Effect of Antioxidants in Cathepsin B Release by HIV Infected Macrophages

Luz J. Cartagena Isern∗ Loyda M. Meléndez, Ph.D†
Gabriel Borges‡ Lester Rosario**

∗∗∗University of Puerto Rico, Medical Sciences Campus
†University of Puerto Rico, Medical Sciences Campus
‡University of Puerto Rico, Medical Sciences Campus

Copyright ©2018 by the authors. Journal of Health Disparities Research and Practice is produced by The Berkeley Electronic Press (bepress). https://digitalscholarship.unlv.edu/jhdrp
Effect of Antioxidants in Cathepsin B Release by HIV Infected Macrophages*

Luz J. Cartagena Isern; Loyda M. Meléndez, Ph.D; Gabriel Borges; and Lester Rosario

Abstract

During HIV infection of macrophages, the lysosomal protein cathepsin B is released and induces neurotoxicity. Also, the levels of cathepsin B are increased in plasma and post-mortem brain tissue of patients with HIV-associated dementia. Oxidative damage is increased in HIV-infected patients, while antioxidants are decreased in HIV-associated dementia. Dimethyl fumarate (DMF), an antioxidant, has been reported to decrease HIV replication and neurotoxicity caused by HIV-infected macrophages. Since HIV also increases cathepsin B, we hypothesize that DMF will also reduce cathepsin B release from HIV-infected macrophages. Monocyte-derived macrophages (MDM) were isolated from healthy donors and inoculated with HIV-1_{ADA}. After removal of infection, MDM were treated with DMF at different concentrations (15, 30, and 60 µM) until day 12 post-infection, changing and collecting media every three days. HIV-1p24 and cathepsin B levels were assessed from HIV-infected MDM supernatants at the end of cultures using ELISA. Results indicate that DMF reduced HIV-1 replication and cathepsin B secretion from HIV-infected macrophages, in a concentration-dependent manner, in comparison with vehicle (DMSO)-treated controls. However, cathepsin B secretion was not affected by HIV infection in vehicle-treated controls. In conclusion, DMSO may have had an unexpected effect in cathepsin B secretion in our experiments, and this could explain why cathepsin B secretion was not affected by HIV infection. Future experiments will include an untreated control group to determine if DMSO vehicle is having an effect in cathepsin B secretion. This will lead us to determine the role of DMF in cathepsin B secretion from HIV-infected macrophages.

KEYWORDS: Cathepsin B; HIV; DMF; MDM

*The STEP-UP HS program is supported by the National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health, 2 R25 DK098067-06. This research is supported in part by: R25-GM061838 (LR), R01MH083516 (LMM) G12RR03051 (LMM), R25-GM082406, SC1GM11369–01(LMM), and University of Puerto Rico School of Medicine and Biomedical Sciences Deanships.
Effect of Antioxidants in Cathepsin B Release by HIV Infected Macrophages

Luz J. Cartagena Isern
Loyda M. Meléndez, Ph.D, University of Puerto Rico, Medical Sciences Campus
Gabriel Borges, University of Puerto Rico, Medical Sciences Campus
Lester Rosario, University of Puerto Rico, Medical Sciences Campus

Coordinating Center: University of Nevada, Las Vegas

ABSTRACT

During HIV infection of macrophages, the lysosomal protein cathepsin B is released and induces neurotoxicity. Also, the levels of cathepsin B are increased in plasma and post-mortem brain tissue of patients with HIV-associated dementia. Oxidative damage is increased in HIV-infected patients, while antioxidants are decreased in HIV-associated dementia. Dimethyl fumarate (DMF), an antioxidant, has been reported to decrease HIV replication and neurotoxicity caused by HIV-infected macrophages. Since HIV also increases cathepsin B, we hypothesize that DMF will also reduce cathepsin B release from HIV-infected macrophages. Monocyte-derived macrophages (MDM) were isolated from healthy donors and inoculated with HIV-1ADA. After removal of infection, MDM were treated with DMF at different concentrations (15, 30, and 60 µM) until day 12 post-infection, changing and collecting media every three days. HIV-1 p24 and cathepsin B levels were assessed from HIV-infected MDM supernatants at the end of cultures using ELISA. Results indicate that DMF reduced HIV-1 replication and cathepsin B secretion from HIV-infected macrophages, in a concentration-dependent manner, in comparison with vehicle (DMSO)-treated controls. However, cathepsin B secretion was not affected by HIV infection in vehicle-treated controls. In conclusion, DMSO may have had an unexpected effect in cathepsin B secretion in our experiments, and this could explain why cathepsin B secretion was not affected by HIV infection. Future experiments will include an untreated control group to determine if DMSO vehicle is having an effect in cathepsin B secretion. This will lead us to determine the role of DMF in cathepsin B secretion from HIV-infected macrophages.

Keywords: Cathepsin B, HIV, DMF, MDM
ACKNOWLEDGEMENTS

The STEP-UP HS program is supported by the National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health, 2 R25 DK098067-06. This research is supported in part by: R25-GM061838 (LR), R01MH083516 (LMM) G12RR03051 (LMM), R25-GM082406, SC1GM11369-01(LMM), and University of Puerto Rico School of Medicine and Biomedical Sciences Deanships.