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ABSTRACT

A Study of X-tay Substructure 
in Rich Clusters o f 

Galaxies

by

Philip L. Rogers, Jr.

Dr. George Rhee, Examination Committee Chair 
Professor o f Physics 

University of Nevada, Las Vegas

comparison o f three tests to determine substructure in rich Abell clusters of galaxies was 

preformed and the results are presented in this paper. The data used are ROSAT PSPC X-ray 

images o f a sample o f 21 clusters drawn from the ACO catalog, and a subset o f the ESO 

Nearby Abell Cluster Survey done by Katgert et. aL The three methods used are: the ‘center 

shift* method developed by Mohr et aL, the ‘moment* method developed by Buote & Tsai, and 

a wavelet analysis developed by Starck et aL. Models were then created to check the 

significance o f our findings. The conclusions reached were that substructure and cooling flows 

are present in at least 50% o f our sample. In addition, although it is possible to get a generally 

accurate result using only one o f the above methods, the use of a multi-pronged analysis 

approach to achieve maximum accuracy is desirable.

u
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CHAPTER 1

INTRODUCTION

One o f the greatest quests in cosmology is the search for the value o f  Q , known as the 

cosmological density parameter. O  is defined as the ratio of p   ̂ the observed or measured 

density o f the universe, to p   ̂ , the critical density of the universe, so called because it is the 

density needed to make the universe just closed. The knowledge of its value holds the key to 

the mystery of the ultimate fate o f the cosmos. A value o f Q  less than 1 would indicate that 

the observed density o f the universe is less than the critical density, meaning that there is not 

enough matter in the universe to overcome the current acceleration. This would lead to an 

open universe, which would continue to expand forever. O n the other hand, if the value o f Q 

were greater than 1 the observed density o f imiverse would be more than the critical density. 

This would indicate that there is enough matter in the universe to overcome the its current 

acceleration, making the universe closed. In this case the universe would eventually begin to 

contract and continue to do so until it reached a singularity o f infinite density. Many methods 

can be used to determine the limits o f Q . One of these is the smdy of substructure in rich 

clusters o f  galaxies. The reasoning is that we currendy believe galaxy clusters form by a process 

known as “violent relaxation”, a process that tends to erase substructure by dynamical 

evolution. If we take this as given, then the observation o f substructure in galaxy clusters may 

indicate that the clusters are still in the early stages of vinalizadon. This is an idea we can use to 

probe the value o f Q .

1
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It has been held for many years that the ftequency o f substructure in galaxy clusters can 

lead to determining the lower limit  o f  Q  (Richstone, Loeb & Turner 1992; Kaufftnann & 

White 1993; Lacey & Cole 1993). To make sense of this statement we need to look a little 

closer at the scenario. Imagine the value o f Q  is low. If this is so then large structures such as 

rich galaxy clusters must form early in time, before expansion could overcome the local 

gravitational attraction. This being the case we would expect to find most clusters in a 

virialized or relaxed state because the universe is sufficiently old for m ost o f the matter on the 

cluster size scale to have smoothed out. O n the other hand, if the value o f Q  is high, than the 

density o f  the universe is sufficient to allow galaxy cluster formation into the present era. In 

other words, on the large scale there is still enough matter close together to interact and form 

clusters. If we accept the latter as the case, we would expect to see some substructure in at 

least a few still forming galaxy clusters. In fact, recent observations support the latter view, 

suggesting 30% - 50% of galaxy clusters show at least some evidence o f substructure either 

optically or in their plasma distributions (Geller & Beers 1982; Dressier & Shectman 1988; 

Mohr, Frabticant & Geller 1993; Salvador-Sole, Sanroma & Gonzalez-Casado 1993; Bird 1994; 

Escalera et aL 1994; West et al. 1994).

Rich galaxy clusters are typically groups of hundreds or thousands o f galaxies bound 

together by their mutual gravitation. O n average they have a diameter o f  about 3 Mpc. Using 

the virial theorem and independent velocity dispersions it has been found that they can contain 

upwards of several times 10'  ̂ solar masses. Given the current interpretation o f  general 

relativity, each cluster contains three components o f mass. Firstly, there is the mass associated 

with the emitted light we see firom the individual galaxies, which amounts to less than 10% of 

the total mass. Secondly, there is the mass associated with the hot intracluster plasma, which
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amounts to perhaps 20% of the total mass. Lastly, there is the component associated with the 

remaining bulk of the mass which is, non-luminous, and referred to as “Dark Matter”.

In general, clusters are characterized by their redshifts, velocity dispersions and apparent 

morphologies. There is a wide range o f accepted morphological classification schemes. 

However for brevity we shall adopt two for this work. The Bautz and Morgan(1970) system 

will be used for all the clusters, as well as the revised Rood-Sastry(1971) system from Struble 

and Rood(1982) for the southern clusters and those clusters far enough north to have been 

classified in this scheme.

The Bautz-Morgan system uses three main classifications or types and adds two other 

categories that are merely combinations o f the three main types. The types are defined as 

follows:

Type I : Clusters dominated by a single bright central cD galaxy.

Type II: Clusters whose brightest galaxies are intermediate between cD and giant 
ellipticals.

Type III: Clusters that have no dominating cluster galaxies.

Type I -  II and II -  III: are clusters that are intermediates.

The Rood-Sastry system is defined as follows:

cD: the cluster is dominated by a central cD or cluster dominant galaxy.

B: binary — the cluster is dominated by a pair o f luminous galaxies.

L: line - at least three o f the brightest galaxies appear to be in a straight line.

C: core -  four or more o f the ten brightest galaxies form a cluster core, with
comparable separations.

F: flat — the brightest galaxies form a flattened distribution on the sky.

I: irregular — the distribution o f brightest galaxies is irregular with no obvious center or
core.
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Cluster Classifications

•ü-.-.'

cD

Figure 1. Revised R.S. Cluster classifications firom Struble and Rood(1982).

The Rood-Sastry classifications are not the easiest to visualize so figure 1 is supplied for 

clarification.

For our purposes the intracluster plasma is the prime concern, so lets look at it in more 

detail. This plasma ranges in temperature from 10  ̂K  to about 10® K, with a density o f % 10^ 

atoms/cm^. It is comprised mosdy o f hydrogen and helium but also contains traces o f iron 

and other heavy elements that have been stripped from the constituent galaxies by ram 

pressure due to dynamical faction. This hot gas gives o ff emissions in the X-ray spectrum due 

to bremsstrahlung. This is caused by relativistic electrons emitting “breaking radiation” due to 

changes in the magnitudes o f their acceleration when they interact with other ions. Because a 

plasma consists o f  ions, its emission is proportional to the density squared. The firee-firee
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etnissivity o f a plasma with an electron temperature a frequency V  and an ion charge of Z 

can be expressed as follows

2 ^ T js ^  (  2 k  ^
er. =

1/2
Z=n,n,g,.(z,7-,,u)xr;''=exp hu

3m^c

Here n,, and n, are the number densities o f electrons and ions, and (Z, , u) is the gaunt

factor. This factor corrects for quantum mechanical effects and distant collisions. This reliance 

on the density squared makes the clusters stand out from the background radiation more 

prominently than clusters in the optical range. Thus it is possible to see the plasma 

distributions o f many more clusters at greater distances using X-rays than it is to see the galaxy 

distributions o f the same clusters in optical wavelengths. Obviously, this advantage can be used 

to produce a larger and more complete cluster sample, which is exactly the type of sample we 

want in order to give us a more accurate measure o f substructure in the universe.

With the above in m ind this project was taken on with the intent o f answering three 

important questions.

1) How do the three analysis programs used in this survey compare?

2) What is the prevalence o f substructure in rich clusters o f galaxies?

3) What are the implications o f this result concerning the value o f Q  ?

In chapter 2 ,1 discuss the data selection and processing. In chapter 3, the three methods of 

analysis are covered. Chapter 4 contains the details o f the models used to calculate errors and 

significance. Chapter 5 contains a detailed description o f the results for 3 o f the 21 clusters. 

Finally, in chapter 6, there is a discussion of the general results and their relevance to our 

search.
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CHAPTER 2

TH E DATA

The sample o f clusters was drawn from the ESO Nearby Abell Cluster Survey, or ENACS 

for short, (Katgert et al 1994). This sample was chosen because the ENACS group’s 

motivation was to compile a more complete redshift database for Abell clusters with richness 

greater than 1 out to a redshift o f approximately 0.1 than was previously available. The Abell 

catalog was chosen because it uses a more stringent cluster definition than the other major 

catalogs. To be defined as a rich cluster in the Abell or ACO (Abell, Corwin & Olowin 1989) 

catalog, a cluster has to have > 50 galaxies within 2 magnitudes o f the 3“* brightest galaxy lying 

within 3 Mpc of the observed cluster center. The importance o f using rich clusters o f galaxies 

is that due to their size and mass they have long been known to be objects that ran provide 

data on the physics o f large-scale structure formation. The ESO survey was done for all 

clusters meeting the above criteria in a solid angle o f 2.55 sr about the South Galactic Pole, 

resulting in a database containing 107 clusters. In short, this should provided us with a 

complete and unbiased database o f rich Abell clusters from which to draw our sample.

It then had to be decided which X-ray satellite archive to use, ROSAT or the Einstein 

Observatory. The ROSAT PSPC (Position Sensitive Proportional Counter) has a field o f 

view of 2° and an energy resolution o f  43% at 0.93 KeV with an on-axis resolution o f 

about 25” at IK ev out to 20’ from the center. This distance o f 20’ is sufficient to include 

the entire cluster X-ray morphology for all our data fram es. The Einstein Observatory’s

6
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7

IPC (Image Proportional Counter) has a field o f  view of about 1 ° and a spatial resolution 

o f only 1.7’at Full W idth Half Maximum. It was concluded that for the purposes of 

observing subde changes in the cluster plasma the ROSAT PSPC was the best instrument 

to use.

X-ray photons are o f such high energy that they cannot be collected in the same fashion as 

are photons in optical wavelengths. These photons have a distinct tendency to be absorbed 

rather than reflected. In order to reflect target photons the X-ray telescope aboard ROSAT 

uses a method of collection called grazing incidence. At energies < 2 KeV the incoming x-ray 

photons can be reflected off composite metal surfeces when their angle o f  incidence 

approaches unity. The X-ray telescope uses just such optics in an arrangement called a Wolter 

t)^pe I telescope, which uses a combination o f  annular sections o f parabolic mirrors as grazing 

incidence reflectors. Several of these systems are arranged concentrically in a nested 

configuration to increase the sensitivity o f the system A position sensitive detector is then 

placed at the focal plane to produce high resolution images limited only by irregularities in the 

mirrors. The drawback o f this type of apparatus is that it only allows observations o f cluster 

plasmas with temperatures less rhan 2.4 keV. We know from cluster dynamics that cluster 

plasma temperatures can reach upwards o f 30 keV in some cases. To convince ourselves that 

the 2.4 keV limit will still suit our needs let us look at the above figure 2. Taking into account 

that the Coma cluster is one o f the better studied clusters and assuming it as an average cluster 

representative it can be clearly seen the predominant emissions are due to temperatures in the 

2-5 keV range, with the 2-3 keV range m aking up most of the photon counts in this area o f  the 

curve. Thus for our purposes, the 2.4 keV limit is a sufficient range to detect substructure.
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Energy Spectrum for the Coma Cluster
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Figure 2. HF.AO-1 A-2 low resolution X-ray spectrum of the Coma cluster. The plot gives 

the number flux o f X-ray photons per cm^-sec-keV versus photon energy in keV(Henriksen 

and Mushotzky, 1986).

The ROSAT archive was scanned for all the observed and archived Abell clusters that 

were com m on to both lists. In all, 44 clusters were found in the ROSAT archive that were 

also in the ENACS survey. For each cluster there are three data frames available. A soft
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band image from 0.07 — 0.4 keV, a hard band image from 0.4 - 2.4 keV and a total band 

image which is comprised o f both images together. It was decided to download only the 

hardband (0.4 -  2.4 KeV) images o f  the clusters because this energy range is high enough 

to minimise distortions due to the point spread function from the PSPC. It also reduces 

the contamination effects from the X-ray background known to occur in the lower end of 

the X-ray spectrum. After an initial examination o f the data, 23 o f the frames had to be 

discarded. Seven o f  the frames were discarded due to misalignm ent o f the instrument. This 

misalignm en t either caused the clusters to appear at the edge o f the frame, where the 

distortions o f  the detector are greatest, or under the support structure, where it was 

unobservable. The other sixteen frames were unusable because the exposure times were 

too short to show any subde plasma structure, thus m aking it impossible to tun our 

substructure analysis programs. This left us with a total o f  21 usable cluster data frames 

(Table 1 page 39).

These rem aining data frames were processed in the following manner. Firsdy, they were 

divided by their exposure maps, which were also provided by the ROSAT archive. This 

was done to correct for exposure variations and instrument vignetting. Secondly, they 

were multiplied by their exposure times so that the final image was in the form o f counts. 

Thirdly, they were filtered using a program supplied by Starck et al. that uses a bspline 

wavelet transform to reduce overall image noise, essentially smoothing the image. Lastiy, 

they were cleaned o f  point sources. Each image was visually inspected for “obvious” point 

source contamination that occurred outside the central plasma source. The sources were 

checked to see if their FWHM was comparable to that o f  point sources imaged by the 

PSPC. Unresolved sources were removed using the imedit program in the TV package of 

IRAF. Briefly, what imedit does is replace what is in a user defined circle with the average
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counts contained in an annulus placed at a specific radius which is also defined by the user. 

We identified point sources by eye because automated methods tended to identify and 

correct “point sources” inside the central plasma structure. Although this is a plausible 

place to find point source contamination, the automated corrections caused distortions in 

the portion o f  the plasma structure in which we hoped to find subde changes. Point 

sources near o r in the center o f the cluster cores were deleted using the fixpix program in 

the PROTO package o f  IRAF. This gave substantially better results than the imedit 

program that was used for the oudying point sources.
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CHAPTERS

TH E NETHODS

In this section, I discuss the three methods that were used to analyze the data, the 

‘Center shift’ method, the ‘m om ent’ method, and the wavelet transform method. These 

three very different methods were chosen in the hope that they would complement each 

other and give a more complete picture o f  the am ount and type o f substructure in Abell 

clusters.

3.1 Moment Method

The first method that will be discussed is what I refer to as the ‘mom ent’ m ethod 

developed and supplied by Buote and Tsai (1995). The main idea o f this m ethod is to be 

able to quantitatively classify cluster morphologies in direct relation to their dynamical 

state as indicated by the gravitational potential (Buote and Tsai 1995). The most natural 

way to accomplish this is to use a two-dimensional muldpole expansion o f  the projected 

gravitational potential. If  we let Z(/2,^) be the two dimensional projection o f the mass 

density then we can write the two dimensional potential 4^(1?, ̂ ) , as:

V^^{R,<I>) = A7cGL{R,(I>) 

with G being the gravitational constant.. Using G reen’s functions it can be shown that the 

potential due to the material interior to R is given by:

'P(i?,^) = -2G qq In — -  2 G ^  cosm<f> + b„ sinm
R xmR"  

11
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where a„, and b„, are the “Moments” o f  interest. They can be expressed in the following

wav:

c o sm ÿ 'j  x '  

b.= L,nx'XR')-smm^’d̂ x'

with x ’ = . 'P does not represent the total gravitational potential since the equation

fails to account for the mass exterior to  R. However we are only concerned with the 

gravitational effects o f the mass interior to  R.

It is clear from the above equations tha t we can consider as many moments as we like. 

For our purposes we only concern ourselves with m = l, 2, 3, and 4, as higher order terms 

reflect smaller scales which are dynamically less significant It is also clear that R is as yet 

undefined. The fact that our clusters are centrally positioned on our data frames leaves 

very little distance between their apparent edge and the ROSAT support spider. For this 

reason we limited R to a single value o f 1 Mpc referred to as R,p our radius aperture. This 

places our boundary o f interest just inside the support structure, leaving plenty o f room  to 

search for substructure but ignoring the area underneath and around the support structure 

where any source information can be either screened or distorted.

Another small problem to be dealt w ith is that the m > l terms o f the equation for 

vanish when integrated over (ft. This forces us to consider only the magnitude of 

the terms for each order integrated over <(>. I f  we let 'Pm be the m'*' term o f  the multipole 

expansion for 4* we can define the following quantity:
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Such that only terms for m = m ' are non-vanishing. This means P„ = measures the 

‘power’ interior to for the terms o f order m. I f  we ignore the factors o f 2G, these 

values are given by, Pq = [ûg In G /^ap)Ÿ for m = 0  and p _ 1 / ; + ft M for values»» n 2 n 2m ' m m /

of m>0. The total ‘power’ o f  all the moments would then be given by p -  p  .
«  « 0

Therefore, the ratio o f  P„, to P reflects the contribution o f  the m* m om ent to the ‘power’ 

o f the total potential interior to R^. Knowing that the gravitational potential is precisely 

related to the dynamical state o f  the cluster, the P ^’s are the substructure measures we are 

looking for.

This can be put in a graphical sense in the following way. Let’s look at the T‘ moment, 

which would look something like an 8 or oo. I f  this pattern is placed over the center o f  the 

cluster and we add up the counts in each ear and subtract one from the other, any value 

greater than 0 indicates the presence o f substructure. The higher the number, the greater 

the power o f the substructure! This thought analysis can be extended to any o f the 

moments by simply adding another figure 8 overlapped at the center for each additional 

moment.

3.2 Center Shift Method

The second method is the ‘center shift’ m ethod developed and supplied by M ohr et 

al.(1993). This program is also based on measuring the low order moments o f a cluster. 

However with this method we find the 1“ m om ent M ,(r ), axial ratio and ellipsoidal

orientation angle 0 i{r )  at several different radii for each cluster. To make the 

measurements we need to choose an initial radius and width for our annulus and find the 

proper place to locate it on our data frame. For our purposes, we chose an initial radius o f
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2 pixels and an annulus o f 2 pixels with each pixel having a value o f  15” . We next Founer 

expand the section o f  the image I{6,F) that lies within the annulus so that we can 

determine the coefficient C ,, defined in the following expansion as

? C „ ( F ) cos[/w0 - ot0„(F)]
m=0

with m ^  being the highest calculated harmonic. Next the location o f  the annulus on the 

data frame is varied. This is repeated until we minimize C, . By minimizing C, we can find 

the center o f the image. However in order to save cpu time, the center values obtained 

from the ‘moment’ method were used as starting values. With this done, the Founer 

expansion o f the photon distribution, defined by the centered location o f the annulus is 

now computed. We can use the expansion parameters to find the 1 ” m om ent A/, = (%, J ') , 

the ellipsoidal orientation angle , and the axial ratio 77.

2 C :(r )
r { d C J d r ) \ ,

Where, {dC^ / dr) |j; is the radial gradient of the surface brightness evaluated at r  . Finally

we increase the radius o f the annulus by 2 pixels per iteration and repeat the above steps 

until the radius extends past the area o f the X-ray image we are investigating.

Let us once again look at this in a graphical manner. Imagine a series o f hula-hoops 

having different radii but possessing the same thickness. Now let us place our hula-hoops 

over the top o f a sym m etric anthill one at a time starting with the smallest one first. I f  we 

look down on our system firom an overhead position, we notice that all the hoops share 

the same center. Now imagine our anthill has some inhomogeneous asymmetry. In other 

words, it may look symmetric at its apex but as we look farther down the base, it bulges to 

one side or the other. Now start again by placing the hoops on the anthill one at a time
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with the smallest one first. As the radii o f  our hoops increase we notice that the centers o f 

our hoops are moving in the direction o f  our conic distortions. This ‘center sh iff is caused 

by the asymmetry o f  the anthill! As we begin to place larger and larger hoops over the 

structure we begin to pick up the changes in the structure. In the case o f  X-ray clusters it is 

the substructure that will be picked up by these ‘center shifts’.

3.3 Wavelet Transform M ethod

The third method is the wavelet transform  method developed and supplied by Starck et 

al. (1995), also see Slezak et al. (1994). This method is considerably m ore visual than either 

o f  the previously described methods. First, it is necessary to think o f  the X-ray data as a 

superposition o f different valued scales. Now let f(^x)  be the com plete data function. Its 

1-dimensional wavelet transform  can now be written as

C (a , é ) =  T  £ .  /(A:)g- (— ) *

where “a” is the scale, “b ” is the location, and g is the complex conjugate o f  the analyzing 

wavelet. Consider C (a ,6 )  which is the wavelet transform o f  W e can restore f { x )

with the following formula

—  j j - ^ ^ a , o ) g  — —  —
C  g  0  - 0 0  'V  ÛT \  ^

where:

|2

 ̂ 0 V

O f course, this is only true if Cg is defined. This is generally so as long as g (0) = 0 . In 

other words the mean value o f the interrogating wavelet m ust be zero. It is the ability to
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vary the scale o f the interrogating wavelet that makes this m ethod a truly multi-resolution 

approach. In our case, the scale o f  the wavelets ranges &om 1 to 8 pixels in order to 

provide a more complete range to look for substructure.

Once again, let us look at the graphical implications. Imagine that we are going to look 

for structure on an anthill This time instead o f using hoops or figure eights we are going 

to use calipers set to different sizes to measure the 2-D projected surface o f the anthill. 

The object is to use the calipers, set at differing widths, to trace the projection in order to 

search for the different scale an o malies. First, let us assume that the anthill is on the order 

o f  1 meter in size and contains several polymorphic anomalies. Let us then imagine that we 

start with the calipers set to a very small diameter, say 1 f j m . Next, we slide the calipers 

along the outer surface or projection o f  the anthill in a tracing fashion. After doing this we 

see that we can only measure variations that happen to occur between the caliper edges, in 

this case on the order o f  1 jjm . As the diameter o f the caliper setting is increased to larger 

sizes and the anthill is traced each time, larger variations in the structure can be measured 

with each pass. O f course, if  we add up all the measured variations at all the different 

scales we can reconstruct our anthill in all its glory. It was hoped that the variability o f this 

method could be used as a visual check to see at which resolution level or levels the other 

two methods were detecting substructure.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



- 2 2 '

1 + X + y

/ c . . n r - c .

CHAPTER 4 

TH E MODELS

In order to calculate our errors and discern the significance o f our results, cluster models 

were created.

We began by parameterizing the cluster plasma distribution using the standard King (1966) 

model, which appears as follows:

112-ip

I ( x , y )  = /q

where I(x, y) is the x-ray intensity as a function o f x and y, L is the intensity at the center o f the 

cluster, X and y are the cluster image coordinates, r̂  is the radius o f the core, T] is the axial 

ratio, and P  is the power-law index. Each cluster was inspected and a model was created using 

the t e s t  fit’ method. D u rin g  this process it was discovered that the central regions for nearly 

Vi o f our clusters could not be fitted using the standard King model This standard King 

model describes the central regions o f clusters as being somewhat flattened, meaning that 

these areas are, for the most part, isothermal To the contrary, we found that some o f our 

clusters had central regions better characterized by sharp intensity spikes. We believe that this 

is due to cluster cooling flows.

A cluster cooling flow occurs when the gas at the center o f a cluster, where the temperature

and density are highest, cools through bremsstrahlung and line emission in a time less than the

cluster lifetime. As the temperature drops due to cooling, the pressure in the cluster central
17
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region also drops. In order to m a in fa in  the pressure the central density has to rise. This 

happens with an inward flow o f gas, resulting in an excess o f luminosity at the cluster centers. 

With the advent of newer X-ray satellites such as ASCA, better resolution is possible, which 

enables more accurate observations o f cluster cooling flows. These more accurate observations 

in combination with the data presented in this paper and recent analysis o f ROSAT PSPC 

observations (Sarazin, 1998), indicates that perhaps as many as 50% o f clusters exhibit cooling 

flows.

As knowledge of cooling flows is still in its infancy, it was decided to ignore the cooling 

flow process in our models. This should not effect the results because the p rim a ry  concern is 

substructure that resides in the areas surrounding the central regions which is adequately 

described by the King m odel The Taest fit’ models were then used to create 500 Monte Carlo 

simulations for each cluster in which a random amount (between 1 and 5 counts) o f Poisson 

noise was added to each iteration. In order to fuHy emulate the real data fully, each simulation 

was divided by the appropriate exposure map and multiplied by the image live-time.

To save CPU time, the models were centered at 256, 256 o f the 512, 512 image firame. The 

fact that only the total ‘center shift’ and ‘moment’ numbers are important in this paper and 

these values are independent o f the models position on the image firame makes this short cut 

possible. Each analysis program was allowed to run on the 500 models for each cluster. The 

results for the 500 models for each cluster were sent to separate files and Fortran programs 

were used to extract the pertinent data firom each file. Although it is possible to plot the results 

in a myriad o f  ways, it was decided that the results for the ‘center shift’ method would be in 

<T /  O’ dan format This process uses the actual significance o f the changes in the model in 

respect to the data to create the plots. The ‘moment’ model results were plotted as histograms 

where the number o f  models having a particular moment value were binned. These plotting
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criteria made it possible to compare the data to the models, find the significance o f  our results, 

and calculate our error bars. There was no reason to compare the models to the wavelet 

transform method for the following reason. I f  we know the type o f noise in advance we ran  

tailor the wavelet transform method to account for this. In our case we input Poisson noise 

into the program. The wavelet transform m ethod calculates the mean and standard deviation 

for the noise in each resolution range and only the signal above a user defined clipping level, 3 

sigma for this study, is sent to the output image. The result of this, in theory at least, is that all 

the structures we see in the wavelet transform images are considered significant.
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CHAPTERS 

T H E  RESULTS

In all, 21 clusters were analyzed u s in g  all three data analysis programs the results o f  which 

are presented in figures 3-149. For each cluster we present the smoothed image and contour 

plot, the histogram plots for the m oment model results for Pj and P4, and finally 

the <T „,odci/ ^  dao total shift plots for the ‘center shift* method. Only three clusters Abell

133, Abell 514, and Abell 2052 will be discussed in detail here. I believe that these three 

clusters portray the variety o f cluster morphologies that were encountered in our sample and 

thus are a good representation of the results that our analysis programs produced. In addition, 

the general results firom all the 21  clusters will be used to compare and contrast the various 

methods.

5.1 Abell 133 Results

Abell 133 is a cD cluster by the Rood-Sastry designation system and has a redshift o f  .0566 

(see Table 1). Visually this cluster appears to quite relaxed and symmetric (Figures 17 & 18). 

This is also how the cluster appears after inspection o f the wavelet images (Figure 19). Each 

wavelet transformed image shows only a central regularly shaped circular image that seems to 

re m a in  homogeneous as the wavelet scales get larger, which is exactly what one would expect 

for a relaxed cluster with little or no detectable substructure. The results for the ‘moment* 

program run on this data firame for Pj and P4 (see Table 3 & Figures 20 & 21) are within 3 

sigma o f the model values, m ak in g  them statistically insignificant, which also agrees with a

20
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regular relaxed cluster. The total shift in RA and DEC (Figure 23) as reported by the ‘center 

shift* method shows that there is variation in shift o f  less than 0.5 arc minutes over most o f  the 

13 arc minute search radius. There appears to be a somewhat larger shift o f about 1 arc minute 

in the outer 3 arc minutes of rbis radius. However, changes o f even a single count can make 

the results seem much larger out here where the counts in general are very low. It can be seen 

from the graph o f /  cr^„  (Figure 22) that the mean value (see Table 2) is about .73 with

a calculated standard deviation value o f .21 placing m a n y  of the values near umty. This 

indicates that there is m inim al difference between the two values and therefore littie or no 

substructure detected by the ‘center shift* method.

5.2 Abell 514 Results

Abell 514 has a R.S. designation o f F, a Bautz-Morgan type of II-III, and a velocity 

dispersion o f 874 km /sec with a red shift o f 0.0713 (see Table 1). Abell 514 is perhaps the 

most visually interesting cluster o f the sample. The cluster (Figures 38 & 39) appears as an 

irregu la r  cloud that is surrounded by diffuse plasma forming an elongated kidney-shaped 

object. The wavelet transform images (Figure 40) show substructure on a progressive scale. In 

the 2  pixel scale several small knots o f plasma can be seen with very littie diffuse plasma 

present. In the 3 pixel scale more o f the diffuse plasma can be seen. This diffuse plasma 

appears as an irregular and elongated foot-Hke extension that appears to be coimecting several 

o f the more prominent plasma knots. By the t im e  the 4 pixel scale is reached virtually all the 

knots are no longer individually visible and in the 5 pixel scale the cluster looks like a single 

elongated blob o f diffuse plasma with a brightened end. The ‘moment* program (see Table 3 & 

Figures 41 & 42) tun on the data yields a value o f Pj that is 37 sigma above the mean model 

values! The value for P4 is surprisingly sm all given the extremely large Pj value. A data value o f
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4.5 sigma above the mean model values indicates only a moderate significance. The ‘center 

shift* analysis method (Table 2 & Figure 44) shows a shift o f  almost 6  arc minutes. This proves 

to be very significant when compared to the plot (Figure 43), which has a mean

value of .11 with only a .03 standard deviation value. This indicates that only about 10% o f the 

models have a center shift that is on the order of the center shift o f the cluster.

5 3  Abell 2052 Results

The third cluster is Abell 2052 which has a R.S. designation o f  cD and a B.M. designation 

o f I II (see Table 1). It is known to possess a large cooling flow and has a redshift o f .0348. By 

observing the contour plot (Figures 52 & 53) o f this cluster it is possible to see that it appears 

slighdy irreg ular, possessing a mostly o ff center oval shape. I f  the wavelet transforms (Figure 

54) are observed it is possible to see only a sm all portion o f  this apparent offset. For the most 

part the wavelet data shows nothing particularly irregular on  any scale. The significance 

observed when the ‘moment* program is run on the data in the 2™̂ moment (see Table 3) 

which would pick up this apparent elongation cannot be computed because our models were 

made to emulate this type o f feature. The value of Pj (see Table 3 & Figure 55) appears to be 

m arginally  significant at best, possessing a value only 4.5 sigma above the mean model values. 

The cluster value for P^ (Figure 56) is completely insignificant, on  the order o f 1.5 sigma above 

the average model value. The ‘center shift* method (Figure 58) shows only a very small (<.5 arc 

min.) overall shift inside the first 9.75 arc minutes o f a 15 arc minute search radius. Outside 

this radius, extending through to the outer edge, we see a total shift o f  about 1.5 arc minutes. 

This shift is relatively small but appears quite significant when thecTn^,/ / <J^„ plot (Figure 

57) is viewed. This plot has a mean value o f .38 with a standard deviation of .11. (see Table 2).
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This significance ran  best be explained if the off-center characteristics o f the cluster plasma are 

taken into account

The above three described clusters were picked to be representative o f several types of 

cluster morphologies: a regular relaxed cluster with litde or no substructure at any level, a 

cluster that is very irreg u la r  and shows substructure at m a n y  d if fe r e n t  levels, and finally a 

cluster that is somewhat regular on some scales but shows substructure at others. I believe that 

these clusters clearly show the sensitivity ranges of the three an a ly sis  programs. For instance, 

Abell 133 appears to be ‘regular* on virtually all scales to all three programs. If  the results of 

each program are inspected individually it would not be misleading to say that th is cluster 

appears to be a regular relaxed system. For Abell 514 each program shows substructure on 

different levels. The wavelet transform program shows substmcture in the intermediate and 

small levels while still showing the overall shape and form o f the cluster. However, with no 

quantitative numbers it is difficult to classify the cluster or compare it to other clusters. The 

‘moment* method*s large Pj value indicates that the shape is somewhat triangular, which can be 

seen if one imagines a narrow elongated triangle  lying on its side. The elevated P  ̂ value 

indicates that there is at least some amount o f surroimding substructure. These structures are 

indeed observed in the cluster, and with the quantitative n u m b e rs  it is possible compare it to 

other clusters. However the program doesn*t present a very visual picture o f the cluster. The 

‘center shift* results shown on the total shift plot for Abell 514 shows very strong indications 

for substructure. This method does not tell us exactly what kind o f  substructure there is, but it 

can indicate how “strong” the substructure is. It can  also tell us how that substructure is 

oriented in relation to the m a in  stmcture and image orientation. This method also provides the 

quantitative means necessary to compare one cluster to another direcdy. The results for Abell 

2052 show the clear differences between the programs. The wavelet transform program shows
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little o r no irregularity. Due to the feet our models were made to emulate the clusters’ overall 

oval shape, we are not able to tell the significance o f the 'moment* method ?2  results. 

However, if the Pj result is compared to the other clusters P; values, it does not appear very 

large at all. In fact it rum s out to be one o f the smallest! O n the other hand the center shift 

method shows a clearly significant result, indicaring that at least for this example it is capable 

of detecting very subde changes.
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CHAPTER 6

CONCLUSIONS

Great care was taken to find and collect a non-biased group o f  rich galaxy clusters, run 

three different types o f analysis  programs on each of them, and create cluster models in order 

to determine the significance o f  our results. We are now in a position to ask ourselves, what 

conclusions, if any can be drawn firom this experience? In fact, there are several interesting 

conclusions that can  be drawn firom our research. Let us recall the three main questions 

proposed in the introduction and attempt to answer them one at a time.

1) How do the three analysis methods used in this survey compare?

It has already been seen firom the detailed examples that the three methods appear to be in 

agreement for the most obvious substructure cases. In order to get a better picture o f the 

overall agreement between the two analytical methods we can  look at the comparison chart on 

Table 4. Before any comparisons can be made it must be stated that in order to stay on the 

conservative side a 6  sigma cut-off for the ‘moment* method is used. For the ‘center shift* 

method a value o f (mean + sigma >0.7) is taken as the approximate cut-off. Using these 

criteria and taking m arg ina l results as positive, it can be seen that there is agreement between 

the methods for all but 5 o f the clusters. As can be seen firom the comments section o f the 

chart, one of the disagreements for the Abell 3111 can be attributed to the cluster observation 

having counts that are possibly too low to work with. Two clusters, Abell 2052 and 3112, have 

predominantly off-set oval structures not accounted for in the ‘moment* values of Pj and P̂ .

25
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As our models were made with this type o f substructure we can ignore this apparent 

discrepancy. For Abell 3266 and 3562 it is possible that the substructure configurations are 

neither triangular nor cross like. These are the approximate shapes that the Pj and P^ moments 

would pick up. The type o f substructure observed in these clusters might be more accurately 

detected in higher moments.

As far as individual program p e r fo rm a n c e  is concerned, there is a general trend observable. 

The wavelet t r a n s fo rm  method allows us to attain a strong visual sense for the cluster 

structure. However, th is  is attained without clear quantitative means o f comparing one cluster 

to another. The ‘moment* program supplies us with the quantitative means of comparison as 

well as giving us a general sense o f the overall cluster morphology. The weakness o f this 

program seems to be that it is fairly insensitive to sm all changes in intensity at or near the 

cluster centers or at their extremities. The ‘center shift* method by its nature is more sensitive 

to sm all changes at any position on the image. It is possible to use the results o f this program 

to produce RA and DEC shift plots (not shown in this paper) for each cluster, making it 

possible to get a rough picture o f  how substructure is placed throughout the cluster. This data, 

however, only indicates substructure placement, giving little or no idea what that the intricacies 

o f the substructure actually look like.

Clearly, taking the above observations into account, it is possible using only one o f the 

above methods to get a fairly clear picture o f substructure, given a particular sample. If we 

were to ignore the clusters with low counts and the fact that our models were designed to 

account for elongated substructure, we would find only two major discrepancies between the 

methods. As has already been stated, the last two may be due to our use o f only low moment 

values. O f course, it is always desirable to have the most complete picture attainable. This is 

true especially when attempting to expound on an issue as sensitive and controversial as the
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value o f Q . It must also be taken into consideration the idea that all substructure may not be 

created equal! There may be m a n y explanations for the presence o f substructure in galaxy 

clusters. For instance, if we wished to know if clusters are still forming we would look for 

evidence o f large amounts o f substructure at or near the centers o f a clusters, which might 

indicate that the clusters were still undergoing dynamic relaxation. Suppose all that was found 

were fairly spherical cluster cores with some sm all oudying substructure blobs. This finding 

might indicate that these clusters are mature relaxed systems that happen to have recently 

swallowed some nearby matter, indicating that they are not young at alL With this in mind it 

becomes quite clear that searches o f this type must be conducted with great care.

2) What is the prevalence of substructure in rich clusters o f galaxies?

Recall that we started with the most unbiased cluster sample possible. Unfortunately, 

because not all clusters in this sample were observed by ROSAT or some observations were 

miss-pointed, our data set is only a subset o f the original sample. We do, however, believe that 

this data set is still an unbiased representation. To convince ourselves o f  this the abstract for 

each observation proposal was searched. It was found that only 1 (Abell 3266) o f the 21 

cluster observations was done for the express purpose o f a substructure search. Three others 

(Abell 3111, 3112, 3158) were observed for evidence o f cluster-cluster or cluster-supercluster 

interactions. Generally this interaction leads to cluster elongation, a shape we do not consider 

substructure in our survey. However, to be conservative we take this as possible evidence for 

substructure and therefore possible sample biasing. Seven clusters (Abell, 85, 119, 133, 754, 

3562, 3667, and 3897) were observed to help probe their cluster mass functions and help 

determine binding mass and dark matter distributions. Four clusters (Abell 496, 2052, 4038, 

and 4059) were observed to investigate cooling flow clusters. The remaining six were observed
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for a variety o f reasons ra n g in g  from measuring the brightness gradients o f clusters inside 

super clusters to measuring the X-ray emissions o f  clusters near WAT (Wide-Angle-Tailed) 

radio sources. With this in m in d  and again accepting m atina l results as positives, the ‘center 

shift* method found 13 o f 21, or 62% of clusters showing evidence o f  substmcture. The 

‘moment* method found that 11 o f 21 clusters, or about 52% of the sample, exhibits defimtive 

evidence for significant substmcture. If our sample is indeed non-biased, then this is clear 

evidence that galaxy clusters are still forming.

3) What implications does this result have on the current accepted value o f Q ?

Recall, that if  galaxy clusters are still fo rm in g , this implies we must accept an increased value 

o f Q . At least larger than the currendy held value o f  Q  < 0.2.

4) Bonus Question: What is the percentage o f rich galaxy clusters with cooling flows?

As ftequendy happens in scientific endeavors o f  this type, an unexpected but important 

observation was made. During the m o d e lin g  phase o f  our research it was found that almost 

50% of our sample exhibited very high counts at their cluster cores, indicating cooling flow 

activity. Until very recendy it was unknown what the cooling flow percentage o f galaxy clusters 

was or even if the phenomena was real This was due to the inability to resolve the clusters 

central regions finely enough. In the last two years instruments such as A.S.CA. and others 

have given us the resolution necessary to begin a comprehensive search for cooling flows in 

galaxy clusters. The most recent information has led to the f in d in g  that as many as Vi o f all 

galaxy clusters exhibit some cooling flow mechanics (Sarazin et al 1998). With these types o f 

clusters occupying a greater percentage o f the total it is imperative that our models become 

more sophisticated. We r a n  only know the significance of our data if we properly and 

accurately model the physical phenomena we are probing.
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It is hoped that our results, along with further research in this area, will lead to the 

construction of a more reliable database, one that can not only be used to help answer the 

questions o f today but one that is also sufficiently detailed to answer the questions of

tomorrow.
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Table 1: General Cluster Information

31

Abell
Cluster z a-y

RA.
0 2 0 0 0 )

DEC.
0 2 0 0 0 )

Rood-
Sastry
Type

Bautz-
Morgan

Type
85 .0556 853 00 41 49 -09 17 51 CD I

119 .0440 740 00 56 14 -01 15 58 C n - i i i

133 .0566 — 01 02 38 -21 47 53 CD —

496 .0327 682 04 22 38 -1315 40 CD I:

500 .0666 — 04 38 52 -22 06 38 I m

514 .0731 874 04 47 40 -20 25 44 F n - i n :

754 .0534 — 09 08 35 -09 37 28 CD I - H :

2052 .0348 — 13 33 31 -31 40 22 CD I - I I

2382 .0648 — 21 52 01 -15 39 53 L II -  III

2717 .0498 512 00 03 15 -35 57 18 — I - I I

2734 .0618 581 0 0  11 20 -28 52 18 — III

3111 .0775 770 03 17 47 -45 44 05 — I - I I

3112 .0751 950 03 17 56 -44 14 06 — I

3158 .0590 1005 03 44 35 -53 28 27 — I - I I

3266 .0594 1 1 2 2 04 31 09 -61 26 39 — I - I I

3558 .0478 — 13 27 59 -31 30 31 — I

3562 .0499 — 13 33 31 -31 40 22 — I

3667 .0530 1059 20 12 29 -56 48 59 — I - I I

3897 .0733 548 22 3917 -17 23 21 — II

4038 .0283 839 23 47 53 -28 09 19 — III

4059 .0478 536 23 57 01 -34 45 36 — I
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Table 2: Center shift data
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AbeU
Cluster

^ w o ie l /
/  ̂  data

Mean

<T Number of values 
Greater than 1

85 .28 .07 0

119 .29 .07 0

133 .73 .21 54

496 .94 .26 175

500 .31 .12 0

514 .11 .03 0

754 .21 .06 0

2052 .38 .11 0

2382 .65 .20 24

2717 .41 .15 0

2734 .26 .10 0

3111 .30 .10 0

3112 .42 .17 0

3158 .54 .18 11

3266 .35 .09 0

3558 .15 .04 0

3562 .24 .06 0

3667 .1 0 .03 0

3897 .89 .33 184

4038 .57 .25 35

4059 .63 .23 30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 3: Moment data
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-\BELL
CLUSTER

Po P. / Po P2 / P 0 P1 / P 0 D a a  
distance 

from 
models in

P4 / P 0 Data 
distance 

from 
models in 

sigma.

85 0.739E+11 0.330E+01 0.109E+02 0.578E+00 24 0.194E+00 14

119 0.500E+11 0.137E+01 0.165E+01 0.263E+01 50 OJ73E+0O 11

133 0.326E+11 0.297E+00 0.495E+01 0.166E+00 Z2 0J41E4)1 .89

496 0.849E+11 0.120E+01 0.698E+00 0.109E+00 IZ 0.262E411 .67

500 0.264E+10 0.311E+00 0.262E+00 0.288E+01 20 0.445E+00 6.9

514 0.242E+10 0.439E+01 0.147E+03 0.S85E+O1 37 0.485E+00 43

754 0 165E+11 0.503E+04 0.932E+02 0.588E+01 50Z 0.182E+01 8.2

2052 0.398E+11 0.832E+00 0.120E+01 0.165E+00 4.5 0j09E O l I j

2382 0.345E+10 0Z52E+01 0Z69E+O2 O.U2E+01 7 j 0.311E+00 4.6

2717 0.316E+10 0.160E+01 0.957E+01 0.127E+01 8.1 0J04E+00 7.5

2734 0.145E+10 0.108E+01 0.751E+01 0.121E+01 14 0.519E4)1 1.4

3111 0.940E+08 0.144E+01 0.171E+02 0.500E+01 5.7 0.239E+01 5.8

3112 0.118E+10 0.495E+01 0.345E+01 0.804E-01 .44 0.273E4)1 .20

3158 0.160E+10 0.459E+01 0.212E+02 0.621E+00 3.1 0.113E+00 .91

3266 0.217E+11 0.486E+01 0.170E+02 0.140E+00 21 0.169E411 .62

3558 0.527E+13 0.772E+00 0.468E+02 0.250E+01 312 0.681E+00 32

3562 0.503E+11 0.196E+01 0.184E+02 0.133E+00 1.7 0.145E+00 3.8

3667 0.782E+11 0.218E+01 0.522E+02 0.184E+01 71 0.574E+00 22

3897 0.474E+08 0.654E+00 0.203E+01 0.242E+01 24 0.524E+00 1.0

4038 0342E+10 0.306E+01 0.149E+02 0.570E411 .05 0.172E+00 1.4

4059 0.577E+10 0.114E+01 OJ05E+01 O.I68E4)l .16 0.795E4)1

-

1.4
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Table 4; Comparison Table
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A b d l

Cluster
Center
Shift

Detectiofl

M oment
P ,

Detection

Moment
?4

Detection

Agreement Comments

85 yes yes yes

119 ves ves yes yes

133 yes

496 no no ves

500 yes yes yes

514 yes yes yes

754 yes ves yes yes

2052 yes no no Offset oval shape not 
accounted for in P , or P4 

values
2382 yes no Possibly due to low 

counts.
271- ves ves yes yes

2734 ves yes no yes

3111 ves marginal m arginal m a r g i n a l Possibly due to very low 
counts

3112 ves no no Offset oval shape not 
accounted for in P3 or P4 

values
3158 no no yes

3266 yes no Substructure doesn’t fit 
P) or P4 shapes.

3558 yes yes yes yes

3562 yes Substructure doesn’t fit 
P3 o r P4 shapes.

3667 yes yes yes yes

3897 no no yes

4038 no no yes

4059 no no yes

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX B

FIGURES

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



36

ABELL 85

Figure 3. Cleaned and filtered image o f Abell 85. Scale is approximately 2 Mpc per side.
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Figure 4. Contour plot for Abell 85. Contour lines are in counts. Scale is approximately 2 
Mpc per side.
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ABELL 85

Figure 5. Wavelet transform images for Abell 85. Clockwise from  upper left in 2, 3, 4, and 5 
pixel scales.
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ABELL 119

Figure 10. Cleaned and filtered image map of Abell 119. Scale is approximately 2 Mpc per 
side.
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Figure 11. Contour map of Abell 119. Scale is approximately 2 Mpc per side. Contour levels 
given in counts.
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ABELL 119

Figure 12. Wavelet transform images for Abell 119. Clockwise from upper left in 2, 3, 4, and 5 
pixel scales.
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ABELL 133

Figure 17. Cleaned and filtered image map o f Abell 133. Scale is approximately 1.5 Mpc per 
side.
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Figure 18. Contour map of Abell 133. Scale is approximately 1.5 Mpc per side. Contour levels are given in counts.
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ABELL 133

Figure 19. Wavelet transform images for Abell 133. Clockwise from upper left in 2, 3, 4, and 5 
pixel scales.
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ABELL 496

Figure 24. Cleaned and filtered image map o f Abell 496. Scale is approximately 1.1 Mpc per 
side.
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ABELL 496

Figure 26. Wavelet transform images for Abell 496. Clockwise from upper left in 2, 3, 4, and 5 
pixel scales.
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ABELL 500

Figure 31. Cleaned and filtered image map o f Abell 500. Scale is approximately 1.6 Mpc per 
side.
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ABELL 500

Figure 33. Wavelet transform images for Abell 500. Clockwise from upper left in 2, 3, 4, and 5 
pixel scales.
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ABELL 514

Figure 38. Cleaned and filtered image map o f Abell 514. Scale is approximately 1.3 Mpc per 
side.
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ABELL 514

Figure 40. Wavelet transform images for Abell 514. Clockwise from upper left in 2 ,3 , 4, and 5 
pixel scales.
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ABELL 754

Figure 45. Cleaned and filtered image o f  Abell 754. Scale is approximately 1.9 Mpc per side.
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ABELL 754

Figure 47. Wavelet transform images for Abell 754. Clockwise from upper left in 2, 3, 4, and 5 
pixel scales.
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ABELL 2052

Figure 52. Cleaned and filtered image o f  Abell 2052. Scale is approximately 1.0 Mpc per side.
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ABELL 2052

Figure 54. Wavelet transform images for Abell 2052. Clockwise &om upper left in 2, 3, 4, and 
5 pixel scales.
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ABELL 2382

Figure 59. Cleaned and filtered image o f Abell 2382. Scale is approximately 1.6 Mpc per side.
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ABELL 2382

Figure 61. Wavelet transform images for Abell 2382. Clockwise from upper left in 2, 3, 4, and 
5 pixel scales.
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ABELL 2717

Figure 6 6 . Cleaned and filtered image o f Abell 2717. Scale is approximately 1.3 Mpc per side.
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ABELL 2717

Figure 6 8 . Wavelet transform images for Abell 2717. Clockwise from upper left in 2, 3, 4, and 
5 pixel scales.
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ABELL 2734

Figure 73. Cleaned and filtered image o f  Abell 2734. Scale is approximately 1.5 Mpc per side.
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ABELL 2734

Figure 75. Wavelet transform images for Abell 2734. Clockwise from upper left in 2, 3, 4, and 
5 pixel scales.
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ABELL 3111

Figure 80. Cleaned and filtered image o f  Abell 3111. Scale is approximately 1.9 Mpc in X  and 
2.5 Mpc in Y.
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ABELL 3111

Figure 82. Wavelet transform images for Abell 3111. Clockwise from upper left in 2, 3, 4, and 
5 pixel scales.
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ABELL 3112

Figure 87. Cleaned and filtered image o f Abell 3112. Scale is approximately 1.8 Mpc per side.
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ABELL 3112

Figure 89. Wavelet transform images for Abell 3112. Clockwise from upper left in 2, 3, 4, and 
5 pixel scales.
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ABELL 3158

Figure 94. Cleaned and filtered image o f  Abell 3158. Scale is approximately 1.8 Mpc per side.
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ABELL 3158

Figure 96. Wavelet transform images for Abell 3158. Clockwise &om upper left in 2, 3, 4, and 
5 pixel scales.
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ABELL 3266

Figure 101. Cleaned and filtered image o f  Abell 3266. Scale is approximately 1.8 Mpc per side.
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Figure 102. Contour map of Abell 3266. Scale is approximately 1.8 Mpc pet side. Contour levels 
are given in counts.
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ABELL 3266

Figure 103. Wavelet transform images for Abell 3266. Clockwise from upper left in 2, 3, 4, 
and 5 pixel scales.
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ABELL 3558

Figure 108. Cleaned and filtered image o f Abell 3558. Scale is approximately 1.8 Mpc per 
side.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CD"O
O
Q.
C

g
Q .

"O
CD

C/)(A
o "3
0
3
CD

8
" O

( O '3"

1
3
CD

"n
c3.
3"
CD

CD"O
O
Q .
C

aO
3

"O
O

CD
Q .

"O
CD

(/)(/)

A3558
a3558hcd.fits[190=320,200=320]

15"

20 '

25'

30'

35'

-31“40'

. V  
♦

-#

i
♦

*■-»

♦ ♦ ♦

.  0  

A *

1 1 1 1

Û

»

1 1 L  * ^ ! 1 1 1 ?  

c

«0 1 1

0  *  ’ 

\  o  

f  0  ♦

»

□

•  (
♦

o / ? \ J  .
/  o  ^

r 0. ^
S < ^ o  '

-♦

I

f t '

' J  
> , \ j  f W o

' / < K

*? ♦  r  y
r 0 ^  \ y ^  

O  J f O V .  /

\ % 7  ( y

7  < a ^ -

•  Û  ♦ -
^  ♦

o f

r
o

r r  / tL V 

1% ____:

— 1 ( 9 / ^  /
/ o  J y ^ ^ o

.  t  <5

5 /  ^  1 > .< v X ♦

» '  * :
1 1 __ 1___1 c \  iQ

« « > * * ,

1 ♦  1

«  %
»

1 1 1
13*’29*QÛ‘ 30" 13^28*00®

F le ld  Cenl«r< 
13P27"57.16» 

-31*28 34.00-

S c ile : 10.51"/** 
X /ï R itio : 1.00

Contour Lovels-' 
959.3879 
352.9499 
222.6963 
140.5119 
88.6570 
65.93B8 
35.2950 
22.2696 
14.0512 
8.8657

30* 1347"00®

Figure 109. Contour map of Abell 3558. Scale is approximately 1.8 Mpc pet side. Contour levels 
are given in counts.
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ABELL 3558

0

Figure 110. Wavelet t ra n s fo rm  images for Abell 3558. Clockwise from upper left in 2 , 3 , 4 , 
and 5 pixel scales.
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ABELL 3562

Figure 115. 
side.

Cleaned and filtered image o f Abell 3562. Scale is approximately 1.8 Mpc per
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Figure 116. Contour map of Abell 3562. Scale is approximately 1.8  Mpc per side. Contour levels 
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ABELL 3562

Figure 117. Wavelet transform images for Abell 3562. Clockwise firom upper left in 2, 3, 4, 
and 5 pixel scales.
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ABELL 3667

Figure 122. 
side.

Cleaned and filtered image o f  Abell 3667. Scale is approximately 1.8 Mpc per
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ABELL 3667

Figure 124. Wavelet transform images for Abell 3667. Clockwise from upper left in 2, 3, 4, 
and 5 pixel scales.
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ABELL 3897

Figure 129. Cleaned and filtered image o f Abell 3897. Scale is approximately 1.8 Mpc per 
side.
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ABELL 3897

Figure 131. Wavelet transform images for Abell 3897. Clockwise from upper left in 2, 3, 4, 
and 5 pixel scales.
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ABELL 4038

Figure 136. Cleaned and filtered image o f Abell 4038. Scale is approximately 1.8 Mpc per 
side.
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ABELL 4038

Figure 138. Wavelet transform images for Abell 4038. Clockwise from upper left in 2, 3, 4, 
and 5 pixel scales.
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ABELL 4059

Figure 143. 
side.

Cleaned and filtered image o f  Abell 4059. Scale is approximately 1.8 Mpc per
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Figure 144. Contour map of Abell 4059. Scale is approximately 1.8 Mpc per side. Contour levels 
are given in counts.
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ABELL 4059

Figure 145. Wavelet transform images for Abell 4059. Qockwise from upper left in 2, 3, 4, 
and 5 pixel scales.
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