037597     | 5.3880    | 1     | 18 0        | .0322  |
| Hotelling-Lawley Trace | 0.29933573     | 5.3880    | 1     | <b>18</b> 0 | .0322  |
| Roy's Greatest Root    | 0.29933573     | 5.3880    | 1     | <b>18</b> 0 | .0322  |
|                        |                |           |       |             |        |

Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY\*GROUP Effect

H = Anova SS&CP Matrix for DAY\*GROUP E = Error SS&CP

|                        | Matri    | X     |        |     |     |    |        |
|------------------------|----------|-------|--------|-----|-----|----|--------|
|                        |          | S=1   | M=-0.5 | N=8 |     |    |        |
| Statistic V            | alue     | F     | Num    | DF  | Den | DF | Pr > F |
| Wilks' Lambda          | 0.991250 | )78 ( | 0.1589 | 1   |     | 18 | 0.6949 |
| Pillai's Trace         | 0.008749 | 922   | 0.1589 | 1   |     | 18 | 0.6949 |
| Hotelling-Lawley Trace | 0.008826 | 645 ( | 0.1589 | I   |     | 18 | 0.6949 |
| Roy's Greatest Root    | 0.008826 | 545   | 0.1589 | 1   |     | 18 | 0.6949 |
| -                      |          |       |        |     |     |    |        |

|        |    | Analysis of Va<br>Repeated Measures<br>Tests of Hypotheses for Be | riance Procedure<br>Analysis of Variance<br>etween Subjects Effects |      |
|--------|----|-------------------------------------------------------------------|---------------------------------------------------------------------|------|
| Source | DF | Anova SS<br>F                                                     | Mean Square F Value                                                 | Pr > |
| GROUP  | 1  | 9000.00000000<br>0.1145                                           | 9000.0000000 2.75                                                   | 5    |
| Error  |    | 18 58885.4000000                                                  | 0 3271.4111111                                                      |      |

Analysis of Variance Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|    | Source: DAY   |                    | A       | Adjusted P  | r > F |   |
|----|---------------|--------------------|---------|-------------|-------|---|
| DF | Anova SS      | Mean Square<br>- F | F Value | Pr > F      | G - G | Н |
| 1  | 3920.40000000 | 3920.40000000      | 5.39    | 0.0322      |       |   |
|    | Source: DAY*G | ROUP               | j       | justed Pr > | > F   |   |
| DF | Anova SS      | Mean Square<br>- F | F Value | Pr > F      | G - G | Н |
| 1  | 115.60000000  | 115.60000000       | 0.16    | 0.6949      |       |   |
|    |               | Source: Error(DA   | AY)     |             |       |   |
|    | DF            | Anova SS           | Mean So | quare       |       |   |
|    | 18            | 13097.00000000     | 727.611 | 11111       |       |   |

# ACQUISITION PERCENT ERROR

------ GROUP=1 CONTEXT=-----

| Variable N |   | Mean     | Std   | Error              |
|------------|---|----------|-------|--------------------|
| TI         | 9 | 0.001    | )0000 | 0 0                |
| T2         | 9 | 99.111   | 1111  | 0. <b>888888</b> 9 |
| T3         | 9 | 92.5555  | 5556  | 7.4444444          |
| T4         | 9 | 68.6666  | 6667  | 10.8140855         |
| T5         | 9 | 94.4444  | 1444  | 3.1185427          |
| Τ6         | 9 | 87.0000  | 0000  | 5.5851987          |
| Τ7         | 9 | 97.2222  | 2222  | 1.9845079          |
| T8         | 9 | 99.111   | []]]  | 0.8888889          |
| Т9         | 9 | 97.2222  | 2222  | 1.9845079          |
| T10        | ( | 9 100.00 | 0000  | 00 0               |
| T11        | Ģ | 9 100.0  | 0000  | 00 0               |
| T12        | 9 | 95.333   | 3333  | 2.4888641          |
| T13        | 9 | 88.000   | 0000  | 3.1710496          |
| T14        | 9 | 35.2222  | 2222  | 11.0877532         |
| T15        | 9 | 77.888   | 8889  | 5.3656429          |
| T16        | 9 | 82.333   | 3333  | 2.5766041          |
| T17        | 9 | 87.888   | 8889  | 2.0979120          |

53

| <br>        |   | GI           | ROUP=1 C  | ONTEXT=2  |
|-------------|---|--------------|-----------|-----------|
| <br>Variabl | e | N            | Mean      | Std Error |
| TI          | 9 | 97.2         | 2222222   | 2.7777778 |
| Т2          | 9 | 97.2         | 2222222   | 1.9845079 |
| Т3          | 9 | 99.1         | 111111    | 0.8888889 |
| T4          | 9 | 9 10         | 0.0000000 | 0         |
| T5          | 9 | 9 10         | 0.0000000 | 0         |
| T6          | 9 | 97.2         | 2222222   | 1.9845079 |
| T7          | 9 | 98.1         | 111111    | 1.8888889 |
| T8          | 9 | 91.6         | 6666667   | 5.5627731 |
| T9          | ç | 9 10         | 0.0000000 | 0         |
| T10         | 9 | <b>98</b> .2 | 2222222   | 1.1758895 |
| T11         | 9 | 77.5         | 8888889   | 8.7534826 |
| T12         | 9 | 80.4         | 444444    | 8.2733023 |
| T13         | 9 | <b>86</b> .  | 1111111   | 6.3954073 |
| T14         | 9 | 89.8         | 8888889   | 5.3500894 |
| T15         | 9 | 98.2         | 2222222   | 1.1758895 |
| T16         | 9 | 97.2         | 2222222   | 1.9845079 |
| T17         | 9 | 94.6         | 6666667   | 1.3333333 |
| T18         | 9 | 77.1         | 777778    | 6.3591093 |

-----

| T18 | 9 | 96.3333333 | 2.0275875 |
|-----|---|------------|-----------|
|     |   | - GROUP=1  | CONTEXT=2 |

----- GROUP=2 CONTEXT=1

| Variable N |   | Mean Std E | rror       |
|------------|---|------------|------------|
| TI         | 9 | 43.5555556 | 14.4078597 |
| T2         | 9 | 9.2222222  | 9.2222222  |
| Т3         | 9 | 96.3333333 | 2.8087166  |
| T4         | 9 | 89.000000  | 3.4034296  |
| T5         | 9 | 88.0000000 | 4.2524503  |
| Τ6         | 9 | 52.8888889 | 12.8532794 |
| Τ7         | 9 | 92.5555556 | 7.444444   |
| T8         | 9 | 89.7777778 | 5.3665056  |
| Т9         | 9 | 63.0000000 | 13.2528823 |
| T10        | 9 | 85.2222222 | 10.8343304 |
| T11        | 9 | 20.3333333 | 10.7986625 |
| T12        | 9 | 15.6666667 | 5.7999042  |

|           | T13    | 9    | 24.1111111          | 8.3023498  |  |
|-----------|--------|------|---------------------|------------|--|
|           | T14    | 9    | 52.6666667          | 7.5055535  |  |
|           | T15    | 9    | 50. <b>888888</b> 9 | 7.9170078  |  |
|           | T16    | 9    | 12.8888889          | 5.0537237  |  |
|           | T17    | 9    | 32.3333333          | 7.3805299  |  |
|           | T18    | 9    | 57.444444           | 9.7711467  |  |
|           |        |      |                     |            |  |
| GROUP=2 ( | CONTEX | XT=2 | 2                   |            |  |
|           | Varia  | ble  | N Mean              | Std Error  |  |
|           | T1     | 9    | 26.8888889          | 14.1455180 |  |
|           | T2     | 9    | 79.777778           | 5.7440253  |  |
|           | T3     | 9    | 60.3333333          | 8.7384845  |  |
|           | T4     | 9    | 40.7777778          | 14.5437823 |  |
|           | T5     | 9    | 70.444444           | 10.0996577 |  |
|           | T6     | 9    | 94.444444           | 3.1185427  |  |
|           | T7     | 9    | 96.3333333          | 2.0275875  |  |
|           | T8     | 9    | 87.0000000          | 3.4399612  |  |
|           | T9     | 9    | 55.6666667          | 14.4712358 |  |
|           | T10    | 9    | 45.444444           | 11.4529364 |  |
|           | T11    | 9    | 1.7777778           | 1.1758895  |  |
|           | T12    | 9    | 1.8888889           | 1.8888889  |  |
|           | T13    | 9    | 22.1111111          | 5.9194699  |  |
|           | T14    | 9    | 1.7777778           | 1.1758895  |  |
|           | T15    | 9    | 80.5555556          | 4.4193737  |  |
|           | T16    | 9    | 86.1111111          | 3.1200269  |  |
|           | T17    | 9    | 41.5555556          | 8.4395088  |  |
|           | T18    | 9    | 72.2222222          | 6.0547910  |  |

Analysis of Variance Procedure Class Level Information Class Levels Values GROUP 2 1 2 CONTEXT 2 1 2

Number of observations in data set = 36

Analysis of Variance Procedure Dependent Variable: T1

# NOTE TO USERS

Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was microfilmed as received.

Page 56

# This reproduction is the best copy available.

# UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|          |              | > F                  |                |            |
|----------|--------------|----------------------|----------------|------------|
| Model    | 3            | 8781.63888889        | 2927.21296296  | 9.26       |
|          |              | 0.0001               |                |            |
| Erro     | r 32         | 10113.11111          | 316.0347       | 2222       |
|          | Corrected To | otal 35              | 18894.75000000 |            |
|          | R-Square     | C.V.                 | Root MSE       | T3 Mean    |
|          | 0.464766     | 20.41420             | 17.77736545    | ;          |
|          |              | 87.0 <b>8</b> 333333 |                |            |
| Source   | DF           | Anova SS             | Mean Square F  | value Pr > |
|          |              | F                    |                |            |
| GROUP    | 1            | 2756.25000000        | 2756.2500000   | 0 8.72     |
|          |              | 0.0059               |                |            |
| CONTEXT  | 1            | 1950.69444444        | 1950.6944444   | 4 6.17     |
|          |              | 0.0184               |                |            |
| GROUP*CO | NTEXT I      | 4074.69444444        | 4074.694444    | 44 12.89   |
|          |              | 0.0011               |                |            |
|          |              |                      |                |            |

|          |             | Analysis of Variance Procedure |                    |                  |  |  |
|----------|-------------|--------------------------------|--------------------|------------------|--|--|
|          |             | Dependent Variable             | : T4               |                  |  |  |
| Source   | DF          | Sum of Squares                 | Mean Square        | F Value Pr       |  |  |
|          |             | > F                            |                    |                  |  |  |
| Model    | 3           | 18285.00000000                 | 6095.000000        | 00 7.97          |  |  |
|          |             | 0.0004                         |                    |                  |  |  |
| Error    | 32          | 24483.555555                   | 765.11             | 11111            |  |  |
|          | Corrected T | fotal 35                       | 42768.55555556     |                  |  |  |
|          | R-Square    | C.V.                           | Root MSE           | T4 Mean          |  |  |
|          | 0.427534    | 37.07309                       | 27.660641          | 91               |  |  |
|          |             | 74.61111111                    |                    |                  |  |  |
| Source   | DF          | Anova SS                       | Mean Square        | F Value $Pr >$   |  |  |
|          |             | F                              |                    |                  |  |  |
| GROUP    | 1           | 3402.777777 <b>8</b>           | 3402.777777        | 778 4.45         |  |  |
|          |             | 0.0429                         |                    |                  |  |  |
| CONTEXT  | 1           | 641.77777778                   | 641.77777          | 7 <b>78</b> 0.84 |  |  |
|          |             | 0.3666                         |                    |                  |  |  |
| GROUP*CO | NTEXT I     | 14240.44444444                 | 14240.4444         | 4444 18.61       |  |  |
|          |             | 0.0001                         |                    |                  |  |  |
|          |             | Analysis of V                  | Variance Procedure | 2                |  |  |
|          |             | Dependent Variable             | : T5               |                  |  |  |
| Source   | DF          | Sum of Squares                 | Mean Square        | F Value Pr       |  |  |

|           |             | > F                    |                                                                                                                 |               |
|-----------|-------------|------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|
| Model     | 3           | 4441.77777778          | 1480.59259259                                                                                                   | 5.07          |
|           |             | 0.0055                 |                                                                                                                 |               |
| Error     | 32          | 9346.4444444           | 292.07638                                                                                                       | 889           |
|           | Corrected T | otal 35 137            | 88.22222222                                                                                                     |               |
| R         | -Square     | C.V.                   | Root MSE                                                                                                        | T5 Mean       |
|           | 0.322143    | 19.37181               | 17.09024251                                                                                                     |               |
|           |             | 88.2222222             |                                                                                                                 |               |
| Source    | DF          | Anova SS               | Mean Square FV                                                                                                  | alue $Pr >$   |
|           |             | F                      |                                                                                                                 |               |
| GROUP     | 1           | 2916.00000000          | 2916.00000000                                                                                                   | 9.98          |
|           |             | 0.0034                 |                                                                                                                 |               |
| CONTEXT   | 1           | 324.00000000           | 324.0000000                                                                                                     | 1.11          |
|           |             | 0.3001                 |                                                                                                                 |               |
| GROUP*CON | TEXT I      | 1201.7777778           | 1201.7777777                                                                                                    | 8 4.11        |
|           |             | 0.0509                 |                                                                                                                 |               |
|           |             | Analysis of Var        | iance Procedure                                                                                                 |               |
|           |             | Dependent Variable: Ti | And Those and the second se |               |
| Source    | DF          | Sum of Squares         | Mean Square F                                                                                                   | Value Pr      |
| Source    | DI          | > F                    | Mean Square 1                                                                                                   | value 11      |
| Model     | 3           | 11307 88888889         | 3767 62962963                                                                                                   | 7 97          |
| MIUdel    | 5           | 0 0004                 | 5707.02702705                                                                                                   | 1.21          |
| Frror     | 32          | 15124 6666666          | 7 472 6458                                                                                                      | 3333          |
| End       | Corrected 1 | Total 35 2643          | 27 55555556                                                                                                     |               |
| R         | -Souare     | C.V.                   | Root MSE                                                                                                        | T6 Mean       |
|           | 0.427693    | 26.22839               | 21.74041935                                                                                                     |               |
|           | 0.12.070    | 82.88888889            |                                                                                                                 |               |
| Source    | DF          | Anova SS               | Mean Square F V                                                                                                 | alue Pr >     |
|           |             | F                      | <b>1</b>                                                                                                        |               |
| GROUP     | 1           | 3061.77777778          | 3061.77777778                                                                                                   | 6.4 <b>8</b>  |
|           |             | 0.0159                 |                                                                                                                 |               |
| CONTEXT   | 1           | 6032.11111111          | 6032.11111111                                                                                                   | 12.76         |
|           |             | 0.0011                 |                                                                                                                 |               |
| GROUP*CON | TEXT I      | 2209.0000000           | 2209.0000000                                                                                                    | ) <b>4.67</b> |
| -         |             | 0.0382                 |                                                                                                                 |               |
|           |             | Analysis of Var        | iance Procedure                                                                                                 |               |
|           |             | Dependent Variable: T  | 7                                                                                                               |               |
| Source    | DF          | Sum of Squares         | Mean Square F                                                                                                   | Value Pr      |
|           |             | > F                    | •                                                                                                               |               |
| Model     | 3           | 161.22222222           | 53.74074074                                                                                                     | 0.36          |
|           |             | 0.7849                 |                                                                                                                 |               |
| Error 32  |             | 4826.66666667          | 150.833333                                                                                                      | 333           |

|              | Corrected | Total 35               | 4987.88888889                   |            |  |
|--------------|-----------|------------------------|---------------------------------|------------|--|
|              | R-Square  | C.V.                   | Root MSE                        | T7 Mean    |  |
|              | 0.032323  | 12,7857                | 5 12.28142228                   | 42228      |  |
|              |           | 96.05555556            | )                               |            |  |
| Source       | DF        | Anova SS               | Mean Square F V                 | 'alue Pr > |  |
|              |           | F                      | •                               |            |  |
| GROUP        | 1         | 93.44444444            | 93.4444444                      | 0.62       |  |
|              |           | 0.4370                 |                                 |            |  |
| CONTEXT      | ' I       | 49.0000000             | 0.32                            |            |  |
|              |           | 0.5727                 |                                 |            |  |
| GROUP*C      | ONTEXT I  | 18.7777777             | 8 18,7777778                    | 0.12       |  |
| GROUP OF     |           | 0 7265                 |                                 |            |  |
|              |           | 0.7200                 |                                 |            |  |
|              |           | Analysis of            | Variance Procedure              |            |  |
|              |           | Dependent Variah       | le <sup>.</sup> T8              |            |  |
| Source       | DF        | Sum of Squares         | Mean Square F                   | Value Pr   |  |
| Source       | DI        |                        | Mean Square 1                   | value II   |  |
| Model        | 3         | 725 1111111            | 241 70370370                    | 1.48       |  |
| MOUCI        | J         | 0 7374                 | 241.70370370                    | 1.40       |  |
| E            |           | 5710 4444              | 1444 162 92629                  | 990        |  |
| EIIO         |           | 5210.44444<br>Cotol 35 | 1444 IU2.02030<br>5025 55555556 | 007        |  |
|              | D Severe  |                        |                                 | TO Maam    |  |
|              | K-Square  | U.V.                   |                                 | is Mean    |  |
|              | 0.122164  | 13.880/                | 12./0034439                     |            |  |
| <u> </u>     | 55        | 91.88888889            |                                 |            |  |
| Source       | DF        | Anova SS               | Mean Square F V                 | alue Pr >  |  |
| <b>~</b> ~~~ |           | F                      |                                 |            |  |
| GROUP        | l         | 441.00000000           | 441.00000000                    | 2.71       |  |
|              |           | 0.1096                 |                                 |            |  |
| CONTEXT      | 1         | 235.1111111            | 235.1111111                     | 1.44       |  |
|              |           | 0.2383                 |                                 |            |  |
| GROUP*C      | ONTEXT I  | 49.0000000             | ) 49.0000000                    | 0.30       |  |
|              |           | 0.5871                 |                                 |            |  |
|              |           |                        |                                 |            |  |
|              |           | Analysis of            | Variance Procedure              |            |  |
|              |           | Dependent Variab       | le: T9                          |            |  |
| Source       | DF        | Sum of Squares         | Mean Square F                   | Value Pr   |  |
|              |           | > F                    |                                 |            |  |
| Model        | 3         | 14161.41666667         | 4720.47222222                   | 5.39       |  |
|              |           | 0.0041                 |                                 |            |  |
| Error        | 32        | 28007.5555             | <b>5556 875.2361</b>            | 1111       |  |
|              | Corrected | Total 35               | 42168.97222222                  |            |  |
|              | R-Square  | C.V.                   | Root MSE                        | T9 Mean    |  |

|             | 0.335826 | 37.46177             | 29.58438965    |         |
|-------------|----------|----------------------|----------------|---------|
|             |          | 78.97222222          |                |         |
| Source      | DF       | Anova SS             | Mean Square    | - Value |
|             |          | <b>Pr</b> > <b>F</b> |                |         |
| GROUP       | 1        | 13884.69444444       | 13884.69444444 | 15.86   |
|             |          | 0.0004               |                |         |
| CONTEXT     | 1        | 46.69444444          | 46.69444444    | 0.05    |
|             |          | 0.8188               |                |         |
| GROUP*CONTI | EXT I    | 230.02777778         | 230.02777778   | 0.26    |
|             |          | 0.6117               |                |         |

|                  |                         | Analysis of    | Variance Procedure    |            |  |  |  |
|------------------|-------------------------|----------------|-----------------------|------------|--|--|--|
|                  | Dependent Variable: T10 |                |                       |            |  |  |  |
| Source           | DF                      | Sum of Squares | Mean Square H         | FValue Pr  |  |  |  |
|                  |                         | > F            |                       |            |  |  |  |
| Model            | 3                       | 17402.88888889 | 5800.96296296         | 10.32      |  |  |  |
|                  |                         | 0.0001         |                       |            |  |  |  |
| Error            | 32                      | 17995.3333     | 562.3541              | 6667       |  |  |  |
|                  | Corrected T             | otal 35        | 35398.22222222        |            |  |  |  |
| R-Square         |                         | C.V.           | T10 Mean              |            |  |  |  |
|                  | 0.491632                | 28.84136       | 5 23.71400782         |            |  |  |  |
|                  |                         | 82.22222222    |                       |            |  |  |  |
| Source           | DF                      | Anova SS       | Mean Square F         | √alue Pr > |  |  |  |
|                  |                         | F              |                       |            |  |  |  |
| GROUP            | 1                       | 10268.44444444 | 10268.4444444         | 4 18.26    |  |  |  |
|                  |                         | 0.0002         |                       |            |  |  |  |
| CONTEXT          | 1                       | 3885.4444444   | <b>1</b> 3885.4444444 | 4 6.91     |  |  |  |
|                  |                         | 0.0131         |                       |            |  |  |  |
| <b>GROUP*CON</b> | TEXT I                  | 3249.0000000   | 3249.000000           | 0 5.78     |  |  |  |
|                  |                         | 0.0222         |                       |            |  |  |  |

|          |           | Analysis of Variance Procedure |              |        |                   |         |      |
|----------|-----------|--------------------------------|--------------|--------|-------------------|---------|------|
|          |           | Depend                         | dent Variabl | e: T11 |                   |         |      |
| Source   | DF        | Sum o                          | of Squares   | Ν      | lean Square       | F Value | e Pr |
|          |           |                                | > F          |        |                   |         |      |
| Model    | 3         | 58349                          | .55555556    | 19     | 449.8518518       | 85 44.  | 42   |
|          |           |                                | 0.0001       |        |                   |         |      |
| Error    | 32        |                                | 14012.4444   | 4444   | 437.888           | 388889  |      |
|          | Corrected | Fotal                          | 35           | 72362. | 0000000           |         |      |
| R-Square |           |                                | C.V.         | Roc    | Root MSE T11 Mean |         |      |
|          | 0.806356  |                                | 41.85159     | 9      | 20.925794         | 82      |      |
|          |           | 5                              | 0.00000000   | )      |                   |         |      |

60
| Source   | DF        | Anova SS<br>F            | Mean Square F Value Pr | > |
|----------|-----------|--------------------------|------------------------|---|
| GROUP    | 1         | 54600.11111111<br>0.0001 | 54600.11111111 124.69  |   |
| CONTEXT  | 1         | 3721.00000000            | 3721.0000000 8.50      |   |
| GROUP*CO | NTEXT I   | 28.4444444<br>0.8005     | 2 <b>8.444444</b> 0.06 |   |
|          |           | Analysis of V            | ariance Procedure      |   |
|          |           | Dependent Variable:      | T12                    |   |
| Source   | DF        | Sum of Squares<br>> F    | Mean Square F Value P  | r |
| Model    | 3         | 58178.88888889<br>0.0001 | 19392.96296296 77.06   |   |
| Ептог    | 32        | 8053.111111              | 1 251.65972222         |   |
|          | Corrected | Total 35 662             | 232.0000000            |   |
| F        | R-Square  | C.V.                     | Root MSE T12 Mean      |   |
|          | 0.878411  | 32.82163                 | 15.86378650            |   |
|          |           | 48.33333333              |                        |   |
| Source   | DF        | Anova SS<br>F            | Mean Square F Value Pr | > |
| GROUP    | 1         | 56327.11111111           | 56327.11111111 223.82  |   |
| CONTENT  | 1         |                          | 1040 0000000 7.35      |   |

| CONTEXT     | 1    | 1000000           | 1849 0000000   | 7 35 |
|-------------|------|-------------------|----------------|------|
| CONTEXT     | 1    | 0.0107            | 1849.00000000  | 1.55 |
| GROUP*CONTE | XT I | 2.77777778        | 2.77777778     | 0.01 |
|             |      | 0.9170            |                |      |
|             |      |                   |                |      |
|             |      | Analysis of Varia | ance Procedure |      |

|        |           | Dependent Variable: | T13            |            |
|--------|-----------|---------------------|----------------|------------|
| Source | DF        | Sum of Squares      | Mean Square    | F Value Pr |
|        |           | -<br>> F            |                |            |
| Model  | 3         | 36834.08333333      | 12278.0277777  | 8 35.22    |
|        |           | 0.0001              |                |            |
| Er     | ror 32    | 11154.6666666       | <b>348.583</b> | 33333      |
|        | Corrected | Total 35 47         | 988.75000000   |            |
|        | R-Square  | C.V.                | Root MSE       | T13 Mean   |
|        | 0.767557  | 33.89480            | 18.6703865     | 53         |
|        |           | 55.08333333         |                |            |
|        |           |                     |                |            |

| Source     | DF    | Anova SS<br>F            | Mean Square F Va | lue Pr > |
|------------|-------|--------------------------|------------------|----------|
| GROUP      | 1     | 36800.02777778<br>0.0001 | 36800.02777778   | 105.57   |
| CONTEXT    | 1     | 34.02777778<br>0.7567    | 34.02777778      | 0.10     |
| GROUP*CONT | EXT I | 0.02777778               | 0.02777778       | 0.00     |

|           |                   | Analysis of Va                        | ariance Procedure |            |
|-----------|-------------------|---------------------------------------|-------------------|------------|
|           |                   | Dependent Variable: 7                 | Г14               |            |
| Source    | DF                | Sum of Squares                        | Mean Square       | F Value Pr |
|           |                   | > F                                   |                   |            |
| Model     | 3                 | 36337.55555556                        | 12112.5185185     | 52 25.72   |
|           |                   | 0.0001                                |                   |            |
| Error     | 32                | 1506 <b>8</b> .0000000                | 470.875           | 00000      |
|           | Corrected 7       | Fotal 35 51                           | 405.55555556      |            |
| R         | -Square           | C.V.                                  | Root MSE          | T14 Mean   |
|           | 0.706 <b>88</b> 0 | 48.34081                              | 21.6996543        | 38         |
|           |                   | 44.88888889                           |                   |            |
| Source    | DF                | Anova SS<br>> F                       | Mean Square       | F Value Pr |
| GROUP     | 1                 | 11236.00000000<br>0.0001              | 11236.00000       | 000 23.86  |
| CONTEXT   | I                 | 32.11111111<br>0.7957                 | 32.111111         | 11 0.07    |
| GROUP*CON | ITEXT I           | 25069.4444444<br>0.0001               | 25069.4444        | 4444 53.24 |
|           |                   | Analysis of Va                        | ariance Procedure |            |
|           |                   | Dependent Variable: 7                 | F15               |            |
| Source    | DF                | Sum of Squares<br>> F                 | Mean Square       | F Value Pr |
| Model     | 3                 | 10310.00000000<br>0.0001              | 3436.6666666      | 67 13.59   |
| _         | -                 | • • • • • • • • • • • • • • • • • • • |                   |            |

| Error | 32              | 8091.5 | 5555556 252.8  | 611111   |
|-------|-----------------|--------|----------------|----------|
|       | Corrected Total | 35     | 18401.55555556 |          |
| R-S   | quare           | C.V.   | Root MSE       | T15 Mean |

62

\_

| (            | ).560279 | 20.68128<br>76.88888889 | 15.90160719   |              |
|--------------|----------|-------------------------|---------------|--------------|
| Source       | DF       | Anova SS<br>Pr > F      | Mean Square F | Value        |
| GROUP        | I        | 4489.00000000           | 4489.00000000 | 17.75        |
|              |          | 0.0002                  |               |              |
| CONTEXT      | 1        | 5625.00000000           | 5625.00000000 | 22.25        |
|              |          | 0.0001                  |               |              |
| GROUP*CONTEX | XT 1     | 196.0000000             | 196.00000000  | 0.7 <b>8</b> |
|              |          | 0.3852                  |               |              |

|                   |              | Analysis o            | f Variance Procedure          |            |
|-------------------|--------------|-----------------------|-------------------------------|------------|
|                   | ſ            | Dependent Variab      | le: T16                       |            |
| Source            | DF           | Sum of Squares        | Mean Square                   | F Value Pr |
|                   |              | > F                   | -                             |            |
| Model             | 3            | 39724.97222222        | 13241.6574074                 | 1 128.35   |
|                   |              | 0.0001                |                               |            |
| Error             | 32           | 3301.3333             | 103.166                       | 66667      |
|                   | Corrected To | otal 35               | 43026.30555556                |            |
| R-9               | Square       | <b>C</b> . <b>V</b> . | Root MSE                      | T16 Mean   |
|                   | 0.923272     | 14.5853               | 8 10.1570993                  | 32         |
|                   |              | 69.63888889           | )                             |            |
| Source            | DF           | Anova SS              | Mean Squar                    | e F Value  |
|                   |              | <b>Pr</b> > <b>F</b>  | _                             |            |
| GROUP             | 1            | 14600.6944444         | 4 14600.69444                 | 444 141.53 |
|                   |              | 0.0001                |                               |            |
| CONTEXT           | I            | 17468.027             | <b>77778</b> 1746 <b>8</b> .0 | 2777778    |
|                   |              | 169.32 0.00           | 01                            |            |
| <b>GROUP*CONT</b> | EXT 1        | 7656.250000           | 7656.25000                    | 0000 74.21 |
|                   |              | 0.0001                |                               |            |

|          | Analysis of Variance Procedure |         |             |         |                 |         |     |
|----------|--------------------------------|---------|-------------|---------|-----------------|---------|-----|
|          |                                | Depen   | dent Variab | le: T17 | ,               |         |     |
| Source   | DF                             | Sum o   | of Squares  |         | Mean Square     | F Value | Pr  |
|          |                                |         | > F         |         | _               |         |     |
| Model    | 3                              | 2715    | 8.4444444   |         | 9052.8148148    | 30.5    | I   |
|          |                                |         | 0.0001      |         |                 |         |     |
| Error    | 3                              | 32      |             | 11111   | 11 296.72222222 |         |     |
|          | Correcte                       | d Total | 35 366      |         | 6653.55555556   |         |     |
| R        | -Square                        |         | C.V.        | R       | oot MSE         | T17 M   | ean |
| 0.740950 |                                |         | 26.86840    |         | 17.22562690     |         |     |
|          |                                | (       | 64.1111111  | l       |                 |         |     |

| Source        | DF | Anova SS<br>Pr > F             | Mean Square    | F Value |
|---------------|----|--------------------------------|----------------|---------|
| GROUP         | 1  | 26569.00000000<br>0.0001       | 26569.00000000 | 89.54   |
| CONTEXT       | 1  | 576.00000000                   | 576.00000000   | 1.94    |
| GROUP*CONTEXT | I  | 13.44444444<br>0. <b>8</b> 328 | 13.44444444    | 0.05    |

|            | Analysis of Variance Procedure<br>Dependent Variable: T18 |                      |               |             |          |  |  |
|------------|-----------------------------------------------------------|----------------------|---------------|-------------|----------|--|--|
| Source     | DF                                                        | Sum of Squares       | s Me          | an Square F | Value Pr |  |  |
|            |                                                           | > F                  |               |             |          |  |  |
| Model      | 3                                                         | 6976.555555          | 56 232        | 25.51851852 | 5.85     |  |  |
|            |                                                           | 0.0026               | 1             |             |          |  |  |
| Error      | 32                                                        | 12721.33             | 333333        | 397.5416    | 6667     |  |  |
|            | Corrected T                                               | otal 35              | 19697.88      | 3888889     |          |  |  |
| R-S        | quare                                                     | C.V.                 | Root          | MSE         | T18 Mean |  |  |
|            | 0.354178                                                  | 26.25                | 399           | 19.93844695 | j        |  |  |
|            |                                                           | 75.944444            | 144           |             |          |  |  |
| Source     | DF                                                        | Anova                | SS N          | Aean Square | F Value  |  |  |
|            |                                                           | <b>Pr</b> > <b>F</b> |               | -           |          |  |  |
| GROUP      | 1                                                         | 4444.44444           | <b>144</b> 44 | 144.444444  | 4 11.18  |  |  |
|            |                                                           | 0.0021               |               |             |          |  |  |
| CONTEXT    | 1                                                         | 32.111111            | 11 3          | 2.11111111  | 0.08     |  |  |
|            |                                                           | 0.7781               |               |             |          |  |  |
| GROUP*CONT | EXT I                                                     | 2500.00000           | 000 2         | 500.0000000 | 0 6.29   |  |  |
|            |                                                           | 0.0174               |               |             |          |  |  |

|                    | Analysis of Variance Procedure<br>Repeated Measures Analysis of Variance<br>Repeated Measures Level Information |         |     |     |     |     |    |     |    |
|--------------------|-----------------------------------------------------------------------------------------------------------------|---------|-----|-----|-----|-----|----|-----|----|
| Dependent Variable | TI                                                                                                              | T2      | T3  | T4  | T5  | T6  | T  | 7   | T8 |
| Level of DAY       | 1                                                                                                               | 1       | 1   | 1   | 1   | 1   | 1  | 1   |    |
| Level of BLOCK     | 1                                                                                                               | 2       | 3   | 4   | 5   | 6   | 7  | 8   |    |
| Dependent Variable | T9                                                                                                              | T10     | T11 | T12 | TI  | 3 T | 14 | T15 |    |
| •                  |                                                                                                                 | Т       | 16  |     |     |     |    |     |    |
| Level of DAY       | 1                                                                                                               | 2       | 2   | 2   | 2   | 2   | 2  | 2   |    |
| Level of BLOCK     | 9                                                                                                               | 1       | 2   | 3   | 4   | 5   | 6  | 7   |    |
| Dep                | oendent                                                                                                         | Variab  | le  | T17 | T18 |     |    |     |    |
| -                  | Leve                                                                                                            | l of DA | Υ   | 2   | 2   |     |    |     |    |
| Level of BLOCK 8 9 |                                                                                                                 |         |     |     |     |     |    |     |    |

| Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY |
|--------------------------------------------------------------------------|
| Effect                                                                   |
| H = Anova SS&CP Matrix for DAY E = Error SS&CP Matrix                    |
| S=1 M=-0.5 N=15                                                          |

| Statistic         | Value         | F Num DF     | E Den D | F Pr > F  |
|-------------------|---------------|--------------|---------|-----------|
| Wilks' Lambda     | 0.176358      | 84 149.4482  | 1       | 32 0.0001 |
| Pillai's Trace    | 0.823641      | 16 149.4482  | 1       | 32 0.0001 |
| Hotelling-Lawley  | Trace 4.67025 | 736 149.4482 | 2 1 3   | 32 0.0001 |
| Roy's Greatest Ro | ot 4.670257   | 736 149.4482 | I       | 32 0.0001 |

Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY\*GROUP Effect

H = Anova SS&CP Matrix for DAY\*GROUP E = Error SS&CP

|         | •         |
|---------|-----------|
| - A A   | ***** × * |
| - IVI A |           |
|         | uin       |
|         |           |

|                        |        | S=1   | M=-0.5  | N=1 | 15  |    |        |
|------------------------|--------|-------|---------|-----|-----|----|--------|
| Statistic              | Value  | F     | Num     | DF  | Den | DF | Pr > F |
| Wilks' Lambda          | 0.4110 | 04451 | 45.8505 |     | 1   | 32 | 0.0001 |
| Pillai's Trace         | 0.5889 | 95549 | 45.8505 |     | 1   | 32 | 0.0001 |
| Hotelling-Lawley Trace | 1.4328 | 32657 | 45.8505 |     | 1   | 32 | 0.0001 |
| Roy's Greatest Root    | 1.4328 | 2657  | 45.8505 |     | 1   | 32 | 0.0001 |

Analysis of Variance Procedure Repeated Measures Analysis of Variance Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY\*CONTEXT Effect H = Anova SS&CP Matrix for DAY\*CONTEXT E = Error SS&CPMatrix M=-0.5 N=15 S=1 Num DF Den DF Pr > FStatistic Value F Wilks' Lambda 0.99954090 0.0147 1 32 0.9043 Pillai's Trace 0.00045910 0.0147 1 32 0.9043 Hotelling-Lawley Trac 0.00045931 0.0147 1 32 0.9043 Roy's Greatest Root 1 32 0.9043 0.00045931 0.0147 Manova Test Criteria and Exact F Statistics for the Hypothesis of no

Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY\*GROUP\*CONTEXT Effect H = Anova SS&CP Matrix for DAY\*GROUP\*CONTEXT E = Error SS&CP Matrix

|                        | S=1        | M=-0.5 N= | =15 |           |
|------------------------|------------|-----------|-----|-----------|
| Statistic              | Value F    | Num DF    | Den | DF Pr > F |
| Wilks' Lambda          | 0.99503772 | 0.1596    | 1   | 32 0.6922 |
| Pillai's Trace         | 0.00496228 | 0.1596    | I   | 32 0.6922 |
| Hotelling-Lawley Trace | 0.00498702 | 0.1596    | I   | 32 0.6922 |
| Roy's Greatest Root    | 0.00498702 | 0.1596    | I   | 32 0.6922 |

Manova Test Criteria and Exact F Statistics for the Hypothesis of no BLOCK Effect

| H = Anova SS&CF        | <sup>o</sup> Matrix | for BL | OCK    | E = E | Error S | SS&CI | <sup>9</sup> Matrix |
|------------------------|---------------------|--------|--------|-------|---------|-------|---------------------|
|                        |                     | S=1    | M=3    | N=I   | 1.5     |       |                     |
| Statistic              | Value               | F      | Num    | DF    | Den     | DF P  | r > F               |
| Wilks' Lambda          | 0.1369              | 6042   | 19.691 | 8     | 8       | 25    | 0.0001              |
| Pillai's Trace         | 0.8630              | 3958   | 19.691 | 8     | 8       | 25    | 0.0001              |
| Hotelling-Lawley Trace | 6.3013              | 7924   | 19.691 | 8     | 8       | 25    | 0.0001              |
| Roy's Greatest Root    | 6.3013              | 7924   | 19.691 | 8     | 8       | 25    | 0.0001              |
|                        |                     |        |        |       |         |       |                     |

Manova Test Criteria and Exact F Statistics for the Hypothesis of no BLOCK\*GROUP Effect

H = Anova SS&CP Matrix for BLOCK\*GROUP E = Error SS&CP Matrix

| au | 1A |  |
|----|----|--|
|    |    |  |

|                        | 2=1        | M=3 N=    | 11.5 |             |
|------------------------|------------|-----------|------|-------------|
| Statistic              | Value F    | Num DF    | Den  | DF $Pr > F$ |
| Wilks' Lambda          | 0.14997172 | 17.7123   | 8    | 25 0.0001   |
| Pillai's Trace         | 0.85002828 | 17.7123   | 8    | 25 0.0001   |
| Hotelling-Lawley Trace | 5.6679237  | 1 17.7123 | 8    | 25 0.0001   |
| Roy's Greatest Root    | 5.66792371 | 17.7123   | 8    | 25 0.0001   |
|                        |            |           |      |             |

Analysis of Variance Procedure Repeated Measures Analysis of Variance Manova Test Criteria and Exact F Statistics for the Hypothesis of no BLOCK\*CONTEXT Effect H = Anova SS&CP Matrix for BLOCK\*CONTEXT E = Error SS&CP Matrix S=1 M=3 N=11.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.16318338 16.0252 8 25 0.0001

0.83681662 16.0252 8

25 0.0001

Pillai's Trace

| Hotelling-Lawley Trace                                               | 5.12807502       | 16.0252        | 8      | 25 0.0001       |  |  |  |
|----------------------------------------------------------------------|------------------|----------------|--------|-----------------|--|--|--|
| Roy's Greatest Root                                                  | 5.12807502       | 16.0252        | 8      | 25 0.0001       |  |  |  |
|                                                                      |                  |                |        |                 |  |  |  |
| Manova Test Criteria and Exact F Statistics for the Hypothesis of no |                  |                |        |                 |  |  |  |
| BLOCK*(                                                              | GROUP*CONT       | EXT Effect     |        |                 |  |  |  |
| H = Anova SS&CP Mat                                                  | rix for BLOCK    | *GROUP*C       | CONT   | EXT $E = Error$ |  |  |  |
|                                                                      | SS&CP Matrix     | K              |        |                 |  |  |  |
|                                                                      | S=1              | M=3 N=         | 11.5   |                 |  |  |  |
| Statistic                                                            | Value F          | Num DF         | Den    | DF $Pr > F$     |  |  |  |
| Wilks' Lambda                                                        | 0.17469293       | 14.7635        | 8      | 25 0.0001       |  |  |  |
| Pillai's Trace                                                       | 0.82530707 1     | 4.7635         | 8      | 25 0.0001       |  |  |  |
| Hotelling-Lawley Trace                                               | 4.72433007       | 14.7635        | 8      | 25 0.0001       |  |  |  |
| Roy's Greatest Root                                                  | 4.72433007       | 14.7635        | 8      | 25 0.0001       |  |  |  |
|                                                                      |                  |                |        |                 |  |  |  |
| Manova Test Criteria ar                                              | nd Exact F Stati | stics for the  | Hypot  | thesis of no    |  |  |  |
| D                                                                    | AY*BLOCK Ef      | fect           | 21     |                 |  |  |  |
| H = Anova SS&C                                                       | P Matrix for DA  | Y*BLOCK        | E =    | Error SS&CP     |  |  |  |
|                                                                      | Matrix           |                |        |                 |  |  |  |
|                                                                      | S=1              | M=3 N=         | 11.5   |                 |  |  |  |
| Statistic                                                            | Value F          | Num DF         | Den    | DF Pr > F       |  |  |  |
| Wilks' Lambda                                                        | 0 17156177       | 15 0900        | 8      | 25 0 0001       |  |  |  |
| Pillai's Trace                                                       | 0.87843873       | 5 0900         | 8      | 25 0 0001       |  |  |  |
| Hotelling Jawley Trace                                               | 4 82880434       | 15 0900        | 8      | 25 0 0001       |  |  |  |
| Pov's Greatest Poot                                                  | A 87880434       | 15 0900        | 8      | 25 0.0001       |  |  |  |
| Ruy's Cleatest Root                                                  | 4.02000454       | 15.0900        | 0      | 25 0.0001       |  |  |  |
| Manava Test Criteria an                                              | d Exact E Static | tics for the l | Jumoth | asis of no      |  |  |  |
|                                                                      |                  | ID Effect      | туроц  |                 |  |  |  |
| H = A pour SS k CP                                                   | Matrix for DAX   |                | CDUI   |                 |  |  |  |
| H – Allova SS&CP                                                     | SS & CD Marin    | BLUCK          | UNUC   | F = E = E H O I |  |  |  |
|                                                                      | 55&CP Iviamo     | 6              |        |                 |  |  |  |
|                                                                      | 5-1              | M-2 NI-        | 115    |                 |  |  |  |
|                                                                      | 5-1              | IVI-5 IN-      | 11.5   |                 |  |  |  |
| Caralization                                                         | Value D          |                | Dem    |                 |  |  |  |
| Stansuc                                                              | value r          | Num Dr         | Den    | Dr PI > r       |  |  |  |
| MVIII                                                                | 0.26142509       | 0 0 0 0 7      | o      | 25 0 0001       |  |  |  |
|                                                                      | 0.20142398       | 0.0207         | 0<br>0 | 25 0.0001       |  |  |  |
| Pillais Frace                                                        | 0.73857402       | 0.0207         | 0      | 25 0.0001       |  |  |  |
| Hotelling-Lawley I face                                              | 2.82517449       | 8.848/         | ð      | 25 0.0001       |  |  |  |
| Roy's Greatest Root                                                  | 2.82517449       | 8.8287         | ð      | 25 0.0001       |  |  |  |
| T1 0                                                                 | A.C. C           | 11.03 11/- 1   |        | A               |  |  |  |
| i ne S                                                               | AS System        | 11:02 wedn     | lesday | , Арпі 22, 1998 |  |  |  |
|                                                                      | 54               |                |        |                 |  |  |  |
|                                                                      |                  |                |        |                 |  |  |  |

Analysis of Variance Procedure

## Repeated Measures Analysis of Variance

## Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY\*BLOCK\*CONTEXT Effect H = Anova SS&CP Matrix for DAY\*BLOCK\*CONTEXT E = Error SS&CP Matrix

|        |                  |                     | S=1 N             | M=3 N=      | 11.5      |           |             |
|--------|------------------|---------------------|-------------------|-------------|-----------|-----------|-------------|
|        | Statistic        | Value               | F                 | Num DF      | Den I     | DF Pr > F | ;           |
| N      | Wilks' Lambda    | 0.07408             | 869 39            | 9.0542      | 8         | 25 0.000  | 01          |
|        | Pillai's Trace   | 0.925911            | 31 39.            | 0542        | 8         | 25 0.000  | I           |
| Ho     | otelling-Lawley  | Trace 12.497.       | 33617             | 39.0542     | 8         | 25 0.0    | 001         |
| R      | oy's Greatest Ro | ot 12.4973          | 3617 3            | 39.0542     | 8         | 25 0.00   | 01          |
|        | N                | anova Test Cr       | iteria and        | d Exact F S | Statistic | es for    |             |
|        | the Hypoth       | esis of no DAY      | *BLOC             | K*GROU      | P*CON     | ITEXT Ef  | fect        |
| H =    | = Anova SS&CP    | Matrix for DA       | Y*BLO             | CK*GRO      | JP*CO     | NTEXT     | E =         |
|        |                  | Error SS&C          | TP Matri          | x           |           |           | _           |
|        |                  |                     | S=1 M             | M=3 N=1     | 115       |           |             |
|        | Statistic        | Value               | F                 | Num DF      | Den I     | F Pr > F  | •           |
| N N    | Vilks' Lambda    | 0 10171             | 843 2             | 7 5971      | 8         | 25 0 000  | 21          |
|        | Pillai's Trace   | 0 898781            | 57 27             | 5971        | 8 .       | 25 0 0001 | 1           |
| Н      | telling_I awley  | Trace 8 8310        | 5970 °            | 27 5971     | 8         | 25 0.0001 | 001         |
| R      | ov's Greatest Ro | $\frac{11200}{200}$ | 5970 7            | 7 5971      | 8         | 25 0.00   | 01          |
| 1      | by s Greatest R  | 0.0510.             | ,,,,,, <u> </u>   | 1.5571      | 0         | 25 0.00   | 01          |
|        |                  | Analy               | sis of V          | ariance Pro | vedure    |           |             |
|        |                  | Repeated M          |                   | Analysis o  | f Varia   | nce       |             |
|        | Те               | sts of Hypothes     | ses for R         | etween Su   | hiects F  | -ffects   |             |
| Source |                  | Anova S             |                   | Mean Sa     | uare F    | - Value   | Pr >        |
| Source | DI               | F 2010              | 2                 | Pream 54    | uarci     | value     | 11-         |
| GPOUP  | 1                | 102802 0128         | 8880              | 223802      | 01388     | 9990 100  | <b>סד</b> נ |
| UKUUI  | I                | 223092.0130         | 10007             | 223092      |           | 007 107   |             |
| CONTEX | т і              | 646 001             | 54221             | 616         | 001542    | 21 07     | 27          |
| CONTEX | 1 1              | 040.001             | 74321             | 040.        | 00154.    | 0.5       | <u>ت</u> (  |
| CROUDS | CONTEXT          | 1 10                | 70<br>01 4930'    | 2460        | 1001      | 10202460  | h           |
| UKUUPT | CUNIEAI          | 1 10                | 71.403U           | 2407        | 1091      | .40302403 | 7           |
| F      |                  |                     | J.4077<br>ミォックハハロ | , o         | 040.02    | 222521    |             |
| Ente   | or 32            | . 05309             | 3432098           | ið 2        | 040.92.   | 322331    |             |

Analysis of Variance Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

## Source: DAY

|    |                    |                                   |                  | Adjusted             | Pr > F               |    |
|----|--------------------|-----------------------------------|------------------|----------------------|----------------------|----|
| DF | Anova SS           | Mean Square                       | F Value          | <b>Pr</b> > <b>F</b> | G - G                | Н  |
| 1  | 58387 03858025     | 58387 03858025                    | 5 149 44         | 5 0.000              | 1                    |    |
| L  | 56567.05656625     | Source: DAY*GR                    | 2011P            | 0.000                | • •                  | •  |
|    |                    | Source. DATE OF                   |                  | Adjusted             | Pr > F               |    |
| DE | Anova SS           | Mean Square                       | F Value          | $P_r > F$            |                      | н  |
| Ы  | Allova 55          | F                                 | i value          | 11 - 1               | 0-0                  |    |
| 1  | 17012 02858025     | 17012 03859034                    | 5 15 95          | . 0.000              | 1                    |    |
| I  | [/7]5.05656025     | 17915.0505002.<br>Source: DAV*CON | J 4J.0.<br>JTEYT | 0.000                | L .                  | ·  |
|    | ·                  | Source. DAT COI                   | <b>ULAI</b>      | Adjusted             | $P_{r} > F$          |    |
| DF | Anova SS           | Mean Square                       | F Value          | $P_r > F$            | 6.6                  | н  |
| Ы  | Allova 55          | F                                 | i value          | 11 - 1               | Û - Û                | 11 |
| 1  | 5 74228395         | 5 74778395                        | 0.01             | 0 9043               |                      |    |
| L  | 5.74220575<br>Sour | DAV*GROUP                         | CONTEX           | С.2043<br>Г          |                      |    |
|    | 5000               |                                   | CONTEX           | Adjusted             | Pr > F               |    |
| DF | Anova SS           | Mean Square                       | F Value          | Pr > F               | G-G                  | н  |
| DI | Fullova 35         | - F                               | i vaiue          | 11 - 1               | 0 0                  |    |
| 1  | 67 34777777        | 67 34722222                       | 0.16             | 0 6922               |                      |    |
| L  | 02.34722222        | Source: Error(D                   | AY)              | 0.0722               | •                    | •  |
|    | DF                 | Anova SS                          | Mean So          | mare                 |                      |    |
|    | 32                 | 12501 88888889                    | 390 684          | 02778                |                      |    |
|    | 52                 | Source: BLOC                      | 'K               | 02770                |                      |    |
|    |                    | Source. DEOC                      |                  | Adjusted             | Pr > F               |    |
| DF | Anova SS           | Mean Square                       | F Value          | Pr > F               | G - G                | н  |
| 01 | 1 110 14 55        | - F                               | i vuide          |                      | 0 0                  |    |
| 8  | 34392 05555556     | 4299 00694444                     | 13.06            | 0 0001               | 0.0001               |    |
| Ū  | 5 10 / 2.05555555  | 0 0001                            | 10.00            | 0.0001               |                      |    |
|    |                    | Source BLOCK*C                    | ROUP             |                      |                      |    |
|    |                    |                                   |                  | Adjusted             | <b>Pr</b> > <b>F</b> |    |
| DF | Anova SS           | Mean Square                       | F Value          | Pr > F               | G - G                | Н  |
| 2. |                    | - F                               |                  |                      |                      |    |
| 8  | 32514.333333333    | 4064.29166667                     | 12.35            | 0.0001               | 0.0001               |    |
| Ū  |                    | 0.0001                            |                  |                      |                      |    |
|    | Se                 | ource: BLOCK*CC                   | ONTEXT           |                      |                      |    |
|    |                    |                                   |                  | Adjusted             | <b>Pr</b> > <b>F</b> |    |
| DF | Anova SS           | Mean Square                       | F Value          | <b>Pr</b> > F        | G - G                | Η  |
| ,  |                    | - F                               |                  |                      |                      |    |
| 8  | 30235.79012346     | 3779.47376543                     | 11.48            | 0.0001               | 0.0001               |    |
|    |                    | 0.0001                            |                  |                      |                      |    |
|    | Source             | : BLOCK*GROU                      | P*CONTEX         | ٢٢                   |                      |    |
|    |                    |                                   |                  | Adjusted             | Pr > F               |    |

| DF | Anova SS       | Mean Square   | F Value | <b>Pr</b> > <b>F</b> | G - G  | Η |
|----|----------------|---------------|---------|----------------------|--------|---|
| •  |                | - F           |         |                      | 0.0001 |   |
| 8  | 42873.25308642 | 5359.15663580 | 16.28   | 0.0001               | 0.0001 |   |
|    |                | 0.0001        |         |                      |        |   |

|    | Analysis of Variance Procedure<br>Repeated Measures Analysis of Variance |                         |              |            |        |   |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------|-------------------------|--------------|------------|--------|---|--|--|--|--|--|--|
|    | Univariate Tests of Hypotheses for Within Subject Effects                |                         |              |            |        |   |  |  |  |  |  |  |
|    | Source: Error(BLOCK)                                                     |                         |              |            |        |   |  |  |  |  |  |  |
|    | DF                                                                       | Anova SS                | Mean So      | juare      |        |   |  |  |  |  |  |  |
|    | 256                                                                      | 84267.01234568          | 329,168      | 01698      |        |   |  |  |  |  |  |  |
|    |                                                                          | Greenhouse-Ge           | isser Epsilo | n = 0.6422 | 2      |   |  |  |  |  |  |  |
|    |                                                                          | Huvnh-F                 | eldt Epsilor | n = 0.8514 |        |   |  |  |  |  |  |  |
|    |                                                                          | Source DAY*BL           | OCK          |            |        |   |  |  |  |  |  |  |
|    |                                                                          |                         |              | Adjusted   | Pr > F |   |  |  |  |  |  |  |
| DF | Anova SS                                                                 | Mean Square             | F Value      | Pr > F     | G - G  | Η |  |  |  |  |  |  |
| 8  | 48976.80864198                                                           | 6122.10108025           | 21.27        | 0.0001     | 0.0001 |   |  |  |  |  |  |  |
|    | So                                                                       |                         |              |            |        |   |  |  |  |  |  |  |
|    | 50                                                                       | and, DAT BLOCK          |              | Adjusted   | Pr > F |   |  |  |  |  |  |  |
| DF | Anova SS                                                                 | Mean Square<br>- F      | F Value      | Pr > F     | G - G  | Н |  |  |  |  |  |  |
| 8  | 33655.75308642                                                           | 4206.96913580<br>0.0001 | 14.62        | 0.0001     | 0.0001 |   |  |  |  |  |  |  |
|    | Source: DAY*BLOCK*CONTEXT                                                |                         |              |            |        |   |  |  |  |  |  |  |

|    |                |               |          | Adjusted | Pr > F |   |
|----|----------------|---------------|----------|----------|--------|---|
| DF | Anova SS       | Mean Square   | F Value  | Pr > F   | G - G  | Η |
|    |                | - F           |          |          |        |   |
| 8  | 23074.27160494 | 2884.28395062 | 10.02    | 0.0001   | 0.0001 |   |
|    |                | 0.0001        |          |          |        |   |
|    | Source: DA     | AY*BLOCK*GRO  | DUP*CONT | TEXT     |        |   |
|    |                |               |          | Adjusted | Pr > F |   |
| DF | Anova SS       | Mean Square   | F Value  | Pr > F   | G - G  | Η |
|    |                | - F           |          |          |        |   |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

# 8 28954.5000000 3619.31250000 12.58 0.0001 0.0001 0.0001 Source: Error(DAY\*BLOCK) DF Anova SS Mean Square 256 73675.11111111 287.79340278

Greenhouse-Geisser Epsilon = 0.6305

# ACQUISITION REACTION TIMES YOUNGER ADULTS

| GROUP=1 |       |               |         |            |  |  |  |  |
|---------|-------|---------------|---------|------------|--|--|--|--|
| Var     | iable | N             | Mean    | Std Error  |  |  |  |  |
| TI TI   | 10    | 275.          | 3000000 | 38.8947440 |  |  |  |  |
| T2      | 10    | 259.          | 1000000 | 26.8739651 |  |  |  |  |
| Т3      | 10    | 221.          | 7000000 | 16.2316905 |  |  |  |  |
| Τ4      | 10    | 209.          | 8000000 | 16.9278206 |  |  |  |  |
| T5      | 10    | 205.          | 8000000 | 7.8369495  |  |  |  |  |
| Т6      | 10    | 218.          | 3000000 | 15.5842157 |  |  |  |  |
| Τ7      | 10    | 19 <b>8</b> . | 1000000 | 13.1921273 |  |  |  |  |
| Т8      | 10    | 208.          | 5000000 | 12.3479643 |  |  |  |  |
| Т9      | 10    | 204.          | 7000000 | 11.9080272 |  |  |  |  |
| T10     | 10    | 377.          | 3000000 | 70.8924146 |  |  |  |  |
| T11     | 10    | 238.          | 2000000 | 16.5400524 |  |  |  |  |
| T12     | 10    | 234.          | 0000000 | 13.4973248 |  |  |  |  |
| T13     | 10    | 249.          | 6000000 | 16.6854561 |  |  |  |  |
| T14     | 10    | 200.          | 3000000 | 18.6333333 |  |  |  |  |
| T15     | 10    | 189           | 6000000 | 8.1706793  |  |  |  |  |
| T16     | 10    | 186.          | 7000000 | 18.2726572 |  |  |  |  |
| T17     | 10    | 166           | 5000000 | 9.2906763  |  |  |  |  |
| T18     | 10    | 194.1         | 000000  | 14.0834418 |  |  |  |  |
|         |       |               |         |            |  |  |  |  |
| GRO     | UP=2  |               |         |            |  |  |  |  |
| Var     | iable | N             | Mean    | Std Error  |  |  |  |  |
| TI      | 10    | 199.          | 1000000 | 12.5878689 |  |  |  |  |
| T2      | 10    | 175.          | 4000000 | 5.0181891  |  |  |  |  |

|        |                                                                                                                                            | T3       | 10              | 167.0000000        | 5.6253     | 395         |      |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|--------------------|------------|-------------|------|--|--|--|
|        |                                                                                                                                            | T4       | 10              | 173.0000000        | 8.1581     | 588         |      |  |  |  |
|        |                                                                                                                                            | T5       | 10              | 171.0000000        | 9.8160     | <b>86</b> 6 |      |  |  |  |
|        |                                                                                                                                            | T6       | 10              | 150.5000000        | 6.6084     | 962         |      |  |  |  |
|        |                                                                                                                                            | T7       | 10              | 167.3000000        | 10.2762    | 2401        |      |  |  |  |
|        |                                                                                                                                            | T8       | 10              | 167.000000         | 8.5166     | 504         |      |  |  |  |
|        |                                                                                                                                            | T9       | 10              | 180.400000         | 13.626     | 1187        |      |  |  |  |
|        |                                                                                                                                            | T10      | 10              | 190.400000         | 11.459     | 3000        |      |  |  |  |
|        |                                                                                                                                            | T11      | 10              | 173.000000         | 11.403     | 7031        |      |  |  |  |
|        |                                                                                                                                            | T12      | 10              | 170.400000         | 8.6412     | 2448        |      |  |  |  |
|        |                                                                                                                                            | T13      | 10              | 179.400000         | 12.624     | 6672        |      |  |  |  |
|        |                                                                                                                                            | T14      | 10              | 185.000000         | 13.525     | 2850        |      |  |  |  |
|        |                                                                                                                                            | T15      | 10              | 170.000000         | 13.557     | 2859        |      |  |  |  |
|        |                                                                                                                                            | T16      | 10              | 168.6000000        | 12.085     | 0688        |      |  |  |  |
|        |                                                                                                                                            | T17      | 10              | 166.900000         | 12.016     | 1465        |      |  |  |  |
|        |                                                                                                                                            | T18      | 10              | 165.900000         | 14.231     | 7720        |      |  |  |  |
|        | Analysis of Variance Procedure<br>Class Level Information<br>Class Levels Values<br>GROUP 2 1 2<br>Number of observations in data set = 20 |          |                 |                    |            |             |      |  |  |  |
|        |                                                                                                                                            | Analysis | or va<br>Iont V | mance Floced       | lure       |             |      |  |  |  |
| Source | DE                                                                                                                                         | Sum of   | Sauar           | $\frac{114010}{2}$ | lean Squar | e FVal      |      |  |  |  |
| Source | Dr                                                                                                                                         | Suil 01  | Syua<br>S F     |                    | can Squar  |             |      |  |  |  |
| Model  | 1                                                                                                                                          | 29032.   | 20000<br>0.07   | 000 29<br>87       | 032.20000  | )000 3      | 3.47 |  |  |  |
| Error  | 18                                                                                                                                         | 15       | 0413.0          | 0000000            | 8356.2     | 27777778    | 3    |  |  |  |
|        | Corrected T                                                                                                                                | otal     | 19              | 179445.            | 20000000   |             |      |  |  |  |
|        | R-Square                                                                                                                                   |          | C.V.            | Roo                | ot MSE     | T1          | Mean |  |  |  |
|        | 0.161789                                                                                                                                   |          | 38.             | 53823              | 91.4126    | 7843        |      |  |  |  |
|        |                                                                                                                                            | 23       | 7.200           | 00000              |            |             |      |  |  |  |
| Source | DF                                                                                                                                         | An       | ova SS<br>F     | 6 Mea              | an Square  | F Value     | Pr > |  |  |  |
| GROUP  | 1                                                                                                                                          | 29032    | 2.2000<br>0.07  | 0000 2<br>87       | 9032.2000  | 0000        | 3.47 |  |  |  |
|        |                                                                                                                                            |          |                 |                    |            |             |      |  |  |  |

Analysis of Variance Procedure Dependent Variable: T2

| Source   | DF                                                       | Sum of Squares<br>> F    | Mean Square F       | Value Pr  |  |  |  |  |  |  |
|----------|----------------------------------------------------------|--------------------------|---------------------|-----------|--|--|--|--|--|--|
| Model    | 1                                                        | 35028.45000000           | 35028.4500000       | 9.37      |  |  |  |  |  |  |
|          |                                                          | 0.0067                   |                     |           |  |  |  |  |  |  |
| Error    | 18                                                       | 67265.3000000            | 0 3736.9611         | 1111      |  |  |  |  |  |  |
|          | Corrected T                                              | otal 19 102              | 2293.75000000       |           |  |  |  |  |  |  |
|          | R-Square                                                 | C.V.                     | Root MSE            | T2 Mean   |  |  |  |  |  |  |
|          | 0.342430                                                 | 28.13841                 | 61.13068878         | 3         |  |  |  |  |  |  |
|          |                                                          | 217.25000000             |                     |           |  |  |  |  |  |  |
| Source   | DF                                                       | Anova SS<br>F            | Mean Square F       | √alue Pr> |  |  |  |  |  |  |
| GROUP    | 1                                                        | 35028.45000000           | 35028.4500000       | 0 9.37    |  |  |  |  |  |  |
|          | Analysis of Variance Procedure<br>Dependent Variable: T3 |                          |                     |           |  |  |  |  |  |  |
| Source   | DF                                                       | Sum of Squares<br>> F    | Mean Square F Value |           |  |  |  |  |  |  |
| Model    | 1                                                        | 14960.45000000<br>0.0051 | 14960.45000000      | 10.14     |  |  |  |  |  |  |
| Error    | 18                                                       | 26560.1000000            | 0 1475.5611         | 1111      |  |  |  |  |  |  |
|          | Corrected T                                              | otal 19 41               | 1520.55000000       |           |  |  |  |  |  |  |
|          | R-Square                                                 | C.V.                     | Root MSE            | T3 Mean   |  |  |  |  |  |  |
| 0.360314 |                                                          | 19.76487<br>194 3500000  | 38.41303309         |           |  |  |  |  |  |  |
| Source   | DF                                                       | Anova SS<br>F            | Mean Square F       | Value Pr> |  |  |  |  |  |  |
| GROUP    | 1                                                        | 14960.45000000<br>0.0051 | 14960.45000000      | ) 10.14   |  |  |  |  |  |  |

|        |                 | Analysis of Var      | iance Procedure |         |    |
|--------|-----------------|----------------------|-----------------|---------|----|
|        | Der             | pendent Variable: Te | 4               |         |    |
| Source | DF Sur          | n of Squares         | Mean Square     | F Value | Pr |
|        |                 | > F                  |                 |         |    |
| Model  | 1 61            | 771.20000000         | 6771.2000000    | 3.84    |    |
|        |                 | 0.0659               |                 |         |    |
| Error  | 18              | 31779.60000000       | 1765.533        | 33333   |    |
|        | Corrected Total | 19 385               | 50.80000000     |         |    |

|         | R-Square C.V.<br>0.175644 21.95311<br>191.40000000 |                                | Root MSE<br>42.0182500 | T4 Mean<br>0 |
|---------|----------------------------------------------------|--------------------------------|------------------------|--------------|
| Source  | DF                                                 | Anova SS<br>F                  | Mean Square F          | Value Pr >   |
| GROUP   | 1                                                  | 6771.20000000<br>0.0659        | 6771.2000000           | 0 3.84       |
|         |                                                    | Analysis of V                  | ariance Procedure      |              |
| Source  | DF                                                 | Sum of Squares                 | Mean Square            | F Value Pr   |
| Model   | 1                                                  | > F<br>6055.20000000<br>0.0126 | 6055.20000000          | 7.68         |
| Error   | r 18                                               | 14199.600000                   | 00 788.8666            | 66667        |
|         | Corrected 1                                        | Total 19 2                     | 0254.80000000          |              |
|         | R-Square                                           | C.V.                           | Root MSE               | T5 Mean      |
|         | 0.298951                                           | 14.90805                       | 28.0867703             | 1            |
|         |                                                    | 188.4000000                    |                        |              |
| Source  | DF                                                 | Anova SS<br>F                  | Mean Square F          | Value Pr >   |
| GROUP I |                                                    | 6055.20000000<br>0.0126        | 6055.2000000           | 0 7.68       |
|         |                                                    | Analysis of V                  | ariance Procedure      |              |
|         |                                                    | Dependent Variable:            | Τ6                     |              |
| Source  | DF                                                 | Sum of Squares<br>> F          | Mean Square            | F Value Pr   |
| Model   | 1                                                  | 22984.20000000<br>0 0008       | 22984.2000000          | ) 16.04      |
| Error   | . 18                                               | 25788.6000000                  | 1432.700               | 00000        |
|         | Corrected 7                                        | Total 19 4                     | 8772.80000000          |              |
|         | R-Square                                           | C.V.                           | Root MSE               | T6 Mean      |
|         | 0.471250                                           | 20.52659                       | 37.8510237             | 6            |
|         |                                                    | 184.4000000                    |                        |              |
| Source  | DF                                                 | Anova SS<br>F                  | Mean Square F          | Value Pr >   |
| GROUP   | 1                                                  | 22984.20000000<br>0.0008       | 22984.2000000          | ) 16.04      |

Analysis of Variance Procedure Dependent Variable: T7

| Source | DF          | Sum of Squares<br>> F               | Mean Square        | F Value Pr |  |  |
|--------|-------------|-------------------------------------|--------------------|------------|--|--|
| Model  | ł           | 4743.20000000<br>0.0820             | 4743.2000000       | 0 3.39     |  |  |
| Error  | . 18        | 25167.000000                        | 00 1398.160        | 566667     |  |  |
|        | Corrected T | otal 19 2                           | 9910.20000000      |            |  |  |
|        | R-Square    | C.V.                                | Root MSE           | T7 Mean    |  |  |
|        | 0 158581    | 20 46637                            | 37 392066          | 89         |  |  |
|        | 0.190901    | 182 70000000                        | 0.000              |            |  |  |
| Source | DF          | Anova SS                            | Mean Square F      | Value Pr>  |  |  |
| Jource | DI          | F                                   | mun oquare i       |            |  |  |
| GROUP  | 1           | 4743.2000000<br>0.0820              | 4743.200000        | 00 3.39    |  |  |
|        |             | Analysis of V<br>Dependent Variable | ariance Procedure  |            |  |  |
| Source | DF          | Sum of Squares                      | Mean Square        | F Value Pr |  |  |
| Source | DI          | > F                                 |                    |            |  |  |
| Model  | 1           | 8611.25000000<br>0.0127             | 8611.2500000       | 0 7.65     |  |  |
| Error  | . 18        | 20250,500000                        | 00 1125.02         | 77778      |  |  |
| 2      | Corrected 1 | otal 19 2                           | 28861.75000000     |            |  |  |
|        | R-Square    | C.V.                                | Root MSE           | T8 Mean    |  |  |
|        | 0.298362    | 17.86494                            | 33.54143375        |            |  |  |
|        |             | 187,75000000                        |                    |            |  |  |
| Source | DF          | Anova SS<br>F                       | Mean Square F      | Value Pr > |  |  |
| GROUP  | 1           | 8611.25000000                       | 8611.25000000 7.65 |            |  |  |
|        |             | 0.0127                              |                    |            |  |  |
|        |             | Analysis of V                       | /ariance Procedure |            |  |  |
| -      | 55          | Dependent Variable                  | : 19               |            |  |  |
| Source | DF          | Sum of Squares<br>> F               | Mean Square        | F value Pr |  |  |
| Model  | 1           | 2952.45000000<br>0.1960             | 2952.4500000       | 0 1.80     |  |  |
| Error  | r 18        | 29472.500000                        | 00 1637.36         | 111111     |  |  |
|        | Corrected 1 | Total 19 3                          | 32424.95000000     |            |  |  |
|        | R-Square    | C.V.                                | Root MSE           | T9 Mean    |  |  |
|        | 0.091055    | 21.01497                            | 40.464318          | 99         |  |  |
|        |             | 192,55000000                        |                    |            |  |  |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Source  | DF          | Anova SS<br>F             | Mean Square F Value Pr > |  |  |  |
|---------|-------------|---------------------------|--------------------------|--|--|--|
| GROUP I |             | 2952.45000000<br>0.1960   | 2952.45000000 1.80       |  |  |  |
|         |             | Analysis of V             | Variance Procedure       |  |  |  |
| Source  | DF          | Sum of Squares            | Mean Square F Value Pr   |  |  |  |
| Source  | Di          | > F                       | Wiean Square I value II  |  |  |  |
| Model   | l           | 174658.05000000<br>0.0180 | 174658.05000000 6.77     |  |  |  |
| Error   | 18          | 464134.500000             | 00 25785.25000000        |  |  |  |
|         | Corrected 7 | otal 19 6.                | 38792.55000000           |  |  |  |
|         | R-Square    | C.V.                      | Root MSE T10 Mean        |  |  |  |
|         | 0.273419    | 56.57138                  | 160.57786273             |  |  |  |
| -       |             | 283.85000000              |                          |  |  |  |
| Source  | DF          | Anova SS<br>F             | Mean Square F Value Pr > |  |  |  |
| GROUP   | 1           | 174658.05000000<br>0.0180 | 174658.05000000 6.77     |  |  |  |
|         |             | Analysis of V             | /ariance Procedure       |  |  |  |
| Source  | DF          | Sum of Squares            | Mean Square F Value Pr   |  |  |  |
| Source  | DI          | > F                       | Wear Square 1 Value 11   |  |  |  |
| Model   | 1           | 21255.20000000<br>0.0045  | 21255.2000000 10.53      |  |  |  |
| Error   | 18          | 36325.600000              | 00 2018.08888889         |  |  |  |
|         | Corrected 7 | Total 19 5                | 5 <b>758</b> 0.80000000  |  |  |  |
|         | R-Square    | C.V.                      | Root MSE T11 Mean        |  |  |  |
|         | 0.369137    | 21.84978<br>205.6000000   | 44.92314425              |  |  |  |
| Source  | DF          | Anova SS<br>F             | Mean Square F Value Pr > |  |  |  |
| GROUP   | 1           | 21255.20000000<br>0.0045  | 21255.20000000 10.53     |  |  |  |
|         |             | Analysis of V             | /ariance Procedure       |  |  |  |
|         |             | Dependent Variable:       | T12                      |  |  |  |
| Source  | DF          | Sum of Squares<br>> F     | Mean Square F Value Pr   |  |  |  |

| Model       | Ĩ           | 20224.8000000            | 20224.8000000 15.75                |                |  |  |  |
|-------------|-------------|--------------------------|------------------------------------|----------------|--|--|--|
| <b>F</b> 19 |             | 0.0009                   | 1294 24444                         | AAA            |  |  |  |
| EITO        | Corrected 1 | 23110.40000<br>Total 10  | 1204.24444                         | + <b>+++</b> + |  |  |  |
|             | P Square    |                          | Poot MSE                           | T12 Mean       |  |  |  |
|             | 0 466641    | C. V.                    | 35 83635616                        | I I Z IVICOII  |  |  |  |
|             | 0.400041    | 202 20000000             | 55.65055040                        |                |  |  |  |
| Source      | DF          | Anova SS<br>F            | Mean Square FV                     | alue Pr >      |  |  |  |
| GROUP       | 1           | 20224.80000000<br>0.0009 | 20224.80000000                     | 15.75          |  |  |  |
|             |             | Analysis of V            | Variance Procedure                 |                |  |  |  |
| Source      | DF          | Sum of Squares<br>> F    | uares Mean Square F Value P<br>> F |                |  |  |  |
| Model       | l           | 24640.20000000<br>0.0035 | 24640.20000000                     | 11.26          |  |  |  |
| Erro        | r 18        | 39400.80000              | 2188.93333                         | 333            |  |  |  |
|             | Corrected 1 | Total 19                 | 64041.00000000                     |                |  |  |  |
|             | R-Square    | C.V.                     | Root MSE                           | T13 Mean       |  |  |  |
|             | 0.384757    | 21.81167                 | 46.7 <b>8</b> 603780               |                |  |  |  |
|             |             | 214.50000000             |                                    |                |  |  |  |
| Source      | DF          | Anova SS<br>F            | Mean Square F V                    | alue Pr >      |  |  |  |
| GROUP       | 1           | 24640.20000000<br>0.0035 | 24640.20000000                     | 11.26          |  |  |  |
|             |             | Analysis of              | Variance Procedure                 |                |  |  |  |
| <u> </u>    |             | Dependent Variable:      |                                    | Value Da       |  |  |  |
| Source      | Dr          | Sum of Squares<br>> F    | Mean Square F                      | value Pr       |  |  |  |
| Model       | 1           | 1170.45000000<br>0.5148  | 1170.45000000                      | 0.44           |  |  |  |
| Erro        | r 18        | 47712.100000             | 2650.67222                         | 222            |  |  |  |
|             | Corrected 7 | fotal 19 4               | 48882.55000000                     |                |  |  |  |
|             | R-Square    | C.V.                     | Root MSE                           | T14 Mean       |  |  |  |
|             | 0.023944    | 26.72446<br>192.65000000 | 51.48467949                        |                |  |  |  |
| Source      | DF          | Anova SS<br>F            | Mean Square F V                    | alue Pr>       |  |  |  |
| GROUP       | 1           | 1170.45000000<br>0.5148  | 1170.45000000                      | 0.44           |  |  |  |

|           |             | Analysis of Dependent Variable    | Variance Procedure       |
|-----------|-------------|-----------------------------------|--------------------------|
| Source DF |             | Sum of Squares                    | Mean Square F Value Pr   |
| Model     | l           | > F<br>1920.80000000<br>0 2315    | 1920.8000000 1.53        |
| Error     | 18          | 22550 40000                       |                          |
| LIIU      | Corrected T | Cotal 19                          | 24471 20000000           |
|           | R-Square    | C V                               | Root MSE T15 Mean        |
|           | 0 078492    | 19 68571                          | 35 39491489              |
|           | 0.070472    | 179 80000000                      |                          |
| Source    | DF          | Anova SS                          | Mean Square F Value Pr > |
| GROUP     | 1           | 1920.80000000<br>0.2315           | 1920.8000000 1.53        |
|           |             | Analysis of<br>Dependent Variable | Variance Procedure       |
| Source    | DF          | Sum of Squares<br>> F             | Mean Square F Value Pr   |
| Model     | 1           | 1638.05000000<br>0.4195           | 1638.05000000 0.68       |
| Error     | 18          | 43194.50000                       | 2399.6944444             |
|           | Corrected T | otal 19                           | 44832.5500000            |
| ]         | R-Square    | C.V.                              | Root MSE T16 Mean        |
|           | 0.036537    | 27.57482                          | 48.98667619              |
|           |             | 177.65000000                      |                          |
| Source    | DF          | Anova SS<br>F                     | Mean Square F Value Pr > |
| GROUP     | 1           | 1638.05000000<br>0.4195           | 1638.05000000 0.68       |
|           |             | Analysis of Dependent Variable    | Variance Procedure       |
| Sauraa    | DE          | Sum of Squares                    | Mean Square E Value Pr   |
| 300000    | DI          | > F                               | Mean Square 1 Value 11   |
| Model     | 1           | 0.80000000                        | 0.8000000 0.00 0.9793    |
| Error     | 18          | 20763.400000                      | 1153.5222222             |
|           | Corrected T | otal 19                           | 20764.20000000           |
|           | R-Square    | C.V.                              | Root MSE T17 Mean        |
|           | 0.000039    | 20.37405                          | 33.96354255              |
|           |             | 166.70000000                      |                          |

| Source      | DF            |          | Anova               | SS<br>F             | M                | ean Squ         | iare       | F Va    | lue           | Pr > |
|-------------|---------------|----------|---------------------|---------------------|------------------|-----------------|------------|---------|---------------|------|
| GROUP       | ROUP 1        |          | 0. <b>80</b><br>0.9 | )<br>000000<br>9793 |                  | 0.80            | 0000       | 000     | 0.00          |      |
|             |               | Depe     | Ana<br>endent       | lysis of<br>Variabl | Variar<br>e: T18 | nce Pro         | cedu       | re      |               |      |
| Source      | DF            | Sun      | ı of Sqı            | iares<br>> F        | I                | Mean S          | quar       | e F     | Value         | Pr   |
| Model       | I             | 39       | 76.200              | 00000               | •                | 3976.20         | 0000       | 000     | 1.98          | 3    |
| Error       | 19            | 2        | 3607                | 9 80000             | 0000             | 20              | )04 J      | 13333   | 333           |      |
| LIIOI       | Corrected     | Total    | 19                  | )                   | 40056            | 5.00000         | 0000       | 0000    |               |      |
| R           | -Square       | . i otui | C.V                 |                     | Rc               | ot MS           | E          | 1       | F18 M         | lean |
| -           | 0.09926       | 6        | 2                   | 4.8727              | 2                | 44.7            | 7089       | 9829    |               |      |
|             |               | -        | 180.00              | 000000              | 0                |                 |            |         |               |      |
| Source      | DF            |          | Anova               | SS<br>F             | M                | ean Sqi         | iare       | F Va    | lue           | Pr > |
| GROUP       | 1             | 3        | 976.200<br>0.1      | 000000<br>760       |                  | 3976.2          | 2000       | 0000    | 1.9           | 8    |
|             |               | Re       | peated              | Measur              | es Ana           | lysis of        | f Var      | iance   |               |      |
|             |               | F        | lepeate             | d Meas              | ures Le          | vel Inf         | orma       | ition   |               |      |
| Dependent V | 'ariable      | T1       | Ť2                  | T3                  | T4               | T5              | T6         | 5 1     | [7            | T8   |
| Leve        | el of DAY     | 1        | 1                   | I                   | 1                | 1               | I          | 1       | 1             |      |
| Level       | of BLOCK      | 1        | 2                   | 3                   | 4                | 5               | 6          | 7       | 8             |      |
| Dependent \ | ariable       | T9       | T10<br>T            | T11<br>16           | T12              | T13             |            | Γ14     | T15           |      |
| Leve        | el of DAY     | I        | 2                   | 2                   | 2                | 2               | 2          | 2       | 2             |      |
| Level       | of BLOCK      | . 9      | -                   | 2                   | 3                | 4               | 5          | 6       | 7             |      |
| 20.00       | Den           | endent   | : Variat            | ole                 | T17              | T18             |            |         |               |      |
|             | — - <b>F</b>  | Leve     | el of DA            | ٩Y                  | 2                | 2               |            |         |               |      |
|             |               | Level    | of BLO              | CK                  | 8                | 9               |            |         |               |      |
| Manova      | a Test Criter | ia and   | Exact F<br>Ef       | Statist<br>fect     | ics for          | the Hy          | poth       | esis of | f no D        | AY   |
|             | H = Anove     | a SS&(   | CP Mat              | rix for<br>S=1      | DAY<br>M=-(      | E = En<br>0.5 N | or S<br>=8 | S&CF    | ' Matr        | ix   |
| Sta         | atistic       |          | Value               | F                   | Nur              | n DF            | Den        | DF      | <b>Pr</b> > F | •    |
| Wil         | ks' Lambda    |          | 0.994               | 74436               | 0.095            | 51              | 1          | 18      | 0.761         | 3    |
| Pil         | llai's Trace  | 1        | 0.0052              | 5564                | 0.0951           | . 1             | l          | 18 0    | ).7613        | i    |
| Hotel       | ling-Lawlev   | Trace    | 0.00                | 528341              | 0.0              | 951             | I          | 18      | 8 0.76        | 513  |
| Roy         | 's Greatest R | oot      | 0.005               | 28341               | 0.09             | 51              | 1          | 18      | 0.76          | 13   |

| Manova Test Criteria an                                                                    | d Exact F S             | Statist      | ics for the H | lypoth | esis of no  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------|--------------|---------------|--------|-------------|--|--|--|--|--|--|
| H = Anova SS & Cl                                                                          | A I OROL<br>9 Matrix fc |              |               | F = 6  | From SS&CP  |  |  |  |  |  |  |
| Matrix                                                                                     |                         |              |               |        |             |  |  |  |  |  |  |
| S = I M = -0.5 N = 8                                                                       |                         |              |               |        |             |  |  |  |  |  |  |
| Statistic                                                                                  | Value                   | F            | Num DF        | Den    | DF Pr > F   |  |  |  |  |  |  |
| Wilks' Lambda                                                                              | 0 999528                | -            | 0.0085        | 1      | 18 0.9276   |  |  |  |  |  |  |
| Pillai's Trace                                                                             | 0.0004711               | 8 0          | .0085         | I      | 18 0.9276   |  |  |  |  |  |  |
| Hotelling-Lawley Trace                                                                     | 0.0004                  | 7140         | 0.0085        | 1      | 18 0.9276   |  |  |  |  |  |  |
| Roy's Greatest Root                                                                        | 0.00047                 | 140          | 0.0085        | 1      | 18 0.9276   |  |  |  |  |  |  |
| Analysis of Variance Procedure                                                             |                         |              |               |        |             |  |  |  |  |  |  |
| Repeated Measures Analysis of Variance                                                     |                         |              |               |        |             |  |  |  |  |  |  |
| Repetited Wedsares / Energists of Variation                                                |                         |              |               |        |             |  |  |  |  |  |  |
| Manova Test Criteria and Exact F Statistics for the Hypothesis of no BLOCK                 |                         |              |               |        |             |  |  |  |  |  |  |
| H = Anova SS&C                                                                             | P Matrix fo             | n<br>Nr BI ( | OCK F = F     | Fror S | S&CP Matrix |  |  |  |  |  |  |
| S=1 M=3 N=4.5                                                                              |                         |              |               |        |             |  |  |  |  |  |  |
| Statistic                                                                                  | Value                   | F            | Num DF        | Den    | DF Pr > F   |  |  |  |  |  |  |
| Wilks' Lambda                                                                              | 0.165133                | 54           | 6.9516        | 8      | 11 0.0022   |  |  |  |  |  |  |
| Pillai's Trace                                                                             | 0.8348664               | 6 6          | .9516         | 8      | 11 0.0022   |  |  |  |  |  |  |
| Hotelling-Lawley Trace                                                                     | 5.05570                 | )496         | 6.9516        | 8      | 11 0.0022   |  |  |  |  |  |  |
| Roy's Greatest Root                                                                        | 5.05570                 | 496          | 6.9516        | 8      | 11 0.0022   |  |  |  |  |  |  |
| Manova Test Criteria and Exact F Statistics for the Hypothesis of no<br>BLOCK*GROUP Effect |                         |              |               |        |             |  |  |  |  |  |  |
| H = Anova SS&CP I                                                                          | Matrix for              | BLOC         | CK*GROUP      | • E =  | Error SS&CP |  |  |  |  |  |  |
| Matrix                                                                                     |                         |              |               |        |             |  |  |  |  |  |  |
|                                                                                            |                         | S=1          | M=3 N=4       | 4.5    |             |  |  |  |  |  |  |
| Statistic                                                                                  | Value                   | F            | Num DF        | Den    | DF Pr > F   |  |  |  |  |  |  |
| Wilks' Lambda                                                                              | 0.311723                | 64           | 3.0360        | 8      | 11 0.0457   |  |  |  |  |  |  |
| Pillai's Trace                                                                             | 0.6882763               | 6 3          | .0360         | 8      | 11 0.0457   |  |  |  |  |  |  |
| Hotelling-Lawley Trace                                                                     | 2.20796                 | 5969         | 3.0360        | 8      | 11 0.0457   |  |  |  |  |  |  |
| Roy's Greatest Root                                                                        | 2.20796                 | 969          | 3.0360        | 8      | 11 0.0457   |  |  |  |  |  |  |

Manova Test Criteria and Exact F Statistics for the Hypothesis of no DAY\*BLOCK Effect

|                                                                                                                                                      | H = Anova SS             | &CP Matrix for D                    | AY*BLO                    | $CK E \approx E$ | rror SS&C                             | СР            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|---------------------------|------------------|---------------------------------------|---------------|--|--|--|
|                                                                                                                                                      |                          | Matrix                              | 1 14-2                    | N-4.5            |                                       |               |  |  |  |
| S=1  M=3  N=4.3                                                                                                                                      |                          |                                     |                           |                  |                                       |               |  |  |  |
|                                                                                                                                                      | Statistic                |                                     | 10 4600                   |                  |                                       | 14            |  |  |  |
| vv<br>r                                                                                                                                              | liks Lainuda             | 0.00000                             | 10.4000                   | o<br>o           |                                       | <b>/4</b><br> |  |  |  |
| г<br>Цат                                                                                                                                             | alling Lawley T          | 0.00301712                          | 10.4000                   |                  |                                       | 101           |  |  |  |
|                                                                                                                                                      | v's Greatest Roo         | 1 = 7.0072000                       | 10.400                    | ୢୢୢୄୢ            |                                       | 04<br>04      |  |  |  |
| KU                                                                                                                                                   | by S Createst Roo        | 1.00720804                          | 10.4000                   | 0                | 11 0.000                              | 04            |  |  |  |
| Man                                                                                                                                                  | iova Test Criteria<br>DA | a and Exact F Stati<br>XY*BLOCK*GRO | stics for th<br>UP Effect | e Hypothe        | sis of no                             |               |  |  |  |
| H = Anova SS&CP Matrix for DAY*BLOCK*GROUP E = Error                                                                                                 |                          |                                     |                           |                  |                                       |               |  |  |  |
| SS&CP Matrix                                                                                                                                         |                          |                                     |                           |                  |                                       |               |  |  |  |
|                                                                                                                                                      |                          | S=                                  | 1 M=3                     | N=4.5            |                                       |               |  |  |  |
| 9                                                                                                                                                    | Statistic                | Value F                             | Num I                     | DF Den [         | $\mathbf{F} \mathbf{Pr} > \mathbf{F}$ |               |  |  |  |
| W                                                                                                                                                    | ilks' Lambda             | 0.11069079                          | 11.0470                   | 8                | 11 0.000                              | )3            |  |  |  |
| F                                                                                                                                                    | 'illai's Trace           | 0.88930921                          | 11.0470                   | 8                | 11 0.0003                             |               |  |  |  |
| Hot                                                                                                                                                  | elling-Lawley T          | race 8.03417512                     | 2 11.047                  | 8 0              | 11 0.00                               | 003           |  |  |  |
| Ro                                                                                                                                                   | y's Greatest Roo         | ot 8.03417512                       | 11.0470                   | 8                | 11 0.00                               | 03            |  |  |  |
| Analysis of Variance Broadure                                                                                                                        |                          |                                     |                           |                  |                                       |               |  |  |  |
|                                                                                                                                                      |                          | Repeated Measu                      | res Analys                | is of Varia      | nce                                   |               |  |  |  |
| Tests of Hypotheses for Retween Subjects Effects                                                                                                     |                          |                                     |                           |                  |                                       |               |  |  |  |
| Source                                                                                                                                               | DF                       | Anova SS                            | Mear                      | Souare F         | Value                                 | Pr >          |  |  |  |
|                                                                                                                                                      |                          | F                                   |                           | - 1              |                                       |               |  |  |  |
| GROUP                                                                                                                                                | 1 2                      | 233733.13611111<br>0.0001           | 2337                      | 33.136111        | 11 28.2                               | 6             |  |  |  |
| Error                                                                                                                                                | 18                       | 148857.4722                         | 2222                      | 8269.85          | 956790                                |               |  |  |  |
| Analysis of Variance Procedure<br>Repeated Measures Analysis of Variance<br>Univariate Tests of Hypotheses for Within Subject Effects<br>Source: DAY |                          |                                     |                           |                  |                                       |               |  |  |  |
|                                                                                                                                                      |                          |                                     |                           | Adjusted         | Pr > F                                | • -           |  |  |  |
| DF                                                                                                                                                   | Anova SS                 | Mean Square<br>- F                  | F Value                   | Pr > F           | G - G                                 | H             |  |  |  |
| 1                                                                                                                                                    | 807.0027778              | 807.0027778                         | 0.10                      | 0.7613           |                                       | •             |  |  |  |
| Sour                                                                                                                                                 | ce: DAY*GROU             | JP                                  |                           | Adjusted         | Pr > F                                |               |  |  |  |
| DF                                                                                                                                                   | Anova SS                 | Mean Square<br>- F                  | F Value                   | Pr > F           | G - G                                 | Н             |  |  |  |
| 1                                                                                                                                                    | 72.0027778               | 72.0027778                          | 0.01                      | 0.9276           | •                                     | •             |  |  |  |
| Source: Error(DAY)                                                                                                                                   |                          |                                     |                           |                  |                                       |               |  |  |  |
|                                                                                                                                                      | DF                       | Anova SS                            | Mean S                    | Square           |                                       |               |  |  |  |

18 152742.8277778 8485.7126543 Source: BLOCK Adjusted Pr > FDF Anova SS Mean Square F Value Pr > FG - G Η - F 8 26517.3423611 0.0001 0.0001 212138.7388889 11.05 0.0001 Source: BLOCK\*GROUP Adjusted Pr > FPr > FDF Mean Square G - G Anova SS F Value Η - F 12602.7798611 8 100822.2388889 5.25 0.0001 0.0075 0.0042 Source: Error(BLOCK) DF Anova SS Mean Square 144 345612.5777778 2400.0873457 Greenhouse-Geisser Epsilon = 0.2794 Huynh-Feldt Epsilon = 0.3386 Source: DAY\*BLOCK Adjusted Pr > FPr > FDF Anova SS Mean Square F Value G - G Η - F 4364.7590278 0.2774 8 34918.0722222 1.32 0.2391 0.2792 Source: DAY\*BLOCK\*GROUP Adjusted Pr > FPr > FDF Anova SS F Value **G** - **G** Η Mean Square - F 5749.4715278 0.0949 8 45995.7722222 1.74 0.1991 0.1956

> Analysis of Variance Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

Source: Error(DAY\*BLOCK) DF Anova SS Mean Square 144 476960.8222222 3312.2279321 Greenhouse-Geisser Epsilon = 0.1911 Huynh-Feldt Epsilon = 0.2168 82

#### REFERENCES

Benjamin, M. N., & Craik, F. I. M. (1995) Memory and context: Memory. comparisons of younger and older persons. <u>Psychology & Aging.</u> 10, 284-293.

Bjork, R. A., & Richardson-Klavehn, A. (1989) On the puzzling relationship between environmental context and human memory. In C. Izawa (Ed.), <u>Current Issues in Cognitive Processes</u>. (Pp. 313-344). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.

Chiarello, C., & Hoyer, W.J. (1988) Adult age differences in implicit and explicit memory: Time course and encoding effects. <u>Psychology and Aging</u>. 3, 358-366.

Davies G. M., & Thomson D. M. (1988) Memory in context: Context in Memory. Chichester, NY: Wiley & Sons.

Denney, N. W., & Larsen, J. E. (1994) Aging and episodic memory: Are elderly adults less likely to make connections between target and contextual information. Journal of Gerontology. 49, 6, 270-275. Gooden, D. R. & Baddeley, A. D. (1975) Context-dedendent memory in two natural environments: On land and underwater. <u>British Journal of Psychology</u>. 66. 325-332.

Harrington, D. L., & Haaland K. Y. (1992) Skill learning in elderly: Diminished implicit and explicit memory for a motor sequence. <u>Psychology and</u> <u>Aging</u>. 7, 425-435.

Jennings, J., & Jacoby, L. L. (1993) Automatic versus intentional uses of memory: Aging attention, and control. <u>Psychology and Aging.</u> 8, 283-293.

Lee, T. D. & Magil, R. A. (1983) The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology: Learning Memory, and Cognition. 9, 4, 730-746.

Lehman, E. B., & Mellinger, J.C. (1984) Effects of aging on memory for presentation modality. <u>Developmental Psychology</u>. 20, 1210-1217.

Light, L. L., & Singh A. (1987) Implicit and explicit memory in young and older adults. Journal of Experimental Psychology. 13, 4, 531-541.

Light, L. L., Lavoie, D., Valencia-Lavor, D., Owens, S. A. A., & Mead, G. (1992) Direct and indirect measures of memory for modality in young and older adults. Journal of Experimental Psychology: Learning, Memory and Cognition. 18, 1284-1297.

Mowbray, G.H., & Rhoades, M.U. (1959) On the reduction of choice reaction times with practice. <u>Quarterly Journal of Experimental Psychology</u>. 11, 16-23. Park, D. C. & Pugglisi, J. T. (1985) Older adults' memory for the color of pictures and words. Journal of Gerontology. 40, 198-204.

Park, D. C. & Shaw, R. J. Effect of Environmental support on implicit and explicit memory in younger and older adults. (1992) <u>Psychology and Aging</u>. 7, 4, 632-642.

Park, D. C., Smith A. D., Morrell, R. W., Puglisi, J. T., & Dudley, W. N.

(1990) Effects of contextual integration on recall of pictures in older adults.

Journal of Gerontology. 45, 2, 52-57.

Posner, M. I. (1978) Chronometric Explorations of Mind. Hillsdale, NJ: Erlaum.

Riccio, D. C., Richardson, R. & Ebner, D. L. (1984) Memory retrieval deficits based upon altered contextual cues: A paradox. <u>Psychological Bulletin.</u> 96, 152-165.

Rogers, W. A. (1995) Contextual effects on general learning, feature learning and attention strengthening in visual search. <u>Human Factors</u>. 37, 1, 158-172.

Rose, D.J. (1997) Motor Control and Learning. MA: Allyn & Bacon.

Schacter, D.L. (1987) Implicit memory: History and current status. Journal

of Experimental Psychology: Learning, Memory, and Cognition. 13, 501-518.

Schmidt, R.A. (1988) Motor Control and Learning. (2nd edition).

Schramke, C. J., & Bauer, R. M. (1997) State-dependent learning in older

and younger adults. Psychology and Aging. 12, 255-262.

Smith, S. M. (1988) Environmental Context-dependent memory. In G. M. Davies and D. M. Thomson (Eds.), Memory in Context: <u>Context in Memory.</u> (pp. 13-34). New York: Wiley Pub.

Smith, S. M. (1986) Environmental context-dependent recognition memory using a short term memory task for input. <u>Memory & Cognition</u>. 14, 4, 347-354.

Spencer, W. D., & Raz N. (1995) Differential effects of aging on memory for content and context: A meta-analysis. <u>Psychology and Aging.</u> 10, 527-539.

Sternberg, S. (1969) The discovery of processing stages: Extensions of Donders' method. In W. G. Koster (Ed.), <u>Attention and Performance II</u>: Amsterdam: North Holland.

Tulving, E., & Thomson, D. M. (1973) Encoding specificity and retrieval: Processes in episodic memory. <u>Psychological Review.</u> 80, 5, 352-373.

Watkins, M. J., Ho, E., Tulving, E. (1976) Context effects in recognition memory faces. Journal of Verbal Learning and Verbal Behavior. 15, 505-117.

Wright, D. L. & Shea, C. H. (1991) Contextual dependencies in motor skills. <u>Memory & Cognition</u>. 19, 4, 361-370.

Wright, D. L., Shea, C.H., Li, Y., & Whitacre, C. (1996) Contextual dependencies during perceptual-motor skill acquisition: Gone but not forgotten. <u>Memory</u>. 4, 91-108

## VITA

Department of Kinesiology University of Nevada, Las Vegas

Andrew J. Meyers

Local Address: 5150 Spyglass Hill #258 Las Vegas, NV 89122 Home: (702) 431-1135 Work: (702) 895-1241 E-mail: MeyersA1@Pioneer.nevada.edu

Home Address:

12845 Holmes Rd.. Colorado Springs, CO 80908 Home: (719) 495-8133

Degrees:

Bachelor of Science in Kinesiological Sciences, 1996 University Nevada, Las Vegas

Honors and Awards:

Graduate assistant, Department of Kinesiology, 1997-98 Graduate assistant, Department of Kinesiology, 1996-97

Thesis Title:

Context Dependencies For Younger And Older Adults In Learning A 4-key Motor Sequence.

Thesis Examination Commitee: Chairperson, Dr. Mark A, Guadagnoli, Ph. D. Committe Member, Dr. Mark Hoffman, Ph. D. Committe Member, Dr. Richard D. Tandy, Ph. D. Graduate Faculty Representative, Dr. Frank Dempster, Ph.d.

87







IMAGE EVALUATION TEST TARGET (QA-3)







© 1993, Applied Image, Inc., All Rights Reserved